
Project 21817-15

Pharos Marine Automatic Power

Phalcon-NT

RACON Radar Transponder

Band X Section

Wireless Certification Report

Prepared for:

Pharos Marine Automatic Power Systems
10810 W Little York St. Suite 130
Houston TX 77041

By

Professional Testing (EMI), Inc.
1601 North A.W. Grimes Blvd., Suite B
Round Rock, Texas 78665

28 Sep 2020

Reviewed by

Larry Finn
Chief Technical Officer

Written by

Eric Lifsey
EMC Engineer

Revision History

Revision Number	Description	Date
Draft 01	For review.	28 Sep 2020
Final1		19 Oct 2020
Final2	Add radiated emission data 18-26.5 GHz. Correct certificate page reference from S to X Band. Correct typos & cal date.	22 Oct 2020

Errata:

Table of Contents

Revision History	2
1.0 Introduction	6
1.1 Scope.....	6
1.2 EUT Description	6
1.3 EUT Operation.....	6
1.4 Modifications to EUT	6
1.5 Measurement Correction Methods.....	7
1.6 Test Site	7
1.7 Test Setup Diagram.....	7
2.0 Applicable Documents.....	8
3.0 Conducted Output Power at Antenna Terminal, Clause 80.215(n)(3), 2.1046.....	9
3.1 Test Procedure	9
3.2 Test Criteria	9
3.3 Test Results.....	9
4.0 Occupied Bandwidth, Clause 2.1049.....	10
4.1 Test Procedure	10
4.2 Test Criteria	10
4.3 Test Results.....	10
5.0 Spurious Emissions at Antenna Terminals, Clause 80.211(f)(1).....	12
5.1 Test Procedure	12
5.2 Test Criteria	12
5.3 Test Results.....	12
5.3.1 Bottom Channel	13
5.3.2 Middle Channel.....	14
5.3.3 Top Channel.....	15
6.0 Field Strength of Spurious Emissions, Clause 80.211(f)(1)	16
6.1 Test Procedure	16
6.2 Test Criteria	16
6.3 Test Results.....	16
6.3.1 Middle Channel to 1 GHz.....	17
6.3.2 Middle Channel 1 to 18 GHz.....	18
6.3.3 Middle Channel 18 to 26.5 GHz.....	19
6.3.4 Middle Channel 26.5 to 40 GHz.....	20
6.3.5 Bottom Channel 1 to 18 GHz.....	21
6.3.6 Bottom Channel 18 to 26.5 GHz.....	22
6.3.7 Bottom Channel 26.5 to 40 GHz.....	23

6.3.8	Top Channel 1 to 18 GHz	24
6.3.9	Top Channel 18 to 26.5 GHz	26
6.3.10	Top Channel 26.5 to 40 GHz	27
7.0	Frequency Stability	28
7.1	Test Procedure	28
7.2	Test Criteria	28
7.3	Test Results	28
7.3.1	Temperature	29
7.3.2	Voltage	30
8.0	Equipment Lists	31
Appendix: Policy, Rationale, and Evaluation of EMC Measurement Uncertainty		33
End of Report		33

NOTICE: (1) This Report must not be used to claim product endorsement, by NVLAP, NIST, the FCC or any other Agency. This report also does not warrant certification by NVLAP or NIST. (2) This report shall not be reproduced except in full, without the written approval of Professional Testing (EMI), Inc. (3) The significance of this report is dependent on the representative character of the test sample submitted for evaluation and the results apply only in reference to the sample tested. The manufacturer must continuously implement the changes shown herein to attain and maintain the required degree of compliance.

Certificate of Compliance

FCC MRA Designation Number: US5270
 NVLAP Accreditation Number: 200062-0

Applicant	Device & Test Identification
Pharos Marine Automatic Power Systems 10810 W Little York St. Suite 130 Houston TX 77041 Certificate Date: 28 Sep 2020	Model(s): Phalcon-NT FCC ID: 2ARGZPHALCON-NT Laboratory Project ID: 21817-15

The EUT model(s) listed above were tested utilizing the following documents and found to be in compliance with the required criteria.

47 CFR, FCC, Part 87 and Part 2 Band X Section, FCC Paragraph 80.215(n)(3)	
Section/Clause	Description
80.215(n)(3); 2.1046	Power and emissions; conducted output power, limited to 20 W peak.
2.1047	Modulation: PON
2.1049	Occupied BW Mask
2.1051	Emission limitations; Spurious/harmonic emissions at antenna terminals
2.1053	Emission limitations; radiated emissions 30 MHz - 40 GHz
2.1055(a)(2); 80.209(c)	Frequency stability (Maritime Services Part 80; ±1.5 MHz)

I, Eric Lifsey, for Professional Testing (EMI), Inc., being familiar with the above rules and test procedures have reviewed the test setup, measured data, and this report. I believe them to be true and accurate.

Eric Lifsey
 EMC Engineer

NVLAP[®]
 TESTING
 NVLAP LAB CODE 200062-0

This report has been reviewed and accepted by the Applicant. The undersigned is responsible for ensuring that this device will continue to comply with the requirements listed above.

Representative of Applicant

1.0 Introduction

1.1 Scope

This report describes the extent to which the equipment under test (EUT) conformed to the intentional radiator requirements of the United States.

1.2 EUT Description

Table 1.2.1 Equipment Under Test		
Manufacturer & Description	Model(s)	Serial #(s)
Pharos Marine Automatic Power Systems	Phalcon-NT	Item A: 19384-12
RACON Radar Transponder	X-Band Section	Item E: 19384-11

Table 1.2.2: EUT Essential Specifications	
Power Output to Antenna	~+30 dBm
Frequency Range	X-Band Test Frequencies: 9201, 9350, 9499 MHz
Channel Bandwidths Supported (kHz)	N/A
Modulation Methods Supported	PON
Antenna	Fixed omni-directional slot array
Operating Voltage and Power Required	10 to 36 VDC, 10 Watts
Environment	Outdoor

1.3 EUT Operation

The EUT was exercised in a manner consistent with normal operations.

The EUT utilizes a 2-band RACON radio unit in the same enclosure driving an independent antenna for each band. Bands S and X are supported. The antennas are fixed and omni-directional transmit and receive.

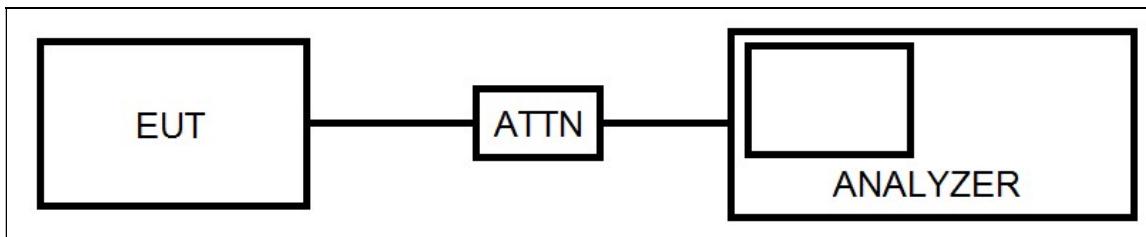
A RACON transmits a very fast simple Morse code character when it detects a signal from a ship radar. The responding transmission appears at a graphical Morse code character on the ship radar display. The decoded Morse character is then matched to navigational maps. This provides a way to mark hazards or similar important items for safe ship navigation.

1.4 Modifications to EUT

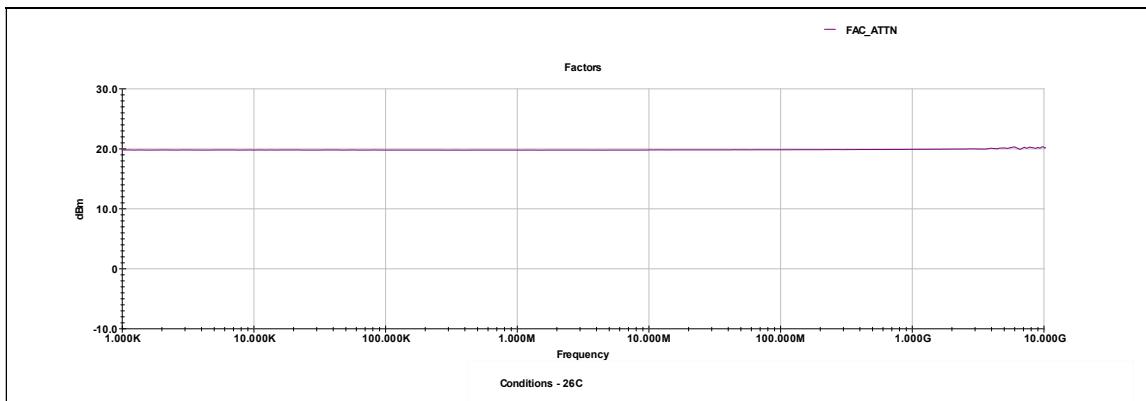
None.

1.5 Measurement Correction Methods

Table 1.6 1 Measurement Corrections


Parameter	From Sums Of
Radiated Field Strength	Raw Measured Level + Antenna Factor + Cable Losses – Amplifier Gain
Conducted Antenna Port	Raw Measured Level + Attenuator Factor + Cable Losses
Conducted Mains Port	Raw Measured Level + LISN Factor + Cable/Filter/Limiter Losses
Additionally, measurement distance extrapolation factors (such as 1/d above 30 MHz) are applied and documented where used.	

1.6 Test Site


Radiated measurements were made at the PTI semi-anechoic facility designated Site 45 (FCC 459644, IC 3036B-1) in Austin, Texas. The site is registered with the FCC under Section 2.948 and Industry Canada per RS-GEN and is subsequently confirmed by laboratory accreditation (NVLAP 200026-0). The test site is located at 11400 Burnet Road, Austin, Texas 78758, while the main office is located at 1601 North A.W. Grimes Boulevard, Suite B, Round Rock, Texas, 78665.

Professional Testing (EMI), Inc., (PTI) follows the guidelines of National Institute of Standards and Technology (NIST) for all uncertainty calculations, estimates, and expressions thereof for electromagnetic compatibility testing.

