

EMI TEST REPORT FCC CERTIFICATION

Applicant: eWBM Co., Ltd. 303-307, 78, Jangmi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea

Date of Issue: October 11, 2018 Test Report No. HCT-EM-1810-FC005 Test Site: HCT CO., LTD.

FCC ID :

2ARG9-EFA450

Applicable Standards	: FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014
EUT Type	: USB FIDO Dongle
Model Name	: eFA450
Date of Test	: September 12, 2018 to September 18, 2018

The device bearing the trade name and model specified above, has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. (See Test Report if any modifications were made for compliance)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

HCT certifies that no party to application has been denial the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C 862

Tested By

Kyoung-Hee Yoon Test Engineer EMC Team Certification Division

Reviewed By

Jin-Pyo Hong Technical Manager EMC Team Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

REVISION HISTORY

The revision history for this document is shown in table.

Report No.	Issue Date	Information About Changes
HCT-EM-1810-FC005	October 11, 2018	Initial Release

TABLE OF CONTENTS

PAGE

1. GENERAL INFORMATION
1.1 Description of EUT4
1.2 Equipment Units Tested
1.3 Cable Description
1.4 Noise Suppression Parts on Cable (I/O Cable)5
1.5. Test Facility
1.6 Calibration of Measuring Instrument
1.7 Measurement Uncertainty
2. LIST OF TEST EQUIPMENT
3. DESCRIPTION OF MEASUREMENTS
3.1 Measurement of Conducted Emission
3.2 Measurement of Radiated Emission9
4. PRELIMINARY TEST
4.1 Conducted Emission Test
4. 2 Radiated Emission Test11
5. CONDUCTED AND RADIATED EMISSION TEST SUMMARY12
5.1 Conducted Emission Test
5.2 Radiated Emission Test19
6. CONCLUSION
7. APPENDIX A. TEST SETUP PHOTOGRAPHS

1. GENERAL INFORMATION

1.1 Description of EUT

Its basic purpose is used for communications.

FCC ID	2ARG9-EFA450
Model	eFA450
EUT Type	USB FIDO Dongle
Manufacturer	eWBM Co., Ltd.
Power Rating	5 VDC (USB)
Clock	24 MHz

1.2 Equipment Units Tested

All equipment descriptions used in the tested system (including inserted cards) are:

Device Type	Model Name	Serial Number	Manufacturer	FCC ID / DoC
EUT	eFA450	-	eWBM	2ARG9-EFA450
Notebook PC	ProBook6560b	5CB2053MXF	HP	-
Notebook PC Adaptor	Series PPP009L-E	-	LITE-ON Technology (CHANGZHOU)	
Gateway	TL-WR747N	-	TP Link	
Gateway Adaptor	T090060-2H1	-	TP Link	
Serial Mouse	Serial 2 Button mouse	02031069	Radio Shack	
RJ45 cable	-	-	-	

1.3 Cable Description

Product Name	Port	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (m)
EUT	USB	N/A	N/A	-
	RJ 45		N	(D) 1.6
Notebook PC	Serial(Mouse)	N/A	Y	(D) 1.8
	DC IN	N	N/A	(P) 1.8
Gateway	DC IN	N	N/A	(P) 1.8

* The marked "(D)" means the data cable and "(P)" means the power cable.

1.4 Noise Suppression Parts on Cable (I/O Cable)

Product Name	Port	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
EUT	USB	N	N/A	Y	Both End
	RJ 45	N	N/A	N	N/A
Notebook PC	Serial(Mouse)	N	N/A	Y	Notebook End

1.5. Test Facility

Test site is located at 74, SEOICHEON-RO, 578BEON-GIL, MAJANG-MYEON, ICHEON-SI, GYEONGGI-DO, SOUTH KOREA. Those measurement facilities are constructed in conformance with the requirements of ANSI C63.4-2014. The Normalized site attenuations (30 MHz to 1 GHz) and Site validation (1 GHz to 18 GHz) were performed in accordance with the standard in ANSI C63.4-2014

Measurement Facilities	Registration Number
Radiated Field strength measurement facility 3 m Semi Anechoic chamber	00661
Radiated Field strength measurement facility 10 m Semi Anechoic chamber	90661

1.6 Calibration of Measuring Instrument

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturers recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2006).

