SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AREV-LWXF18

Report No.:LCS180929061AE

SAR TEST REPORT

For

LOWEX, LLC

feature phone

Test Model: F18

List Model No.: /

Prepared for Address	:	LOWEX, LLC 739 NW 105th Pl, Miami, Florida 33172, USA
Prepared by Address	:	Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	:	(86)755-82591330
Fax	÷	(86)755-82591332
Web Mail	:	www.LCS-cert.com
	•	webmaster@LCS-cert.com
Date of receipt of test sample	:	September 29, 2018
Number of tested samples	:	
Serial number	:	Prototype
Date of Test	:	November 16, 2018~ November 23, 2018
Date of Report	:	December 10, 2018

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 77 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AREV-LWXF18

	SAR TEST REPORT			
Report Reference No:	LCS180929061AE			
Date Of Issue:	December 10, 2018			
Testing Laboratory Name:	Shenzhen LCS Compliance Testing Laboratory Ltd.			
Address:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China			
Testing Location/ Procedure:	Full application of Harmonised standa	urds ∎		
	Partial application of Harmonised stan	ndards 🗆		
	Other standard testing method \Box			
Applicant's Name:				
Address:	739 NW 105th Pl, Miami, Florida 331	72, USA		
Test Specification:				
Standard:	IEEE Std C95.1, 2005&IEEE Std 1 2.1093	1528™-2013&& FCC Par		
Test Report Form No:	LCSEMC-1.0			
TRF Originator:	Shenzhen LCS Compliance Testing Laboratory Ltd.			
This publication may be reproduce	ng Laboratory Ltd. All rights reserve	cial purposes as long as the		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Co will not assume liability for dam	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as o ompliance Testing Laboratory Ltd. tak ages resulting from the reader's interp	cial purposes as long as the copyright owner and source ces noresponsibility for and		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Co will not assume liability for dam material due to its placement and co	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as compliance Testing Laboratory Ltd. tak ages resulting from the reader's interpontext.	cial purposes as long as the copyright owner and source ces noresponsibility for and		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Co will not assume liability for dama material due to its placement and co Test Item Description	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as of ompliance Testing Laboratory Ltd. tak ages resulting from the reader's interp ontext. feature phone	cial purposes as long as the copyright owner and source ces noresponsibility for and		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Co will not assume liability for dama material due to its placement and co Test Item Description	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as of ompliance Testing Laboratory Ltd. tak ages resulting from the reader's interp ontext. feature phone	cial purposes as long as the copyright owner and source ces noresponsibility for and		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Co will not assume liability for dam material due to its placement and co Test Item Description: Trade Mark	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as of ompliance Testing Laboratory Ltd. take ages resulting from the reader's interp ontext. feature phone LOWEX	cial purposes as long as the copyright owner and source ces noresponsibility for and pretation of the reproduced		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Co will not assume liability for dam	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as of ompliance Testing Laboratory Ltd. tak ages resulting from the reader's interp ontext. feature phone LOWEX F18	cial purposes as long as the copyright owner and source tes noresponsibility for and pretation of the reproduced		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Co will not assume liability for dam material due to its placement and co Test Item Description: Trade Mark: Model/Type Reference: Operation Frequency	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as a compliance Testing Laboratory Ltd. tak ages resulting from the reader's interp ontext. feature phone LOWEX F18 GSM 850/PCS1900, Bluetooth2.1+ED	cial purposes as long as the copyright owner and source tes noresponsibility for and pretation of the reproduced DR SK,π/4-DQPSK)		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Co will not assume liability for dam material due to its placement and co Test Item Description: Trade Mark: Model/Type Reference: Modulation Type: Ratings:	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as of ompliance Testing Laboratory Ltd. tak ages resulting from the reader's interp ontext. feature phone LOWEX F18 GSM 850/PCS1900, Bluetooth2.1+ED GSM(GMSK), Bluetooth(GFSK,8DPS DC 3.8V by Rechargeable Li-ion Batter	cial purposes as long as the copyright owner and source tes noresponsibility for and pretation of the reproduced DR SK, π /4-DQPSK)		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Co will not assume liability for dam material due to its placement and co Test Item Description: Trade Mark: Model/Type Reference: Operation Frequency:	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as of compliance Testing Laboratory Ltd. tak ages resulting from the reader's interp ontext. feature phone LOWEX F18 GSM 850/PCS1900, Bluetooth2.1+EE GSM(GMSK), Bluetooth(GFSK,8DPS DC 3.8V by Rechargeable Li-ion Batter Recharged by DC 5V/0.5A Adapter	cial purposes as long as the copyright owner and source tes noresponsibility for and pretation of the reproduced DR SK, π /4-DQPSK)		
Shenzhen LCS Compliance Testin This publication may be reproduce Shenzhen LCS Compliance Testin of the material. Shenzhen LCS Compliance will not assume liability for damage material due to its placement and compliance Test Item Description. Trade Mark Model/Type Reference Operation Frequency. Ratings Shenzhen Type	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as of ompliance Testing Laboratory Ltd. tak ages resulting from the reader's interp ontext. feature phone LOWEX F18 GSM 850/PCS1900, Bluetooth2.1+ED GSM(GMSK), Bluetooth(GFSK,8DPS DC 3.8V by Rechargeable Li-ion Battor Recharged by DC 5V/0.5A Adapter Positive	cial purposes as long as the copyright owner and source tes noresponsibility for and pretation of the reproduced DR SK, $\pi/4$ -DQPSK) ery(600mAh)		
Shenzhen LCS Compliance Testin This publication may be reproduced Shenzhen LCS Compliance Testing of the material. Shenzhen LCS Compliance Testing will not assume liability for damage material due to its placement and compliance Test Item Description. Trade Mark Model/Type Reference Operation Frequency. Modulation Type. Ratings Compiled by:	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commerce g Laboratory Ltd. is acknowledged as of compliance Testing Laboratory Ltd. tak ages resulting from the reader's interp ontext. feature phone LOWEX F18 GSM 850/PCS1900, Bluetooth2.1+ED GSM(GMSK), Bluetooth(GFSK,8DPS DC 3.8V by Rechargeable Li-ion Battor Recharged by DC 5V/0.5A Adapter Positive	cial purposes as long as the copyright owner and source tes noresponsibility for an pretation of the reproduced DR SK,π/4-DQPSK) ery(600mAh)		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 77

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AREV-LWXF18

Report No.:LCS180929061AE

SAR -- TEST REPORT

Test Report No. :	LCS180929061AE	December 10, 2018 Date of issue	
Type / Model	: F18		
EUT	: feature phone		
Applicant			
Address	: 739 NW 105th Pl, Miami, Fl	orida 33172, USA	
Telephone	: /		
Fax	: /		
Manufacturer	: LuZhou XinYu Communic	ation Technology Co., LTD	
Address	: NO.19, Section 5, JiuGu Avenue, High Tech District, LuZhou City, SiChuan Provice, China		
Telephone	: /		
Fax	: /		
Factory	: LuZhou XinYu Communic	ation Technology Co., LTD	
Address	: NO.19, Section 5, JiuGu Avenue, High Tech District, LuZhou City, SiChuan Provice, China		
Telephone	: /		
Fax			

Test Result

Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 77

Report No.:LCS180929061AE

Revison History

Revision	Issue Date	Revisions	Revised By
000	December 10, 2018	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 77