1.7 Test Setup Diagram

Setup for Conducted Port Measurements: Power, Mask, Spurious, Bandwidth

Attenuator Factor vs Frequency, Asset Number A105, 20 dB 20 W Narda Attenuator

2.0 Applicable Documents

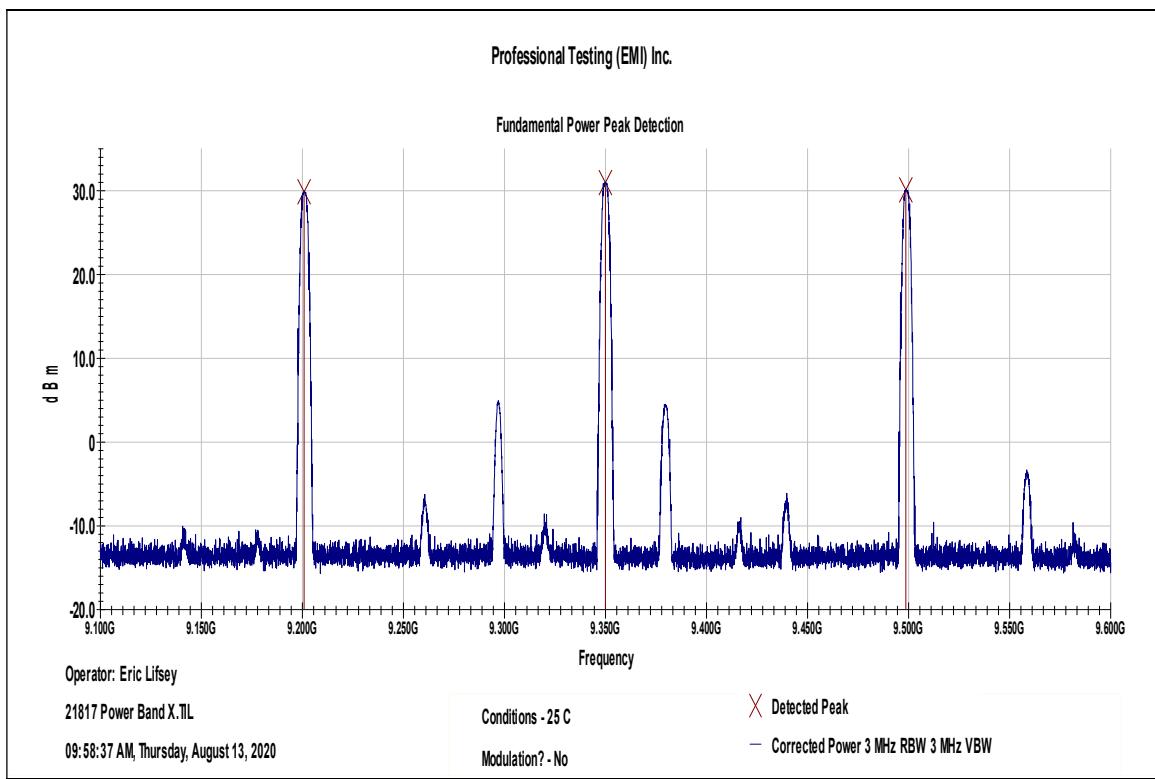
Table 2.0.1: Applicable Documents	
Document #	Title/Description
ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
47 CFR	FCC Part 80 – Subpart E – Technical requirements FCC Part 2 – Subpart J – Equipment authorization procedures

3.0 Conducted Output Power at Antenna Terminal, Clause 80.215(n)(3), 2.1046

3.1 Test Procedure

The output of the EUT was connected by cable and attenuator to a spectrum analyzer. A peak detector was used for the measurement. The transmitter was switched on, and the measurement receiver was tuned to the frequency of the transmitter under test. The loss of the attenuator was compensated by adding an offset to the analyzer amplitude. Power was measured directly with the spectrum analyzer using a resolution bandwidth greater than the occupied bandwidth of the transmitter.

3.2 Test Criteria


Authorized Power
Maximum peak power 20 Watts

3.3 Test Results

Table 3.3.1 Power Measured In 3 MHz RBW/VBW

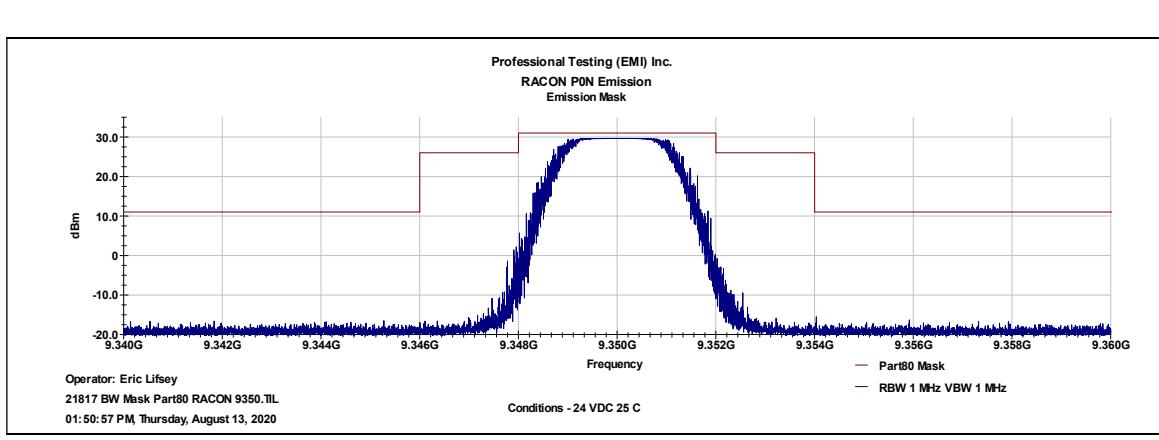
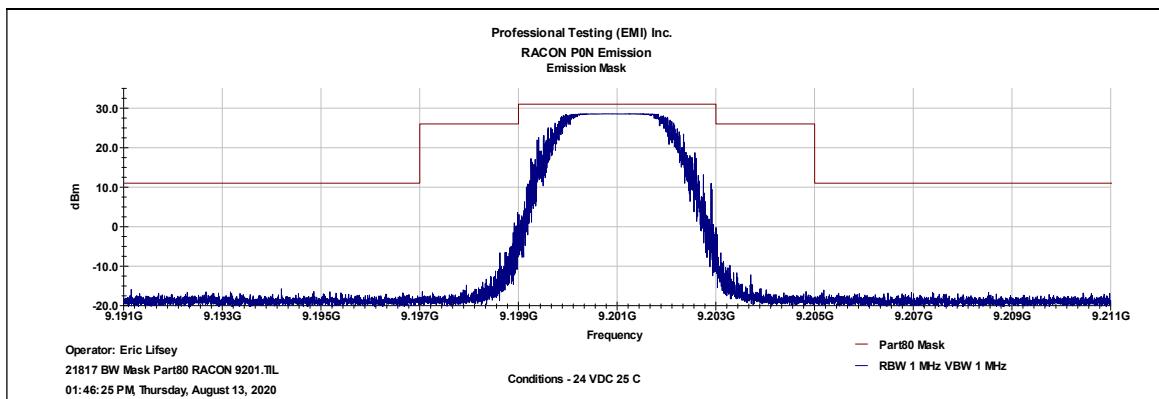
Frequency	Measured Peak Power	Antenna Gain	EIRP
9201 MHz	29.9 dBm or 0.977 Watts	6 dBi	35.9 dBm or 3.891 Watts
9350 MHz	31.0 dBm or 1.260 Watts	6 dBi	37.0 dBm or 5.011 Watts
9499 MHz	30.1 dBm or 1.023 Watts	6 dBi	36.1 dBm or 4.074 Watts

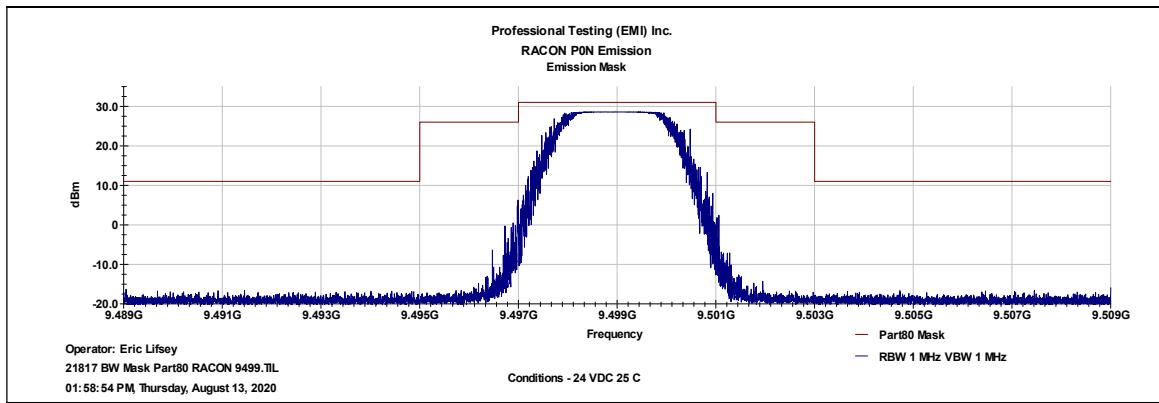
The EUT satisfied the requirements.

4.0 Occupied Bandwidth, Clause 2.1049

4.1 Test Procedure

The output of the EUT was connected to an attenuator and then to the spectrum analyzer. The spectrum analyzer was tuned to the frequency of the transceiver under test and the EUT activated in continuous transmit mode. Bandwidth is measured relative to the peak power measurement measured separately in full bandwidth.



This device is keyed without modulation.


4.2 Test Criteria

Authorized Bandwidth, 2.1049
< 2 MHz at -5 dBc,
< 4 MHz at -20 dBc;

4.3 Test Results

The EUT satisfied the requirements.

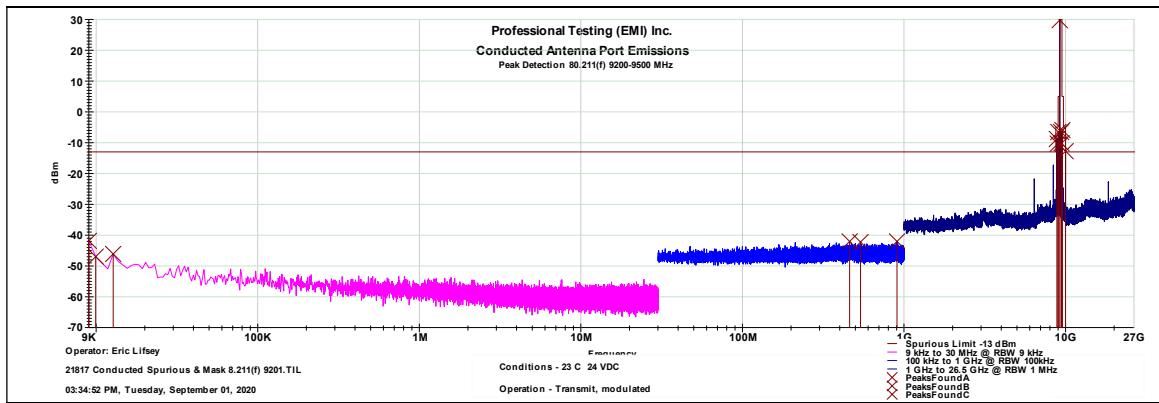
Top Channel

5.0 Spurious Emissions at Antenna Terminals, Clause 80.211(f)(1)

5.1 Test Procedure

The output of the EUT was connected directly to an attenuator and then to the spectrum analyzer. A peak detector was used for the measurement. The transmitter was switched on, and the measurement receiver was tuned to the frequency of the transmitter under test. The loss of the attenuator was compensated by adding an offset to the analyzer amplitude. Spurious power was then measured directly with the spectrum analyzer.

