

Report No.	: SA181031W002
Applicant	: SEEK THERMAL, INCORPORATED
Address	: 6300 Hollister Ave., Santa Barbara, CA 93117
Product	: Thermal imager
ID	: 2ARCC-SHOTJ20J30
Brand	: Seek Thermal Inc
Model No.	: SQ-AAA, SW-AAA
Standards	 FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE 1528:2013 KDB 865664 D01 v01r04 / KDB 865664 D02 v01r02 KDB 248227 D01 v02r02 / KDB 447498 D01 v06
Sample Received Date	: Nov. 07, 2018
Date of Testing	: Nov. 13, 2018 ~ Nov. 14, 2018

CERTIFICATION: The above equipment have been tested by **BV 7LAYERS COMMUNICATIONS TECHNOLOGY** (SHENZHEN) CO. LTD., and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA or any government agencies.

Prepared By :

Wiky Zhang / Engineer

Certificate # 3939.01

Approved By :

Luke Lu / Manager

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at htp://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/abo

Report Format Version 5.0.0 Report No. : SA181031W002

Table of Contents

Rel	ease (Control Record	3
1.	Sum	mary of Maximum SAR Value	4
2.	Desc	ription of Equipment Under Test	5
3.		Measurement System	6
	3.1	Definition of Specific Absorption Rate (SAR)	6
	3.2	COMOSAR System	6
		3.2.1 Measurement System Diagram	6
		3.2.2 Robot	7
		3.2.3 E-Field Probes	8
		3.2.4 Phantoms	9
		3.2.5 Device Holder	
		3.2.6 System Validation Dipoles	
		3.2.7 Tissue Simulating Liquids	
	3.3	SAR System Verification	
	3.4	SAR Measurement Procedure	
		3.4.1 Area & Zoom Scan Procedure	
		3.4.2 Volume Scan Procedure	
		3.4.3 Power Drift Monitoring	
		3.4.4 Spatial Peak SAR Evaluation	
		3.4.5 SAR Averaged Methods	
4.	SAR	Measurement Evaluation	
	4.1	EUT Configuration and Setting	
	4.2	EUT Testing Position	19
		4.2.1 SAR Test Exclusion Evaluations	
	4.3	Tissue Verification	
	4.4	System Validation	
	4.5	System Verification	
	4.6	Maximum Output Power	
		4.6.1 Maximum Conducted Power	
		4.6.2 Measured Conducted Power Result	
	4.7	SAR Testing Results	
		4.7.1 SAR Test Reduction Considerations	
		4.7.2 SAR Results for Body Exposure Condition (Separation Distance is 0 cm Gap)	
		4.7.3 SAR Measurement Variability	23
		4.7.4 Simultaneous Multi-band Transmission Evaluation	23
5.	Calib	ration of Test Equipment	
5. 6.		surement Uncertainty	
7.		mation on the Testing Laboratories	

Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup

Release Control Record

Report No.	Reason for Change	Date Issued
SA181031W002	Initial release	Nov. 15, 2018

1. Summary of Maximum SAR Value

Equipment Class	Mode	Highest Reported Body SAR _{1g} (0 cm Gap) (W/kg)
DTS	2.4G WLAN	0.58

Note:

1. The SAR limit (Head & Body: SAR_{1g} 1.6 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992

2. Description of Equipment Under Test

EUT Type	Thermal imager
ID	2ARCC-SHOTJ20J30
Brand Name	Seek Thermal Inc
Model Name	SQ-AAA, SW-AAA
HW Version	Ver1.0
SW Version	Ver2.00
Tx Frequency Bands (Unit: MHz)	WLAN : 2412
Uplink Modulations	802.11b : DSSS 802.11g/n : OFDM
Maximum Tune-up Conducted Power (Unit: dBm)	WLAN 2.4G : 16.0
Antenna Type	WLAN: Integral Antenna
EUT Stage	Identical Prototype

Note:

- 1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.
- 2. The above models are identical except the appearance & trade name and model name for trading purpose.

List of Accessory:

	Brand Name	Li-ion polymer
Batterv	Model Name	KNE505060P
Башегу	Power Rating	3.7Vdc, 1950mAh
	Туре	Li-ion, polymer

3. SAR Measurement System

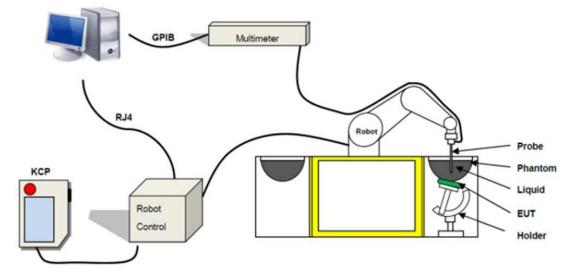
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)


SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 COMOSAR System

3.2.1 Measurement System Diagram

These measurements were performed with the automated near-field scanning system COMOSAR from SATIMO. The system is based on a high precision robot (working range: 850 mm), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

Report Format Version 5.0.0 Report No. : SA181031W002

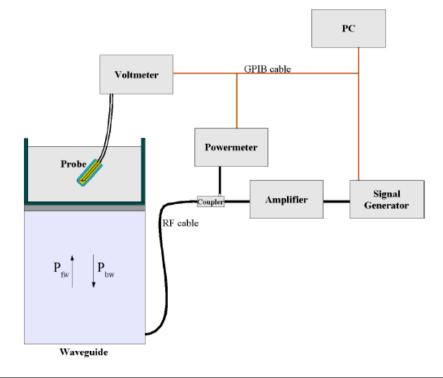
The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in SAR standard with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in SAR standard and found to be better than ± 0.25 dB. The phantom used was the SAM Phantom as described in FCC supplement C, IEEE P1528.