1.7 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Emission (0.15 MHz to 30 MHz)	1.82 dB (k=2)
Radiated Emissions (30 MHz to 1 GHz)	5.20 dB (<i>k</i> = 2)
Radiated Emissions (1 GHz to 18 GHz)	5.24 dB (<i>k</i> = 2)
Radiated Emissions (18 GHz to 40 GHz)	5.40 dB (<i>k</i> = 2)

2. LIST OF TEST EQUIPMENT

	<u>Type</u>	<u>Manufacturer</u>	<u>Model Name</u>	<u>Serial Number</u>	<u>Calibration</u> Cycle	CAL Date
Con	ducted Emission					
\mathbb{X}	EMI Test Receiver LISN LISN Software	Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	ESCI ENV216 ENV216 EMC32 VER8.54.0	100584 102245 100073	1 year 1 year 1 year -	06.25.2018 12.20.2017 05.03.2018
Rad	iated Emission					
-For	measurement below	1 GHz				
\mathbb{X}	EMI Test Receiver Trilog Antenna Antenna master	Rohde & Schwarz Schwarzbeck INNCO Systems	ESU40 VULB 9168 MA4640-XP-ET	100524 760 - CO3000/870/	1 year 2 year N/A	07.27.2018 04.06.2017 -
	Antenna master controller	-	CO 3000	35990515/L	N/A	-
\boxtimes	Turn Table Turn Table controller	INNCO Systems INNCO Systems	1060-2M CO2000	- CO2000/095/ 7590304/L	N/A N/A	-
	EMI Test Receiver Antenna master Turn Table Software	Rohde & Schwarz INNCO Systems INNCO Systems Rohde & Schwarz	ESU26 MA4000-EP DT3000-3T EMC32 VER8.40.0	100241 MA4000/283 DT3000/69	1 year N/A N/A -	08.14.2018 - -
-For	measurement above	1 GHz				
\boxtimes	EMI Test Receiver Antenna master	Rohde & Schwarz INNCO Systems	ESU40 MA4640-XP-ET	100524 -	1 year N/A	07.27.2018
\bowtie	Antenna master controller	INNCO Systems	CO3000	CO3000/870/ 35990515/L	N/A	-
\boxtimes	Turn Table Turn Table controller	INNCO Systems INNCO Systems	1060-2M CO2000	- CO2000/095/ 7590304/L	N/A N/A	-
	Horn Antenna Low Noise Amplifier Power Amplifier Horn Antenna Antenna master controller Power Amplifier Antenna master	Schwarzbeck TESTEK TESTEK Schwarzbeck HD GmbH CERNEX HD GmbH	BBHA 9120D TK-PA18H TK-PA1840H BBHA 9170 HD 100 CBLU1183540 MA240	01836 170034-L 170030-L BBHA9170#786 100/637 21691 240/520	2 year 1 year 1 year 2 year N/A 1 year N/A	05.14.2018 03.06.2018 12.20.2017 12.05.2017 - 06.25.2018 -
	EMI Test Receiver Turn Table Software	Rohde & Schwarz INNCO Systems Rohde & Schwarz	ESU26 DT3000-3T EMC32 VER8.40.0	100241 DT3000/69 -	1 year N/A -	08.14.2018 - -

3. DESCRIPTION OF MEASUREMENTS

3.1 Measurement of Conducted Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 7.3

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN).
 If the EUT is connected to the PC through USB, the AC power-line adapter of the PC is directly connected to a line impedance stabilization network (LISN).
 Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both conducted lines are measured in Quasi-Peak and Average mode, including the worst-case data points for each tested configuration.
- c. The frequency range from 150 kHz to 30 MHz was searched.

[Conducted Emission Limits]

Frequency (MHz)	Resolution Bandwidth (kHz)	Quasi-Peak (dB(µV))	Average (dB(µV))
0.15 to 0.5	9	66 to 56*	56 to 46*
0.5 to 5	9	56	46
5 to 30	9	60	50

*Decreases with the logarithm of the frequency.

