

FCC Part 15.407

DYNAMIC FREQUENCY SELECTION TEST REPORT

For

Align Technology Inc.

2820 Orchard Parkway San Jose, CA 95134 United States

FCC ID: 2ARGX-WIFIM

Report Type:	Product Type:
Original Report	WiFi Module
Report Producer : <u>Himiko (</u> Report Number : <u>RLK181</u> (
Report Rumber : <u>RERIOT</u>	<u>1002-00C</u>
Report Date : <u>2019-03-1</u>	18
Reviewed By: <u>Jerry Ch</u>	ang Jewy. Chang
Prepared By: Bay Area Comp	liance Laboratories Corp.(Taiwan)
70, Lane 169, Se	c. 2, Datong Road, Xizhi Dist.,
New Taipei City	22183, Taiwan, R.O.C.
Tel: +886 (2) 264	17 6898
Fax: +886 (2) 26	47 6895
www.bacl.com.tv	w

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification. Page 1 of 26

Revision History

Revision	Report Number	Issue Date	Description	Author/ Revised by
1.0	RLK1810002-00C	2019-03-18	Original Report	Himiko Chen

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 2 of 26

TABLE OF CONTENTS

1	Ge	neral Information	4
	1.1 1.2 1.3 1.4	Product Description for Equipment under Test (EUT) Objective Test Methodology Test Facility	4 5
2	S	ystem Test Configuration	6
	2.1 2.2 2.3	Description of Test Configuration EUT Exercise Software Support Equipment List and Details	6
3	Su	mmary of Test Results	7
4	Te	st Equipment List and Details	8
5	AP	PLICABLE STANDARDS	9
	5.1 5.2 5.3 5.4	DFS Requirement DFS Measurement System System Block Diagram Test Procedure	13 13
6	T	EST RESULT	
	6.1 6.2	Description of EUT Channel Loading	
T	'he sai	nple is use method (C)	. 16
	6.3 6.4 6.5	Conducted Test Setup Configuration Cablibration of DFS Detection Threshold Level Environmental Conditions	17 17
7	Ch	annel Move Time and Channel Closing Transmission Time	. 19
0	7.1 7.2	Test Procedure	19
8		DN-OCCUPANCY PERIOD	
	8.1 8.2	Test Procedure Test Result	
9	TE	EST SETUP PHOTOGRAPHS	

1 General Information

.1 Product Description for Equipment under Test (EUT)		
Applicant	Align Technology Inc. 2820 Orchard Parkway San Jose, CA 95134 United States	
Manufacturer	AsiaRF Co., Ltd. 1F, 7, Houde Street, Younghe District, New Taipei City, 23455, Taiwan	
Brand(Trade) Name	align	
Product (Equipment)	WiFi Module	
Main Model Name	WifiM	
Antenna Specification	PCB Antenna / 6.5 dBi	
	 AC 120V/60Hz Adapter I/P: 100-240Vac,1.2A; O/P: 12Vdc, 3A By AC Power Cord PoE 	
Power Operation (Voltage Range)	 DC Type Battery DC Power Supply External from USB Cable External DC Adapter 	
	Host System	
Received Date	Oct. 09, 2018	
Date of Test	Feb. 09, 2019 ~ Mar. 18, 2019	

*All measurement and test data in this report was gathered from production sample serial number: 1810002 (Assigned by BACL, Taiwan).

1.2 Objective

This report is prepared on behalf of Align Technology Inc. in accordance with Part 2, Subpart J, Part 15, Subparts A, B and E of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15.407(h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS).

1.3 Test Methodology

FCC CFR 47 Part2, Part15.407 (h)FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02FCC KDB 905462 D03 UNII Clients without Radar Detection New Rules v01r02

1.4 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Taiwan) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

68-3, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (Taiwan) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3180) and the FCC designation No.TW3180 under the Mutual Recognition Agreement (MRA) in FCC Test. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 974454. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

2 System Test Configuration

2.1 Description of Test Configuration

The EUT was configured for testing in a normal mode which was provided by the manufacturer.