3.2.2 Robot

The COMOSAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA-KRC2sr) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- · Low ELF interference (the closed metallic construction shields against motor control fields)

3.2.3 E-Field Probes


The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Model	SSE2
Frequency	100 MHz to 6 GHz
Directivity	±0.25 dB in brain tissue (rotation around probe axis) ±0.5 dB in brain tissue (rotation normal probe axis)
Dynamic Range	0.001W/kg to > 100W/kg
Probe Linearity	± 0.25 dB
Dimensions	Overall length: 330 mm Tip diameter: 2.5 mm Distance from probe tip to dipole centers: <1.5 mm

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with EN/IEC 62209-1/-2 and IEEE 1528 std, with CALISAR, SATIMO proprietary calibration system. The calibration is performed with the technique using reference waveguide.

$$SAR = \frac{4(P_{fw} - P_{bw})}{ab\sigma} \cos^2\left(\pi \frac{y}{a}\right) c^{(2\pi/\sigma)}$$
Where :
Pfw = Forward Power
Pbw = Backward Power
a and b = Waveguide Dimensions
i = Skin Depth

Keithley configuration

Rate=Medium; Filter=ON; RDGS=10; FILTER TYPE=MOVING AVERAGE; RANGE AUTO

After each calibration, a SAR measurement performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The Calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

CF(N)=SAR(N)/Vlin(N) (N=1,2,3)

The linearized output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

 $Vlin(N)=V(N)^{*}(1+V(N)/DCP(N)) \qquad N=1,2,3$

Where the DCP is the dipole compression point in $\ensuremath{\mathsf{mV}}$

3.2.4 Phantoms

The phantom developed by SATIMO is produced in accordance with the specified in the standards. It has been designed to fit the COMOSAR phantom tables and is delivered with a plastic cover to prevent liquid evaporation.

Model	SAM Phantom	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching reference points with the robot.	
Material	The material is resistant to Glycol and offers high rigidity composite material based on fiberglass).	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: 200 mm	
Filling Volume	approx. 27 liters	

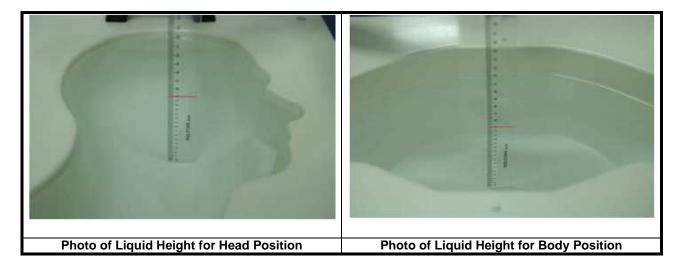
Model	Elliptic Phantom	
Construction	Elliptic Phantom for compliance testing of handheld and body-mounted wireless devices. Elliptic Phantom is fully compatible with the IEC/EN 62209-2 standard and all known tissue simulating liquids. Elliptic Phantom has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching reference points.	
Material	The material is resistant to Glycol and offers high rigidity composite material based on fiberglass).	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Length: 600 mm Width: 400 mm Height: 200 mm	
Filling Volume	approx. 25 liters	

3.2.5 Device Holder

The positioning system is made of an extremely stable material, which ensures easy handling and reproducible positioning. It also allows correct positioning of the dipoles referenced by the IEEE, ANSI and IEC.

Model	Handset Positioning System	
Material properties	The positioning system is made of PETP. This material offers a low permittivity of 3.2 and low loss, with a loss tangent of 0.005 to minimize the influence of the DUT on measurement results.	150
Mechanical properties	The positioning system developed by SATIMO allows a positioning resolution better than 1 mm. The system is fixed on a bottom rail "x axis" so that the positioning system can be quickly moved from the right to the left part of the phantom. In addition, it can be moved on a perpendicular "y axis" and the height can be adapted. The system is also composed of three rotation points for accurate positioning of the device's acoustical output.	
Accuracy and precision	A curved rail on the top part allows the fast switch from the cheek to the tilt position. The required 15° angle for the tilt position can be easily checked thanks to a printed scale on the curved rail with a tolerance of \pm 1°	

Model	Device Positioning System	
Material properties	The positioning system is made of PETP. This material offers a low permittivity of 3.2 and low loss, with a loss tangent of 0.005 to minimize the influence of the DUT on measurement results.	0
Mechanical properties	2 rows of rail to cover easily the surface of the phantom. The fixing plate is perfectly adapted to larger devices, such as a PC which can be positioned in all configurations.	
Accuracy and precision	Graduated scale available on each axis. The DUT is fixed with a specific adaptable grip.	



3.2.6 System Validation Dipoles

Model	D-Serial	× .
Construction	Symmetrical dipole with $\lambda 0/4$ ablaun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	300 MHz to 6000 MHz	
Return Loss	> 20 dB	
Adaptation	S11 < -20 dB in specified validation Position	

3.2.7 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.