TABLE OF CONTENTS

1. TEST STANDARDS AND TEST DESCRIPTION	6
1.1. Test Standards	6
1.2. TEST DESCRIPTION	
1.3. General Remarks	
1.4. PRODUCT DESCRIPTION	
1.5. STATEMENT OF COMPLIANCE	
2. TEST ENVIRONMENT	
2.1. TEST FACILITY	
2.2. ENVIRONMENTAL CONDITIONS	
2.3. SAR LIMITS 2.4. Equipments Used during the Test	
3. SAR MEASUREMENTS SYSTEM CONFIGURATION	
3.1. SAR MEASUREMENT SET-UP	
3.2. OPENSAR E-FIELD PROBE SYSTEM	
3.3. Phantoms	
3.4. Device Holder	
3.5. SCANNING PROCEDURE	
3.6. DATA STORAGE AND EVALUATION	
 3.7. POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	
 3.8. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	
3.10. System Check	
3.11. SAR MEASUREMENT PROCEDURE	
3.12. POWER REDUCTION	
3.13. POWER DRIFT	
4. TEST CONDITIONS AND RESULTS	
4.1. CONDUCTED POWER RESULTS	22
4.2. MANUFACTURING TOLERANCE	
4.3. TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION	
4.4. SAR MEASUREMENT RESULTS	
4.5. SIMULTANEOUS TX SAR CONSIDERATIONS	
4.6. SAR Measurement Variability	
4.7. GENERAL DESCRIPTION OF TEST PROCEDURES	
4.8. MEASUREMENT UNCERTAINTY (450MHz-6GHz)	
4.9. System Check Results	
4.10 SAR TEST GRAPH RESULTS	
5. CALIBRATION CERTIFICATES	
5.1 PROBE-EPGO324 CALIBRATION CERTIFICATE	
5.2 SID835Dipole Calibration Ceriticate	
5.3 SID1900 DIPOLE CALIBRATION CERTIFICATE	61
6. EUT TEST PHOTOGRAPHS	72
6.1 Photograph of liquiddepth	72
6.2 PHOTOGRAPH OF THE TEST	
7. EUT PHOTOGRAPHS	77

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 77

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

<u>IEEE Std C95.1, 2005:</u>IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. <u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. <u>FCC Part 2.1093</u>:Radiofrequency Radiation Exposure Evaluation:Portable Devices

KDB447498 D01 General RF Exposure Guidance: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets KDB865664 D01 SAR Measurement 100 MHz to 6 GHz :SAR Measurement Requirements for 100 MHz to 6 GHz KDB865664 D02 RF Exposure Reporting: RF Exposure Compliance Reporting and Documentation Considerations

KDB 941225 D06 Hotspot Mode: SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	September 29, 2018
Testing commenced on	•••	November 16, 2018
Testing concluded on	:	November 23, 2018

1.4. Product Description

The**LOWEX, LLC** .'s Model: **F18** or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description		
Product Name:	feature phone	
Model/Type reference:	F18	
List Model No.:	1	
Model Declaration:	1	
Modulation Type:	GMSK for GSM/GPRS	
Device category:	ategory: Portable Device	
Exposure category:	bry: General population/uncontrolled environment	
EUT Type:	Production Unit	
Hardware Version:	DF600_PCB	
Software Version:	DF600_DF600E_HC	
Power supply:	DC 3.8V by Rechargeable Li-ion Battery(600mAh) Recharged by DC 5V/0.5A Adapter	

The EUT is GSM mobile phone. the mobile phone is intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS class 12 for GSM850, PCS1900, and Bluetooth, For more information see the following datasheet

Technical Characteristics		
GSM		
Support Networks	GSM, GPRS	
Support Band	GSM850/PCS1900/GPRS850/GPRS1900	
Frequency	GSM850: 824.2~848.8MHz	
Frequency	GSM1900: 1850.2~1909.8MHz	
Power Class:	GSM850:Power Class 4	
POwer Class. PCS1900:Power Class 1		
Modulation Type: GMSK for GSM/GPRS		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 77

SHENZHEN LCS COMPLIANCE TESTING	LABORATORY LTD.	FCC ID: 2AREV-LWXF18	Report No.:LCS180929061AE
	internal permaner	nt antenna, 0.6dBi(Max.) for GSM	850

Antenna Description:	internal permanent antenna, 0.0dBi(Max.) for GSM 850	
GSM Release Version	R99	
GPRS Multislot Class	12	
EGPRS Multislot Class	Not Supported	
DTM Mode	Not Supported	
Bluetooth		
Bluetooth Version:	2.1+EDR	
Modulation:	GFSK(1Mbps) , π/4-DQPSK(2Mbps), 8DPSK(3Mbps)	
Operation frequency: 2402MHz~2480MHz		
Channel number:	79	
Channel separation:	1MHz	
Antenna Description	internal permanent antenna, 1.2dBi (Max.)	

1.5. Statement of Compliance

The maximum of results of SAR found during testing for F18are follows:

-Highest	Reported	standalone	SAR	Summary	1
SI IIYIICƏL	Reputeu	Stanualone	SAIN	Summar	y >

Classment	Frequency	Head	Body-worn
Class	Band	(Report SAR _{1-g} (W/kg)	(Report SAR _{1-g} (W/kg)
PCE	GSM 850	0.941	1.279
FUE	GSM1900	0.727	0.792

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position					Highest Reported	
		Frequency	Reported SAR _{1-g}	Classment	Simultaneous	
	exposure Position	Band	(W/kg)	Class	Transmission	
					SAR _{1-g} (W/kg)	
	Pody worp	GSM 1900	1.279	PCE	1 205	
	Body-worn	BT	0.026	DSS	1.305	

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations: Site Description

0.10 - 000	
EMC Lab.	: FCC Registration Number. is 254912
	Industry Canada Registration Number. is 9642A-1.
	ESMD Registration Number. is ARCB0108.
	UL Registration Number. is 100571-492.
	TUV SUD Registration Number. is SCN1081.
	TUV RH Registration Number. is UA 50296516-001
	NVLAP Registration Code is 600167-0.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

	FCC Limit (1g Tissue)	
	SAR (W/k	ag)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average(averaged over the whole body)	0.08	0.4
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

2.4. Equipments Used during the Test

				Calibration			
Test Equipment	Manufacturer	Manufacturer Type/Model Serial		Calibration Date	Calibration Due		
PC	Lenovo	G5005	MY42081102	N/A	N/A		
SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A		
Signal Generator	Angilent	E4438C	MY42081396	06/16/2018	06/15/2019		
Multimeter	Keithley	MiltiMeter 2000	4059164	06/16/2018	06/15/2019		
S-parameter Network Analyzer	Agilent	8753ES	US38432944	11/15/2018	11/14/2019		
Wideband Radia Communication Tester	R&S	CMW500	1201.0002K50	11/15/2018	11/14/2019		
E-Field PROBE	SATIMO	SSE2	SN 31/17 EPGO324 10/08/2018		10/07/2019		
DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	10/01/2018	09/30/2021		
DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466 09/24/2018		09/23/2021		
Power meter	Agilent	E4419B	MY45104493	06/16/2018	06/15/2019		
Power meter	Agilent	E4418B	GB4331256	06/16/2018	06/15/2019		
Power sensor	Agilent	E9301H	MY41497725	06/16/2018	06/15/2019		
Power sensor	Agilent	E9301H	MY41495234	06/16/2018	06/15/2019		
Directional Coupler	MCLI/USA	4426-20	0D2L51502	06/16/2018	06/15/2019		
Mobile Phone POSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A		
SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A		
COMOSAR OPEN Coaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	N/A	N/A		
Liquid measurement Kit	HP	85033D	3423A03482	N/A	N/A		

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting black performed before measuring liquid parameters.