2.2 EUT Exercise Software

The software Rev: MEDIATEK 7615, Linux version: 4.14.0

2.3 Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
L.T.E	Adapter	LTE65ES-S2-1	174702842
DELL	NB	E6410	10912240367
DELL	Control PC	OPTIPLEX 7020	13853681714
NETGEAR	AP Router	R7800	4H72675800870

Master device FCC ID: PY315100319

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 6 of 26

3 Summary of Test Results

A compliant test report to FCC 15.407 shall be sufficient to show compliance of a transmitter or receiver with the requirement of this standard.

The following result table represents the list of measurements required under the CFR §47 Part 15.407(h), and

KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02

Items	Description of Test Results	
Detection Bandwidth	UNII Detection Bandwidth	Not applicable
	Initial Channel Availability Check Time (CAC)	Not applicable
Performance Requirements Check	Radar Burst at the Beginning of the CAC	Not applicable
	Radar Burst at the End of the CAC	Not applicable
	Channel Move Time	Compliant
In-Service Monitoring	Channel Closing Transmission Time	Compliant
	Non-Occupancy Period	Compliant
Radar Detection	Statistical Performance Check	Not applicable

Note:

Not applicable: the EUT is a client unit without radar detection

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 7 of 26

	Calibration Calibration		Calibration		
Description	Manufacturer	Model	Serial Number	Date	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2018/11/22	2019/11/21
Vector Signal Generator	Rohde & Schwarz	SMBV100A	261748	2018/11/22	2019/11/21
Cable	WOKEN	SFL402	S02-160323-07	2018/02/12	2019/02/11
Cable	WOKEN	SFL402	S02-160323-07	2019/02/11	2020/02/10
Attenuator	MINI-CIRCUITS	BW-S10W5+	N/A	2018/03/08	2019/03/07
Attenuator	MINI-CIRCUITS	BW-S10W5+	N/A	2019/03/07	2020/03/06
Power Splitter	Mini-Circuits	ZFRSC-183-S+	SF448201614S	2018/03/29	2019/03/28
Power Divider	WOKEN	0120A04056002D	160201	2019/01/04	2020/01/03

4 Test Equipment List and Details

*Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 8 of 26

5 APPLICABLE STANDARDS

5.1 DFS Requirement

CFR §47 Part 15.407(h),

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operatio	Operational Mode		
	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices	Master Device or Client	Client Without		
with multiple bandwidth modes	with Radar Detection	Radar Detection		
U-NII Detection Bandwidth and	All BW modes must be	Not required		
Statistical Performance Check	tested			
Channel Move Time and Channel	d Channel Test using widest BW mode Test using the widest			
Closing Transmission Time	available	BW mode available		
		for the link		
All other tests	r tests Any single BW mode Not required			
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include				
several frequencies within the radar detection bandwidth and frequencies near the edge of				
the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in				
each of the bonded 20 MHz channels and the channel center frequency.				

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 9 of 26

D01.

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value	
	(See Notes 1, 2, and 3)	
$EIRP \ge 200 \text{ milliwatt}$	-64 dBm	
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz		
EIRP < 200 milliwatt that do not meet the power spectral -64 dBm		
density requirement		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.		
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test		
transmission waveforms to account for variations in measurement equipment. This will ensure that the		
test signal is at or above the detection threshold level to trigger a DFS response.		
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911		

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Table 4: DFS Response Requirement Values

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

		Table 5 – Short Puls	se Radar Test Waveform	15	
Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Type	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix} \cdot \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\operatorname{PRI}_{\mu \operatorname{sec}}} \end{pmatrix} \right\}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types	1-4)		80%	120
	ort Pulse Rada hannel closing		sed for the detection ba	ndwidth test, ch	annel move

Table 5 – Short Pulse Radar Test Waveform	IS
---	----

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses

would be Roundup $\left\{ \left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) \right\} = \text{Roundup}\{17.2\} = 18.$

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 11 of 26

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)		
1	1930.5	518		
2	1858.7	538		
3	1792.1	558		
4	1730.1	578		
5	1672.2	598		
б	1618.1	618		
7	1567.4	638		
8	1519.8	658		
9	1474.9	678		
10	1432.7	698		
11	1392.8	718		
12	1355	738		
13	1319.3	758		
14	1285.3	778		
15	1253.1	798		
16	1222.5	818		
17	1193.3	838		
18	1165.6	858		
19	1139	878		
20	1113.6	898		
21	1089.3	918		
22	1066.1	938		
23	326.2	3066		

