

Global United Technology Services Co., Ltd.

Report No.: GTS202209000148F02

TEST REPORT

Applicant:	Arovast Corporation
Address of Applicant:	1202 N Miller St. Suite A, Anaheim, California 92806, United States
Manufacturer:	Arovast Corporation
Address of Manufacturer:	1202 N Miller St. Suite A, Anaheim, California 92806, United States
Factory:	Zhongshan Guanglong Gas & Electrical appliances Co.LTD
Address of Factory:	Huanzhou North Road, Tanzhou Town, Zhongshan , Guangdong, 528467, China
Equipment Under Test (E	EUT)
Product Name:	Oven
Model No.:	CS130-AO, CS130-AO-RXB, CTO-R301S-SUSW, CTO- R301S-SCAR
FCC ID:	2ARBY-CTO-R301S
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	September 21, 2022
Date of Test:	September 22, 2022-October 20, 2022
Date of report issued:	October 20, 2022
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 35

2 Version

Version No.	Date	Description
00	October 20, 2022	Original
		7200

Prepared By: Date: October 20, 2022 **Project Engineer** oppinson (m) Check By: Date: October 20, 2022 Reviewer

Report No.: GTS202209000148F02

3 Contents

		Pa	ge
1	COV	ER PAGE	1
2	VER	SION	. 2
			120
3	CON	ITENTS	. 3
4	TEC	T SUMMARY	4
-	IL3		-
5	GEN	IERAL INFORMATION	. 5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.2	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARDS	
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	
	5.8	Additional Instructions	
6	TES	T INSTRUMENTS LIST	. 8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	11
	7.3	CONDUCTED PEAK OUTPUT POWER	14
	7.4	20DB EMISSION BANDWIDTH	15
	7.5	CARRIER FREQUENCIES SEPARATION	16
	7.6	HOPPING CHANNEL NUMBER	17
	7.7	DWELL TIME	18
	7.8	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	19
	7.8.	1 Conducted Emission Method	19
	7.8.2	2 Radiated Emission Method	20
8	TES	Т SETUP PHOTO	35
0	IL3		55
9	EUT	CONSTRUCTIONAL DETAILS	35
	2525.525		

4 Test Summary

Test Item	Section in CFR 47	Result	
Antenna Requirement	15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Conducted Peak Output Power	15.247 (b)(1)	Pass	
20dB Occupied Bandwidth	15.247 (a)(1)	Pass	
Carrier Frequencies Separation	15.247 (a)(1)	Pass	
Hopping Channel Number	15.247 (a)(1)(iii)	Pass	
Dwell Time	15.247 (a)(1)(iii)	Pass	
Radiated Emission	15.205/15.209	Pass	
Band Edge	15.247(d)	Pass	

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes	
9kHz-30MHz	3.1dB	(1)	
30MHz-200MHz	3.8039dB	(1)	
200MHz-1GHz	3.9679dB	(1)	
1GHz-18GHz	4.29dB	(1)	
18GHz-40GHz	3.30dB	(1)	
0.15MHz ~ 30MHz	3.44dB	(1)	
	9kHz-30MHz 30MHz-200MHz 200MHz-1GHz 1GHz-18GHz 18GHz-40GHz	9kHz-30MHz 3.1dB 30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB	

5 General Information

5.1 General Description of EUT

Product Name:	Oven
Model No.:	CS130-AO, CS130-AO-RXB, CTO-R301S-SUSW, CTO-R301S-SCAR
Test Model No.:	CS130-AO
Remark: All above models are	identical in the same PCB layout, interior structure and electrical circuits.
The differences are appearance	ce color and model name for commercial purpose.
Test sample(s) ID:	GTS202209000148-1
Sample(s) Status:	Engineer sample
Serial No.:	OFUS000585224300001
Hardware Version:	OFUS000585224300001
Software Version:	-B212
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Integral Antenna
Antenna gain:	4.97dBi(declare by applicant)
Power supply:	AC 120V, 60Hz, 15A, 1800W

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

100 C 10 C 10 C 10

None.

5.5 Abnormalities from Standard Conditions

None.