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

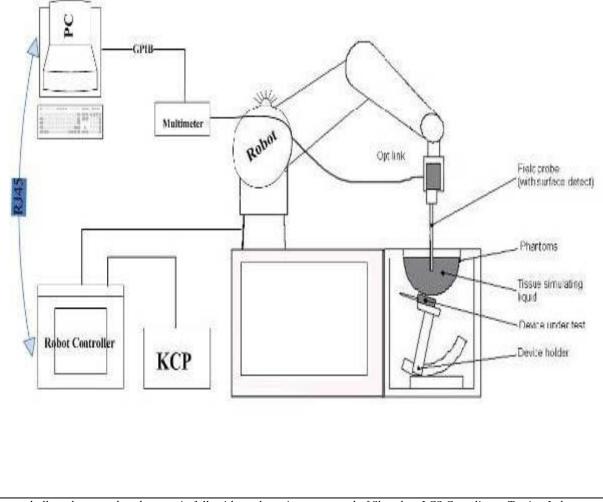
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 77

Report No.:LCS180929061AE

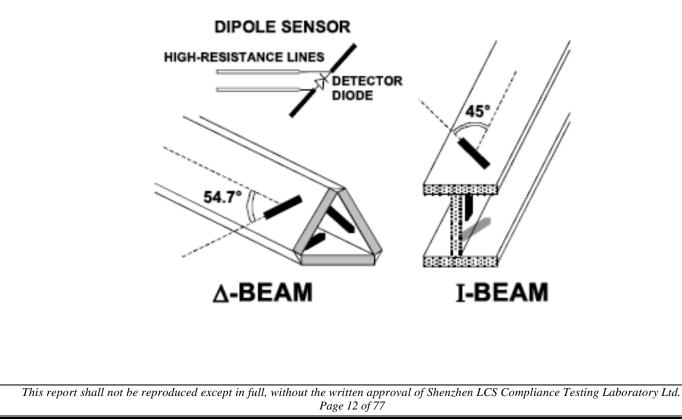
3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324(manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

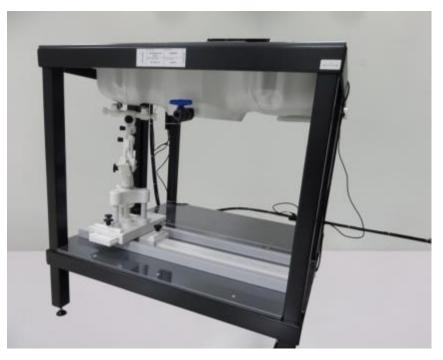
ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.


Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6 GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

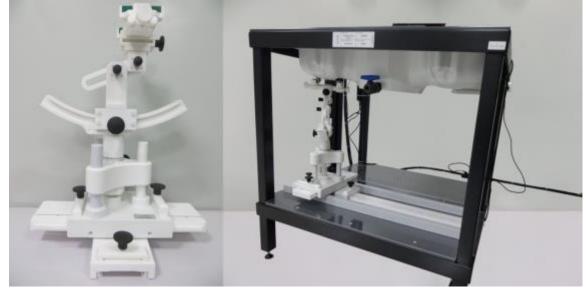
Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo


System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 77

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz			
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$			
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$			
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.				

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^{\circ}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 5 \text{ mm}^* \\ 4-6 \text{ GHz:} \leq 4 \text{ mm}^* \end{array}$	
	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$4 - 5 \text{ GHz:} \le 3 \text{ mm} \\ 5 - 6 \text{ GHz:} \le 2 \text{ mm} \\ 3 - 4 \text{ GHz:} \le 3 \text{ mm} \\ 4 - 5 \text{ GHz:} \le 2.5 \text{ mm} \\ 5 - 6 \text{ GHz:} \le 2 \text{ mm} \\ 5 - 6 \text{ GHz:} \le 2 \text{ mm} \\ \end{array}$	
	Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoo}$	om(n-1) mm	
Minimum zoom scan volume	x, y, z		$ \ge 30 \text{ mm} \qquad \begin{array}{c} 3 - 4 \text{ GHz:} \ge 28 \text{ mm} \\ 4 - 5 \text{ GHz:} \ge 25 \text{ mm} \\ 5 - 6 \text{ GHz:} \ge 22 \text{ mm} \end{array} $		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 77

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AREV-LWXF18	Report No.:LCS180929061AE
--	---	----------------------	---------------------------

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files . The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: -	Sensitivity	Normi, ai0, ai1, ai2
-	Conversion factor	ConvFi
-	Diode compression poir	t Dcpi
Device parameters: -	Frequency	f
-	Crest factor	cf
Media parameters: -	Conductivity	σ
-	Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

 V_i

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

		E - field probes:	$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$
		H-field probes:	$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$
With	Vi Normi	 compensated signal of channel i sensor sensitivity of channel i [mV/(V/m)2] for E-field Probes 	(i = x, y, z) (i = x, y, z)
	ConvF	= sensitivity enhancement in solution	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 77

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AREV-LWXF18 Report No.:LCS180929061AE

> = sensor sensitivity factors for H-field probes aij

= carrier frequency [GHz] f

= electric field strength of channel i in V/m Ei

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR

= local specific absorption rate in mW/g

= total field strength in V/m Etot σ

= conductivity in [mho/m] or [Siemens/m]

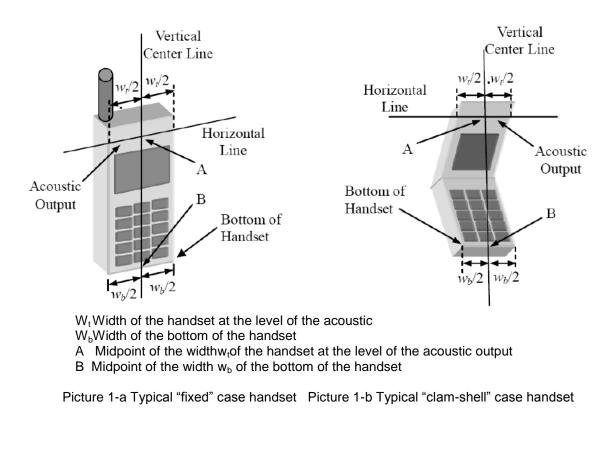
ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

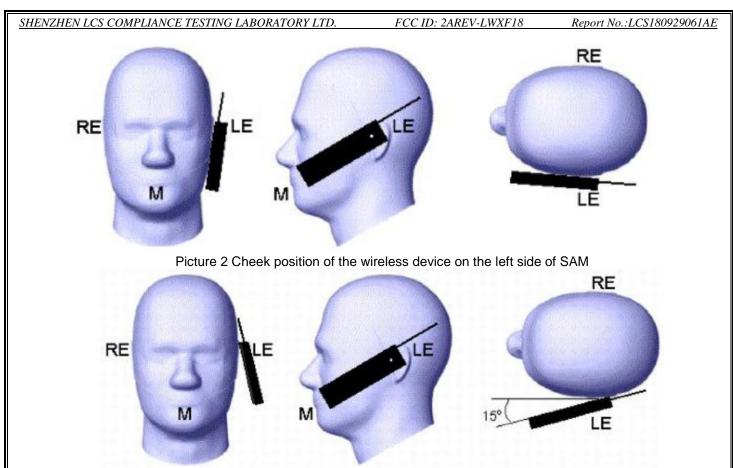
3.7. Position of the wireless device in relation to the phantom

General considerations

This standard specifies two handset test positions against the head phantom - the "cheek" position and the "tilt" position.