Frequency	Target	Range of	Target	Range of
(MHz)	Permittivity	±5%	Conductivity	±5%
		For Head		
750	41.9	39.8 ~ 44.0	0.89	0.85 ~ 0.93
835	41.5	39.4 ~ 43.6	0.90	0.86 ~ 0.95
900	41.5	39.4 ~ 43.6	0.97	0.92 ~ 1.02
1450	40.5	38.5 ~ 42.5	1.20	1.14 ~ 1.26
1640	40.3	38.3 ~ 42.3	1.29	1.23 ~ 1.35
1750	40.1	38.1 ~ 42.1	1.37	1.30 ~ 1.44
1800	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
1900	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2000	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2300	39.5	37.5 ~ 41.5	1.67	1.59 ~ 1.75
2450	39.2	37.2 ~ 41.2	1.80	1.71 ~ 1.89
2600	39.0	37.1 ~ 41.0	1.96	1.86 ~ 2.06
3500	37.9	36.0 ~ 39.8	2.91	2.76 ~ 3.06
5200	36.0	34.2 ~ 37.8	4.66	4.43 ~ 4.89
5300	35.9	34.1 ~ 37.7	4.76	4.52 ~ 5.00
5500	35.6	33.8 ~ 37.4	4.96	4.71 ~ 5.21
5600	35.5	33.7 ~ 37.3	5.07	4.82 ~ 5.32
5800	35.3	33.5 ~ 37.1	5.27	5.01 ~ 5.53
		For Body		
750	55.5	52.7 ~ 58.3	0.96	0.91 ~ 1.01
835	55.2	52.4 ~ 58.0	0.97	0.92 ~ 1.02
900	55.0	52.3 ~ 57.8	1.05	1.00 ~ 1.10
1450	54.0	51.3 ~ 56.7	1.30	1.24 ~ 1.37
1640	53.8	51.1 ~ 56.5	1.40	1.33 ~ 1.47
1750	53.4	50.7 ~ 56.1	1.49	1.42 ~ 1.56
1800	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
1900	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2000	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2300	52.9	50.3 ~ 55.5	1.81	1.72 ~ 1.90
2450	52.7	50.1 ~ 55.3	1.95	1.85 ~ 2.05
2600	52.5	49.9 ~ 55.1	2.16	2.05 ~ 2.27
3500	51.3	48.7 ~ 53.9	3.31	3.14 ~ 3.48
5200	49.0	46.6 ~ 51.5	5.30	5.04 ~ 5.57
5300	48.9	46.5 ~ 51.3	5.42	5.15 ~ 5.69
5500	48.6	46.2 ~ 51.0	5.65	5.37 ~ 5.93
5600	48.5	46.1 ~ 50.9	5.77	5.48 ~ 6.06
5800	48.2	45.8 ~ 50.6	6.00	5.70 ~ 6.30

Table-3.1	Targets	of Tissue	Simulating Liquid
-----------	---------	-----------	-------------------

The following table gives the recipes for tissue simulating liquids.

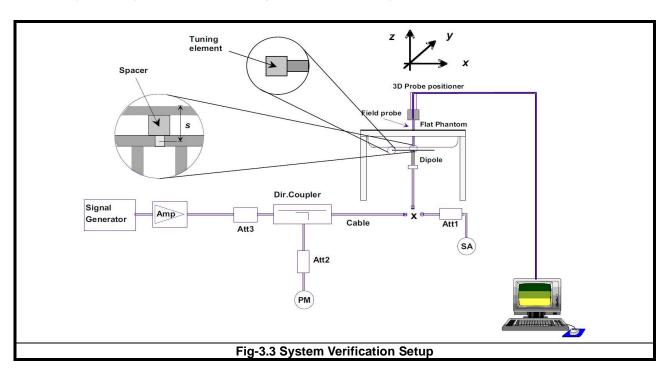

Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	0.2	-	0.2	1.5	56.0	-	42.1	-
H835	0.2	-	0.2	1.5	57.0	-	41.1	-
H900	0.2	-	0.2	1.4	58.0	-	40.2	-
H1450	-	43.3	-	0.6	-	-	56.1	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	47.0	-	0.4	-	-	52.6	-
H1800	-	44.5	-	0.3	-	-	55.2	-
H1900	-	44.5	-	0.2	-	-	55.3	-
H2000	-	44.5	-	0.1	-	-	55.4	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0	-	0.1	-	-	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	8.0	-	0.2	-	20.0	71.8	-
H5G	-	-	-	-	-	17.2	65.5	17.3
B750	0.2	-	0.2	0.8	48.8	-	50.0	-
B835	0.2	-	0.2	0.9	48.5	-	50.2	-
B900	0.2	-	0.2	0.9	48.2	-	50.5	-
B1450	-	34.0	-	0.3	-	-	65.7	-
B1640	-	32.5	-	0.3	-	-	67.2	-
B1750	-	31.0	-	0.2	-	-	68.8	-
B1800	-	29.5	-	0.4	-	-	70.1	-
B1900	-	29.5	-	0.3	-	-	70.2	-
B2000	-	30.0	-	0.2	-	-	69.8	-
B2300	-	31.0	-	0.1	-	-	68.9	-
B2450	-	31.4	-	0.1	-	-	68.5	-
B2600	-	31.8	-	0.1	-	-	68.1	-
B3500	-	28.8	-	0.1	-	-	71.1	-
B5G	-	-	-	-	-	10.7	78.6	10.7

Table-3.2 Recipes of Tissue Simulating Liquid

3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the COMOSAR system
- (e) Record the SAR value

3.4.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below.

Items	<= 2 GHz	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz
Area Scan (Δx, Δy)	<= 15 mm	<= 12 mm	<= 12 mm	<= 10 mm	<= 10 mm
Zoom Scan (Δx, Δy)	<= 8 mm	<= 5 mm	<= 5 mm	<= 4 mm	<= 4 mm
Zoom Scan (Δz)	<= 5 mm	<= 5 mm	<= 4 mm	<= 3 mm	<= 2 mm
Zoom Scan Volume	>= 30 mm	>= 30 mm	>= 28 mm	>= 25 mm	>= 22 mm

Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied.

3.4.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

3.4.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In COMOSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. If the power drift more than 5%, the SAR will be retested.

3.4.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The OPENSAR software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

3.4.5 SAR Averaged Methods

In COMOSAR System, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

4. SAR Measurement Evaluation

4.1 EUT Configuration and Setting

<Considerations Related to WLAN for Setup and Testing>

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Initial Test Configuration

An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

Subsequent Test Configuration

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR is not required for that subsequent test configuration.