5.6	Test Facility
	The test facility is recognized, certified, or accredited by the following organizations:
	FCC—Registration No.: 381383
	Designation Number: CN5029
	Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully
	described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter
	from the FCC is maintained in files.
	• IC —Registration No.: 9079A
	CAB identifier: CN0091
	The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered
	by Certification and Engineering Bureau of Industry Canada for radio equipment testing
	• NVLAP (LAB CODE:600179-0)
	Clobal United Technology Services Co. 1td. is accredited by the National Voluntary Laboratory

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:	
Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960	

5.8 Additional Instructions

Test Software	Special test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radiated Emission:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023	
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023	
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023	
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023	
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023	
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023	
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023	
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023	
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023	
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023	
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022	
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023	
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 16, 2022	Oct. 15, 2023	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 16, 2022	Oct. 15, 2023	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 16, 2022	Oct. 15, 2023	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023	
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023	

Con	ducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 15, 2022	April 14, 2023
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 20

RF C	RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023	
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023	

Ger	General used equipment:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023	
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

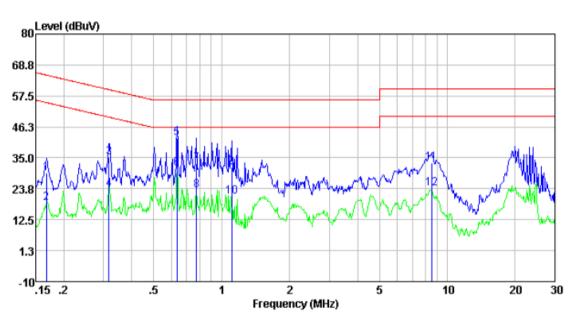
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

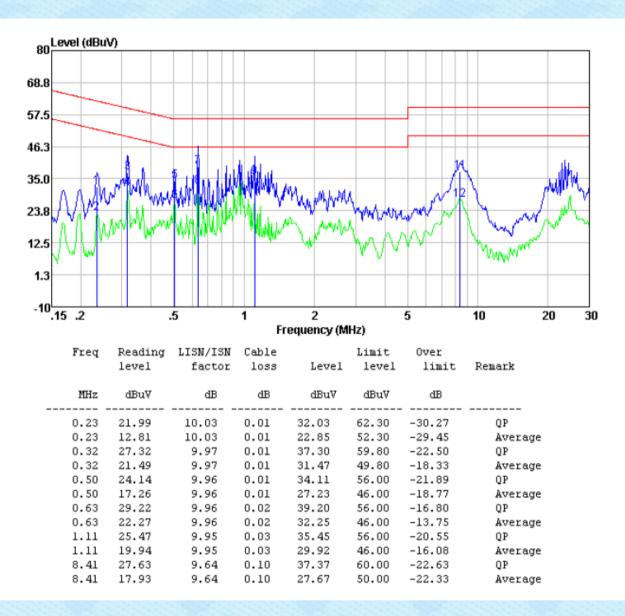
The antenna is integral antenna, reference to the appendix II for details.