The power flow density is calculated assuming the excitation field as a free space field

$$P_{(\text{pwe})} = \frac{E_{\text{tot}}^2}{3770} \text{ or } P_{(\text{pwe})} = H_{\text{tot}}^2.37.7$$


Where P_{pwe}=Equivalent power density of a plane wave in mW/cm2

E_{tot}=total electric field strength in V/m

H_{tot}=total magnetic field strength in A/m

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 77

Picture 3 Tilt position of the wireless device on the left side of SAM

For body SAR test we applied to FCC KDB941225, KDB447498, KDB248227, KDB648654;

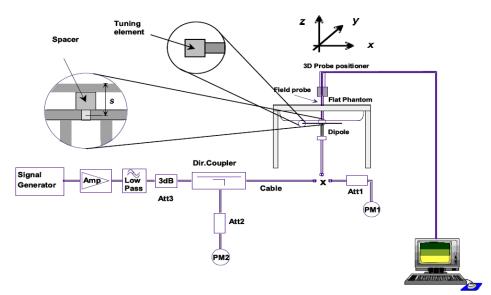
3.8. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid														
Ingredient 750MHz 835MHz				1800	MHz	1900	MHz	2450	MHz	2600	MHz	5000	MHz	
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.3	41.45	52.5	54.5	40.2	54.9	40.4	62.7	73.2	60.3	71.4	65.5	78.6
Preventol	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Triton X- 100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7

Target Frequency	He	ad	ody	
(MHz)	ε _r	σ(S/m)	٤r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.9. Tissue equivalent liquid properties


Dielectric Performance of Head and Body Tissue Simulating Liquid

Test En	gineer: Handy								
Tissue	Measured	Target	t Tissue		Measure	d Tissue		Liquid Temp.	Test Data
Туре	Frequency (MHz)	σ	٤ _r	σ	Dev.	٤ _r	Dev.		
835H	835	0.90	41.50	0.88	-2.22%	41.94	-1.06%	20.5	11/16/2018
1900H	1800	1.40	40.00	1.43	2.14%	39.57	-1.08%	21.3	11/22/2018
835B	835	0.97	55.20	0.95	-2.06%	55.01	-0.34%	20.8	11/19/2018
1900B	1800	1.52	53.30	1.49	-1.97%	53.97	1.26%	20.7	11/23/2018

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-24.49		55.9		2.8	

SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	
2018-09-24	-26.43		50.5		4.7		1

Mixture	Mixture Frequency Bower		Power SAR _{1g} SAR _{10g}			1W Target		Difference percentage		Liquid	Dale
Туре	(MHz)	Fower	(W/Kg)	(W/Kg)	(%)	SAR _{1g} (W/Kg)	SAR10g (W/Kg)	1g	10g	Temp	Date
		100 mW	0.985	0.635			6.20	2.60%	2.42%		
Head	835	Normalize to 1 Watt	9.85	6.35	2.04	9.60				20.5	11/16/2018
		100 mW	0.978	0.636		9.90		6.39 -1.21%	-0.47%	20.8	11/19/2018
Body	835	Normalize to 1 Watt	9.78	6.36	1.95		6.39				
		100 mW	3.927	2.008				-1.43%	-0.59%	21.3	
Head	1900	Normalize to 1 Watt	39.27	20.08	-1.65	39.84	9.84 20.20				11/22/2018
		100 mW	4.117	2.059					-4.63%	20.7	11/23/2018
Body	1900	Normalize to 1 Watt	41.17	20.59	-0.97	43.33	.33 21.59	1.59 -4.98%			

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum powerin each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously

Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4.TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

According KDB 447498D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR testreduction.

2. According to October 2013TCB Workshop, for GSM / GPRS / EGPRS, the number of time slots to test for SARshould correspond to the highest frame-average maximum output power configuration, considering the possibility ofe.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (2Tx slot)forGSM850/GSM1900 band due to their highest frame-average power.

3. For body-worn mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS (4Tx slots)for GSM850/GSM1900 band due to its highest frame-average power.

Conducted power measurement results for GSM850/PCS1900 <SIM1>

		Tune-	Burst C	Conducted (dBm)	lpower		Tune-	Averag	le power (d	Bm)
GSI	A 850	up	Channe	I/Frequen	cy(MHz)	Division	up	Channel/	Frequency	(MHz)
		Max	128/ 824.2	190/ 836.6	251/ 848.8	Factors	Max	128/ 824.2	190/ 836.6	251/84 8.8
G	SM	32.50	32.05	32.43	32.28	-9.03dB	23.47	23.02	23.40	23.25
	1TX slot	32.00	31.54	31.39	31.84	-9.03dB	22.97	22.51	22.36	22.81
GPRS	2TX slot	31.00	30.73	30.55	30.60	-6.02dB	24.98	24.71	24.53	24.58
(GMSK)	3TX slot	29.00	28.51	28.12	28.05	-4.26dB	24.74	24.25	23.86	23.79
	4TX slot	26.50	26.46	26.30	26.27	-3.01dB	23.49	23.45	23.29	23.26
		Tune- up	Burst Conducted power (dBm) Channel/Frequency(MHz)		Tune		Averag	le power (d	Bm)	
GSM	1 1900				Division Factors	up	Channel/	Frequency	(MHz)	
		Max	512/	661/	810/	Faciois	Max.	512/	661/	810/
			1850.2	1880	1909.8		wax.	1850.2	1880	1909.8
G	SM	30.00	29.53	29.43	29.45	-9.03dB	20.97	20.50	20.4	20.42
	1TX slot	28.50	28.42	28.00	28.37	-9.03dB	19.47	19.39	18.97	19.34
GPRS	2TX slot	27.00	26.43	26.67	26.59	-6.02dB	20.98	20.41	20.65	20.57
(GMSK)	3TX slot	26.00	25.44	25.68	25.72	-4.26dB	21.74	21.18	21.42	21.46
	4TX slot	25.00	24.59	24.55	24.46	-3.01dB	21.99	21.58	21.54	21.45

Notes:

1. Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.00dB 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB 2. According to the conducted power as above, the GPRS measurements are performed with 2Txslot for GPRS850 and 4Txslot GPRS1900.

3. This EUT owns two SIM cards , we found the SIM 1 is the worst case ,so its result is recorded in this report.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 77 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AREV-LWXF18

Report No.:LCS180929061AE

<bi conducted="" power=""></bi>											
Mode	channel	Frequency (MHz)	Conducted AVG output power (dBm)								
	0	2402	-0.041								
GFSK	39	2441	0.843								
	78	2480	0.562								
	0	2402	-0.485								
π/4-DQPSK	39	2441	-0.077								
	78	2480	-0.193								
	0	2402	-0.685								
8DPSK	39	2441	-0.073								
	78	2480	-0.159								

DT Conducted Dourses

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-q SAR and \leq 7.5 for 10-q extremity SAR

• f(GHz) is the RF channel transmit frequency in GHz

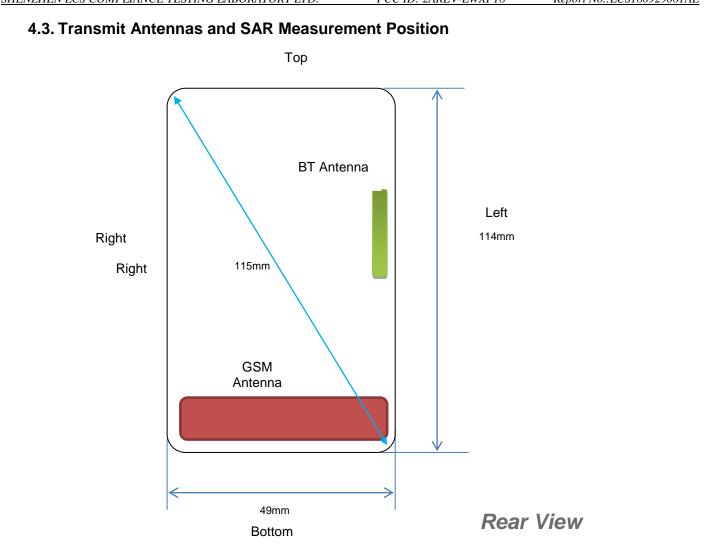
Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

Bluetooth Turn up	Separation Distance	Frequency	Exclusion
Power (dBm)	(mm)	(GHz)	Thresholds
1.0	5	2.45	

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied todetermine SAR test exclusion. The test exclusion threshold is 0.4< 3.0, SAR testing is not required.