SAR Test Configuration and Channel Selection

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over

802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following.1) The channel closest to mid-band frequency is selected for SAR measurement.

2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

4.2 EUT Testing Position

This EUT was tested for all six surfaces of the EUT as Front Face, Rear Face, Left Side, Right Side, Top Side and Bottom Side. The separation distance between this EUT and phantom is 0 cm.

4.2.1 SAR Test Exclusion Evaluations

According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following.

	Max. Tune-up Power	Max. Tune-up Power	Body		
Mode	(dBm)	(mW)	Ant. to Surface Lim it:3.0(1g) 5 Yes	Lim it:3.0(1g)	
WLAN 2.4G	16.0	39.81	5	Yes	

4.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (℃)	Measured Conductivity (σ)	Measured Permittivity (ε _r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Nov. 13, 2018	BL2450	2450	21.6	1.97	52.25	1.95	52.70	1.03	-0.85

Note:

1. The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within ±5% of the target values. Liquid temperature during the SAR testing must be within ±2 ℃.

2. Since the maximum deviation of dielectric properties of the tissue simulating liquid is within 5%, SAR correction is evaluated in the measurement uncertainty shown on section 6 of this report.

4.4 System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below.

Test	Probe	Calibration Point		Measured	Measured	Validation for CW			Validation for Modulation		
Date	S/N			ibration Point Conductivity		Sensitivity	Probe	Probe	Modulation	Duty	PAR
Date	0/11			(σ)	(ε _r)	Range	Linearity	Isotropy	Туре	Factor	TAN.
Nov. 13, 2018	SN 27/15 EPGO262	Body	2450	0.966	55.259	Pass	Pass	Pass	OFDM	N/A	Pass

4.5 System Verification

The measuring result for system verification is tabulated as below.

Test Date	Mode	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N
Nov. 13, 2018	Body	2450	52.73	5.14	51.42	-2.48	SN 18/11 DIPJ155	SN 27/15 EPGO262

Note:

Comparing to the reference SAR value provided by MVG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

4.6 Maximum Output Power

4.6.1 Maximum Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

Mode	2.4G WLAN
802.11b	16.0
802.11g	13.0
802.11n HT20	12.0

4.6.2 Measured Conducted Power Result

The measuring conducted average power (Unit: dBm) is shown as below.

Mode	802.11b
Channel / Frequency (MHz)	1 (2412)
Average Power	15.63
Mode	802.11g
Channel / Frequency (MHz)	1 (2412)
Average Power	12.71
Mode	802.11n (HT20)
Channel / Frequency (MHz)	1 (2412)
Average Power	11.63

4.7 SAR Testing Results

4.7.1 SAR Test Reduction Considerations

<KDB 447498 D01, General RF Exposure Guidance>

Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- (1) \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

- (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.</p>
- (2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.</p>

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (%	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	802.11b	-	Front Face	1	16	15.63	0.34	0.019	1.09	0.02
1#	802.11b	-	Rear Face	1	16	15.63	-1.4	0.536	1.09	<mark>0.58</mark>
	802.11b	-	Left Side	1	16	15.63	-0.25	0.004	1.09	0.00
	802.11b	-	Right Side	1	16	15.63	-3.68	0.126	1.09	0.14
	802.11b	-	Top Side	1	16	15.63	-0.26	0.033	1.09	0.04
	802.11b	-	Bottom Side	1	16	15.63	1.23	0.114	1.09	0.12

4.7.2	SAR Results for Body	v Exposure Condition	(Separation Distance is 0 cm Gap)
		, _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

4.7.3 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR values, i.e., largest divided by smallest value, is \leq 1.10, the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

Since all the measured SAR are less than 0.8 W/kg, the repeated measurement is not required.

4.7.4 Simultaneous Multi-band Transmission Evaluation

This evaluation is not required because there is only one band transmission.

Test Engineer : Wiky Zhang

5. Calibration of Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Date	Cal. Interval
System Validation Dipole	SATIMO	SID2450	SN 18/11 DIPJ155	Jun. 08, 2017	2 Years
E-Field Probe	MVG	SSE2	SN 27/15 EPGO262	Jun. 07, 2018	1 Year
MultiMeter	Keithley	Multimate 2000	1331865	Jun. 21, 2018	1 Year
Radio Communication Analyzer	ANRITSU	MT8820C	6201300717	Jul. 24, 2018	1 Year
Wireless Communication Test Set	Agilent	E5515C	MY50260600	Jun. 28, 2018	1 Year
ENA Series Network Analyzer	Agilent	E5071C	MY46214638	Jul. 24, 2018	1 Year
Spectrum Analyzer	KEYSIGHT	N9010A	MY54510355	Jun. 27, 2018	1Year
MXG Analog Signal Generator	KEYSIGHT	N5183A	MY50143024	Mar. 01, 2018	1 Year
Power Meter	Agilent	N1914A	MY52180044	Aug. 10, 2018	2 Years
Power Sensor	Agilent	E9304A H18	MY52050011	Jan. 04, 2018	1 Year
Power Meter	Agilent	ML2495A	1506002	Mar. 01, 2018	1 Year
Power Sensor	Agilent	MA2411B	1339353	Mar. 01, 2018	1 Year
Temp. & Humi. Recorder	CLOCK	HTC-1	157248	Jul. 26, 2018	1 Year
Electronic Thermometer	YONGFA	YF-160A	120100323	Sep. 21, 2018	1 Year
Coupler	Woken	0110A056020-1 0	COM27RW1A3	Sep. 19, 2018	1 Year