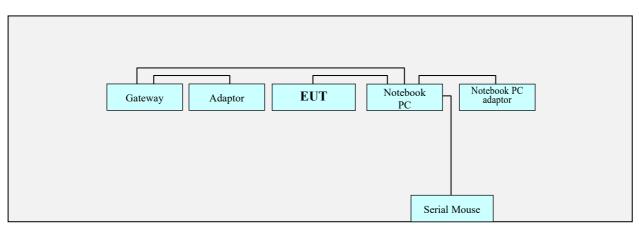
3.2 Measurement of Radiated Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 8.3

- a. The EUT was placed on the top of a turn table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 m away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from 1 m to 4 m above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 m to 4 m and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to Peak and Average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- g. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.(1 GHz to 40 GHz)

Frequency (MHz)	Antenna Distance (m)	Field Strength (µV/m)	Quasi-Peak (dB(µV)/m)
30 to 88	3	100	40.0
88 to 216	3	150	43.5
216 to 960	3	200	46.0
Above 960	3	500	54.0
Frequency (MHz)	Antenna Distance (m)	Peak (dB(µV)/m)	Average (dB(µV)/m)
Above 1 000	3	74	54

[Radiated Emission Limits]



3.2.1 Frequency Range of Radiated Measurements

An unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a Radiated Emission limit is specified, up to the frequency shown in the following table

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 to 108	1 000
108 to 500	2 000
500 to 1 000	5 000
Above 1 000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

3.3 Configuration of Tested System

Non-Conductive Table Power Line: 120 VAC, 60 Hz

4. PRELIMINARY TEST

4.1 Conducted Emission Test

It was tested the following operating mode, after connecting all peripheral devices.

Operation Mode: 🛛 Data mode

4. 2 Radiated Emission Test

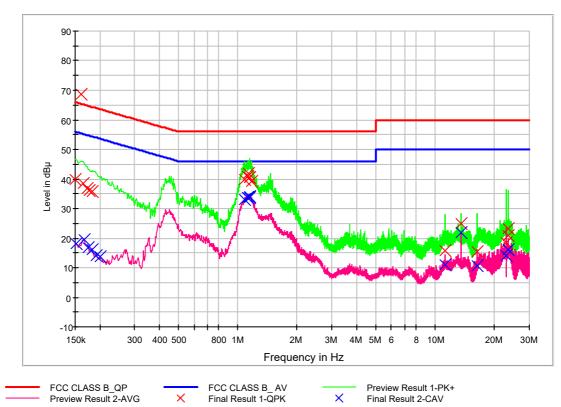
It was tested the following operating mode, after connecting all peripheral devices.

Operation Mode: 🖂 Data mode

5. CONDUCTED AND RADIATED EMISSION TEST SUMMARY

5.1 Conducted Emission Test

The test results of conducted emission at mains ports provide the following information:


Applicable Standards	FCC PART 15 Subpart B Class B ANSI C63.4-2014
Detector	Quasi-Peak, CISPR-Average
Bandwidth	9 kHz (6 dB)
Worst Case of Operation Mode	Data mode
Kind of Test Site	Shielded Room
Temperature	24.1 °C
Relative Humidity	48.3 %
Test Date	September 12, 2018

- Calculation Formula:

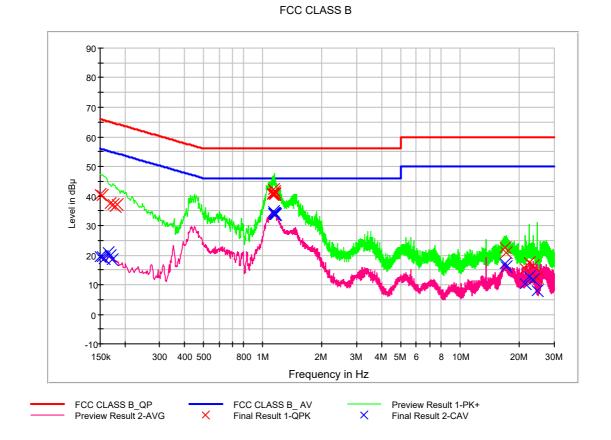
- 1. Conductor L1 = Hot, Conductor N = Neutral
- 2. Corr. = LISN Factor + Cable Loss
- 3. QuasiPeak or CAverage= Receiver Reading + Corr.
- 4. Margin = Limit QuasiPeak or CAverage

Figure 1: Conducted Emission, AC Main Port, Line (L1)