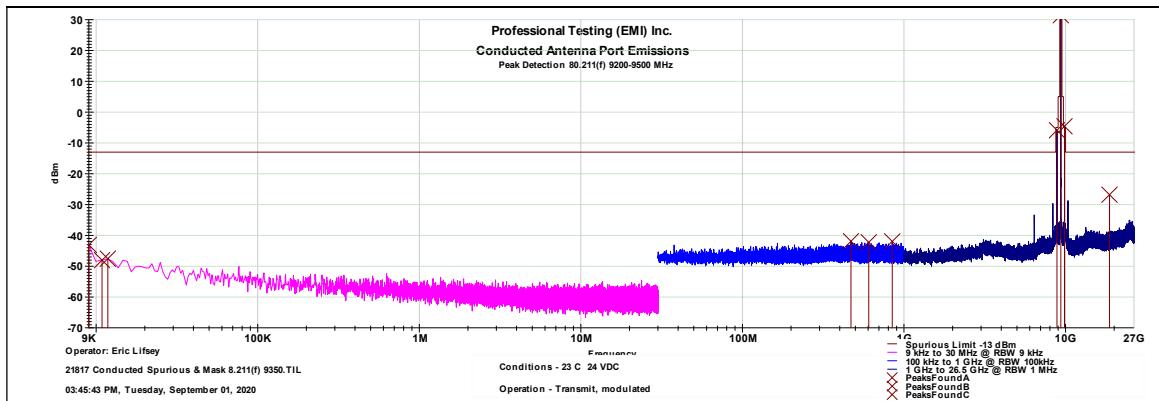
5.2 Test Criteria


Spurious Limit
<p>Authorized BW 9.2 – 9.5 GHz or 300 MHz.</p> <p>(1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB; <i>100 MHz to 200 MHz outside band: 30 dBm - 25 dB = 5 dBm</i></p> <p>(2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and <i>200 MHz to 500 MHz outside band: 30 dBm - 35 dB = -5 dBm</i></p> <p>(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus $10\log_{10}$ (mean power in watts) dB. <i>Use -13 dBm as conservative limit (is closer to -12.6 dBm)</i> <i>Beyond 300 * 2.5 = 750 MHz; 43+10log(1W) = 30 dBm - 43 dB = -13 dBm</i></p>

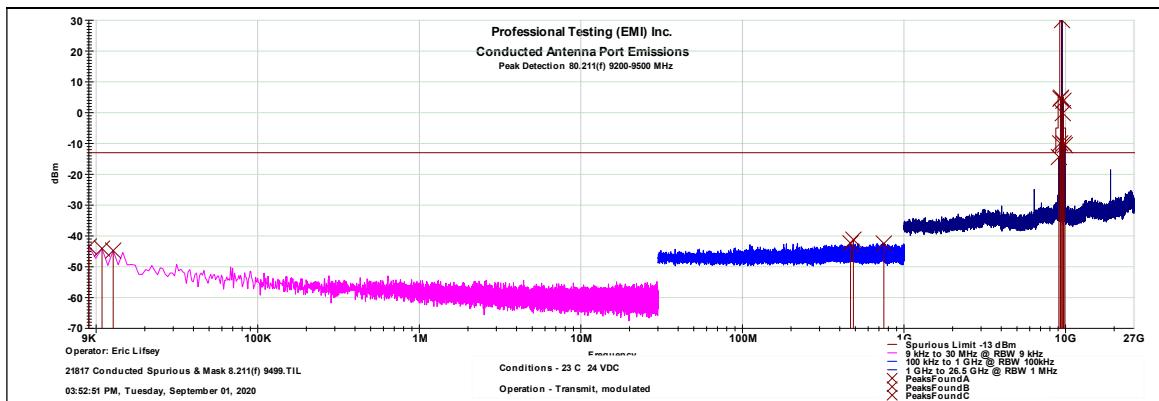
5.3 Test Results

Conducted port emissions were performed to 26.5 GHz. Above this frequency the emissions were measured as radiated with the antenna attached.

The EUT satisfied the requirements.


5.3.1 Bottom Channel

Signals under mask reported elsewhere.


Frequency	Level
MHz	dBm
9.0 KHz	-41.9
9.9372 KHz	-47.0
12.749 KHz	-46.1
461.04 MHz	-42.1
538.12 MHz	-42.3
904.46 MHz	-42.1

5.3.2 Middle Channel

Frequency	Levels
MHz	dBm
9.0 KHz	-43.1
10.874 KHz	-48.1
11.812 KHz	-47.6
469.65 MHz	-41.9
605.61 MHz	-42.3
846.42 MHz	-42.0

5.3.3 Top Channel

Frequency	Level
MHz	dBm
9.0 KHz	-43.5
10.874 KHz	-44.1
12.749 KHz	-44.8
466.62 MHz	-42.4
486.14 MHz	-41.2
750.91 MHz	-42.5

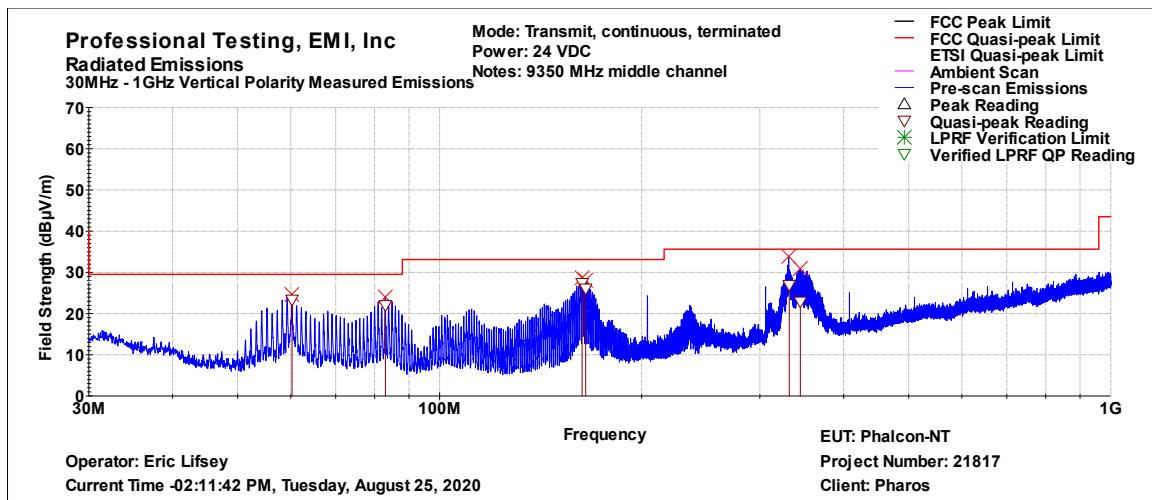
6.0 Field Strength of Spurious Emissions, Clause 80.211(f)(1)

6.1 Test Procedure

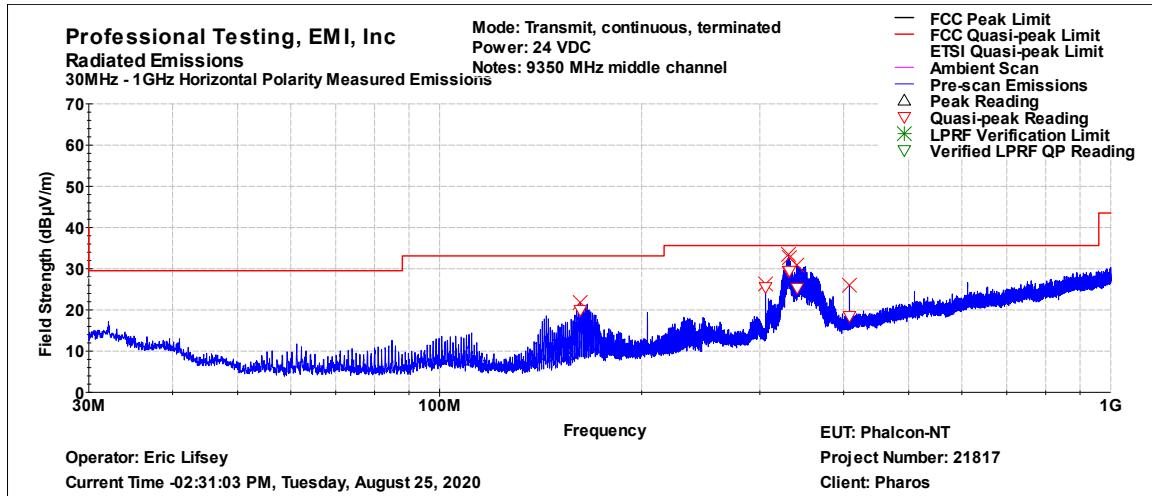
The EUT was placed on a non-conductive table above the ground plane. The table was centered on a rotating turntable at a distance of 10 meters from the measurement antenna. The EUT was placed into transmit mode with the antenna removed and a resistive terminator substituted. EUT height was 80 cm below 1 GHz and 150 cm above 1 GHz.

