

FCC Measurement/Technical Report on

REFCON Wireless Hub

FCC ID: 2ARHA-C00030

IC: -

Test Report Reference: MDE_EMERS_2102_FCC_07

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385

a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1 A	pplied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	4
2 R	evision History / Signatures	8
3 A	dministrative Data	9
3.1	Testing Laboratory	9
3.2	Project Data	9
3.3	Applicant Data	9
3.4	Manufacturer Data	10
4 T	est object Data	11
4.1	General EUT Description	11
4.2	EUT Main components	11
4.3	Ancillary Equipment	12
4.4	Auxiliary Equipment	12
4.5	EUT Setups	12
4.6	Operating Modes / Test Channels	13
4.7	Product labelling	13
5 T	est Results	14
5.1	Occupied Bandwidth (6 dB)	14
5.2	Occupied Bandwidth (99%)	16
5.3	Peak Power Output	18
5.4	Spurious RF Conducted Emissions	21
5.5	Transmitter Spurious Radiated Emissions	24
5.6	Band Edge Compliance Conducted	34
5.7	Band Edge Compliance Radiated	37
5.8	Power Density	43
6 T	est Equipment	46
	ntenna Factors, Cable Loss and Sample Calculations	50
7.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	50
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	51
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	52
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	53
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	54
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	55
8 M	leasurement Uncertainties	56
9 P	hoto Report	57

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a)	(2)		
Occupied Bandwidth (6 dB)	na to ANCI CC2 1	10	Final R	
The measurement was performed accordi	ing to ANSI Cos.1	LU	rınaı K	esuit
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency, Measurement method				
Bluetooth LE, high, conducted	S01_AB02	2021-10-04	Passed	Passed
Bluetooth LE, low, conducted	S01_AB02	2021-10-04	Passed	Passed
Bluetooth LE, mid, conducted	S01_AB02	2021-10-04	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	IC RSS-Gen 8	& IC TRC-43;	Ch. 6.7	& Ch. 8
Occupied Bandwidth (99%)				
The measurement was performed accordi	ng to ANSI C63.1	LO	Final R	esult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency, Measurement method				
Bluetooth LE, high, conducted	S01_AB02	2021-10-04	N/A	Performed
Bluetooth LE, low, conducted	S01_AB02	2021-10-04	N/A	Performed
Bluetooth LE, mid, conducted	S01_AB02	2021-10-04	N/A	Performed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (b)	(3)		
Subpart C §15.247 Peak Power Output				
Subpart C §15.247			Final R	esult
Subpart C §15.247 Peak Power Output			Final R	esult IC
Subpart C §15.247 Peak Power Output The measurement was performed according	ng to ANSI C63.1	10		
Subpart C §15.247 Peak Power Output The measurement was performed according to the measurement of the measurement was performed according to the measurem	ng to ANSI C63.1	10		
Peak Power Output The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Measurement method	ng to ANSI C63.1	Date	FCC	IC
Peak Power Output The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted	ng to ANSI C63.1 Setup S01_AB02	Date 2021-10-04	FCC Passed	IC Passed
Peak Power Output The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted	ng to ANSI C63.1 Setup S01_AB02 S01_AB02	Date 2021-10-04 2021-10-04 2021-10-04	FCC Passed Passed	IC Passed Passed
Peak Power Output The measurement was performed according to the mea	ng to ANSI C63.1 Setup S01_AB02 S01_AB02 S01_AB02 \$ 15.247 (d)	Date 2021-10-04 2021-10-04 2021-10-04	Passed Passed Passed	Passed Passed Passed
Peak Power Output The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	ng to ANSI C63.1 Setup S01_AB02 S01_AB02 S01_AB02 \$ 15.247 (d)	Date 2021-10-04 2021-10-04 2021-10-04	FCC Passed Passed	Passed Passed Passed
Peak Power Output The measurement was performed according to the mea	ng to ANSI C63.1 Setup S01_AB02 S01_AB02 S01_AB02 \$ 15.247 (d)	Date 2021-10-04 2021-10-04 2021-10-04	Passed Passed Passed	Passed Passed Passed
Peak Power Output The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed according OP-Mode Radio Technology, Operating Frequency,	ng to ANSI C63.1 Setup S01_AB02 S01_AB02 S01_AB02 § 15.247 (d) ng to ANSI C63.1	Date 2021-10-04 2021-10-04 2021-10-04	Passed Passed Passed	Passed Passed Passed Passed
Peak Power Output The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Measurement method	ng to ANSI C63.1 Setup S01_AB02 S01_AB02 S01_AB02 § 15.247 (d) ng to ANSI C63.1 Setup	Date 2021-10-04 2021-10-04 2021-10-04 Date	FCC Passed Passed Passed Final R FCC	Passed Passed Passed Passed IC

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Transmitter Spurious Radiated Emissions The measurement was performed accordi	ng to ANSI C63.10)	Final Re	sult
OP-Mode Radio Technology, Operating Frequency,	Setup	Date	FCC	IC
Bluetooth LE, high, 1 GHz - 26 GHz	S01_AB01	2021-10-01	Passed	Passed
Bluetooth LE, high, 1 GHz - 8 GHz	S01_AB04	2021-11-10	Passed	Passed
Bluetooth LE, high, 1 GHz - 26 GHz	S01_AB05	2021-11-10	Passed	Passed
Bluetooth LE, high, 30 MHz - 1 GHz	S01_AB01	2021-10-25	Passed	Passed
Bluetooth LE, high, 9 kHz - 30 MHz	S01_AB01	2021-10-25	Passed	Passed
Bluetooth LE, low, 1 GHz - 26 GHz	S01_AB01	2021-10-01	Passed	Passed
Bluetooth LE, low, 30 MHz - 1 GHz	S01_AB01	2021-10-25	Passed	Passed
Bluetooth LE, mid, 1 GHz - 26 GHz	S01_AB01	2021-10-01	Passed	Passed
Bluetooth LE, mid, 30 MHz - 1 GHz	S01_AB01	2021-10-25	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Band Edge Compliance Conducted The measurement was performed accordi	ng to ANSI C63.10)	Final Re	sult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency, Band Edge	Setup	Dute	100	10
Bluetooth LE, high, high	S01_AB02	2021-10-04	Passed	Passed
Bluetooth LE, low, low	S01_AB02	2021-10-04	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Band Edge Compliance Radiated The measurement was performed accordi	ng to ANSI C63.10)	Final Re	sult
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Bluetooth LE, high, high	S01_AB01	2021-10-01	Passed	Passed
Bluetooth LE, high, high	S01_AB04	2021-11-10	Passed	Passed
Bluetooth LE, high, high	S01_AB05	2021-11-10	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (e)			
Power Density The measurement was performed accordi	ng to ANSI C63.10)	Final Re	sult
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
high	S01_AB02	2021-10-04	Passed	Passed
Bluetooth LE, low	S01_AB02	2021-10-04	Passed	Passed
Bluetooth LE, mid	S01_AB02	2021-10-04	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control					
Version	Version validity				
initial	2021-12-03		valid		