6. Measurement Uncertainty

Source of Uncertainty	Tolerance (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)	Vi Veff
Measurement System	1		1	1	r		l	I
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	5.9	R	1.732	0.7	0.7	2.4	2.4	∞
Hemispherical Isotropy	12.2	R	1.732	0.7	0.7	4.9	4.9	∞
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6	8
Linearity	5.9	R	1.732	1	1	3.4	3.4	8
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6	8
Readout Electronics	1.0	Ν	1	1	1	1.0	1.0	∞
Response Time	0.0	R	1.732	1	1	0.0	0.0	∞
Integration Time	2.6	R	1.732	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7	∞
Probe Positioner	1.4	R	1.732	1	1	0.8	0.8	∞
Probe Positioning	1.4	R	1.732	1	1	0.8	0.8	~
Max. SAR Eval.	2.3	R	1.732	1	1	1.3	1.3	∞
Test Sample Related			1	1				1
Device Positioning	2.3	Ν	1	1	1	2.3	2.3	35
Device Holder	2.7	Ν	1	1	1	2.7	2.7	12
Power Drift	5.0	R	1.732	1	1	2.9	2.9	8
Power Scaling	0.0	R	1.732	1	1	0.0	0.0	8
Phantom and Setup			T	T	T		•	T
Phantom Uncertainty	4.0	R	1.732	1	1	2.3	2.3	∞
SAR correction	1.2	R	1.732	1	0.84	0.7	0.6	∞
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0	8
Liquid Conductivity (mea.)	4.1	R	1.732	0.78	0.71	1.8	1.7	8
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4	8
Liquid Permittivity (target)	5.0	R	1.732	0.23	0.26	0.7	0.8	œ
Liquid Permittivity (mea.)	5.0	R	1.732	0.23	0.26	0.7	0.8	∞
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1	∞
Combined Standard Uncertainty (K = 1)					± 11.4 %	± 11.3 %	2923	
Expanded Uncertainty (K = 2)					± 22.7 %	± 22.6 %		

7. Information on the Testing Laboratories

We, BV 7LAYERS COMMUNICATIONS TECHNOLOGY (SHENZHEN) CO. LTD., were founded in 2015 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Add: No. B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industry Park, Nanshan District, Shenzhen, Guangdong, China Tel: 86-755-8869-6566 Fax: 86-755-8869-6577

Email: customerservice.dg@cn.bureauveritas.com Web Site: www.bureauveritas.com

The road map of all our labs can be found in our web site also.

---END---

Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

System Verification Plots

Product Description: Dipole

Model: SID2450

Test Date: Nov 13, 2018

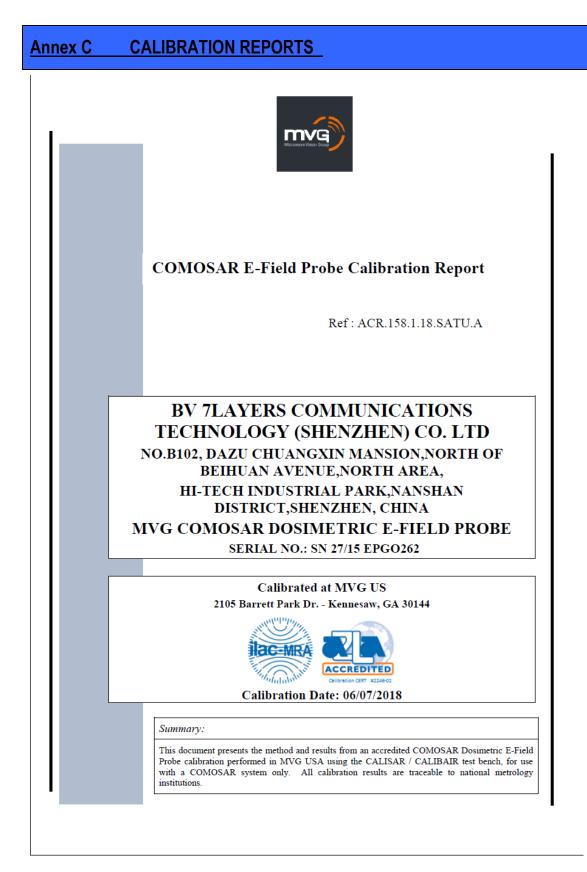
Ambient Temperature: 22.5°C; Liquid Temperature: 21.6°C

Medium(liquid type)	BL_2450				
Frequency (MHz)	2450				
Relative permittivity (real part)	52.25				
Conductivity (S/m)	1.97				
Input power	100mW				
Crest factor	1.0				
E-Field Probe	SN 27/15 EPGO262				
Conversion Factor	2.31				
Area Scan	dx=8mm dy=8mm				
Zoom Scan	7x7x7,dx=5mm dy=5mm dz=5mm				
Variation (%)	-1.340000				
SAR 10g (W/Kg)	2.434329				
SAR 1g (W/Kg)	5.142411				
Surface Passibility Zoom In/Out Colors Scale (M/d) Scale Transity Zoom In/Out Scale Transity Zoom In/Out	Volume Radated Intensity ZoomIn/Out Colors Scale Whind 515100 515100 3555203 3555238 3555238 3555283 3555283 2240314 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2240314 1338954 000 2400314 1338954 000 000 2400314 1338954 000 000 000 000 000 000 000 000 000 0				

Appendix B. SAR Plots of SAR Measurement

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

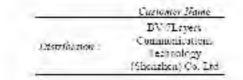
Maximum SAR measurement Plots

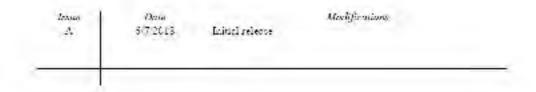

#1 802.11b_Rear Face_0cm_Ch1 DUT:181031W002 Test Date: Nov 13, 2018 Ambient Temperature: 22.5°C; Liquid Temperature: 21.6°C