Report No.: GTS202209000148F02

Test Requirement: FCC Part15 C Section 15:207 Test Method: ANSI C63:10:2013 Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW-9KHz, VBW-30KHz, Sweep time=auto Limit: Frequency range (MHz) Limit (dBuV) It: Frequency range (MHz) Limit (dBuV) 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane Veraw EU.T Test biologne fred Volume Support ENT Veraw EU.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Set biologies of A.C. line are checked for maximum ensisten, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer to section 5.2 for details Test environment: Temp: 25 °C Humid: 52% Press: 1012mbar	7.2 Conducted Emissions						
Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane AUX Equipment Feat setup: Featbale/Insulation plane Receiver Event AUX Event Fest procedure: 1 Test procedure: 1 1 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance of the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer	Test Requirement:	FCC Part15 C Section 15.207					
Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane Function and the impedence stabilization network Reference Plane Fearatic Reference Plane Fearatic	Test Method:	ANSI C63.10:2013					
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane Image: Compare to the setup of the	Test Frequency Range:	150KHz to 30MHz					
Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Image: the setup: Image: the setup image:	Class / Severity:	Class B	Class B				
Preduency range Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane UISN UISN Vax Equipment EUT F Equipment Under Test EVER Equipment Order Test LOW To inpedence Stabilization helevoit Test procedure: 1 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANS C63.01:2013 on conducted measurement. Test Instruments: Refer to section 5.2 for details Test mode: Refer to section 5.2 for details Test instruments: <td col<="" td=""><td>Receiver setup:</td><td>RBW=9KHz, VBW=30KHz, Sw</td><td>eep time=auto</td><td></td></td>	<td>Receiver setup:</td> <td>RBW=9KHz, VBW=30KHz, Sw</td> <td>eep time=auto</td> <td></td>	Receiver setup:	RBW=9KHz, VBW=30KHz, Sw	eep time=auto			
Image: Control of the second state	Limit:		dBuV)				
0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane Image: Ima							
5-30 60 50 Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN 40cm AUX LISN 40cm Aux Reference Plane LISN 40cm Aux Reference Plane LISN 40cm Aux Plane LISN 40cm Aux Plane LISN Line regulation plane Plane LISN Line regulation plane Refer to EUT Equipment Under Test LISN Line regulation network (L.I.S.N.). This provides a Soohm/Sould coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN Line regulation network (L.I.S.N.). This provides a Soohm/Sould coupling impedance with 50ohm LISN Line regulating on network (L.I.S.N.).							
* Decreases with the logarithm of the frequency. Test setup: Aux Aux Equipment E.U.T Test bale/insulation plane Remark E.U.T Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance Stabilization Network Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test environment: Temp:. 25 °C Humid.: 52% Press.: 1012mbar Test voltage: AC 120V, 60Hz Humid.: 52% Press.: 1012mbar							
Test setup: Reference Plane Image:							
Image: Constraint of the section for the sectin for the section for the section for the section for the section	Test setup:						
Test mode:Refer to section 5.2 for detailsTest environment:Temp.:25 °CHumid.:52%Press.:1012mbarTest voltage:AC 120V, 60Hz	Test procedure:	 AUX Equipment Feynian Feynian Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m The E.U.T and simulators ar line impedance stabilization 500hm/50uH coupling impedence The peripheral devices are at LISN that provides a 500hm, termination. (Please refer to photographs). Both sides of A.C. line are coliniterference. In order to find positions of equipment and a 	Filter AC po Filter AC po EMI Receiver re connected to the n network (L.I.S.N.). T dance for the measur also connected to the /50uH coupling impe the block diagram o hecked for maximum the maximum emiss all of the interface ca	nain power through a his provides a ring equipment. e main power through a edance with 50ohm f the test setup and n conducted ion, the relative bles must be changed			
Test environment:Temp.:25 °CHumid.:52%Press.:1012mbarTest voltage:AC 120V, 60Hz	Test Instruments:	Refer to section 6.0 for details					
Test voltage: AC 120V, 60Hz	Test mode:	Refer to section 5.2 for details					
	Test environment:	Temp.: 25 °C Humi	id.: 52%	Press.: 1012mbar			
Test results: Pass	Test voltage:	AC 120V, 60Hz					
	Test results:	Pass					

Measurement data:

Pre-scan all test modes, found worst case at GFSK, and so only show the test result of it Line:



	Freq	Reading level	LISN/ISN factor	Cable loss	Level	Limit level	Over limit	Remark
_	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
	0.17	19.31	10.10	0.01	29.42	65.08	-35.66	QP
	0.17 0.32	8.61 25.32	10.10 9.98	0.01 0.01	18.72 35.31	55.08 59.80	-36.36 -24.49	Average OP
	0.32	13.39	9.98	0.01	23.38	49.80	-26.42	Average
	0.63	32.04 21.29	9.96 9.96	0.02	42.02 31.27	56.00 46.00	-13.98 -14.73	QP Average
	0.78	22.95	9.96	0.02	32.93	56.00	-23.07	QP
	0.78 1.11	13.20 21.57	9.96 9.94	0.02 0.03	23.18 31.54	46.00 56.00	-22.82 -24.46	Average QP
	1.11	11.02	9.94	0.03	20.99	46.00	-25.01	Average
	8.50 8.50	23.38 13.97	9.64 9.64	0.10 0.10	33.12 23.71	60.00 50.00	-26.88 -26.29	QP Average
	0.00	10.07	2.04	0.10	20.71	00.00	20.27	Roctage

Neutral:

Report No.: GTS202209000148F02

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Limit:	21dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.4 20dB Emission Bandwidth

no cantor mequenere e					
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak				
Limit:	GFSK: 20dB bandwidth π /4-DQPSK, 8-DPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak			
Limit:	15 channels			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

7.6 Hopping Channel Number

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.8 Spurious Emission in Non-restricted & restricted Bands

Test Requirement:FCC Part15 C Section 15.247 (d)Test Method:ANSI C63.10:2013				
	ANSI C63.10:2013			
Receiver setup: RBW=100kHz, VBW=300kHz, Detector=	Peak			
spectrum intentional radiator is operating is produced by the intentional radiator sha the 100 kHz bandwidth within the band th	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum				
Test Instruments: Refer to section 6.0 for details				
Test mode: Refer to section 5.2 for details	Refer to section 5.2 for details			
Test results: Pass				