4.2. Manufacturing tolerance


GSM Speech <sim1></sim1>										
GSM 850 (GMSK) (Burst Average Power)										
Channel Channel 128 Channel 190 Chann										
Target (dBm)	31.5	31.5	31.5							
Tolerance ±(dB)	1.0	1.0	1.0							
	GSM 1900 (GMSK) (B	Surst Average Power)								
Channel	Channel 512	Channel 661	Channel 810							
Target (dBm)	29.0	29.0	29.0							
Tolerance ±(dB)	1.0	1.0	1.0							

		<sim1></sim1>								
	GSM 850 GPRS (GMSK) (Burst Average Power)									
Cha	annel	128	190	251						
1 Txslot	Target (dBm)	31.0	31.0	31.0						
1 1 1 3101	Tolerance ±(dB)	1.0	1.0	1.0						
2 Txslot	Target (dBm)	30.0	30.0	30.0						
2 1 1 3 101	Tolerance ±(dB)	1.0	1.0	1.0						
3 Txslot	Target (dBm)	28.0	28.0	28.0						
5 1 7 5101	Tolerance ±(dB)	1.0	1.0	1.0						
4 Txslot	Target (dBm)	25.5	25.5	25.5						
4 1 1 5101	Tolerance ±(dB)	1.0	1.0	1.0						
	GSM 1900 GPRS	6 (GMSK) (Burst A	verage Power)							
Cha	annel	512	661	810						
1 Txslot	Target (dBm)	27.5	27.5	27.5						
1 1 1 3101	Tolerance ±(dB)	1.0	1.0	1.0						
2 Txslot	Target (dBm)	26.0	26.0	26.0						
2 1 1 3 101	Tolerance ±(dB)	1.0	1.0	1.0						
3 Txslot	Target (dBm)	25.0	25.0	25.0						
3 1 7 9 0 1	Tolerance ±(dB)	1.0	1.0	1.0						
4 Txslot	Target (dBm)	24.0	24.0	24.0						
4 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0						

Bluetooth V2.1+EDR

GFSK (Average)								
Channel	Channel 0	Channel 39	Channel 78					
Target (dBm)	0.0	0.0	0.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	8DPSK (Average)							
Channel	Channel 0	Channel 39	Channel 78					
Target (dBm)	0.0	0.0	0.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	π/4DQPSK	(Average)						
Channel	Channel 0	Channel 39	Channel 78					
Target (dBm)	0.0	0.0	0.0					
Tolerance ±(dB)	1.0	1.0	1.0					

Report No.:LCS180929061AE

Antenna information:

WWAN Main Antenna	GSM TX/RX
BT Antenna	BT TX/RX

Note:

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 115mm<160mm, it is considered as "Phablet" device.

2). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/Kg.

4.4. SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
Speech for GSM850/1900	1:8
GPRS850	1:4
GPRS1900	1:2

4.4.1 SAR Results

SAR Values [GSM 850]

				Conducted	Maximum	Power		SAR _{1-g} resu	ults(W/kg)	
Ch.	Freq. (MHz)	Time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reporte d	Graph Results
			meas	sured / reported	SAR numbers	-Head <s< td=""><td>SIM1></td><td></td><td></td><td></td></s<>	SIM1>			
190	836.6	Voice	Left Cheek	32.43	32.50	0.21	1.016	0.926	0.941	Plot 1
128	824.2	Voice	Left Cheek	32.05	32.50	2.61	1.109	0.607	0.673	
251	848.8	Voice	Left Cheek	32.28	32.50	2.15	1.052	0.866	0.911	
190	836.6	Voice	Left Tilt	32.43	32.50	-1.05	1.016	0.419	0.426	
190	836.6	Voice	Right Cheek	32.43	32.50	-4.77	1.016	0.734	0.746	
190	836.6	Voice	Right Tilt	32.43	32.50	2.87	1.016	0.355	0.361	
			measured / re	ported SAR nu	mbers - Body (distance 1	0mm) <sin< td=""><td>11></td><td></td><td></td></sin<>	11>		
128	824.2	2Txslots	Front	30.73	31.00	-4.31	1.064	0.730	0.777	
128	824.2	2Txslots	Rear	30.73	31.00	-4.00	1.064	1.202	1.279	Plot 2
190	836.6	2Txslots	Rear	30.55	31.00	0.08	1.109	1.129	1.252	
251	848.8	2Txslots	Rear	30.60	31.00	0.94	1.096	1.106	1.213	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (2Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (2Tx slots) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s). 100M 4000

	SAR Values [GSM 1900]									
Ch.	Freq. (MHz)	time slots	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
	measured / reported SAR numbers –Head <sim1></sim1>									
512	1850.2	Voice	Left Cheek	29.53	30.00	-2.62	1.114	0.608	0.677	
512	1850.2	Voice	Left Tilt	29.53	30.00	-3.11	1.114	0.184	0.205	
512	1850.2	Voice	Right Cheel	× 29.53	30.00	-1.95	1.114	0.652	0.727	Plot 3
512	1850.2	Voice	Right Tilt	29.53	30.00	-2.75	1.114	0.143	0.159	
	measured / reported SAR numbers – Body (distance 10mm)									
512	1850.2	4Txslots	Front	24.59	25.00	2.28	1.099	0.322	0.354	
512	1850.2	4Txslots	Rear	24.59	25.00	-2.39	1.099	0.721	0.792	Plot 4
Dama	ul ci									

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (4Tx slots) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 77

4.4.2 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

•0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is \leq 1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

 $Ratio = \frac{(SAR_1 + SAR_2)^{1.5}}{(mark location convertion runn)} < 0.04$

(peak location separation,mm)

Estimated stand alone SAR								
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)			
Bluetooth*	2450	Head	1.00	5	0.053			
Bluetooth*	2450	Body-worn	1.00	10	0.026			

Remark:

- 1. Bluetooth*- Including Lower power Bluetooth
- 2. Maximum average power including tune-up tolerance;
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 4. Body as body use distance is 10mm from manufacturer declaration of user manual

4.5. Simultaneous TX SAR Considerations

4.5.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the BT modules sharing same antenna, GSM modules sharing a single antenna; BT and GSM can simultaneous transmit;

Air-Interface	Band (MHz)	Туре	Simultaneous Transmissions	Voice over Digital Transport(Data)				
	850	VO	Voc. PT	N/A				
GSM	1900	VO	Yes, BT	IN/A				
	GPRS	DT	Yes, BT	N/A				
BT	2450	DT	Yes,GSM,GPRS	N/A				
Note:VO-Voice	Note:VO-Voice Service only;DT-Digital Transport							

Application Simultaneous Transmission information:

Note: BT- Classical Bluetooth:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 77

4.5.2 Evaluation of Simultaneous SAR

Head Exposure Conditions

Simultaneous transmission SAR forBT and GSM							
Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	BT Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.941	0.677	0.053	0.994	1.6	no	no
LeftTilt	0.426	0.205	0.053	0.479	1.6	no	no
Right Cheek	0.746	0.727	0.053	0.799	1.6	no	no
Right Tilt	0.361	0.159	0.053	0.414	1.6	no	no

.