6.2 Test Criteria

Spurious Limit
<p>Authorized BW 9.2 – 9.5 GHz or 300 MHz.</p> <p>(1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB; <i>100 MHz to 200 MHz outside band: 30 dBm - 25 dB = 5 dBm</i></p> <p>(2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and <i>200 MHz to 500 MHz outside band: 30 dBm - 35 dB = -5 dBm</i></p> <p>(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus $10\log_{10}$ (mean power in watts) dB. <i>Use -13 dBm as conservative limit (is closer to -12.6 dBm)</i> <i>Beyond 300 * 2.5 = 750 MHz; $43+10\log(1W) = 30 \text{ dBm} - 43 \text{ dB} = -13 \text{ dBm}$</i> <i>Radiated limit (avg det.) > 1 GHz is 82.2 dBuV/m @ 3 meters.</i></p>

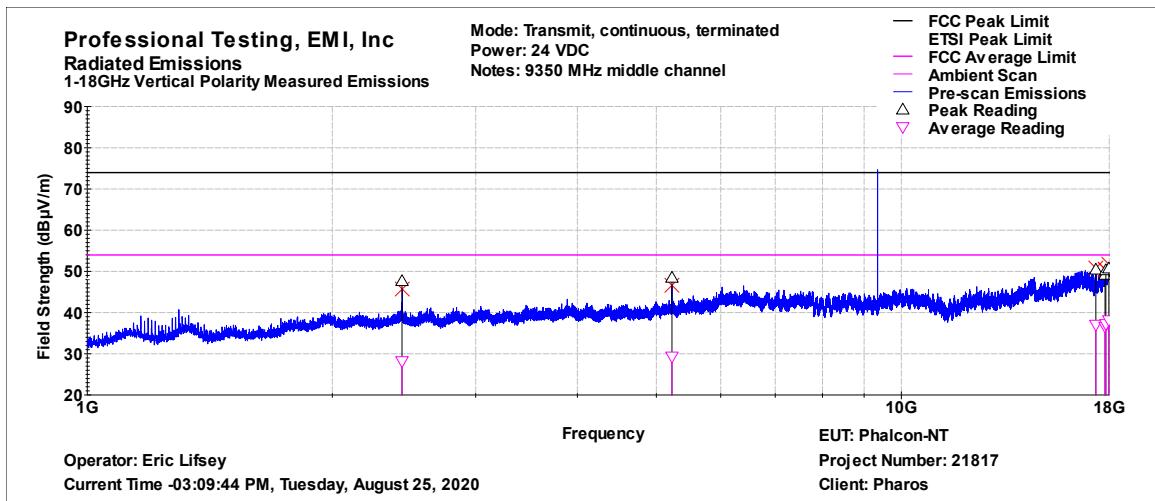

6.3 Test Results

The EUT satisfied the requirements.


Above 26.5 GHz the radiated emissions were measured with the antenna attached.

While the general emission limits of 15.209 are shown below and largely satisfied, the spurious limit (average detection) is ~18 dB higher.

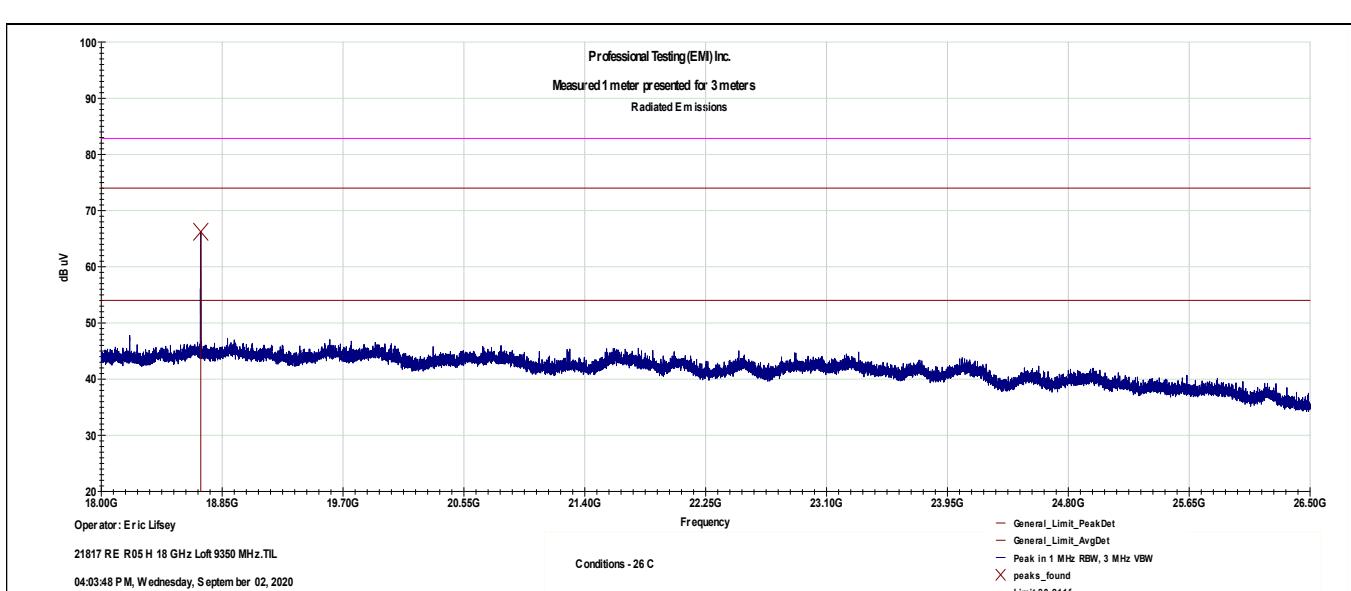
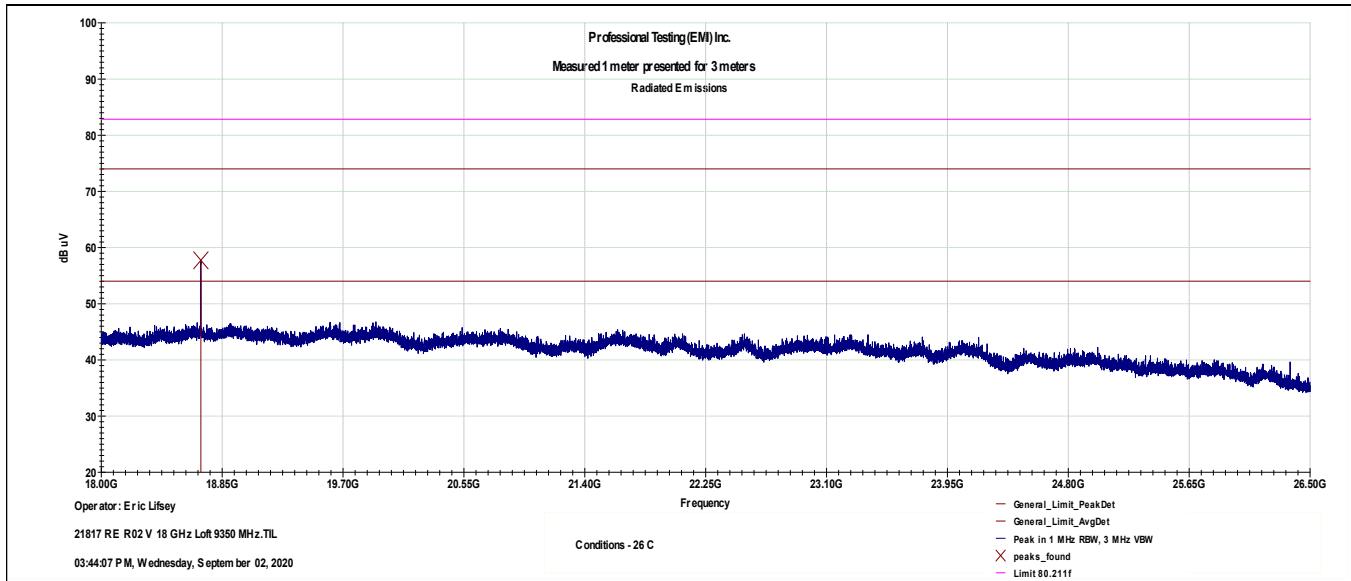
6.3.1 Middle Channel to 1 GHz



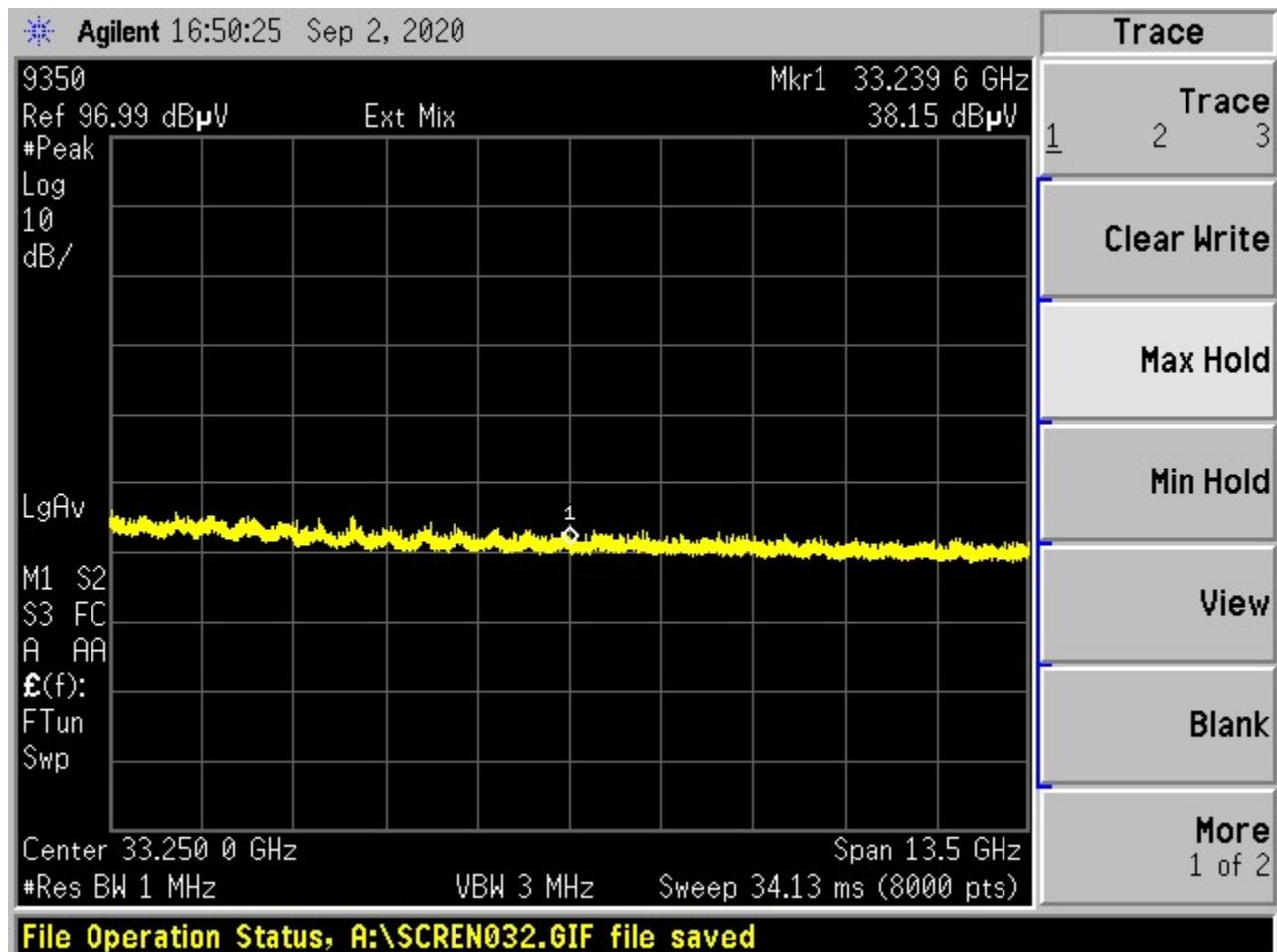
Frequency	Azimuth	Height	QP	QP Limit	QP Margin	QP Results
MHz	(deg)	(cm)	(dB μ V)	(dB μ V)	(dB)	(P/F)
60.261	23.000	245.000	23.369	29.500	-6.131	PASS
83.004	5.000	151.000	22.023	29.500	-7.477	PASS
163.033	339.000	127.000	27.406	33.100	-5.694	PASS
165.029	354.000	127.000	26.034	33.100	-7.066	PASS
331.845	67.000	127.000	26.877	35.600	-8.723	PASS
344.764	21.000	127.000	22.892	35.600	-12.708	PASS

