

Oxford Nanopore Technologies Ltd Gosling Building Edmund Halley Road Oxford Science Park OX4 4DQ, United Kingdom

ologies Ltd **phone** +44 (0)845 034 7900 **fax** +44 (0)845 034 7901 **email** info@nanoporetech.com

www.nanoporetech.com

Page 1 of 4

# **RF Exposure Considerations for P3310 Module**

FCC ID: FCC ID: 2ARGS-P3310

The FCC requires that the calculated MPE be equal to or less than a given limit dependent on frequency at a distance of 20 cm from a device to the body of a user.

The transmitter operation for the P3310 module covers 2.4 GHz and 5 GHz operating bands using Bluetooth and WLAN 802.11a/b/g/n/ac technologies. WLAN operation uses 2x2 MIMO.

The following FCC Rule Parts and procedures are applicable:

Part 1.1310 – Radiofrequency radiation exposure limits

Part 2.1091 – Radiofrequency radiation exposure evaluation: mobile devices

KDB447498 D01 v06

Mobile and Portable Devices RF Exposure Procedures and Equipment Authorisation Policies

#### **MPE CONSIDERATIONS**

The MPE calculation used to calculate the safe operating distance for the user is:

#### $S = EIRP/4 \pi R^2$

**Where** S = Power density

EIRP = Effective Isotropic Radiated Power (EIRP =  $P \times G$ )

P = Conducted Transmitter Power

G = Antenna Gain (relative to an isotropic radiator)

R = distance to the centre of radiation of the antenna (safe operating distance)

#### **Power Density Requirement (S)**

From table 1 (b) - Limits for General Population/ Uncontrolled Exposure of FCC §1.1310 (e) **for f >1500MHz**:

 $S_{reg} = 1.0 \text{ mW/cm}^2$ 

## **Transmitter Powers (P)**

Maximum (worst case) transmitter Powers (taken from Module grant FC ID: VOB-P3310):

Bluetooth (2402-2480MHz) = 7.3mW

2.4GHz WLAN (2412-2472MHz) = 69.8mW

5GHz WLAN (5500 - 5700MHz) = 85.3mW

## Antenna Gains (G)

2.4GHz Operation = 3.73dBi (x 2.4)

5GHz Operation = 5.18dBi (x 3.3)

### **CALCULATIONS:**

### For Bluetooth

Values:

 $S_{req1} = 1.0 \text{mW/cm}^2$ 

EIRP = 7.3 x 2.4 = 17.52mW

R = 20cm

### Calculation:

 $S = 17.52/(12.56 \times 20^2)$ 

S = 17.52/(5024)

 $S_1 = 0.0035 \text{mW/cm}^2 (<1.0 \text{ mW/cm}^2)$ 

### For WLAN 2.4GHz

<u>Values:</u>

 $S_{req2} = 1.0 \text{mW/cm}^2$ 

EIRP = 69.8 x 2.4 = 167.52

R = 20cm

#### Calculation:

 $S = 167.52/(12.56 \times 20^2)$ 

S = 167.52/(5024)

 $S_2 = 0.033 \text{mW/cm}^2 (<1.0 \text{ mW/cm}^2)$ 



OX4 4DQ, United Kingdom

 Oxford Nanopore Technologies Ltd
 phone
 +44 (0)845 034 7900

 Gosling Building
 fax
 +44 (0)845 034 7901

 Edmund Halley Road
 email
 info@nanoporetech.com

Page 3 of 4

### For WLAN 5GHz

Values:

 $S_{req3} = 1.0 \text{mW/cm}^2$ 

EIRP = 85.3 x 3.3 = 281.49

R = 20cm

#### Calculation:

 $S = 281.49/(12.56 \times 20^2)$ 

S = 281.49/(5024)

 $S_3 = 0.056 \text{mW/cm}^2 (< 1.0 \text{ mW/cm}^2)$ 

### KDB447498 D01 v06 Section 7.2 SIMULTANEOUS TRANSMISSION CONSIDERATIONS

Requirement for simultaneous transmission test exclusion:

$$\sum$$
MPE<sub>ratios</sub> = (S<sub>1</sub>/ S<sub>req1</sub>) + (S<sub>2</sub>/ S<sub>req2</sub>) + .....(S<sub>n</sub>/ S<sub>reqn</sub>) < 1.0

#### For the P3310 module:

Considering all transmitters operating with simultaneous transmission:

ie: 
$$\sum MPE_{ratios} = (S_1/S_{req1}) + (S_2/S_{req2}) + (S_3/S_{req3})$$
  
=  $(0.0035/1.0) + (0.033/1.0) + (0.056/1.0)$   
=  $0.093$ 

Σ of MPE ratios<1.0, so in accordance with KDB447498 Section 7.2, simultaneous transmission test exclusion applies for the P3310 transmitters.

#### Conclusion

The required 20cm RF exposure limits for General Population/ Uncontrolled Exposure will not be exceeded for the P3310 module using antennas having a maximum gain of 3.73 dBi for 2.4GHz operation and 5.18 dBi for 5GHz operation.