Table 5a - Pulse Repetition Intervals Values for Test A

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful				
			Detection				
1	35	29	82.9%				
2	30	18	60%				
3	30	27	90%				
4	50	44	88%				
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%							

	Table 0 - Long Turse Radar Test Waveform									
Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum			
Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of			
	(µsec)	(MHz)		per Burst		Successful	Trials			
						Detection				
5	50-100	5-20	1000-	1-3	8-20	80%	30			
			2000							

Table 6 – Long Pulse Radar Test Waveform

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 12 of 26

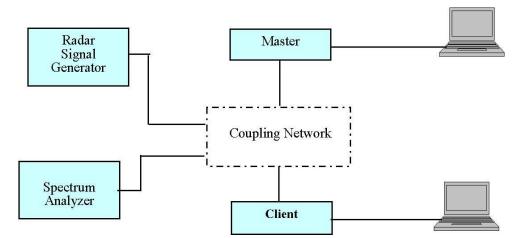
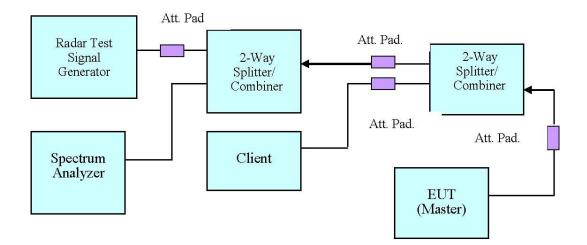
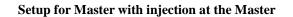
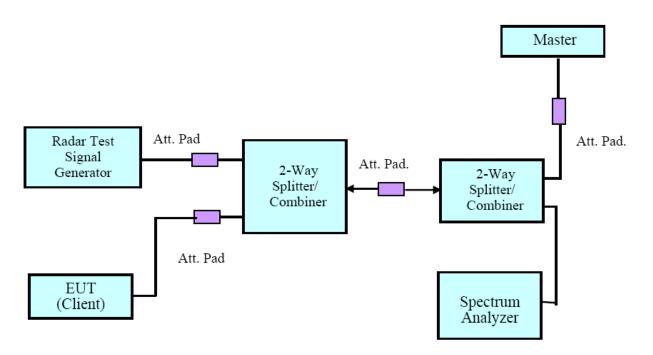

	Tuble / Trequency Hopping Future Test (Tuble of the									
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum			
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of			
	(µsec)		Hop	(kHz)	Length	Successful	Trials			
					(msec)	Detection				
6	1	333	9	0.333	300	70%	30			

Table 7 – Frequency Hopping Radar Test Waveform

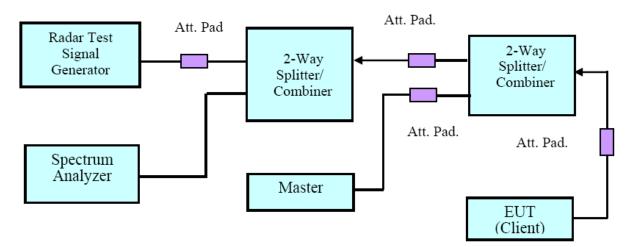

5.2 DFS Measurement System

BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.

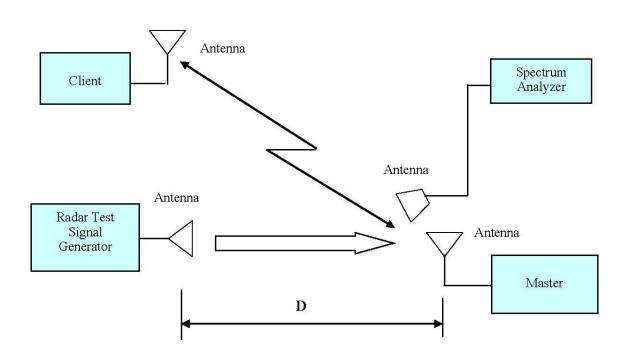

5.3 System Block Diagram



Conducted Method



Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 13 of 26



Setup for Client with injection at the Master

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 14 of 26

Setup for Client with injection at the Client

5.4 Test Procedure

A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 15 of 26

6 TEST RESULT

6.1 Description of EUT

The EUT operates in 5250-5350 MHz and 5470-5725 MHz range.

The rated output power of master device is >23 dBm (EIRP), therefore the required interference threshold level is -64 dBm, the required radiated threshold at antenna port is -64dBm.

Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

The calibrated radiated DFS detection threshold level is set to -64+1+(Master antenna gain:) =

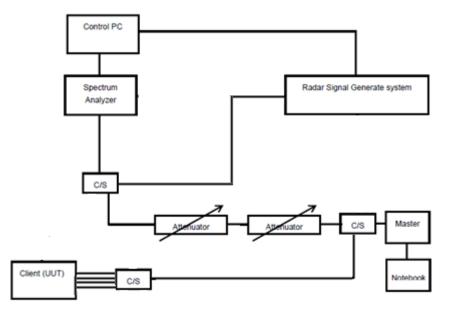
Band 2 : -64+1.11+1= -61.89 dBm. Band 3 : -64+1.61+1= -61.39 dBm

6.2 Channel Loading

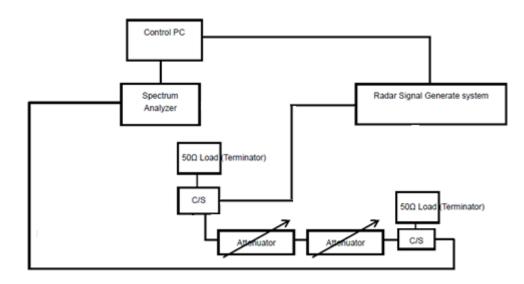
System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:

a) The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode.

b) Software to ping the client is permitted to simulate data transfer but must have random ping intervals.


c) Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On/ (Time On + Off Time). This can be done with any appropriate channel BW and modulation type.

d) Unicast or Multicast protocols are preferable but other protocols may be used. The appropriate protocol used must be described in the test procedures.


The sample is use method (C)

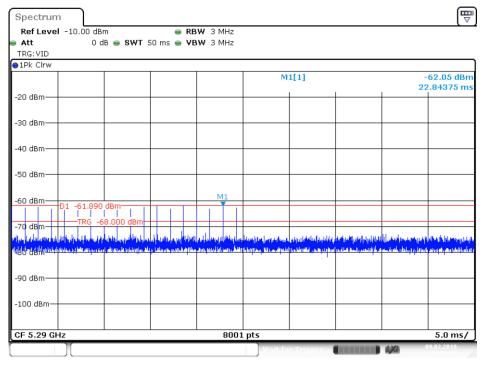
WLAN traffic is generated by streaming the video file TestFile.mpg, this file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. The file is streamed from the Access Point to the Client in full motion video mode using the media player with the V2.61 Codec package.

6.3 Conducted Test Setup Configuration

6.4 Cablibration of DFS Detection Threshold Level

6.5 Environmental Conditions

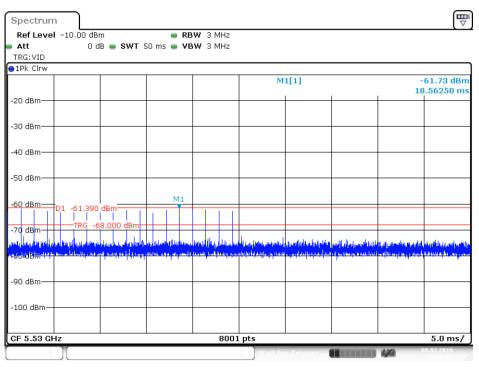
Temperature:	25 °C		
Relative Humidity:	55 %		
ATM Pressure:	1010 hPa		


The testing was performed by Tom Hsu from 2019-02-09 to 2019-03-18.

Plots of Radar Waveforms

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 17 of 26

5290 MHz:


Radar Type 0

Date: 9.FEB.2019 14:31:36

5530 MHz:

Radar Type 0

Date: 9.FEB.2019 15:29:53

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 18 of 26

7 Channel Move Time and Channel Closing Transmission Time

7.1 Test Procedure

Perform type 0 short pulse radar waveform. The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = N*Dwell Time

N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 10000)

7.2 Test Results

Frequency (MHz)	Bandwidth (MHz)	Radar Type	Results		
5290	80	Type 0	Compliant		
5530	80	Type 0	Compliant		