Medium(liquid type)	BL2450				
Frequency (MHz)	2412				
Relative permittivity (real part)	52.25				
Conductivity (S/m)	1.97				
E-Field Probe	SN 27/15 EPGO262				
Crest factor	1.0				
Conversion Factor	2.31				
Sensor-Surface	4mm				
Area Scan	dx=8mm dy=8mm				
Zoom Scan	7x7x7,dx=5mm dy=5mm dz=5mm				
Variation (%)	-1.400000				
SAR 10g (W/Kg)	0.218829				
SAR 1g (W/Kg)	0.536495				
SURFACE SAR	VOLUME SAR				
Surface Radided Intensity Zoom In/Out Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG) Image: Colors Scale (MAG)<	Colors Scale MARE Colors Scale Colors Scale (MARE) 0.393848 0.393848 Colors Scale Colors Scale (MARE) 0.393848 0.393848 Colors Scale Colors Scale Colors Scale (MARE) 0.393848 0.393848 Colors Scale Colors Scale Colors Scale (MARE) 0.393848 Colors Scale Colors Scale Colors Scale Colors Scale (MARE) Colors Cale Colors Cale Colors Cale Colors Cale Colors Cale Colors Cale (MARE) Concol Concol Colors Cale Colors Cal				

Appendix C. Calibration Certificate for Probe and Dipole

The MVG calibration certificates are shown as follows.





mvG

Ref. ALS: 1931 185 AT / A

Prepared by: One-had by :	Namo Jérôme LUI Jensne LLA	Function Product Manager Product Manager	Date 6/7/2018 6/7/2018	Signature Jist Jist
Approved for	Ren (E) (EROWSK)	Quality Manager	6/7/2018	Non Although

Page 250

The accurse of their and in representation economic pill and a provint behaviour and the antiper and of the Di-Their formation common defenses that have a directly for the party and for all which is referented where the se or released in which of part which without approval of ADVs.

COMOSAR & FIELD PROBE CALIBRATION REPORT

mvG

TABLE OF CONTENTS.

1 0	Jeviee Uniter Text	
1 P	Anduct Description	
2.1	General Judirar ation	4
3 6	densurement Method	
11	Lincerity	1
3,2	Sensitivity	3
3.5	Lovies Detection (1000)	3
3.4	Isotropy	1
3.5	Horandary Offeet	
1 1	Acaserement Uncertainty	
5 6	wilnufion Mersurement Results	
51	Sensitizedly mean-	- 10
3.2	Linearity	7
5.3	Sensitivity in liquid	- 7
5.4	Isotrepy	8
õ L	ast of Economical	

Page: 3/16

Less derivants bladt om bei reproducet, energd in Juli or in part, addoed de arriter open en grådt 00. Die optimiser novement is gete to verkennet oop, pertor personafor weter interniveliper om tanotres is rekensel in advir or part evident er nen uppro al of MPG.

COMOSAR E THEED PROBE CALIBRATION REFORT

SALDARDER BRANCIUM

I DEVICE UNDER TEST

mve

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufallage	MVQ			
Verk	NSF0			
Serial Number Product Condition (yew mixed) Prequency Range of Probe Revisionce of Three, Signles at Connector	5 N 277 5 1900262 Used ILT V102-0012 Dirole 1: R1=0.222 M9 Dirole 2: 82 0.200 M9 Dirole 3: 85 0.200 M9			

Wyearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 U N RALINFORMATION

MVG's COMOSAR E held Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and FULLOC 62203 estudards.

Figure 1 - MPG COMOSAR Dosmetric E field Dipole

Pristauli	3.00 mm
Leigh of Individual Oppoles	2 *****
Maximum estem of diameter	8 y mi
Probe Tip Sectorial Dismeter	2:5-100
Detance between deputes: proto-estremety-	1 1 100

3 MKASURFMENT METHOD

If the HEDE 1518, CPT 65 Bulletin C, CPN + 101 1 NS0361 and CED/LC 52209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interestions methods by efficient oursess fuely affect. All calibrations / menomenous performed meet the forementioned standards.

ET UNEAR Y

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR mag. 0.01 Wikg to 2000 kg

Pege dill

The discovert shall not be expressioned, as expression full or experimentation for version approval of APO. Descriptions are experiment where the is an and only for the propose for which it is constructed and inverse to a similar window per solution, written approval of APO.

3.2 SINSIFIVITY

The sensitivity before of the draw dipoles were det running oung a nor step exhibition method (are and fissue simulating liquid(using waveguides as outlined in the standards.

3.8 LOWER DETECTION LIMIT

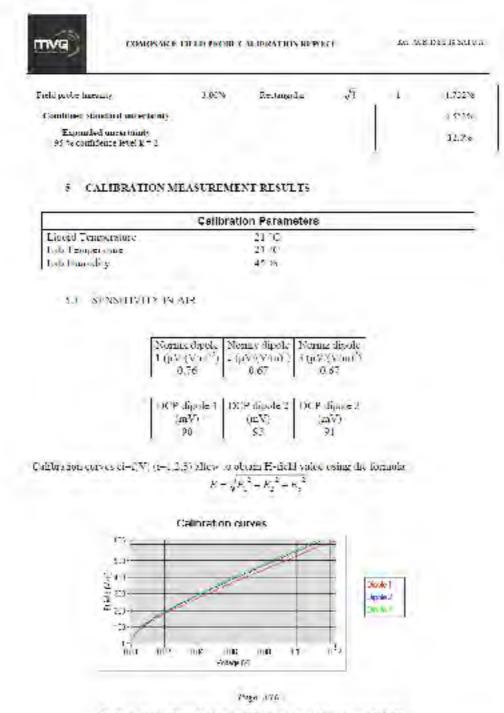
The lower detection limit was assessed using the same measurement set up as used for the linearity. ancestingment. The required lower detection limit is 10 mW/kg.