7.8.1 Conducted Emission Method

GTS

7.8.2 Radiated Emission N	lethod					
Test Requirement:	FCC Part15 C Section	on 15	5.209			
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz					
Test site:	Measurement Distar	nce: 3	3m			
Receiver setup:	Frequency	D	Detector	RBV	V VBW	Value
	9KHz-150KHz	Qu	lasi-peak	200H	lz 600Hz	Quasi-peak
	150KHz-30MHz	Qu	lasi-peak	9KH	z 30KHz	Quasi-peak
	30MHz-1GHz	Qu	lasi-peak	120Kł	Hz 300KHz	Quasi-peak
	Above 1GHz		Peak	1MH	z 3MHz	Peak
			Peak	1MH	z 10Hz	Average
	Note: For Duty cyc cycle < 98%, avera			-		
Limit:	Frequency		Limit (u∖	//m)	Value	Measurement Distance
	0.009MHz-0.490M	IHz	2400/F(k	(Hz)	PK/QP/AV	300m
	0.490MHz-1.705M	IHz	24000/F(KHz)	QP	30m
	1.705MHz-30MH	z	30		QP	30m
	30MHz-88MHz		100		QP	
	88MHz-216MHz	2	150		QP	
	216MHz-960MH		200	345	QP	3m
	960MHz-1GHz		500		QP	
	Above 1GHz		500		Average	
			5000		Peak	
Test setup:	For radiated emiss	ions	from 9kH: < 3m >	z to 30	MHz	
	Tum Table		Test A um Table-	ntenna Im Receiver-		
		2-36-		1. 1. 1.		

7.8.2 Radiated Emission Method

Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 GTS Report No.: GTS202209000148F02 For radiated emissions from 30MHz to1GHz < 3m Test Antenna < 1m ... 4m > EUT. Turn Table. < 80cm 3 Turn Table+ 1 Receiver+ Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna+ < 1m ... 4m > EUT Turn Table+ <150cm; <H Receiver+ Preamplifier+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. **Test Instruments:** Refer to section 6.0 for details

Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Refer to section 5.2 for details

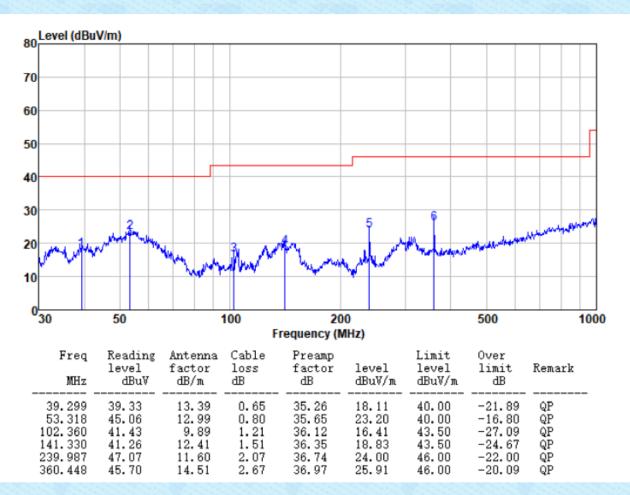
Test mode:

				Report No.: (GTS2022090	00148F02
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

Measurement data:

Remarks:

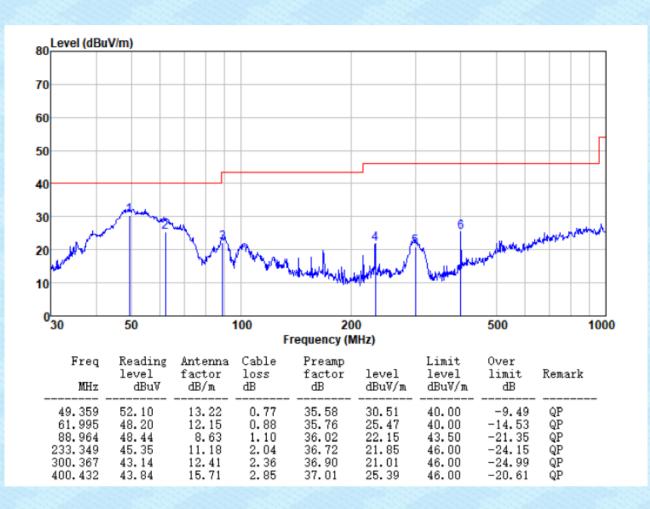
- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