FCC CLASS B

QuasiPeak Final Result, Line (L1)

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	39.7	9.000	L1	9.6	26.3	66.0
0.160000	38.9	9.000	L1	9.6	26.6	65.5
0.164000	38.6	9.000	L1	9.6	26.7	65.3
0.172000	36.7	9.000	L1	9.6	28.2	64.9
0.176000	36.1	9.000	L1	9.6	28.5	64.7
0.184000	35.6	9.000	L1	9.6	28.7	64.3
1.088000	39.9	9.000	L1	9.7	16.1	56.0
1.128000	40.7	9.000	L1	9.7	15.3	56.0
1.138000	41.8	9.000	L1	9.7	14.2	56.0
1.144000	40.7	9.000	L1	9.7	15.3	56.0
1.154000	40.6	9.000	L1	9.7	15.4	56.0
1.174000	39.2	9.000	L1	9.7	16.8	56.0
11.282000	15.7	9.000	L1	10.0	44.3	60.0
13.560000	25.0	9.000	L1	10.0	35.0	60.0
16.366000	15.3	9.000	L1	10.1	44.7	60.0
23.052000	18.6	9.000	L1	10.1	41.4	60.0
23.344000	21.0	9.000	L1	10.1	39.0	60.0
23.486000	23.1	9.000	L1	10.1	36.9	60.0



CAverage Final Result, Line (L1)

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.152000	18.1	9.000	L1	9.6	37.8	55.9
0.166000	19.5	9.000	L1	9.6	35.7	55.2
0.174000	16.7	9.000	L1	9.6	38.1	54.8
0.184000	16.0	9.000	L1	9.6	38.3	54.3
0.192000	14.2	9.000	L1	9.6	39.8	53.9
0.202000	13.8	9.000	L1	9.6	39.8	53.5
1.088000	32.9	9.000	L1	9.7	13.1	46.0
1.116000	33.7	9.000	L1	9.7	12.3	46.0
1.124000	33.9	9.000	L1	9.7	12.1	46.0
1.128000	33.7	9.000	L1	9.7	12.3	46.0
1.150000	34.2	9.000	L1	9.7	11.8	46.0
1.154000	33.6	9.000	L1	9.7	12.4	46.0
11.282000	11.0	9.000	L1	10.0	39.0	50.0
13.560000	21.9	9.000	L1	10.0	28.1	50.0
16.366000	10.6	9.000	L1	10.1	39.4	50.0
23.052000	13.9	9.000	L1	10.1	36.1	50.0
23.344000	16.2	9.000	L1	10.1	33.8	50.0
23.486000	16.0	9.000	L1	10.1	34.0	50.0

Figure 2: Conducted Emission, AC Main Port, Line (N)

QuasiPeak Final Result, Line (N)

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	40.7	9.000	N	9.6	25.3	66.0
0.154000	40.1	9.000	Ν	9.6	25.6	65.8
0.168000	37.5	9.000	N	9.6	27.6	65.1
0.174000	37.1	9.000	Ν	9.6	27.6	64.8
0.178000	36.5	9.000	N	9.6	28.1	64.6
0.182000	37.1	9.000	N	9.6	27.3	64.4
1.118000	40.4	9.000	N	9.7	15.6	56.0
1.128000	40.8	9.000	N	9.8	15.2	56.0
1.140000	42.0	9.000	N	9.8	14.0	56.0
1.144000	41.0	9.000	N	9.8	15.0	56.0
1.148000	41.5	9.000	Ν	9.8	14.5	56.0
1.154000	40.4	9.000	N	9.8	15.6	56.0
16.862000	22.4	9.000	N	10.1	37.6	60.0
17.100000	20.9	9.000	Ν	10.2	39.1	60.0
21.480000	15.3	9.000	N	10.2	44.7	60.0
22.292000	17.3	9.000	N	10.2	42.7	60.0
23.410000	16.4	9.000	N	10.3	43.6	60.0
24.500000	12.5	9.000	N	10.3	47.5	60.0

CAverage Final Result, Line (N)