Frequency	Azimuth	Height	QP	QP Limit	QP Margin	QP Results
(MHz)	(deg)	(cm)	(dB μ V)	(dB μ V)	(dB)	(P/F)
162.069	115.000	379.000	19.931	33.100	-13.169	PASS
306.007	180.000	244.000	25.498	35.600	-10.102	PASS
331.137	224.000	227.000	29.407	35.600	-6.193	PASS
332.114	215.000	224.000	29.488	35.600	-6.112	PASS
341.022	209.000	216.000	25.333	35.600	-10.267	PASS
408.010	357.000	187.000	18.498	35.600	-17.102	PASS

6.3.2 Middle Channel 1 to 18 GHz

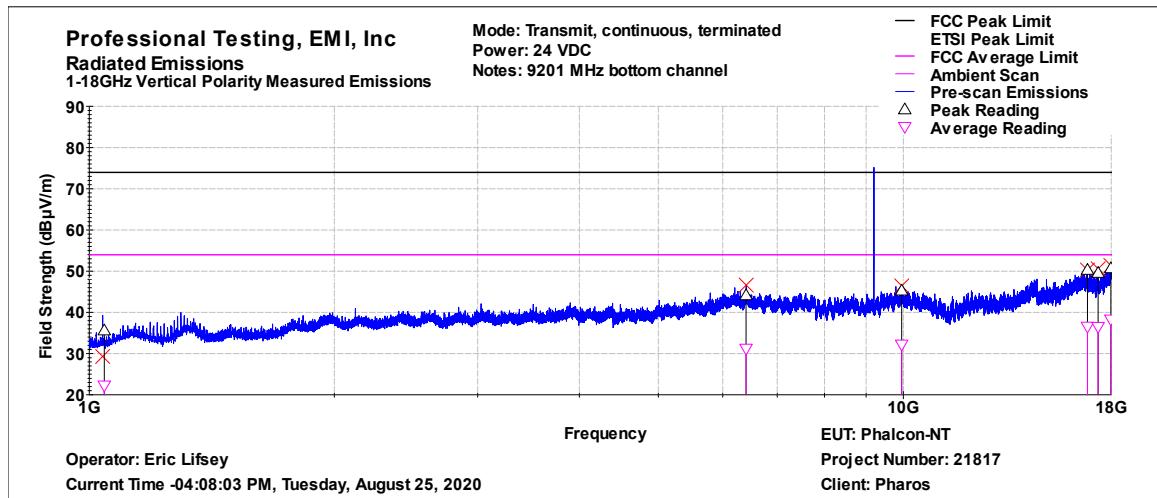



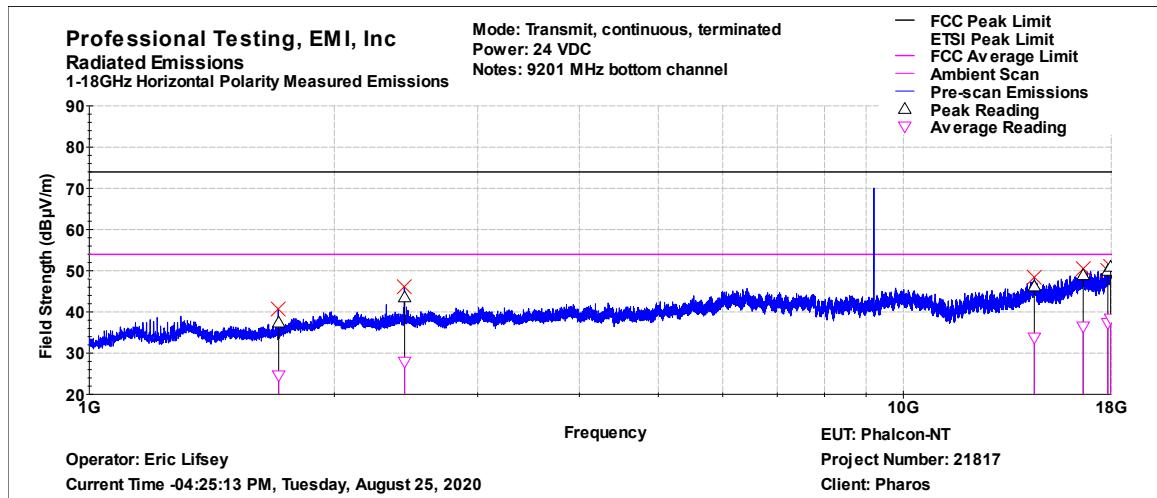
Frequency	Azimuth	Height	Peak	Peak Limit	Peak Margin	Peak Results	Avg	Avg Limit	Avg Margin	Avg Results
(MHz)	(deg)	(cm)	(dBuV)	(dBuV)	(dB)	(P/F)	(dBuV)	(dBuV)	(dB)	(P/F)
2435.49	344	206	47.649	73.958	-26.309	PASS	28.168	53.958	-25.790	PASS
5227.01	201	377	48.459	73.958	-25.499	PASS	29.300	53.958	-24.658	PASS
17331.32	174	102	50.437	73.958	-23.521	PASS	37.018	53.958	-16.940	PASS
17791.90	3	157	49.183	73.958	-24.775	PASS	36.540	53.958	-17.418	PASS
17831.56	57	126	50.277	73.958	-23.681	PASS	37.169	53.958	-16.789	PASS
17984.03	37	307	50.714	73.958	-23.244	PASS	38.099	53.958	-15.859	PASS



Frequency	Azimuth	Height	Peak	Peak Limit	Peak Margin	Peak Results	Avg	Avg Limit	Avg Margin	Avg Results
(MHz)	(deg)	(cm)	(dBuV)	(dBuV)	(dB)	(P/F)	(dBuV)	(dBuV)	(dB)	(P/F)
6203.91	177	140	42.635	73.958	-31.323	PASS	30.118	53.958	-23.840	PASS
10285.20	158	320	43.881	73.958	-30.077	PASS	31.115	53.958	-22.843	PASS
16213.21	51	377	47.805	73.958	-26.153	PASS	35.028	53.958	-18.930	PASS
17711.19	161	103	49.285	73.958	-24.673	PASS	36.787	53.958	-17.171	PASS
17838.67	69	378	49.948	73.958	-24.010	PASS	37.139	53.958	-16.819	PASS
17987.46	326	293	51.930	73.958	-22.028	PASS	38.156	53.958	-15.802	PASS