Body-worn Exposure Conditions

Simultaneous transmission SAR forBT and GSM

Test Position	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	BT Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut Meas. Required
Front	0.777	0.354	0.026	0.803	1.6	no	no
Rear	1.279	0.792	0.026	1.305	1.6	no	no

Note:

1. The value with **black** color is the maximum values of standalone

2. The value with blue color is the maximum values of ΣSAR_{1-g}

4.6. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Froquency		DE		Popoatod	Highest	First R	epeated
	Air Intorfaco		Tact Pacition		Measured	Measued	Largest to
	All Interface	•	Test Position	-	SAR _{1-g}	SAR _{1-g}	Smallest
(11112)	Hz) Configuration	Configuration		(yes/10)	(W/Kg)	(W/Kg)	SAR Ratio
850	GSM850	Standalone	Body-Rear	no	1.202	1.053	1.076
1900	GSM1900	Standalone	Body-Rear	no	0.721	n/a	n/a
		Band Air Interface (MHz) 650 GSM850	Band (MHz)Air InterfaceExposure Configuration850GSM850Standalone	Band (MHz)Air InterfaceExposure ConfigurationTest Position850GSM850StandaloneBody-Rear	Band (MHz)Air InterfaceExposure ConfigurationTest PositionSAR (yes/no)850GSM850StandaloneBody-Rearno	Frequency Air Interface RF Repeated Measured Band Air Interface Exposure Test Position SAR SAR (MHz) GSM850 Standalone Body-Rear no 1.202	Frequency Band (MHz)Air InterfaceRF Exposure ConfigurationRepeated Test PositionRepeated SAR (yes/no)Measured Measured SAR (W/Kg)Measured SAR (W/Kg)850GSM850StandaloneBody-Rearno1.2021.053

Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

4.7. General description of test procedures

- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'.
- 6. WiFi was tested in 802.11b/g/n mode with 1 Mbit/s and 6 Mbit/s. According to KDB 248227 the SAR testing for 802.11g/n is not required since When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 7. Required WiFi test channels were selected according to KDB 248227
- 8. According to FCC KDB pub 248227 D01, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement and when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- 9. According to FCC KDB pub 941225 D06 this device has been tested with 10 mm distance to the phantom for operation in WiFi hot spot mode.
- 10. Per FCC KDB pub 941225 D06 the edges with antennas within 2.5 cm are required to be evaluated for SAR to cover WiFi hot spot function.
- 11. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- 12. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

• \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz • \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

• \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

- 13. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band.
- 14. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.
- 15. Per KDB648474 D04 require when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS, LTE and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)

4.8. Measurement Uncertainty (450MHz-6GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR accoridng to KDB865664D01.

Report No.:LCS180929061AE

4.9. System Check Results

Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date:November 16, 2018

	1101 070				
Medium(liquid type)	HSL_850				
Frequency (MHz)	835.0000				
Relative permittivity (real part)	41.94				
Conductivity (S/m)	0.88				
Input power	100mW				
Crest Factor	1.0				
Conversion Factor	1.55				
Variation (%)	2.040000				
SAR 10g (W/Kg)	0.634632				
SAR 1g (W/Kg)	0.985201				
SURFACE SAR	VOLUME SAR				
$\begin{bmatrix} 2 \text{ or } f \text{ so } f $	$\begin{bmatrix} c_{1} c_{2} c_{3} c_{4} c_{5} c_{6} c_$				
<u>SWT</u> <u>Curcil</u> -150 -120 -60 -30 0 30 60 90 120 150 I -150 -120 -60 -30 0 30 60 90 120 150 I -150 -120 -60 -30 0 30 60 90 120 150					

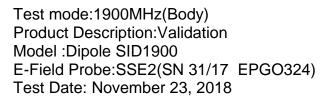
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 77

Report No.:LCS180929061AE

Test mode:835MHz(Body) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date:November 19, 2018

Medium(liquid type)	MSL_850
Frequency (MHz)	835.0000
Relative permittivity (real part)	55.01
Conductivity (S/m)	0.95
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.59
Variation (%)	-3.720000
SAR 10g (W/Kg)	0.636394
SAR 1g (W/Kg)	0.978316
SURFACE SAR	VOLUME SAR
$ \begin{array}{c} $	$ \begin{array}{c} \textbf{Follow} \textbf{Related Intensity} \\ \hline \textbf{Cohrrs Scale} \\ \hline \textbf{O} \textbf{Follow} \textbf{Related Intensity} \\ \hline \textbf{Cohrrs Scale} \\ \hline \textbf{O} \textbf{O} \textbf{Scale} \\ \hline \textbf{O} \textbf{O} \textbf{O} \\ \hline \textbf{O} \textbf{Scale} \\ \hline \textbf{O} \textbf{O} \textbf{O} \textbf{O} \textbf{O} \textbf{O} \textbf{O} \\ \hline \textbf{O} \textbf{O} \\ \hline \textbf{O} \textbf{O} $

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 77


Report No.:LCS180929061AE

Test mode:1900MHz(Head) Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: November 22, 2018

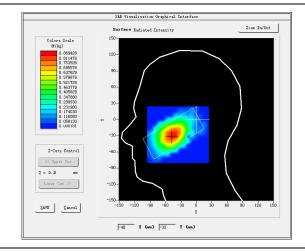
Medium(liquid type)	HSL_1900
Frequency (MHz)	1900.0000
Relative permittivity (real part)	39.57
Conductivity (S/m)	1.43
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.86
Variation (%)	-0.400000
SAR 10g (W/Kg)	2.008320
SAR 1g (W/Kg)	3.927201
SURFACE SAR	VOLUME SAR
	$ \begin{array}{c} Follow \ Kdated \ Intensity \\ \hline Control \\ Control $
	a summer of Sharehow LCS Counting Toping Laboratory Ltd

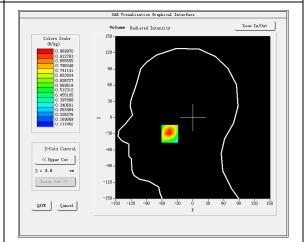
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 77

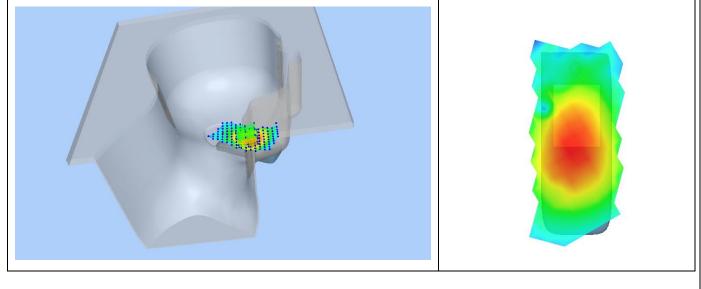
Report No.:LCS180929061AE

Medium(liquid type)Frequency (MHz)Relative permittivity (real part)Conductivity (S/m)Input powerCrest FactorConversion FactorVariation (%)	MSL_1900 1900.0000 53.97 1.49
Relative permittivity (real part)Conductivity (S/m)Input powerCrest FactorConversion Factor	53.97
Conductivity (S/m) Input power Crest Factor Conversion Factor	
Input power Crest Factor Conversion Factor	1.49
Crest Factor Conversion Factor	
Conversion Factor	100mW
	1.0
Variation (%)	1.93
	1.330000
SAR 10g (W/Kg)	2.058632
SAR 1g (W/Kg)	4.116921
SURFACE SAR	VOLUME SAR
0%xp 100- 4 59802 5 79560 3 48100 3 48100 3 48100 2 1120- 2 1120- 3 48100 3 48100 3 48100 3 48100 3 48100 3 48100 3 48100 3 58216 3 30- 3 582846 3 0 3 582846 3 0 3 582846 3 0 3 582846 3 0 3 393772 3 30- -30- -30- -30- -30- -30- -30- -30- -30- -30- -30- -30- -30- -30-	4 69719 6 5 20500 5 20500 3 20700 2 201430 2 201430 5 204600 5 201430 5 201430 5 201430 5 201430 5 201430 5 201430 5 201430 5 201430 5 201430 5 2014 5 2014