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	19.6	9.000	Ν	9.6	36.4	56.0
0.154000	19.6	9.000	Ν	9.6	36.2	55.8
0.158000	18.7	9.000	N	9.6	36.8	55.6
0.164000	20.8	9.000	Ν	9.6	34.5	55.3
0.168000	19.8	9.000	N	9.6	35.3	55.1
0.172000	18.6	9.000	Ν	9.6	36.2	54.9
1.130000	34.0	9.000	Ν	9.8	12.0	46.0
1.138000	34.6	9.000	Ν	9.8	11.4	46.0
1.144000	34.1	9.000	Ν	9.8	11.9	46.0
1.148000	34.0	9.000	Ν	9.8	12.0	46.0
1.154000	33.8	9.000	Ν	9.8	12.2	46.0
1.158000	33.7	9.000	Ν	9.8	12.4	46.0
16.862000	17.2	9.000	N	10.1	32.8	50.0
17.100000	16.0	9.000	N	10.2	34.0	50.0
21.480000	10.4	9.000	N	10.2	39.6	50.0
22.292000	12.7	9.000	N	10.2	37.3	50.0
23.410000	11.7	9.000	N	10.3	38.3	50.0
24.500000	8.0	9.000	N	10.3	42.0	50.0

5.2 Radiated Emission Test

The test results of radiated emission provide the following information:

-For Measurement Below 1 GHz

Applicable Standards	FCC PART 15 Subpart B Class B ANSI C63.4-2014
Detector	Quasi-Peak
Bandwidth	120 kHz (6 dB)
Worst Case of Operation Mode	Data mode
Kind of Test Site	3 m semi anechoic chamber
Temperature	24.5 °C
Relative Humidity	48.7 %
Test Date	September 18, 2018

Frequency (MHz)	Quasi Peak (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
30.818381	31.6	100.0	V	68.0	18.8	8.4	40.0
55.754400	22.6	100.0	V	306.0	20.0	17.4	40.0
62.580000	21.7	125.2	V	0.0	19.3	18.3	40.0
265.563200	33.5	100.0	Н	133.0	19.4	12.5	46.0
499.985600	29.2	100.0	Н	30.0	25.2	16.8	46.0
624.210400	28.0	125.0	Н	122.0	27.8	18.0	46.0

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. QuasiPeak = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor + Cable Loss
- 4. Margin = Limit QuasiPeak

-For Measurement Above 1 GHz

Applicable Standards	FCC PART 15 Subpart B Class B ANSI C63.4-2014
Detector	Peak mode: Peak (RBW: 1 MHz, VBW: 3 MHz) CISPR-Average mode: Peak (RBW: 1 MHz, VBW: 10 Hz)
Highest Frequency	24 MHz
Tested Frequency Range	1 GHz to 18 GHz
Worst Case of Operation Mode	Data mode
Kind of Test Site	3 m semi anechoic chamber
Temperature	24.5 °C
Relative Humidity	48.7 %
Test Date	September 18, 2018

Frequency (MHz)	Peak (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1400.020000	48.1	334.6	V	188.0	-28.2	25.9	74.0
1992.780000	52.5	100.0	V	56.0	-26.7	21.5	74.0
2599.650000	54.7	321.5	V	57.0	-24.5	19.3	74.0
11119.730000	44.8	277.6	V	198.0	-5.4	29.2	74.0
14695.805000	46.3	99.8	V	142.0	-1.4	27.7	74.0
17899.450000	53.1	350.0	V	198.0	6.6	20.9	74.0

Frequency (MHz)	CAverage (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1400.020000	46.8	334.6	V	188.0	-28.2	7.2	54.0
1992.780000	36.0	100.0	V	56.0	-26.7	18.0	54.0
2599.650000	34.0	321.5	V	57.0	-24.5	20.0	54.0
11119.730000	32.1	277.6	V	198.0	-5.4	22.0	54.0
14695.805000	33.8	100.0	V	142.0	-1.4	20.2	54.0
17899.450000	40.2	350.0	V	198.0	6.6	13.8	54.0

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. Peak or CAverage = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor+ Cable Loss Amplifier Gain
- 4. Margin = Limit Peak or CAverage

6. CONCLUSION

The data collected shows that the **EUT Type: USB FIDO Dongle, FCC ID: 2ARG9-EFA450, Model: eFA450** complies with §15.107 and §15.109 of the FCC rules.

7. APPENDIX A. TEST SETUP PHOTOGRAPHS

Please refer to Appendix A