COMMENT: -

(responsible for accreditation scope)

Marco Kullik

(responsible for testing and report)

Mohamed Fraitat

Mayers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Marco Kullik

Report Template Version: 2021-09-09

3.2 PROJECT DATA

Responsible for testing and report: Mohamed Fraitat

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2021-12-03

Testing Period: 2021-09-09 to 2021-11-10

3.3 APPLICANT DATA

Company Name: EMERSON Transportation Solutions ApS

Address: Boeletvej 1 Ry

DK-8680 Denmark

Contact Person: Jakob Riis Lorentsen

3.4 MANUFACTURER DATA

Company Name: ETK EMS Skanderborg

Address: Industrivej 45Stilling

DK-8660, Skanderborg

Denmark

Contact Person: Torben Drejer

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	The REFCON Wireless Hub is a device used to collect data from all current reefer types through the REFCON Portable Modem and Bluetooth enabled devices. All data is collected automatically and sent to the local REFCON system enabling onsite technicians to obtain a clear and precise overview of the status of all reefers within the site.
Product name	REFCON Wireless Hub
Туре	8409-002
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	24 V
Antenna / Gain	-3 dBi
Tested Modulation Type	GFSK
Specific product description for the EUT	The EUT is a Bluetooth low energy transceiver.
EUT ports (connected cables during testing):	DC port (connected to power supply)LAN portUSB portMini-USB
Tested datarates	BT LE: 1Mbps
Special software used for testing	-

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
ab01	DE1325005ab01	Radiated and conducted	
		sample	
Sample Parameter	Va	lue	
Serial No.	ABE840900220280008		
HW Version	- Beagle Bone Black:rev C		
	- Cape PBA rev C3.		
	- BLE PBA rev 4.3		
SW Version	- Beagle Bone Black: 9ac5067		
	- BLE PBA: 2a2b121		
Comment	-		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX_03	, 2J662B-250LL100-C20N 15/ 19, -, -,	Ext Antenna 02 (2J66) (0.5m)
AUX_04	, 2J6602B-250LMR100-C20N, -, -,	Ext antenna (2m)
AUX_05	Taoglas, WSA.2400.A.101151	Ext. antenna

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup Combination of EUTs		Description and Rationale
S01 AB01	ab01, AUX_03,	Setup for radiated measurement with
		short antenna
S01_AB02	ab01	Setup for conducted measurement
CO1 ADO4	ab01, AUX_04,	Setup for radiated measurement with
S01_AB04		long antenna
CO1 ADOE	SHOUL ALLY OF	Setup for radiated measurement with
S01_AB05	ab01, AUX_05,	Taoglas antenna

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

BT LE Test Channels: Channel: Frequency [MHz]

2.4 GHz ISM 2400 - 2483.5 MHz					
low mid high					
0	19	39			
2402	2440	2480			

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

TEST RESULTS

4.8 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.8.1 TEST DESCRIPTION

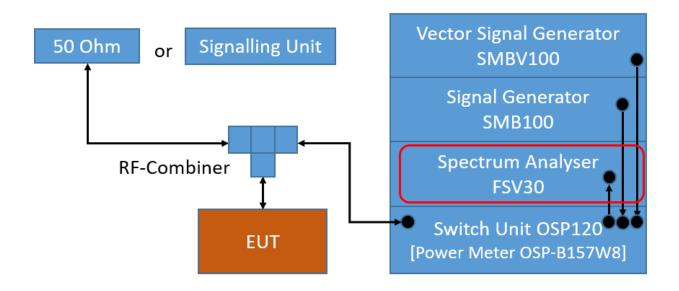
The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:


Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Span: Two times nominal bandwidth

Trace: Maxhold

• Sweeps: Till stable (min. 500, max. 15000)

Sweeptime: AutoDetector: Peak

TS8997; Channel Bandwidth

4.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.8.3 TEST PROTOCOL

Ambient temperature: 26 °C
Air Pressure: 999 hPa
Humidity: 37 %

BT LE 1 Mbit/s

Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.792	0.5	0.292
	19	2440	0.792	0.5	0.292
	39	2480	0.792	0.5	0.292

Remark: Please see next sub-clause for the measurement plot.

4.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BT LE GFSK CH 0

4.8.5 TEST EQUIPMENT USED

- R&S TS8997

4.9 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.9.1 TEST DESCRIPTION

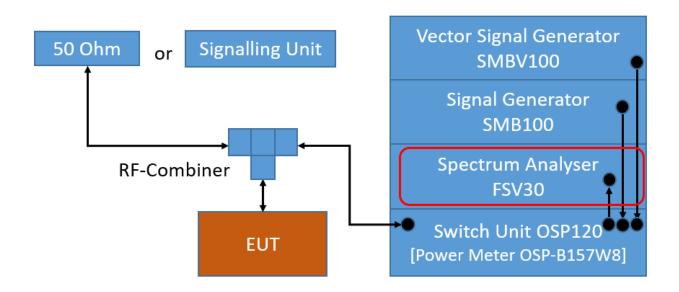
The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

Resolution Bandwidth (RBW): 1 to 5 % of the OBW


Video Bandwidth (VBW): ≥ 3 times the RBW

• Span: 1.5 to 5 times the OBW

Trace: Maxhold

Sweeps: Till stable (min. 500, max. 75000)

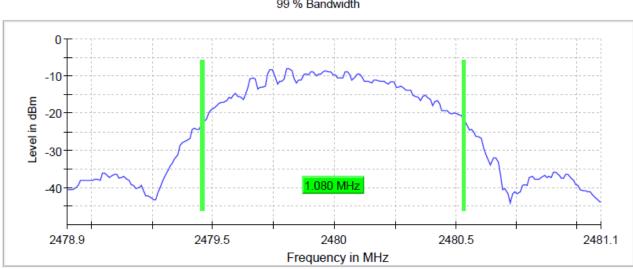
Sweeptime: AutoDetector: Peak

TS8997; Channel Bandwidth

4.9.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

TEST REPORT REFERENCE: MDE_EMERS_2102_FCC_07 Page 16 of 57


4.9.3 **TEST PROTOCOL**

26 °C Ambient temperature: 999 hPa Air Pressure: Humidity: 37 % BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.070
	19	2440	1.070
	39	2480	1.080

Remark: Please see next sub-clause for the measurement plot.

MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF 4.9.4 APPLICABLE)

99 % Bandwidth

4.9.5 TEST EQUIPMENT USED

R&S TS8997

4.10 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.10.1 TEST DESCRIPTION

DTS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

Maximum peak conducted output power (e.g. Bluetooth Low Energy):

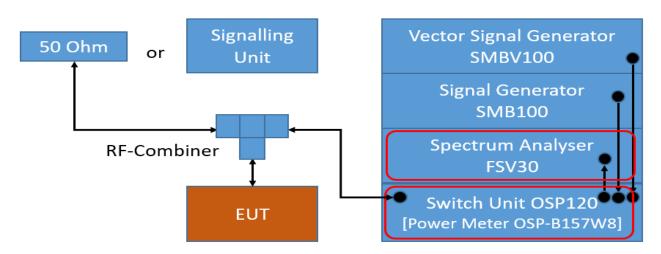
The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. The reference level of the spectrum analyser was set higher than the output power of the EUT.

Analyser settings:

• Resolution Bandwidth (RBW): ≥ DTS bandwidth

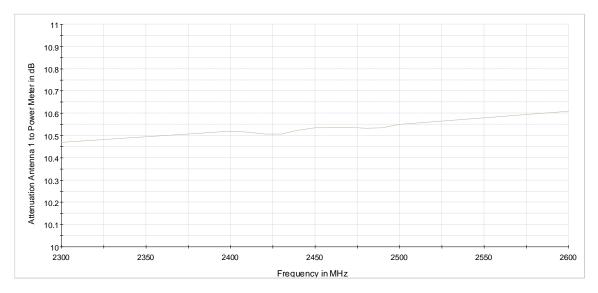
• Video Bandwidth (VBW): ≥ 3 times RBW or maximum of analyzer

• Span: ≥ 3 times RBW

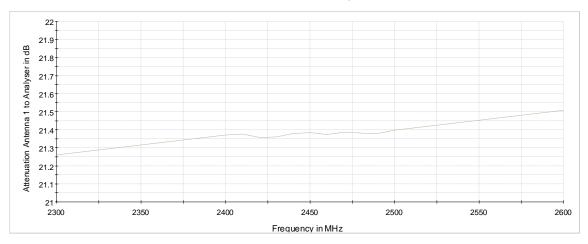

• Trace: Maxhold

Sweeps: Till stable (min. 300, max. 15000)

Sweeptime: AutoDetector: Peak


Maximum conducted average output power (e.g. WLAN):

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. Measurement is performed using the gated RF average power meter integrated in the OSP 120 module OSP-B157W8 with signal bandwidth >300 MHz.



TS8997; Output Power

Attenuation of the measurement path to Power Meter

Attenuation of the measurement path to Analyser

4.10.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

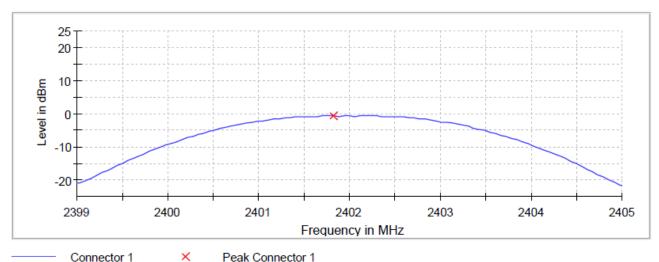
For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

4.10.3 TEST PROTOCOL

Ambient temperature: 26 °C Air Pressure: 999 hPa Humidity: 37 %

BT LE 1 Mbit/s


Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	-0.7	30.0	30.7	-3.7
	19	2440	-0.9	30.0	30.9	-3.9
	39	2480	-1.1	30.0	31.1	-4.1

Remark: Please see next sub-clause for the measurement plot.

4.10.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BTLE GFSK CH0

Peak Power

4.10.5 TEST EQUIPMENT USED

- R&S TS8997

4.11 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

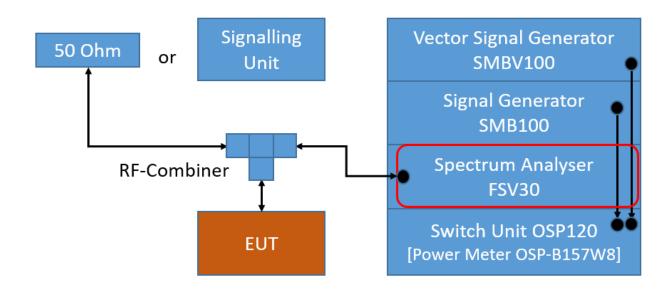
ANSI C63.10

4.11.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

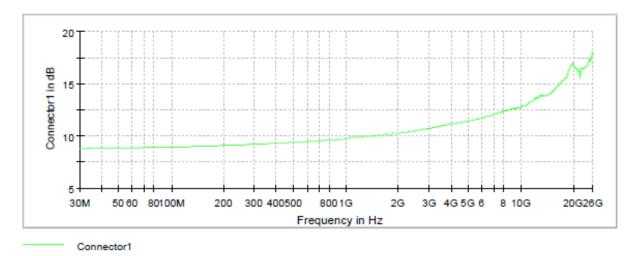
The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:


Frequency range: 30 – 26000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

Trace: Maxhold

• Sweeps: Till Stable (max. 120)


Sweep Time: AutoDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.

TS8997; Spurious RF Conducted Emissions

Attenuation of the measurement part

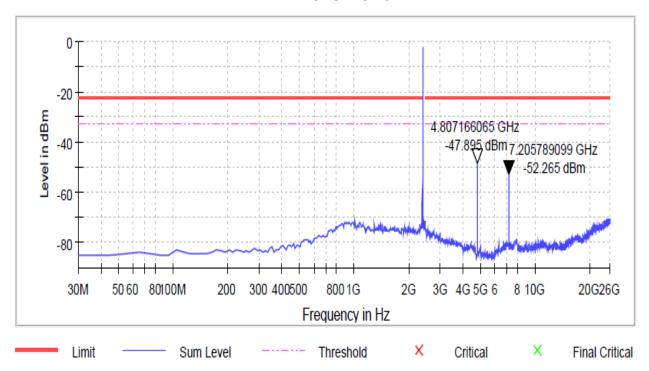
4.11.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.11.3 TEST PROTOCOL

Ambient temperature: 26 °C
Air Pressure: 999 hPa
Humidity: 37 %
BT LE 1 Mbit/s


Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	4807.2	-47.9	PEAK	100	-2.6	-22.6	25.3
19	2440	4877.1	-48.0	PEAK	100	-2.7	-22.7	25.3
39	2480	4957.1	-48.8	PEAK	100	-3.0	-23.0	25.9

Remark: Please see next sub-clause for the measurement plot.