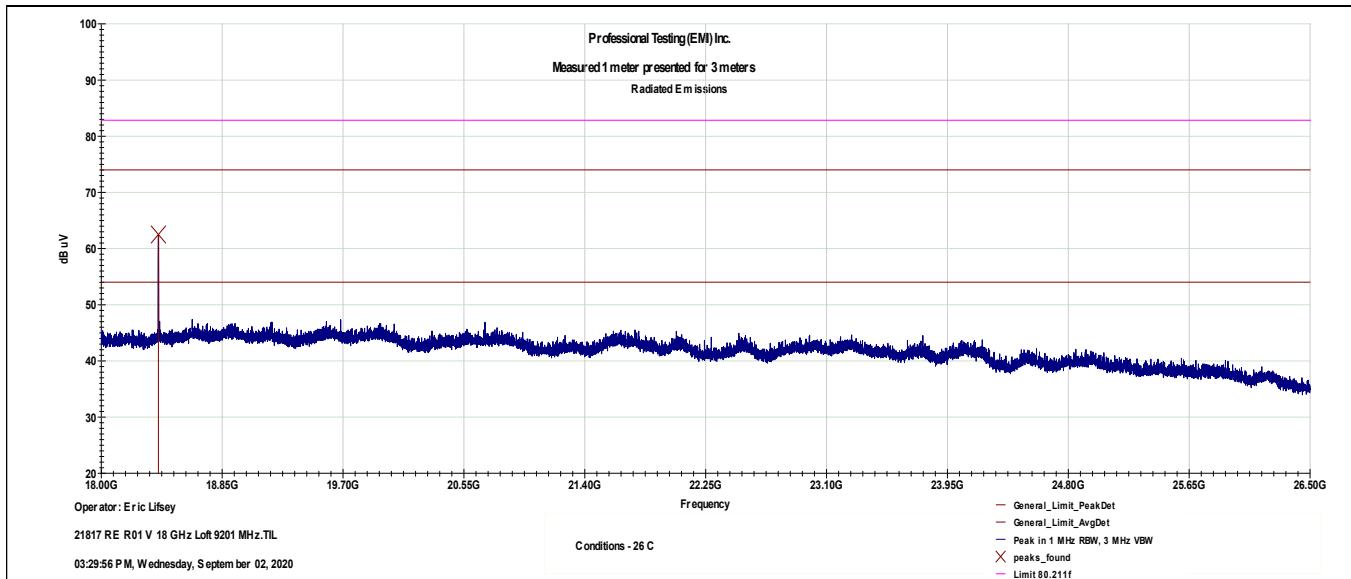
6.3.3 Middle Channel 18 to 26.5 GHz


6.3.4 Middle Channel 26.5 to 40 GHz

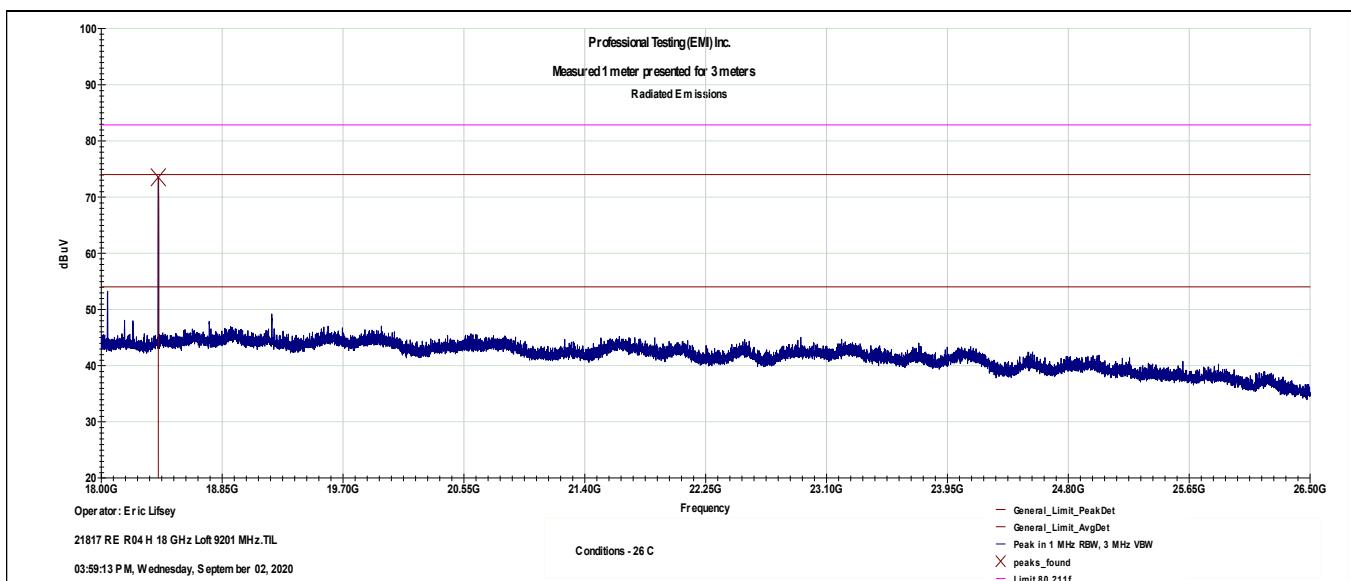

26.5 to 40 GHz

Max-hold of vertical and horizontal emissions.

6.3.5 Bottom Channel 1 to 18 GHz

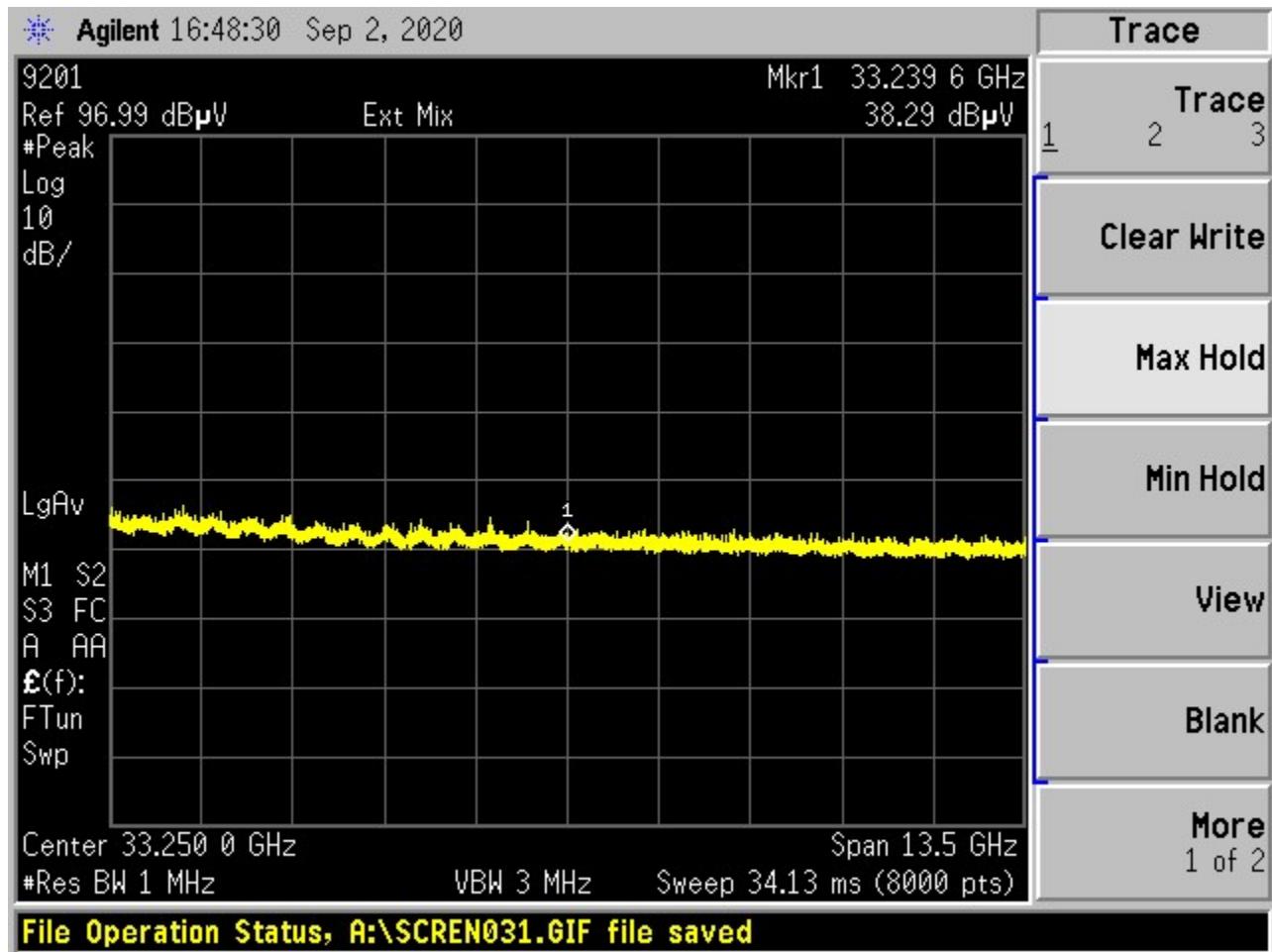


Frequency	Azimuth	Height	Peak	Peak Limit	Peak Margin	Peak Results	Avg	Avg Limit	Avg Margin	Avg Results
(MHz)	(deg)	(cm)	(dB μ V)	(dB μ V)	(dB)	(P/F)	(dB μ V)	(dB μ V)	(dB)	(P/F)
1043.45	169	326	35.624	73.958	-38.334	PASS	22.227	53.958	-31.731	PASS
6408.27	127	185	44.163	73.958	-29.795	PASS	31.157	53.958	-22.801	PASS
9950.87	329	240	45.298	73.958	-28.660	PASS	32.154	53.958	-21.804	PASS
16831.38	122	296	50.325	73.958	-23.633	PASS	36.498	53.958	-17.460	PASS
17347.93	134	102	49.597	73.958	-24.361	PASS	36.439	53.958	-17.519	PASS
17983.41	2	376	50.712	73.958	-23.246	PASS	38.240	53.958	-15.718	PASS



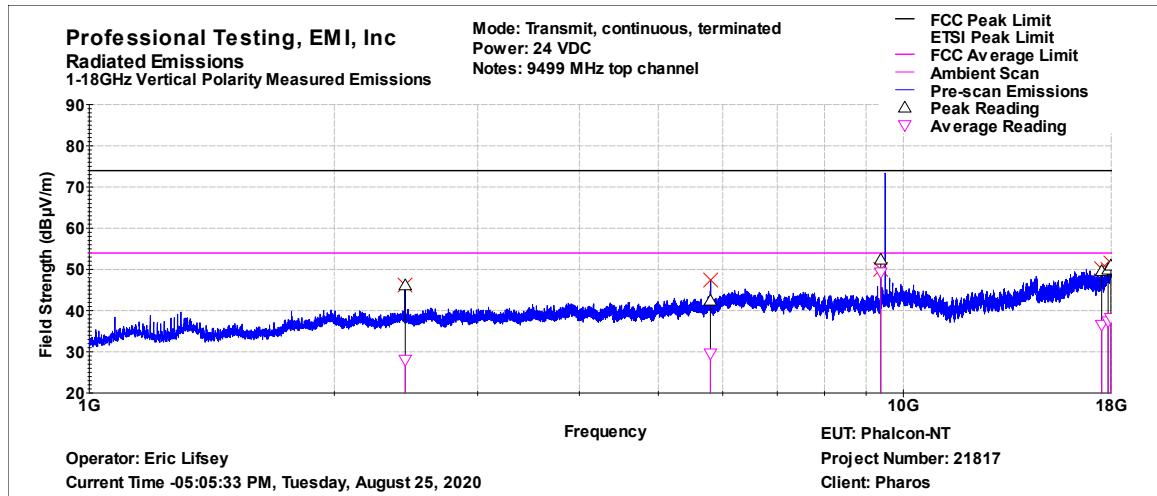
Frequency	Azimuth	Height	Peak	Peak Limit	Peak Margin	Peak Results	Avg	Avg Limit	Avg Margin	Avg Results
(MHz)	(deg)	(cm)	(dB μ V)	(dB μ V)	(dB)	(P/F)	(dB μ V)	(dB μ V)	(dB)	(P/F)
1708.54	19	321	37.426	73.958	-36.532	PASS	24.569	53.958	-29.389	PASS
2440.04	42	102	43.552	73.958	-30.406	PASS	27.880	53.958	-26.078	PASS
14483.06	288	102	46.200	73.958	-27.758	PASS	33.747	53.958	-20.211	PASS
16629.76	30	102	48.936	73.958	-25.022	PASS	36.435	53.958	-17.523	PASS
17830.51	260	102	49.974	73.958	-23.984	PASS	37.273	53.958	-16.685	PASS
17972.29	251	102	50.977	73.958	-22.981	PASS	38.365	53.958	-15.593	PASS