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 77

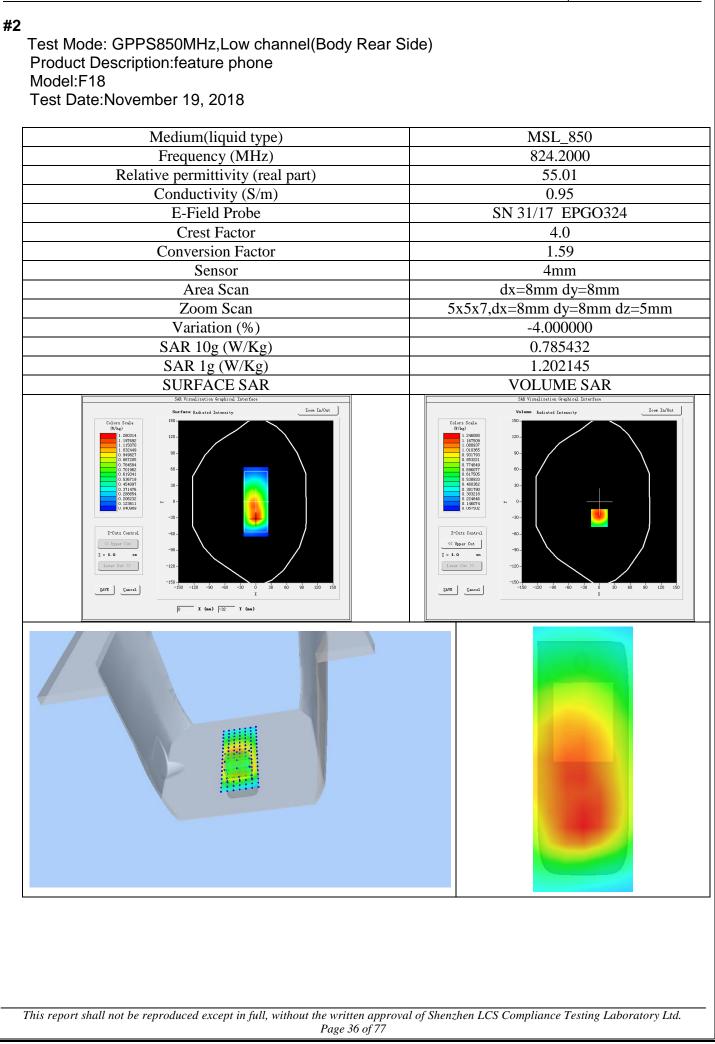

4.10 SAR Test Graph Results

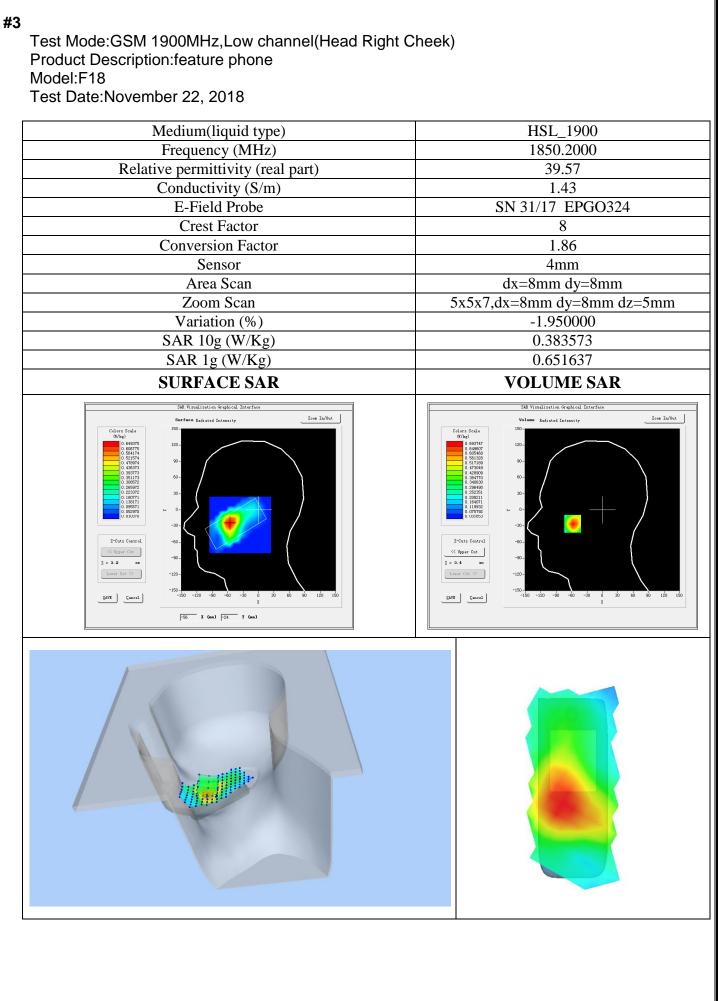

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02;


#1

Test Mode:GSM 850MHz,Middle channel(Head Left Cheek) Product Description:feature phone Model:F18 Test Date:November 16, 2018

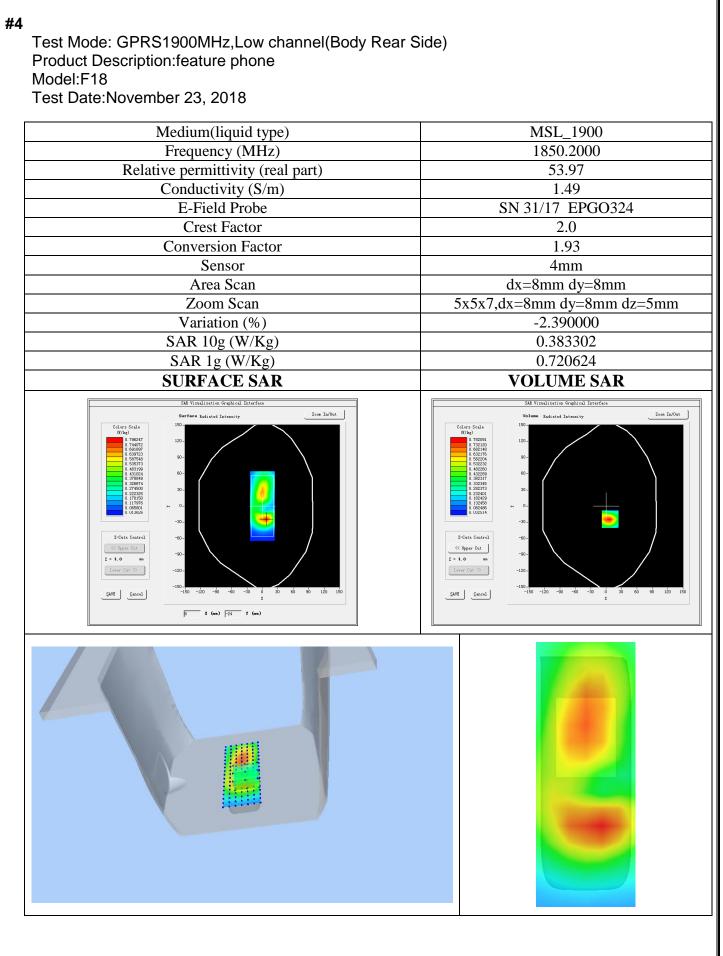
Medium(liquid type)	HSL_850
Frequency (MHz)	836.6000
Relative permittivity (real part)	41.94
Conductivity (S/m)	0.88
E-Field Probe	SN 31/17 EPGO324
Crest Factor	8
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.210000
SAR 10g (W/Kg)	0.572951
SAR 1g (W/Kg)	0.925680
SURFACE SAR	VOLUME SAR