3 STUROPY

The axial isotropy was evaluated by exposing the probe to a reference, wave livin a standard depole with the dipole material under the flat prantom in the test configuration suggested for system validations and checks. The probe was routed along its main rais from 0 360 degrees in 15 degree steps. The periodynamical real-range is determined by inserting the privation is then plastic has felled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole The dipole is retained about its axis (07-1307) in 15° mercinents. At each step the probe is rotated about its ages (01 560").

3.5 BOUNDARY EFFECT

The hourdary effect is defined as the design of he ween the SAR measured data and the especied exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this e bet the upped toled that planteners exposed to helds involved an emilenence deade an acros garde-With the probe normal to the phantom surface, the peril spirial average NAR is measured and compared to the analytical value at the sorface.

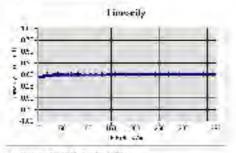

MEASUREMENT UNCERTAINTY

The guidelines on lines: in the HERI 1528, OF 1-52, Hallesin C, CENCLUC PN58361 and CE00121 62209 stondards over follower to generate the measurement executainty assocrated with an 8-field probe calibration using the waveguide technique. All uncertainties listed below represent an experient incretainty expressed at approximately the 9% confidence level using a coverage factor of km2, traceable to the Internationally Accepted Unides to Mersurement Uppertainty.

ERORSOLBERS	Luise la niy ya he (%).	Protobility Discribution	Divisor	¢i	Acoustical Heighter (%)
lacification derivated power	3.00%	Rectangela	√ā.	1	1.702%
Rellated power	3,00%	Reconstitut	νŦ	1	1.73396
Lapine conductions,	5.00%	Roctingilar	13	1	3.687%
Equipromitents	4005	Redicipala	-5	1	in 40.9%;
Pick benegativy	s ato -	Recordular	-5	1	1.)3286
Field preiseparation of	5 0.051	Recomputer	5	1	7 587%

Page 1/10

The operation result of here resulted straight (b) or in pure subsection results approach of 10^{10} . The effective result of the scale of $f_{\rm eff}$ is a property for the bolt or dimensionless of the scale of $f_{\rm eff}$ is a property for the bolt or dimensionless of the scale of $f_{\rm eff}$.


The document and we be typeduced program (0,0) is upper universe in some expression of 1000 Draw (constant or the set of the set of the program for shack u is a control order with the between the transition of the transitio

COMOSAR E FIELD PROBE CALIBRATION REPORT.

EH. ACK DELLE SVIULE

5.2 LINUARITY

mva

LINCTR.+** (1925)++ (1021)PI

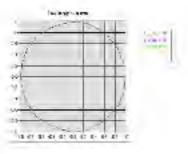
5.3 SENSITIVEY IN LIQUID.

0

Loral	Gate	Promissis	finales (Sim)	ConsE
H1,750	7.90	40.03	0.93	1.71
E2.750	756	\$5.53	100	1.76
351.850	\$35	2.19	0.53	1.79
b 250	251	3430	TUL	-146-
31,900	900	-2/00	1.01	1.81
HI. 450	1458	40.64	18	1 17
BL 1450	1430	19.69	1.48	1.44
HL1750	1750	42,01	1.45	1.58
BI 750	17.00	19.91	1.53	171
10.1904	1440	18.45	1.95	11-1
B1 900	1200	\$9.92	1.59	2.10
10.5295	10600	15 13	1.38	2.22
HL3304	2320	19,44	1.62	2.24
BL/904	2800	4.62	1.27	2.22
10.74%8	2450	21260	1.95	2.66
BL3-159	2/50	53.22	1.32	- 2.31
10.2600	3500	104.92	1.49	3.5
BL2000	2670	52.52	221	2.21
HL5201	5290	33.85	471	1.70
BL5300	3250	10,8	2.49	1./0
111.3655	.7630	26.65	2,17	1.69
B1.5600	590.0	46.79	\$75	111
11L5804	5500	25.31	5.31	1.21
BL5800	3830	47.04	613	1.74

LOWER DETECTION LIMIT 9mW/kg

Pape: 276


Here there is a fact on the expectation as service to field or regard, which is the vertice assistant of 100 °C. The references constrained which is to descend only from the particular which is in the standard and in particular functions of an above expect and one of the approximately 1000. mva

CONSIGNAL FITTO PROFESSION MURRATUS REPORT

R.C. ACR. 1881 18 SATUA

5.4 ISCIROPY

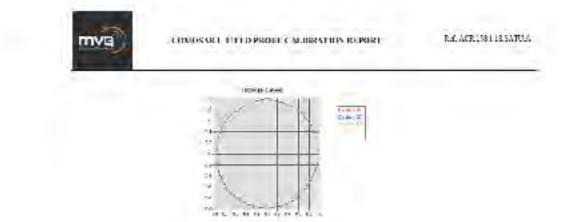
IIL SOO MIIz	
- Axed man apy	ALD OR
- Hemisphenext isotropy	0.07 cB

HL1800 MH2

- Axial iso ropy. Temispherical isotropy

4.06 GU 0.05 dD

A. W.	1-	h		Televis	1
	-	-	4	-	1
	-		-		
		1	0		
	12	f	-		


HL5600 MHz - Axisl isoupy:

- Heinspheneal isotropy

0.06 dB 0.08 dB

Page ACA

The elements defined to equivalently on $p \in p(R)$ to be part, we have the archive spectra ($p \in n \in [1]$ (MH) are represented exclusion theorem is to derived only for the consequence of a submarked and solution to entering the bold of particulations there express $p^* \in [0, G]$

Page 8/16

The element of a local and have provided at one of the following contractions the section operator of 100000 are instrumented and to and the instrumented and to and the instrumented at the instrumented and to and the instrumented at the instrumented a at the instrumented at the instru

6 LIST OF EQUIPMENT

mvg

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Reference Probe	MVG	EP 94 SN 37/08	10/2017	10/2018	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

Page: 10/10

SAR Reference Dipole Calibration Report

Ref: ACR.165.7.17.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108 , GUANGDONG , P.R.C.