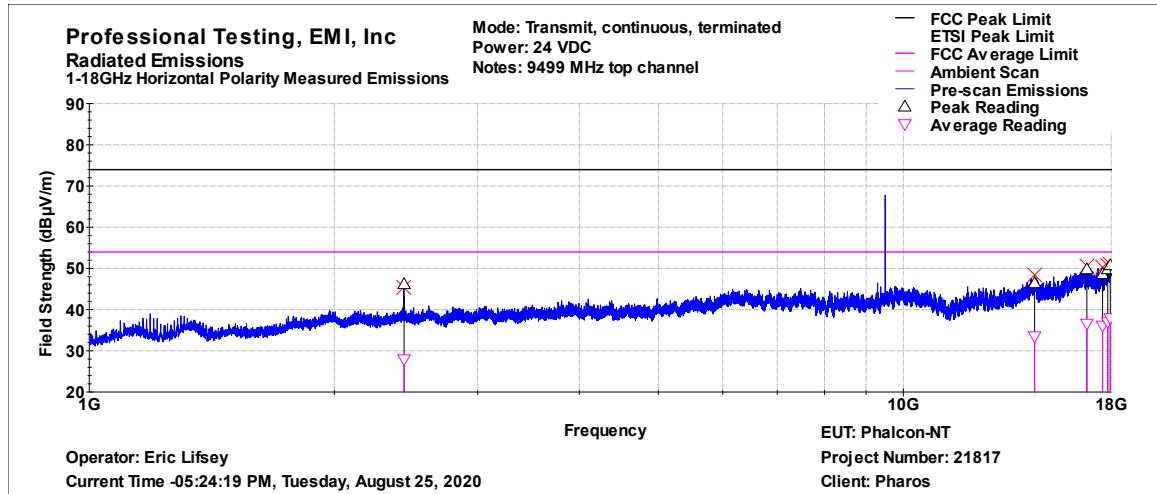
6.3.6 Bottom Channel 18 to 26.5 GHz



Vertical Polarity; highest recorded: 62.5 dB μ V/m, 18.402 GHz

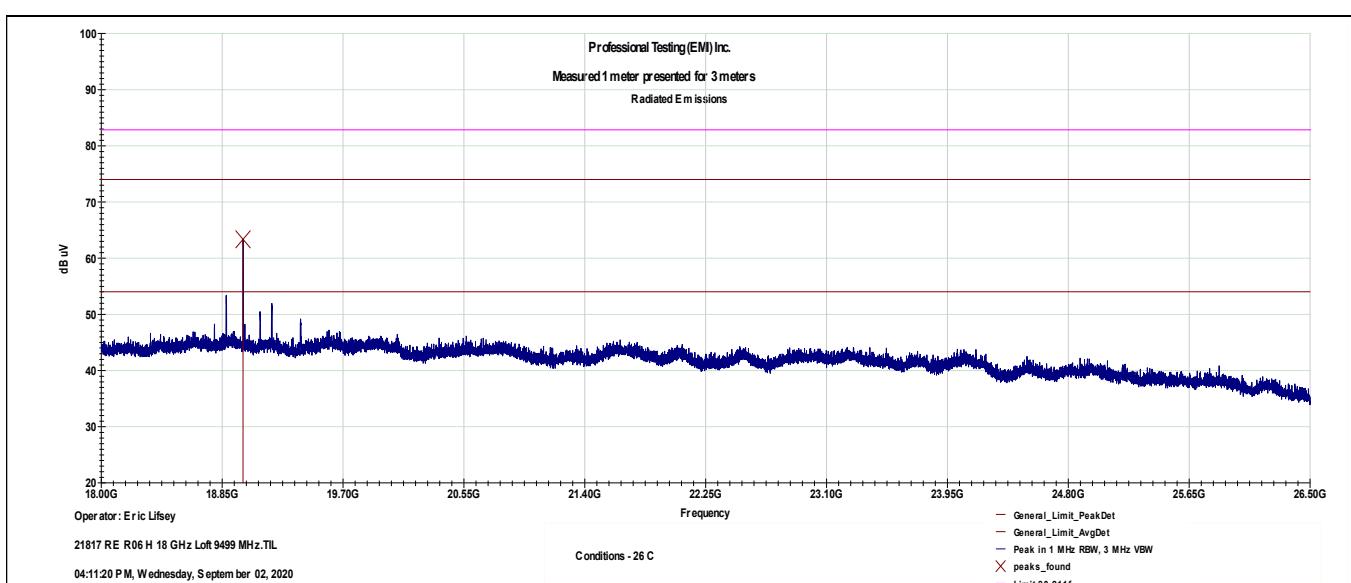
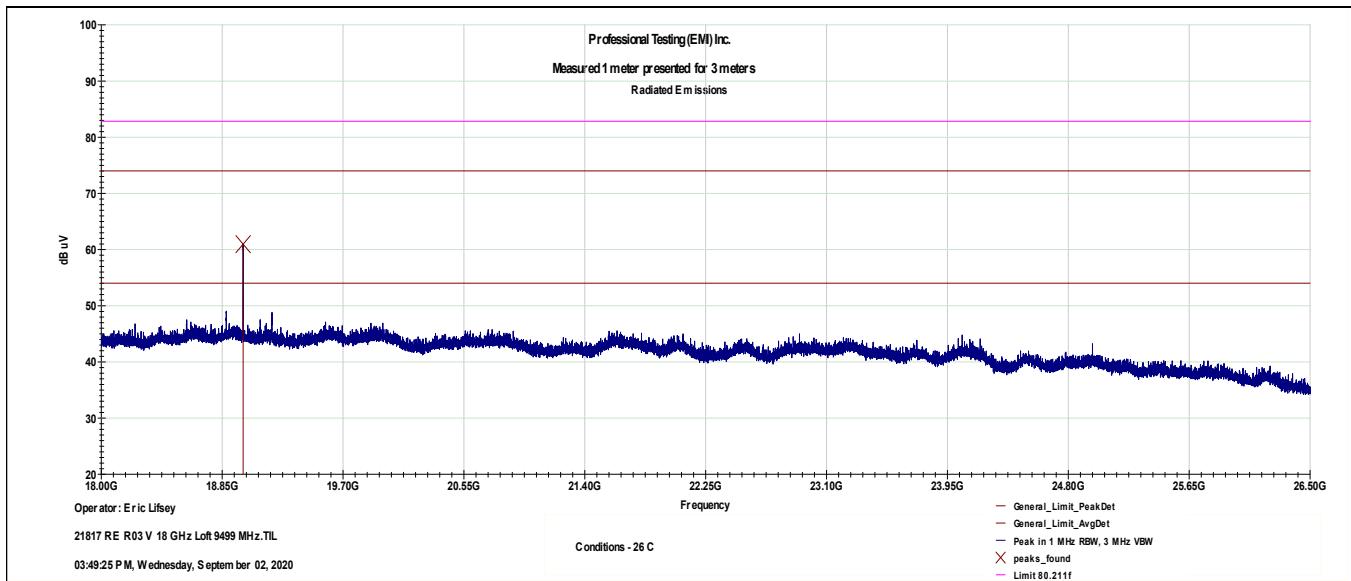
Horizontal Polarity; highest recorded: 73.5 dB μ V/m, 18.401 GHz

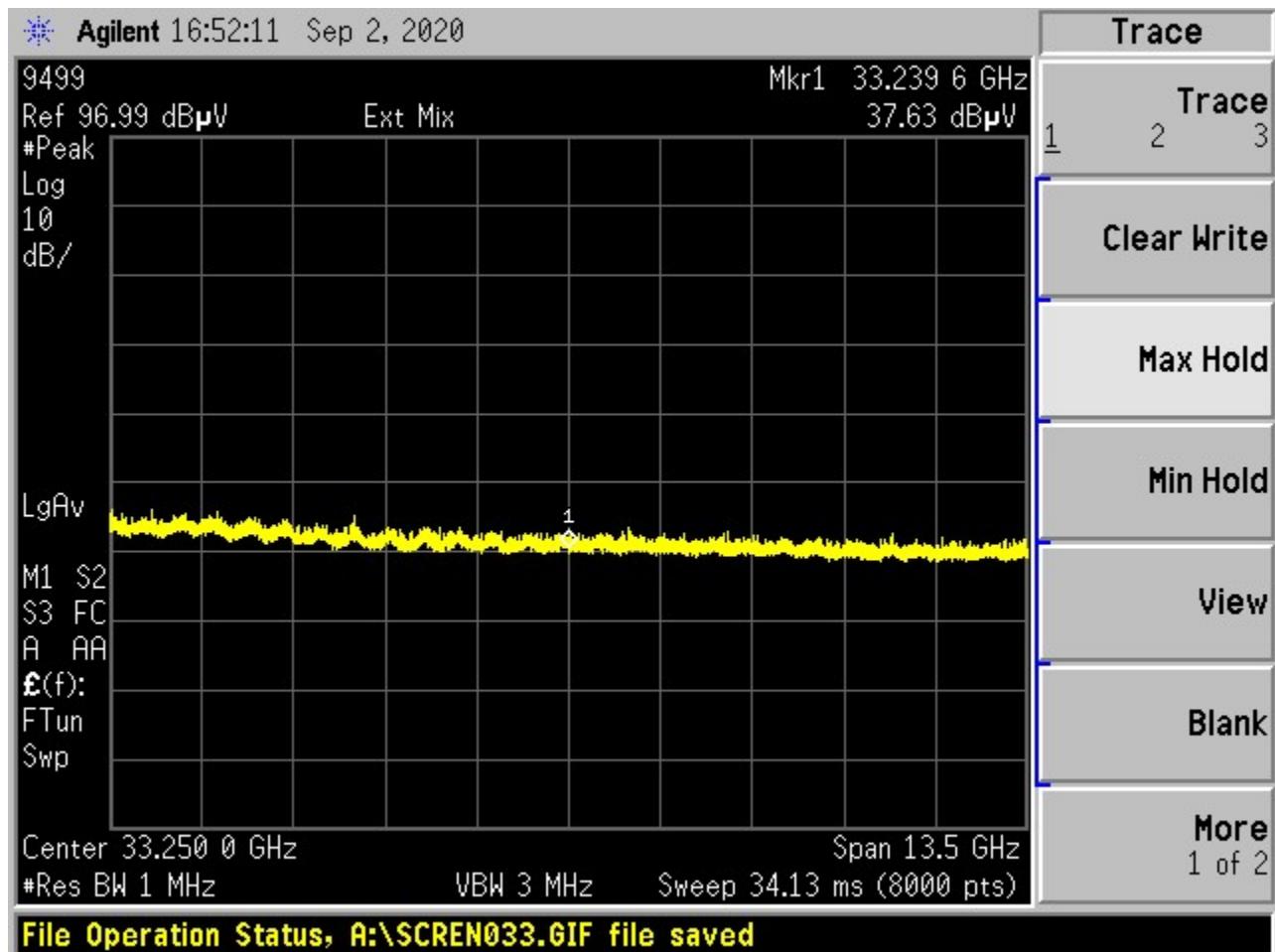

6.3.7 Bottom Channel 26.5 to 40 GHz


26.5 to 40 GHz

Max-hold of vertical and horizontal emissions.