4.11.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BTLE GFSK CH0

4.11.5 TEST EQUIPMENT USED

- R&S TS8997

4.12 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

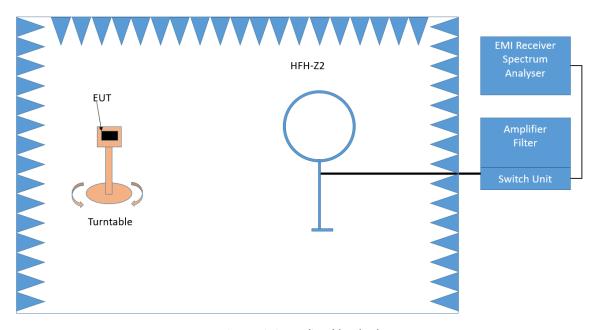
ANSI C63.10

4.12.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.10:

• < 30 MHz: Chapter 6.4

30 MHz – 1 GHz: Chapter 6.5


• > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz - 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

TEST REPORT REFERENCE: MDE_EMERS_2102_FCC_07 Page 24 of 57

Anechoic chamber

Antenna distance: 3 m Antenna height: 1 m

Detector: Peak-Maxhold

Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

Frequency steps: 0.05 kHz and 2.25 kHz

IF-Bandwidth: 0.2 kHz and 9 kHz

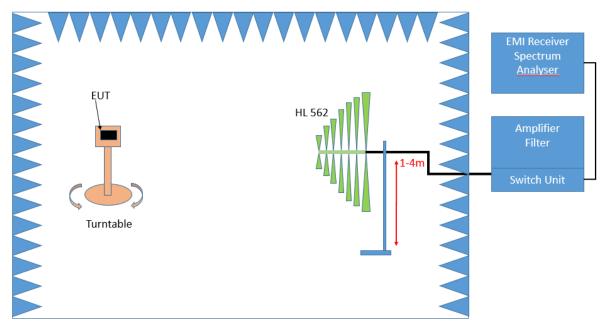
Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

Detector: Quasi-Peak (9 kHz - 150 kHz, Peak / Average 150 kHz- 30 MHz)


Frequency range: 0.009 - 30 MHz

Frequency steps: measurement at frequencies detected in step 1

IF-Bandwidth: 0.2 - 10 kHz

Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

- Frequency steps: 30 kHz - IF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHz
 Measuring time: 100 ms
 Turntable angle range: 360 °
 Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

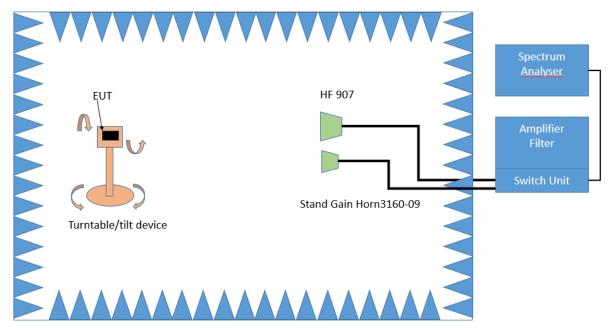
With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90° .

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

4.12.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.12.3 TEST PROTOCOL

Setup: S01 AB01

Ambient temperature: 25 °C
Air Pressure: 1022 hPa
Humidity: 38 %

BT LE 1 Mbit/s

Applied duty cycle correction (AV): 0 dB

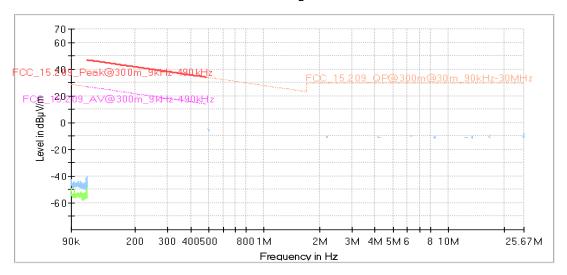
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	2402	114.2	28.0	QP	120	43.5	15.5	RB
0	2402	119.8	31.6	QP	120	43.5	11.9	RB
0	2402	240.0	42.5	QP	120	46.0	3.5	RB
0	2402	276.0	39.8	QP	120	46.0	6.2	RB
0	2402	408.0	29.9	QP	120	46.0	16.1	RB
0	2402	612.0	37.6	QP	120	46.0	8.4	RB
0	2402	14482.3	40.0	ΑV	1000	54.0	14.0	RB
0	2402	14482.3	54.8	PEAK	1000	74.0	19.2	RB
0	2402	15599.8	42.1	AV	1000	54.0	11.9	RB
0	2402	15599.8	57.2	PEAK	1000	74.0	16.8	RB
0	2402	17826.8	46.0	AV	1000	54.0	8.0	RB
0	2402	17826.8	60.6	PEAK	1000	74.0	13.4	RB
19	2440	113.0	18.3	QP	120	43.5	25.2	RB
19	2440	120.0	30.5	QP	120	43.5	13.0	RB
19	2440	123.0	15.7	QP	120	43.5	27.8	RB
19	2440	240.0	20.0	QP	120	46.0	26.0	RB
19	2440	276.0	40.0	QP	120	46.0	6.0	RB
19	2440	14479.2	52.8	PEAK	1000	74.0	21.2	RB
19	2440	15597.4	55.6	PEAK	1000	74.0	18.4	RB
19	2440	15601.5	41.7	AV	1000	54.0	12.3	RB
19	2440	17820.8	58.7	PEAK	1000	74.0	15.3	RB
19	2440	17823.3	45.9	AV	1000	54.0	8.1	RB
39	2480	116.3	15.5	QP	120	43.5	28.0	RB
39	2480	168.0	26.2	QP	120	43.5	17.3	RB
39	2480	14477.1	53.2	PEAK	1000	74.0	20.8	RB
39	2480	14477.1	40.1	AV	1000	54.0	13.9	RB
39	2480	15622.1	54.9	PEAK	1000	74.0	19.1	RB
39	2480	15622.1	41.4	AV	1000	54.0	12.6	RB
39	2480	17805.3	58.9	PEAK	1000	74.0	15.1	RB
39	2480	17805.3	45.8	AV	1000	54.0	8.2	RB

Setup: S01_AB04

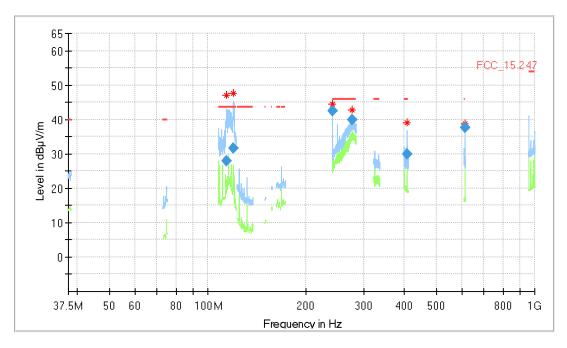
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
39	2480	2483.6	37.5	AV	1000	54.0	16.5	RB
39	2480	2483.7	50.4	PEAK	1000	74.0	23.6	RB
39	2480	4960.0	41.8	AV	1000	54.0	12.2	RB
39	2480	4960.5	50.5	PEAK	1000	74.0	23.5	RB

Setup: S01_AB05

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
39	2480	2483.6	51.1	PEAK	1000	74.0	22.9	RB
39	2480	2483.7	37.6	AV	1000	54.0	16.4	RB
39	2480	4960.0	41.6	AV	1000	54.0	12.4	RB
39	2480	4960.4	51.7	PEAK	1000	74.0	22.3	RB


Remark: Please see next sub-clause for the measurement plot.