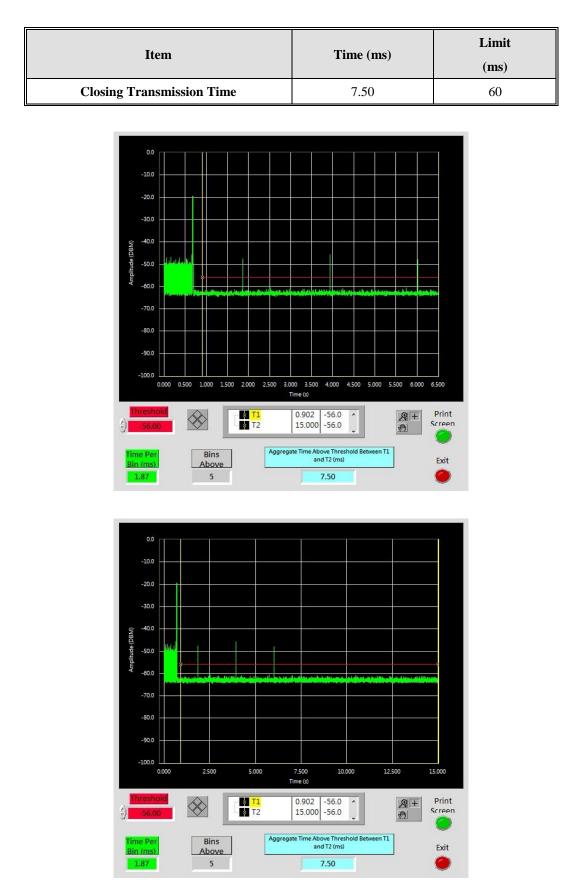
Please refer to the following tables and plots.

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 19 of 26

5290 MHz

Type 0 radar channel move time result:

Item	Time (s)	Limit (s)
Channel move time	5.3475	10


Ref L	evel (D.00 dB	m		🖷 RB	w	3 MHz						[7
Att		10 c	B 🕳 SW	T 15	s 🕳 VE	w	3 MHz						
SGL													
1Pk Cl	rw												
									D	2[1]			-28.41 d
10 dBm													5.34750
M1	'								M	1[1]			-19.64 dBr
20 <mark>d</mark> Bm	∩		_										675.00 m
30 d Brr	<u>ا</u> –۱												
40 dBm	דרי					_	_						
thin Brr		1				0	2						
DI	-												
Bm				-			والتربيب التربي وتعرفه وتعرف				 a 1		
- total a sec	(All Internet	differente altre	A A Desail (in) if		a data hadala da		President and a second seco						
70 dBm	∩—		_										
80 dBrr	1												
90 dBm													
90 UDII	-												
CF 5.29	9 GHZ						8001	pts					1.5 s/
larker Type	Ref	Trc	v	value			Y-value	1 6	unc	tion	Euro	ction Res	
M1	Kel	1	<u>^</u>		5.0 ms		-19.64 dBr		unc		 Fun	COOT NO.	un
D1	M1	1			10.0 s		-43.55 d						
D2	M1	1		5.	3475 s		-28.41 d	в					

Date: 9.FEB.2019 18:33:32

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 20 of 26

No.: RLK1810002-00C

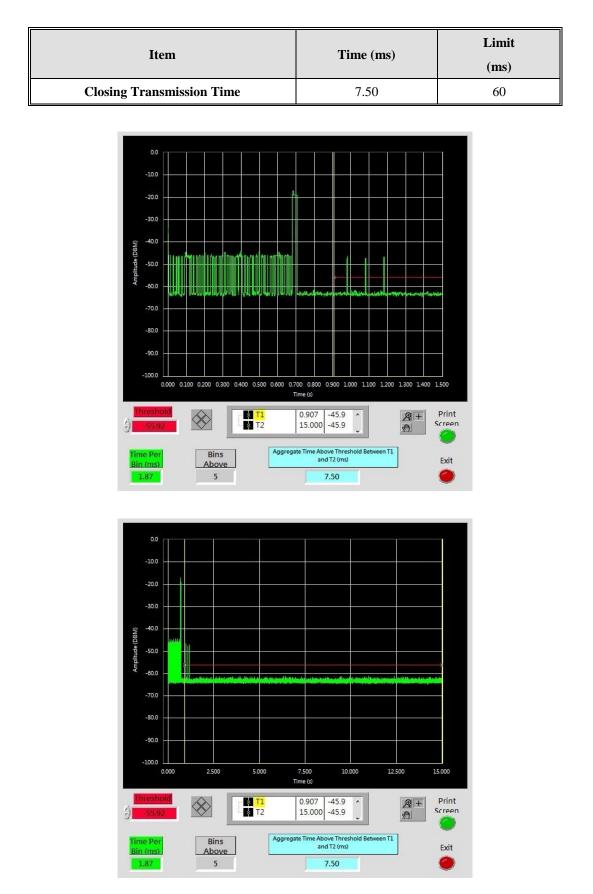
TypeO radar channel closing transmission time result:

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 21 of 26

5530 MHz

Type 0 radar channel move time result:

Item	Time (s)	Limit (s)
Channel move time	0.496	10


Spectrum							
Ref Level	0.00 dB	m 🖷 RE	W 3 MHz				· · · · · · · · · · · · · · · · · · ·
Att	10 0	dB 👄 SWT 15 s 👄 VE	SW 3 MHz				
SGL							
∋1Pk Clrw							
				D2[1]		-29.83 dE
-10.dBm							496.88 ms
MI				M1[1]		-17.10 dBn
-20 dBm							686.25 m
20 00							
-30 dBm						_	
-40 dBm							+
LULU D2							
Bm							
Bm	وجاعيته واحتا	Line of the state	ور والدوقان وقال الارو ال	ب المحمد المحمد المحمد الم	والمعو الدر		and the second
-70 dBm							
-/U aBm							
-80 dBm							
-oo abiii							
-90 dBm							
CF 5.53 GH:	,		8001 p	ts			1.5 s/
Marker			P				,
	Trc	X-value	Y-value	Function	n l	Eur	nction Result
M1	1	686.25 ms	-27.10 dBm				
D1 M1		10.0 s	-36.37 dB				
D2 M1	1	496.88 ms	-9.83 dB				
)[)			04.01.2019

Date: 21.FEB.2019 17:05:18

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 22 of 26

No.: RLK1810002-00C

TypeO radar channel closing transmission time result:

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 23 of 26

8 NON-OCCUPANCY PERIOD

8.1 Test Procedure

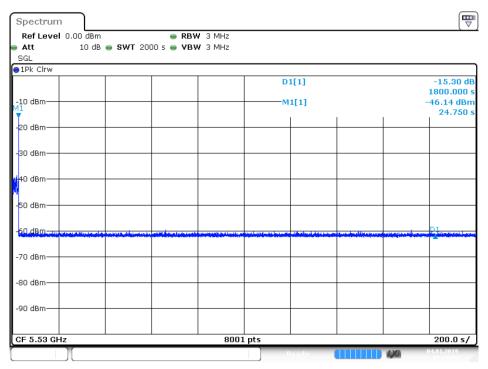
Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time)

8.2 Test Result

Frequency(MHz)	Bandwidth (MHz)	Spectrum Analyzer Display
5290	80	No transmission within 30 minutes
5530	80	No transmission within 30 minutes

Please refer to the following plots.

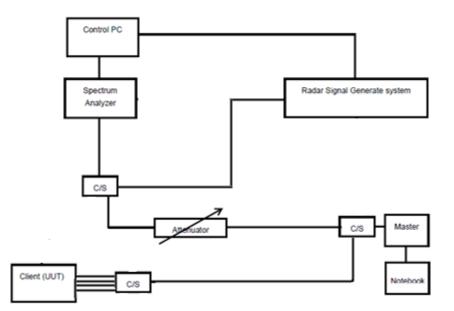
Bay Area Compliance Laboratories Corp.(Taiwan)


No.: RLK1810002-00C

Spectrum Ref Level 0.00 dBm 👄 RBW 3 MHz 10 dB - SWT 2000 s - VBW 3 MHz Att SGL ●1Pk Clrw -42.42 dE D1[1] 1800.000 -10 dBm -M1[1] -19.55 dBm 19.250 9 20 dBm 30 dBm 40 dBm 50 dBm 60.dBn -70 dBm--80 dBm -90 dBm CF 5.29 GHz 8001 pts 200.0 s/ 1,70

5290 MHz

Date: 9.FEB.2019 19:58:36



Date: 21.FEB.2019 19:24:05

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 25 of 26

9 Test Setup Photographs

***** END OF REPORT *****

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 26 of 26