6.3.8 Top Channel 1 to 18 GHz



Frequency	Azimuth	Height	Peak	Peak Limit	Peak Margin	Peak Results	Avg	Avg Limit	Avg Margin	Avg Results
(MHz)	(deg)	(cm)	(dBuV)	(dBuV)	(dB)	(P/F)	(dBuV)	(dBuV)	(dB)	(P/F)
2444.40	138	271	46.155	73.958	-27.803	PASS	28.035	53.958	-25.923	PASS
5794.06	60	351	42.418	73.958	-31.540	PASS	29.573	53.958	-24.385	PASS
9380.04	126	377	52.388	73.958	-21.570	PASS	49.235	53.958	-4.723	PASS
17520.94	2	373	49.591	73.958	-24.367	PASS	36.524	53.958	-17.434	PASS
17844.87	33	329	49.968	73.958	-23.990	PASS	37.361	53.958	-16.597	PASS
17984.57	261	102	50.939	73.958	-23.019	PASS	38.174	53.958	-15.784	PASS


Frequency	Azimuth	Height	Peak	Peak Limit	Peak Margin	Peak Results	Avg	Avg Limit	Avg Margin	Avg Results
(MHz)	(deg)	(cm)	(dBuV)	(dBuV)	(dB)	(P/F)	(dBuV)	(dBuV)	(dB)	(P/F)
2436.29	333	135	46.190	73.958	-27.768	PASS	27.912	53.958	-26.046	PASS
14494.94	357	312	46.416	73.958	-27.542	PASS	33.489	53.958	-20.469	PASS
16803.16	222	377	49.808	73.958	-24.150	PASS	36.544	53.958	-17.414	PASS
17567.83	357	126	48.625	73.958	-25.333	PASS	36.084	53.958	-17.874	PASS
17825.93	161	229	49.803	73.958	-24.155	PASS	36.909	53.958	-17.049	PASS
17951.85	2	140	50.783	73.958	-23.175	PASS	37.869	53.958	-16.089	PASS

6.3.9 Top Channel 18 to 26.5 GHz

6.3.10 Top Channel 26.5 to 40 GHz

7.0 Frequency Stability

7.1 Test Procedure

The EUT is placed into a temperature chamber and connected by cable to a spectrum analyzer; attenuation added if needed. On reaching each set point temperature, the EUT is allowed to soak at least 15 minutes without power applied. After soak time was satisfied, the EUT is powered on in transmit mode and the frequency is observed until it becomes stable; then the measurement of frequency is taken.

Operating voltage stability was also measured for selected extremes based on operating design. This device operates over a wide voltage range greater than the FCC basic requirement.

The EUT is operated in unmodulated mode and continuous transmit.

7.2 Test Criteria

Parameter: Frequency Tolerance	
<i>80.209 (c) For stations in the maritime radiodetermination service, other than ship radar stations, the authorized frequency tolerance will be specified on the license when it is not specified in this part.</i>	
From Technical Manual:	
Frequency performance	
Frequency accuracy (50ns to 200ns pulse widths)	±3.5MHz
Frequency accuracy(>200ns pulse widths)	±1.5MHz
Using ±1.5MHz as criteria.	

Test Conditions, Temperatures	
-20 C to 50 C and by 10 C steps	

Test Conditions, Voltage	
Low Voltage	10 V
Nominal Voltage	28 VDC
High Voltage	40 VDC

7.3 Test Results

The EUT satisfies the requirement.

7.3.1 Temperature

12-Aug-2020			
Condition	Frequency		Deviation
Temperature (C)	Reference Center Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)
-20	9201.000000	9201.030000	30000
-10	9201.000000	9201.050000	50000
0	9201.000000	9201.015000	15000
10	9201.000000	9201.035000	35000
20	9201.000000	9201.025000	25000
30	9201.000000	9201.015000	15000
40	9201.000000	9201.030000	30000
50	9201.000000	9201.020000	20000
Max Deviation (Hz)			50000
Min Deviation (Hz)			15000

12-Aug-2020			
Condition	Frequency		Deviation
Temperature (C)	Reference Center Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)
-20	9499.000000	9499.040000	40000
-10	9499.000000	9499.015000	15000
0	9499.000000	9499.100000	100000
10	9499.000000	9499.020000	20000
20	9499.000000	9499.000000	0
30	9499.000000	9499.035000	35000
40	9499.000000	9499.095000	95000
50	9499.000000	9499.110000	110000
Max Deviation (Hz)			110000
Min Deviation (Hz)			0

7.3.2 Voltage

12-Aug-2020				
Condition	Voltage	Frequency		
Voltage Extreme	Voltage (V DC)	Reference Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)
Low	10.6	9201.000000	9201.030000	30000
Nominal	24.0	9201.000000	9201.025000	25000
High	36.0	9201.000000	9201.055000	55000

12-Aug-2020				
Condition	Voltage	Frequency		
Voltage Extreme	Voltage (V DC)	Reference Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)
Low	10.6	9499.000000	9499.015000	15000
Nominal	24.0	9499.000000	9499.000000	0
High	36.0	9499.000000	9499.045000	45000

8.0 Equipment Lists

Table 9.1 Equipment List; Power, Bandwidth, and Mask

Asset #	Manufacturer	Model #	Description	Calibration Due
1937	Agilent	E4440A	Spectrum Analyzer	8 Nov 2020
A105	Narda	768A-20	Attenuator, 20 W, 20 dB	23 Sep 2020
0463	Fluke	77A	DMM	13 Jul 2021
1268	HP	6291A	DC Power Supply	CIU

Table 9.2 Equipment List; Frequency Stability

Asset #	Manufacturer	Model #	Description	Calibration Due
1937	Agilent	E4440A	Spectrum Analyzer	8 Nov 2020
A105	Narda	768A-20	Attenuator, 20 W, 20 dB	23 Sep 2020
2134	Tenny	TPC T2C	Temperature Chamber	8 Oct 2020
C247	Pasternack	RG type	Coaxial Cable, double shielded	CNR
0463	Fluke	77A	DMM	13 Jul 2021
1268	HP	6291A	DC Power Supply	CIU

Table 9.3 Equipment List; Radiated Emissions

Radiated Emissions Test Equipment List					
Tile! Software Version:		Version: 7.1.2.17 (Jan 08, 2016 - 02:12:48 PM) or 4.1.A.0, April 14, 2009, 11:01:00PM			
Test Profile:		2019_May_Unintentional RE_TILE7_v2.5.til			
Asset #	Manufacturer	Model	Equipment Nomenclature	Serial Number	Calibration Due Date
1509A	Braden	TDK 10M	TDK 10M Chamber, NSA < 1 GHz	DAC-012915-005	9/17/2021
1890	HP	8447F-H64	Preamp/Amp, 9kHz-1300MHz, 28/25dB	3313A05298	1/9/2022
2295	Keysight	E4440A-AYZ	PSA Spectrum Analyzer	MY46186204	11/6/2020
1926	ETS-Lindgren	3142D	Antenna, Biconilog, 26 MHz - 6 GHz	135454	3/11/2021
C027	none	RG214	Cable Coax, N-N, 25m, 25MHz - 1GHz	None	9/9/2020
1327	EMCO	1050	Controller, Antenna Mast	none	N/A
0942	EMCO	11968D	Turntable, 4ft.	9510-1835	N/A
1969	HP	11713A	Attenuator/Switch Driver	3748A04113	N/A
1509B	Braden	TDK 10M	TDK 10M Chamber,sVSWR > 1 GHz	DAC-012915-005	9/21/2021
2004	Miteq	AFS44-00101800-2S-10P-44	Amplifier, 40dB, 100MHz-18GHz	None	1/9/2022
C030	none	none	Cable Coax, N-N, 30m, 1 - 18GHz	None	9/9/2020
1325	EMCO	1050	Controller, Antenna Mast	9003-1461	N/A
1780	ETS-Lindgren	3117	Antenna, Double Ridged Guide Horn, 1 - 18 GHz	110313	3/11/2021

Appendix: Policy, Rationale, and Evaluation of EMC Measurement Uncertainty

All uncertainty calculations, estimates and expressions thereof shall be in accordance with NIST policy. Since PTI operates in accordance with NIST (NVLAP) Handbook 150-11: 2007, all instrumentation having an effect on the accuracy or validity of tests shall be periodically calibrated or verified traceable to national standards by a competent calibration laboratory. The certificates of calibration or verification on this instrumentation shall include estimates of uncertainty as required by NIST Handbook 150-11.

1. Rationale and Summary of Expanded Uncertainty.

Each piece of instrumentation at PTI that is used in making measurements for determining conformance to a standard (or limit), shall be assessed to evaluate its contribution to the overall uncertainty of the measurement in which it is used. The assessment of each item will be based on either a type A evaluation or a type B evaluation. Most of the evaluations will be type B, since they will be based on the manufacturer's statements or specifications of the calibration tolerances, or uncertainty will be stated along with a brief rationale for the type of evaluation and the resulting stated uncertainties.

The individual uncertainties included in the combined standard uncertainty for a specific test result will depend on the configuration in which the item of instrumentation is used. The combination will always be based on the law of propagation of uncertainty. Any systematic effects will be accommodated by including their uncertainties, in the calculation of the combined standard uncertainty; except that if the direction and amount of the systematic effect cannot be determined and separated from its uncertainty, the whole effect will be treated as uncertainty and combined along with the other elements of the test setup.

Type A evaluations of standard uncertainty will usually be based on calculating the standard deviation of the mean of a series of independent observations, but may be based on a least-squares curve fit or the analysis of variance for unusual situations. Type B evaluations of standard uncertainty will usually be based on manufacturer's specifications, data provided in calibration reports, and experience. The type of probability distribution used (normal, rectangular, a priori, or u-shaped) will be stated for each Type B evaluation.

In the evaluation of the uncertainty of each type of measurement, the uncertainty caused by the operator will be estimated. One notable operator contribution to measurement uncertainty is the manipulation of cables to maximize the measured values of radiated emissions. The operator contribution to measurement uncertainty is evaluated by having several operators independently repeat the same test. This results in a Type A evaluation of operator-contributed measurement uncertainty.

A summary of the expanded uncertainties of PTI measurements is shown as Table 1. These are the worst-case uncertainties considering all operative influence factors.

Table 1: Summary of Measurement Uncertainties for Site 45

Type of Measurement	Frequency Range	Meas. Dist.	Expanded Uncertainty U, dB (k=2)
Mains Conducted Emissions	150 kHz to 30 MHz	N/A	2.9
Telecom Conducted Emissions	150 kHz to 30 MHz	N/A	2.8
Radiated Emissions	30 to 1,000 MHz	10 m	4.8
	1 to 18 GHz	3 m	5.7

End of Report