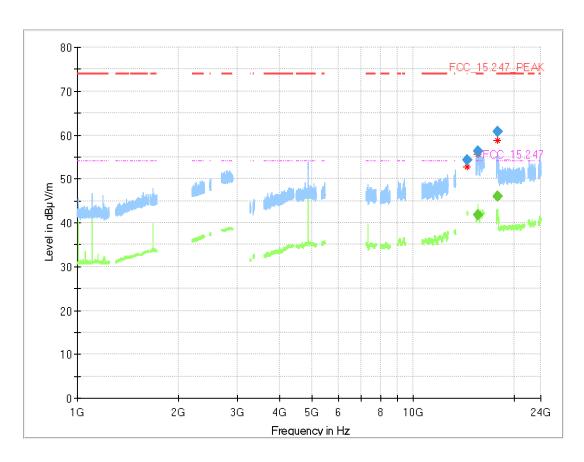
TEST REPORT REFERENCE: MDE_EMERS_2102_FCC_07 Page 29 of 57



4.12.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE, Operating Frequency = high, Measurement range = 9 kHz - 30 MHz

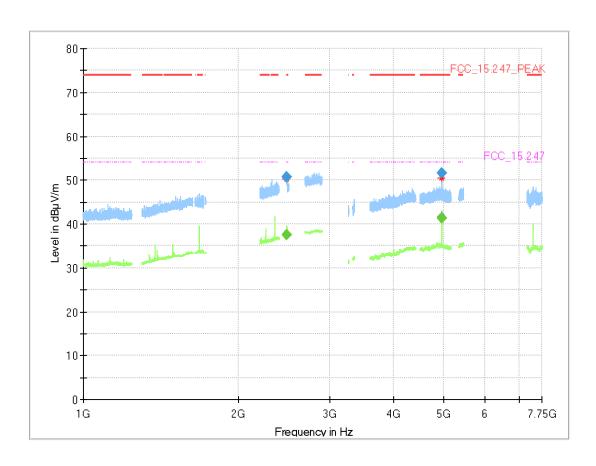
Radio Technology = Bluetooth LE, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz


Final_Result

Frequency (MHz)	QuasiPeak (dΒμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
114.180000	28.01	43.50	15.49	1000.0	120.000	275.0	Н	106.0	11.3
119.820000	31.63	43.50	11.87	1000.0	120.000	186.0	Н	256.0	11.7
240.000000	42.46	46.00	3.54	1000.0	120.000	249.0	V	4.0	11.5
276.000000	39.80	46.00	6.20	1000.0	120.000	111.0	Н	138.0	12.6
408.030000	29.90	46.00	16.10	1000.0	120.000	218.0	Н	68.0	16.7
612.020000	37.56	46.00	8.44	1000.0	120.000	104.0	V	60.0	20.8

TEST REPORT REFERENCE: MDE_EMERS_2102_FCC_07 Page 30 of 57

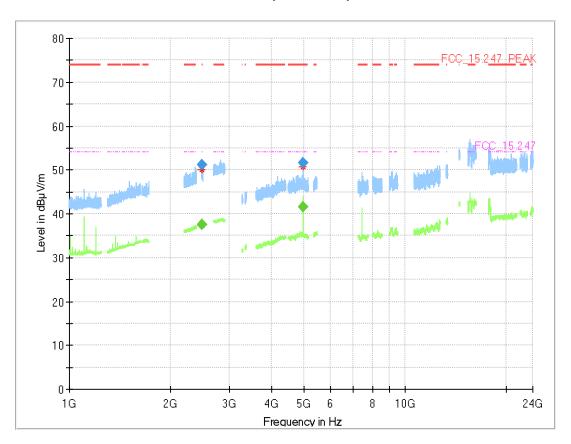
Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AB01)



Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
14479.150	54.4		74.00	19.59	1000.0	1000.000	150.0	Н	50.0	-12.0	-3.2
15597.350	56.2		74.00	17.77	1000.0	1000.000	150.0	V	-174.0	15.0	-1.0
15601.458		41.9	54.00	12.11	1000.0	1000.000	150.0	V	-51.0	94.0	-1.0
17820.750	60.7		74.00	13.31	1000.0	1000.000	150.0	V	-11.0	6.0	1.3
17823.300		46.0	54.00	7.97	1000.0	1000.000	150.0	V	51.0	15.0	1.4

Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 1 GHz - 7 GHz(S01_AB04)



Final_Result

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
2483.583		37.4	54.00	16.55	1000.0	1000.000	150.0	V	2.0	82.0	5.3
2483.748	50.8		74.00	23.17	1000.0	1000.000	150.0	V	5.0	76.0	5.3
4960.038		41.4	54.00	12.58	1000.0	1000.000	150.0	V	27.0	90.0	4.4
4960.525	51.6		74.00	22.41	1000.0	1000.000	150.0	V	29.0	89.0	4.4

Radio Technology = Bluetooth LE, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AB05)

Final_Result

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(MHz)	(dBµV/m)	e (dBµV/m)	(dBµ V/m)	n (dB)	Time (ms)	h (kHz)	t (cm)		(deg)	n (deg)	(dB/ m)
2483.583	51.1		74.00	22.90	1000.0	1000.000	150.0	Η	127.0	-8.0	5.3
2483.748		37.6	54.00	16.44	1000.0	1000.000	150.0	V	144.0	84.0	5.3
4960.038		41.6	54.00	12.43	1000.0	1000.000	150.0	Н	-60.0	-1.0	4.4
4960.363	51.7		74.00	22.33	1000.0	1000.000	150.0	Н	-57.0	6.0	4.4

4.12.5 TEST EQUIPMENT USED

- Radiated Emissions

4.13 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.13.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

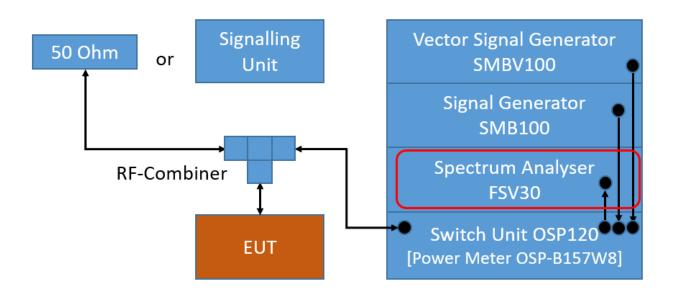
Analyser settings:

Lower Band Edge:

Measured range: 2310.0 MHz to 2483.5 MHz

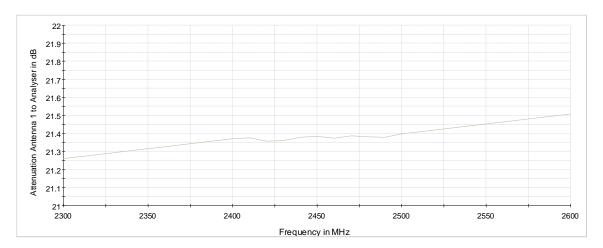
Upper Band Edge

Measured range: 2400.0 MHz to 2500 MHz


• Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

• Sweeptime: Auto


• Sweeps: Till stable (min. 300, max. 15000)

· Trace: Maxhold

TS8997; Band Edge Conducted

Attenuation of the measurement path

4.13.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

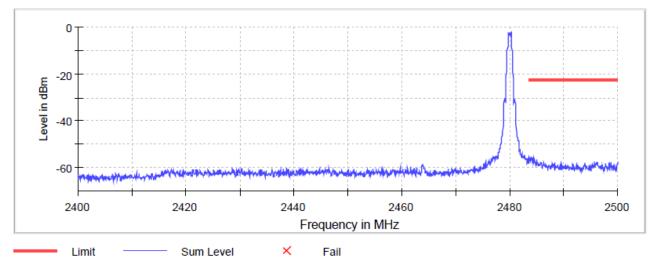
If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

4.13.3 TEST PROTOCOL

Ambient temperature: 26 °C Air Pressure: 999 hPa Humidity: 37 %

BT LE 1 Mbit/s


Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-51.8	PEAK	100	-2.6	-22.6	29.2
39	2480	2483.5	-51.8	PEAK	100	-3.0	-23.0	28.8

Remark: Please see next sub-clause for the measurement plot.

4.13.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BT LE GFSK CH39

4.13.5 TEST EQUIPMENT USED

- R&S TS8997

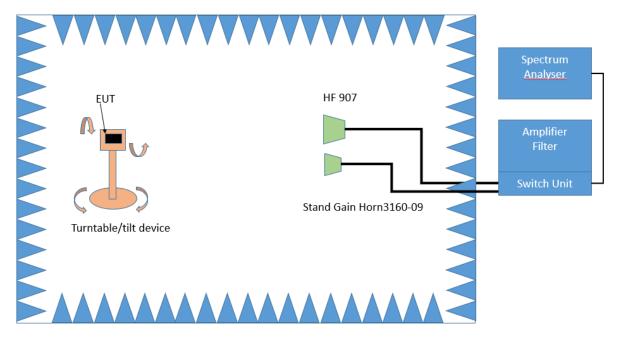
4.14 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.14.1 TEST DESCRIPTION


The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by \pm 45°

TEST REPORT REFERENCE: MDE_EMERS_2102_FCC_07

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average

- Measured frequencies: in step 1 determined frequencies

- RBW = 1 MHz - VBW = 3 MHz - Measuring time: 1 s

4.14.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.14.3 TEST PROTOCOL

Setup: S01 AB01

Ambient temperature: 24°C
Air Pressure: 1010 hPa
Humidity: 42 %

BT LE 1 Mbit/s

Applied duty cycle correction (AV): 0

dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
39	2480	2483.5	53.0	PEAK	1000	74.0	21.0
39	2480	2483.5	39.1	AV	1000	54.0	14.9

Setup: S01_AB04

Ambient temperature: 24°C Air Pressure: 1005 hPa Humidity: 40 %

BT LE 1 Mbit/s

Applied duty cycle correction (AV): 0

dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
39	2480	2483.5	50.8	PEAK	1000	74.0	23.2
39	2480	2483.5	37.4	AV	1000	54.0	16.6

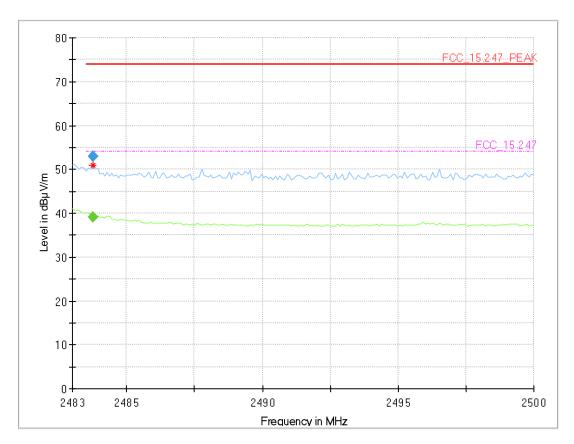
Setup: S01_AB05

Ambient temperature: 24°C Air Pressure: 1005 hPa Humidity: 40 %

BT LE 1 Mbit/s

Applied duty cycle correction (AV): 0

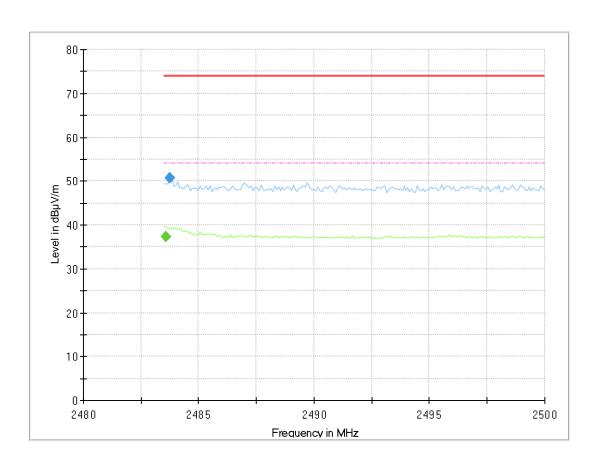
dΒ


Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
39	2480	2483.5	51.1	PEAK	1000	74.0	22.9
39	2480	2483.5	37.6	AV	1000	54.0	16.4

Remark: Please see next sub-clause for the measurement plot.

4.14.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

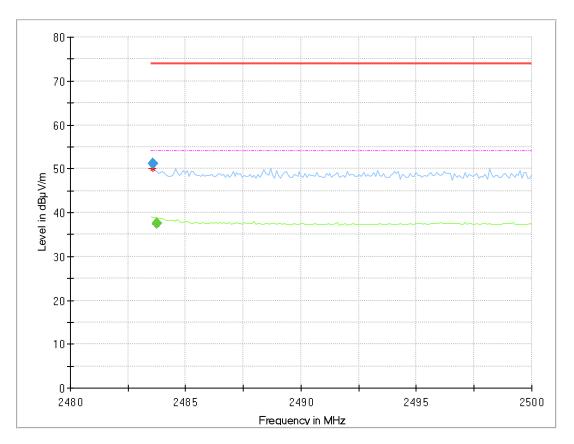
Operating Frequency = high, Band Edge = high (S01_AB01)



Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.765		39.1	54.00	14.91	1000.0	1000.000	150.0	Н	-129.0	83.0	5.3
2483.765	53.0		74.00	21.04	1000.0	1000.000	150.0	Н	-116.0	80.0	5.3