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ SERIAL NO.: SN 18/11 DIPJ155

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 06/8/2017

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/14/2017	JS
Checked by :	Jérôme LUC	Product Manager	6/14/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/14/2017	thim Muthowski

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications
А	6/14/2017	Initial release

Page: 2/11

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test	
3	Prod	uct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calil	bration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment11	

Page: 3/11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2450	
Serial Number	SN 18/11 DIPJ155	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

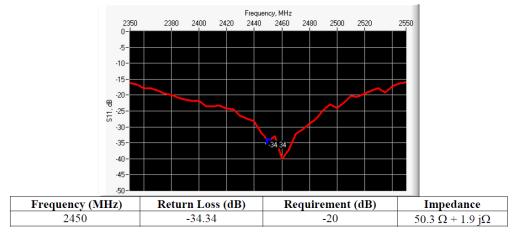
The following uncertainties apply to the dimension measurements:

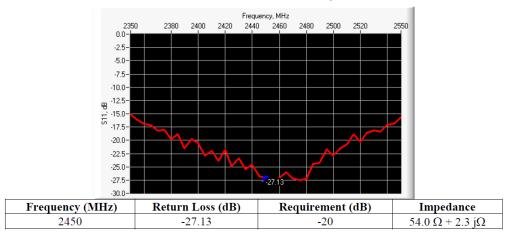
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %


Page: 5/11


10 5 20.170

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative permittivity (ε _r ')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

7.1 HEAD LIQUID MEASUREMENT

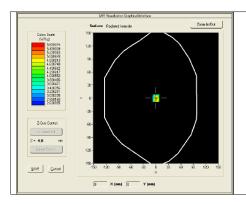
Page: 7/11

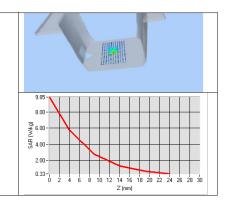
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 37.5 sigma : 1.80
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


Frequency MHz	1 g SAR (1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	


Page: 8/11

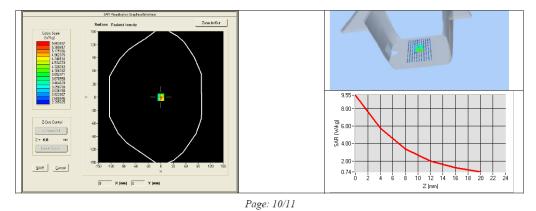
SAR REFERENCE DIPOLE CALIBRATION REPORT

1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.18 (5.32)	24	23.97 (2.40)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductiv	ty (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11


SAR REFERENCE DIPOLE CALIBRATION REPORT

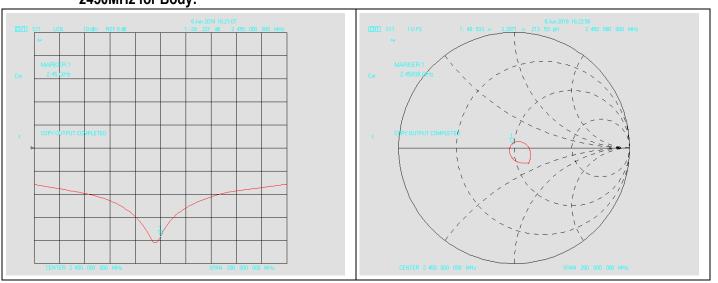
2300	52.9 ±5 %		1.81 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
3700	51.0 ±5 %		3.55 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 53.2 sigma : 1.89
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	52.73 (5.27)	24.27 (2.43)

Equipment Summary Sheet											
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date							
SAM Phantom	MVG	SN-20/09-SAM/71	Validated. No cal required.	Validated. No cal required.							
COMOSAR Test Bench	Version 3	ΙΝΔ	Validated. No cal required.	Validated. No cal required.							
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019							
Calipers	Carrera	CALIPER-01	01/2017	01/2020							
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017							
Multimeter	Keithley 2000	1188656	01/2017	01/2020							
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020							
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.							
Power Meter	HP E4418A	US38261498	01/2017	01/2020							
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020							
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.							
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017							


8 LIST OF EQUIPMENT

Page: 11/11

SATIMO Calibration Certificate-Extended Dipole Calibrations

According to KDB865664 D01, Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to qualify for extended 3-year calibration interval.

- When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification
- 2) When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5Ω from the previous measurement

Dipole Verification plot: SID 2450 SN 18/11 DIPJ155 2450MHz for Body:

The measuring results are shown as below.

Tissue Type	Frequency (MHz)	Return- Loss (dB)	Real Impedance (Ω)	Targeted Return- Loss (dB)	Targeted Real Impedance (Ω)	Deviation Return- Loss (dB)	Deviation Real Impedance (Ω)	Date
BL2450	2450	-28.221	48.533	-27.130	50.00	-1.091	-1.47	Jun. 08, 2018

According to up table, the return loss is <-20dB, deviates by less than 20% from the previous measurement; the real Impedance are all within 5 Ω compared to the required Impedance.

Appendix D. Photographs of EUT and Setup