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 77

|--|

Report No.:LCS180929061AE



Report No.:LCS180929061AE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 77

Report No.:LCS180929061AE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 77

Report No.:LCS180929061AE

5. CALIBRATION CERTIFICATES

5.1 Probe-EPGO324 Calibration Certificate

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 77

Report No.:LCS180929061AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/8/2018	JES
Checked by :	Jérôme LUC	Product Manager	10/8/2018	Jez
Approved by :	Kim RUTKOWSKI	Quality Manager	10/8/2018	thim putthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
А	10/8/2018	Initial release

Page: 2/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 77

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AREV-LWXF18

Report No.:LCS180929061AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

TABLE OF CONTENTS

1	Dev	ice Under Test	
2	Proc	uct Description	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment	

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 77

Report No.:LCS180929061AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 31/17 EPGO324		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.189 MΩ		
	Dipole 2: R2=0.203 MΩ		
	Dipole 3: R3=0.218 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – *MVG COMOSAR Dosimetric E field Dipole*

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 77

Report No.: LCS180929061AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 <u>ISOTROPY</u>

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 77

Report No.:LCS180929061AE

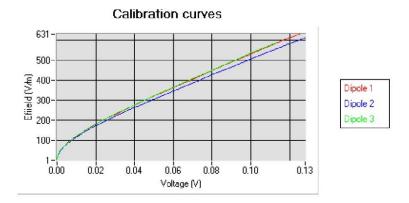
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity 45 %			


5.1 <u>SENSITIVITY IN AIR</u>

	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole 3 $(\mu V/(V/m)^2)$
0.80	0.83	0.68

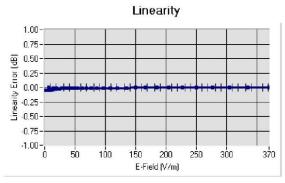
DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	90	93

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 77


Report No.:LCS180929061AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

5.2 <u>LINEARITY</u>

Linearity: I+/-1.13% (+/-0.05dB)

5.3 SENSITIVITY IN LIQUID

<u>Liquid</u>	<u>Frequency</u> (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	<u>ConvF</u>
HL450	450	42.17	0.86	1.56
BL450	450	57.65	0.95	1.60
HL750	750	40.03	0.93	1.45
BL750	750	56.83	1.00	1.50
HL850	835	42.19	0.90	1.55
BL850	835	54.67	1.01	1.59
HL900	900	42.08	1.01	1.54
BL900	900	55.25	1.08	1.60
HL1800	1800	41.68	1.46	1.65
BL1800	1800	53.86	1.46	1.68
HL1900	1900	38.45	1.45	1.86
BL1900	1900	53.32	1.56	1.93
HL2000	2000	38.26	1.38	1.83
BL2000	2000	52.70	1.51	1.89
HL2300	2300	39.44	1.62	1.95
BL2300	2300	54.52	1.77	2.01
HL2450	2450	37.50	1.80	1.91
BL2450	2450	53.22	1.89	1.95
HL2600	2600	39.80	1.99	1.89
BL2600	2600	52.52	2.23	1.94
HL5200	5200	35.64	4.67	1.50
BL5200	5200	48.64	5.51	1.56
HL5400	5400	36.44	4.87	1.44
BL5400	5400	46.52	5.77	1.47
HL5600	5600	36.66	5.17	1.48
BL5600	5600	46.79	5.77	1.53
HL5800	5800	35.31	5.31	1.50
BL5800	5800	47.04	6.10	1.55

LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10

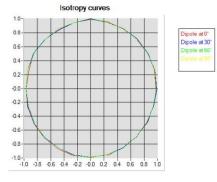
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 77

Report No.:LCS180929061AE

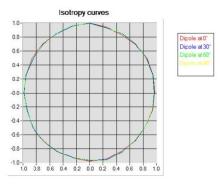
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A


5.4 ISOTROPY

HL900 MHz

- Axial isotropy:	
- Hemispherical isotropy:	


0.07 0	βB	

0.05 dB

HL1800 MHz

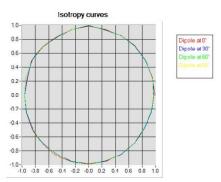
- Axial isotropy:	0.06 dB
- Hemispherical isotropy:	$0.07 \mathrm{dB}$

Page: 8/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 77

Report No.:LCS180929061AE


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

HL5600 MHz

- Axial isotropy:
- Hemispherical isotropy:

0.06 dB 0.10 dB

Page: 9/10

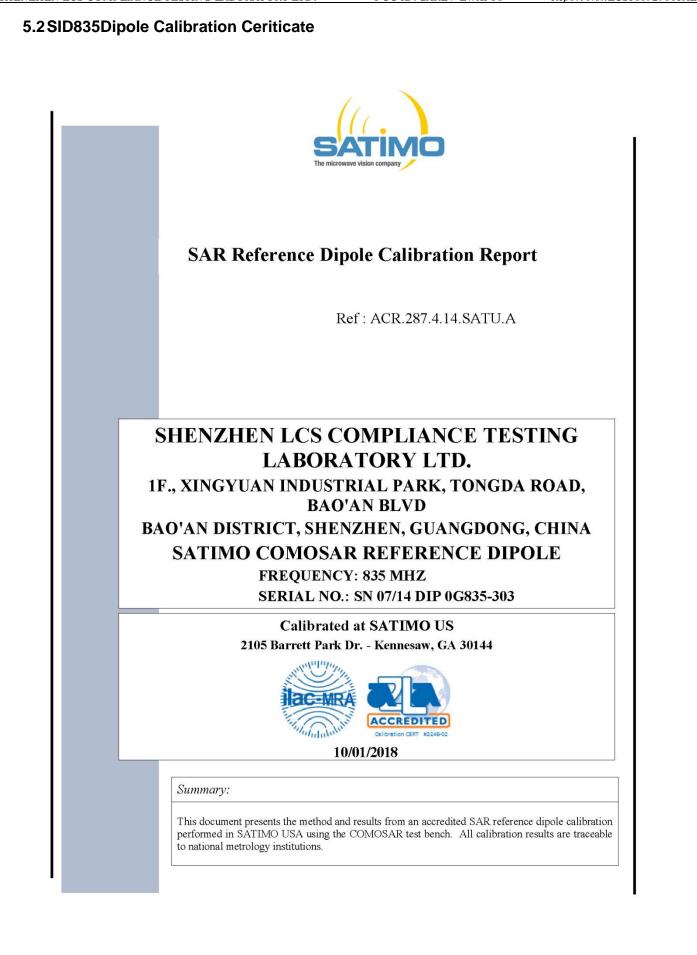
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 77

Report No.:LCS180929061AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A


6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Reference Probe	MVG	EP 94 SN 37/08	10/2017	10/2019
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020

Page: 10/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 77

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 77

Report No.:LCS180929061AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2018	Jez
Checked by :	Jérôme LUC	Product Manager	10/14/2018	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2018	thim putthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing
	Laboratory Ltd.

Date	Modifications
10/14/2018	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 77 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AREV-LWXF18

Report No.:LCS180929061AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 77

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID835
Serial Number	SN 07/14 DIP 0G835-303
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 77

SAR REFERENCE DIPOLE CALIBRATION REPORT

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 77

SAR REFERENCE DIPOLE CALIBRATION REPORT

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 77