Operating Frequency = high, Band Edge = high (S01_AB04)



Final_Result

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
2483.583		37.4	54.00	16.55	1000.0	1000.000	150.0	V	2.0	82.0	5.3
2483.748	50.8		74.00	23.17	1000.0	1000.000	150.0	V	5.0	76.0	5.3
4960.038		41.4	54.00	12.58	1000.0	1000.000	150.0	V	27.0	90.0	4.4
4960.525	51.6		74.00	22.41	1000.0	1000.000	150.0	V	29.0	89.0	4.4

Operating Frequency = high, Band Edge = high (S01_AB05)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.583	51.1		74.00	22.90	1000.0	1000.000	150.0	Н	127.0	-8.0	5.3
2483.748		37.6	54.00	16.44	1000.0	1000.000	150.0	V	144.0	84.0	5.3
4960.038		41.6	54.00	12.43	1000.0	1000.000	150.0	Н	-60.0	-1.0	4.4
4960.363	51.7		74.00	22.33	1000.0	1000.000	150.0	Н	-57.0	6.0	4.4

4.14.5 TEST EQUIPMENT USED

- Radiated Emissions

4.15 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.15.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Maximum Peak Power Spectral Density (e.g. Bluetooth low energy):

Analyser settings:

• Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

• Video Bandwidth (VBW): ≥ 3 times RBW

Trace: Maxhold

Sweeps: Till stable (min. 200, max. 15000)

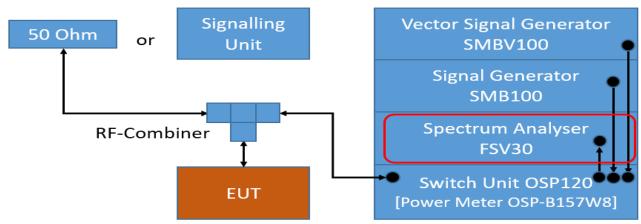
Sweeptime: AutoDetector: Peak

Maximum Average Power Spectral Density (e.g. WLAN):

Analyser settings:

• Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

• Video Bandwidth (VBW): ≥ 3 times RBW


Sweep Points: ≥ 2 times span / RBW

Trace: Maxhold

• Sweeps: Till stable (max. 150)

• Sweeptime: \leq Number of Sweep Points x minimum transmission duration

Detector: RMS

TS8997; Power Spectral Density

TEST REPORT REFERENCE: MDE_EMERS_2102_FCC_07

Attenuation of the measurement path

4.15.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

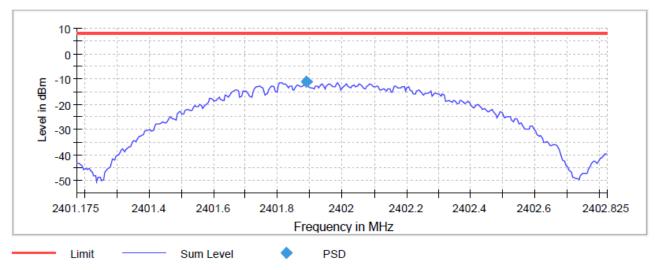
(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

4.15.3 TEST PROTOCOL

Ambient temperature: 26 °C Air Pressure: 999 hPa Humidity: 37 %

RT	ΙF	1	М	hi	t/s


Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-11.1	10.0	8.0	19.1
	19	2440	-11.3	10.0	8.0	19.3
	39	2480	-11.7	10.0	8.0	19.7

Remark: Please see next sub-clause for the measurement plot.

4.15.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BT LE CH 0

Peak Power Spectral Density

4.15.5 TEST EQUIPMENT USED

- R&S TS8997

5 TEST EQUIPMENT

1 R&S TS8997

2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2020-11	2021-11
1.2	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2021-06	2024-06
1.3	EX520	Digital Multimeter 12	Corp	05157876	2020-04	2022-04
1.4	Opus10 THI (8152.00)	T/H Logger 15	Lufft Mess- und Regeltechnik GmbH	13985	2021-08	2023-08
1.5	NGSM 32/10	Power Supply	Rohde & Schwarz GmbH & Co. KG	3456	2020-01	2022-01
1.6	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2020-05	2022-05
1.7	SMB100A	Signal Generator 100 kHz - 40 GHz	Rohde & Schwarz Vertriebs-GmbH	181486	2019-11	2021-11
1.8	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
1.9	FSW43	Signal analyser	Rohde & Schwarz GmbH & Co. KG	102013	2021-06	2023-06
1.10	Opus10 THI (8152.00)	T/H Logger 14	Lufft Mess- und Regeltechnik GmbH	13993	2021-08	2023-08
1.11	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2019-11	2022-11
1.12	OSP120	Contains Power Meter and Switching Unit OSP- B157W8	Rohde & Schwarz	101158	2021-08	2024-08

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1		Rubidium Frequency Normal MFS	Datum GmbH	002	2020-11	2021-11
2.2	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
2.3	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936		
2.4			Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12

TEST REPORT REFERENCE: MDE_EMERS_2102_FCC_07

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.5	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	Gansiacion	
2.6			Rohde & Schwarz GmbH & Co. KG	830547/003	2021-09	2024-09
2.7			Miteq			
2.8		Filter	Trilithic	9942012		
2.9	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
2.10			Albatross Projects	P26971-647-001- PRB	2021-04	2023-04
2.11	Opus10 THI T/H Logger 10		Lufft Mess- und Regeltechnik GmbH	12488	2021-08	2023-08
2.12	PONTIS Con4101	PONTIS Camera Controller		6061510370		
2.13	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2021-09	2022-09
2.14	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
2.15	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.16		Spectrum Analyzer	Rohde & Schwarz	103779	2021-06	2023-06
2.17	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
2.18	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09		
2.19	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
2.20	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
2.21	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2020-05	2022-05
2.22		Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.23	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.24	HL 562 ULTRALOG	Biconical-log- per Antenna (30 MHz - 3 GHz)	Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05

Ref.No. Device Name		Description	Manufacturer	Serial Number	Last Calibration	Calibration Due	
2.25	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001	2021-08	2024-08	
2.26		Bore Sight	innco systems GmbH				
2.27	VLFX-650+	Low Pass Filter DC650 MHz		15542			
2.28	JUN-AIR Mod. 6- 15	Air	JUN-AIR Deutschland GmbH	612582			
2.29	5HC3500/18000 -1.2-KK	Filter	Trilithic	200035008			
2.30	FS-Z140			101007	2020-03	2023-03	
2.31	HFH2-Z2	Loop Antenna + 3 Axis Tripod	Rohde & Schwarz GmbH & Co. KG	829324/006	2021-01	2024-01	
2.32	Voltcraft M- 3860M	Digital Multimeter 01 (Multimeter)	Conrad	1J096055			
2.33			Rohde & Schwarz	101424	2021-01	2023-01	
2.34	SB4- 100.OLD20- 3T/10 Airwin 2 x 1.5 kW	Air compressor (oil-free)	airWin Kompressoren UG	901/00503			
2.35	UNI-T UT195E		UNI-T UNI-TREND TECHNOLOGY (CHINA) CO., LTD.	C190729561			
2.36		Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037			
2.37	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37			
2.38	6005D (30 V / 5 A)		PeakTech	81062045			
2.39	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09			
2.40	FS-Z90	Mixer 60 - 90	Rohde & Schwarz Messgerätebau GmbH	101686	2020-03	2023-03	
2.41	Innco Systems CO3000	Controller for bore sight mast SAC	innco systems GmbH	CO3000/967/393 71016/L			
	NRV-Z1	Sensor Head B	Rohde & Schwarz GmbH & Co. KG	827753/006	2021-09	2022-09	
2.43	HF 907-2	Double-ridged horn	Rohde & Schwarz	102817	2019-04	2022-04	
2.44	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-			
2.45	AFS42- 00101800-25-S- 42	Broadband	Miteq	2035324			
2.46	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513			

Ref.No.	Device Name	Description	Manufacturer			Calibration
					Calibration	Due
2.47	HF 907	Double-ridged	Rohde & Schwarz	102444	2021-09	2024-09
		horn				

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.	
MHz	dB	
0.15	10.1	
5	10.3	
7	10.5	
10	10.5	
12	10.7	
14	10.7	
16	10.8	
18	10.9	
20	10.9	
22	11.1	
24	11.1	
26	11.2	
28	11.2	
30	11.3	

cable		
loss		
(incl. 10		
dB		
atten-		
uator)		
dB		
10.0		
10.2		
10.3		
10.3		
10.4		
10.4		
10.4		
10.5		
10.5		
10.6		
10.6		
10.7		
10.7		
10.8		

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

AF Frequency HFH-Z2) Corr. MHz dB (1/m) dB 0.009 20.50 -79.6 0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6 0.2 20.17 -79.6
Frequency HFH-Z2) Corr. MHz dB (1/m) dB 0.009 20.50 -79.6 0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
Frequency HFH-Z2) Corr. MHz dB (1/m) dB 0.009 20.50 -79.6 0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
MHz dB (1/m) dB 0.009 20.50 -79.6 0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
0.009 20.50 -79.6 0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
0.01 20.45 -79.6 0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
0.015 20.37 -79.6 0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
0.02 20.36 -79.6 0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
0.025 20.38 -79.6 0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
0.03 20.32 -79.6 0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
0.05 20.35 -79.6 0.08 20.30 -79.6 0.1 20.20 -79.6
0.08 20.30 -79.6 0.1 20.20 -79.6
0.1 20.20 -79.6
0.2 20.17 / 5.0
0.3 20.14 -79.6
0.49 20.12 -79.6
0.490001 20.12 -39.6
0.5 20.11 -39.6
0.8 20.10 -39.6
1 20.09 -39.6
2 20.08 -39.6
3 20.06 -39.6
4 20.05 -39.5
5 20.05 -39.5
6 20.02 -39.5
8 19.95 -39.5
10 19.83 -39.4
12 19.71 -39.4
14 19.54 -39.4
16 19.53 -39.3
18 19.50 -39.3
20 19.57 -39.3
22 19.61 -39.3
24 19.61 -39.3
26 19.54 -39.3
28 19.46 -39.2
30 19.73 -39.1

\ -		<u>'</u>				
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$d_{Limit} = 3 m)$		
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 m)$

(<u>d_{Limit} = 10 m</u>	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

	,			
cable loss 1 (relay + cable inside	cable loss 2 (outside	cable loss 3 (switch unit, atten- uator &	cable loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside	cable loss 2 (inside	cable loss 3 (outside	cable loss 4 (switch unit, atten- uator &	cable loss 5 (to	used for FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable loss 1 (relay inside chamber) cable loss 2 (High chamber) cable loss 3 (pre-amp) cable (inside chamber) cable (outside chamber) cable (stores) dB dB						
0.56 1.28 -62.72 2.66 0.94 1.46 0.69 0.71 -61.49 2.84 1.00 1.53 0.68 0.65 -60.80 3.06 1.09 1.60 0.70 0.54 -61.91 3.28 1.20 1.67 0.80 0.61 -61.40 3.43 1.27 1.70 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	loss 1 (relay inside	loss 2 (High	loss 3 (pre-	loss 4 (inside	loss 5 (outside	loss 6 (to
0.69 0.71 -61.49 2.84 1.00 1.53 0.68 0.65 -60.80 3.06 1.09 1.60 0.70 0.54 -61.91 3.28 1.20 1.67 0.80 0.61 -61.40 3.43 1.27 1.70 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	dB	dB	dB	dB	dB	dB
0.68 0.65 -60.80 3.06 1.09 1.60 0.70 0.54 -61.91 3.28 1.20 1.67 0.80 0.61 -61.40 3.43 1.27 1.70 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	0.56	1.28	-62.72	2.66	0.94	1.46
0.70 0.54 -61.91 3.28 1.20 1.67 0.80 0.61 -61.40 3.43 1.27 1.70 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	0.69	0.71	-61.49	2.84	1.00	1.53
0.80 0.61 -61.40 3.43 1.27 1.70 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	0.68	0.65	-60.80	3.06	1.09	1.60
0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	0.70	0.54	-61.91	3.28	1.20	1.67
0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	0.80	0.61	-61.40	3.43	1.27	1.70
0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	0.84	0.42	-59.70	3.53	1.26	1.73
0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	0.83	0.44	-59.81	3.75	1.32	1.83
1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00	0.91	0.53	-63.03	3.91	1.40	1.77
1.36 0.76 -62.36 4.34 1.53 2.00	0.98	0.54	-61.05	4.02	1.44	1.83
	1.23	0.49	-61.51	4.17	1.51	1.85
1.70 0.53 -62.88 4.41 1.55 1.91	1.36	0.76	-62.36	4.34	1.53	2.00
	1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF	
_	EMCO	_
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36
,		•		

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

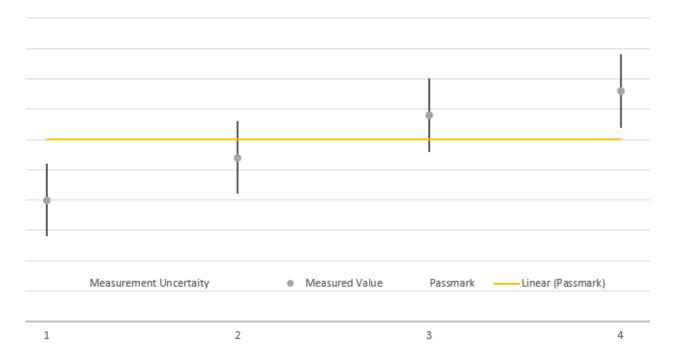
U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

7 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

8 PHOTO REPORT

Please see separate photo report.