9kHz~30MHz

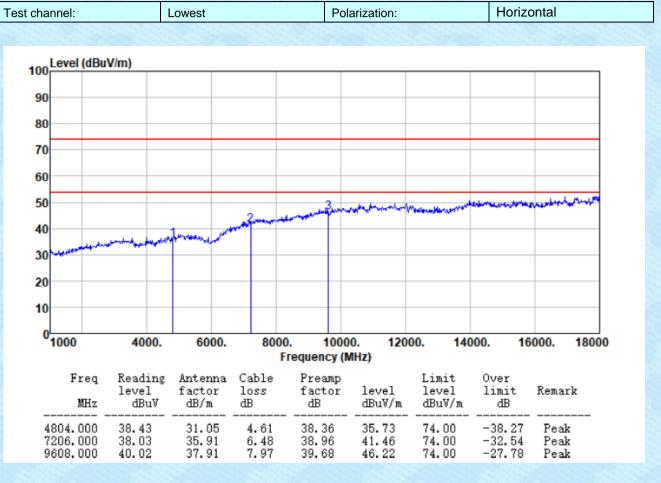
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Report No.: GTS202209000148F02

Pre-scan all test modes, found worst case at GFSK, and so only show the test result of it


Below 1GHz Horizontal:

Vertical:


Report No.: GTS202209000148F02

Above 1GHz

Unwanted Emissions in Restricted Frequency Bands

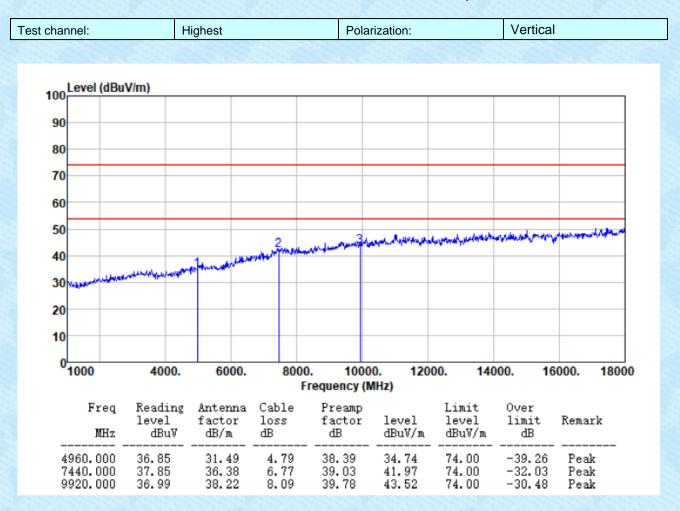
Report No.: GTS202209000148F02

t channel:	Lo	west		Polariz	zation:		Vertical	
Level (dBuV	//m)							
100								
90								
80								
70								
60								
50							and a state of the	mandered
			- Bathan with	Autor and a start	إيتيلنى والمناه ويتلحى طالتهم	****		
40		reduces of						
and the second sec	and a star and a star and a							
30	an a							
30	arrander and a particular and							
20	4000	6000		1000	1200	0 140	00 16	
20 10	4000.	6000.	8000. Fre	1000 quency (M		0. 140	000. 16	000. 18000
20	Reading	Antenna	Fre Cable	quency (N Preamp	IHz)	Limit	Over	
20 10 0 1000			Fre	quency (N				000. 18000 Remark
20 10 0 1000 Freq	Reading level	Antenna factor	Fre Cable loss	quency (M Preamp factor	HZ) level	Limit level	Over limit	

Report No.: GTS202209000148F02

	Horiz		larization:			Middle	ľ	st channel:
							V/m)	100 Level (dBu
								90
								80
								70
								60
	Confident Williams	www.water.com		3				50
				Marrie Marrie -	and the second	Jume	والموالي مراجع	40
								30
								20
16000. 180	000. 10	00. 140			800	6000.	4000.	01000
r	Over	Limit	4m2)			lint enna	Reading	Freq
it Remark	limit dB	level dBuV/m	level dBu∛/m	factor dB	loss dB	factor dB/m	level dBu∛	MHz
.03 Peak	-36.03 -29.77		37.97 44.23	38.38 39.00	4.69 6.63	31.27 36.15	40.39 40.45	4882.000 7323.000
r it Remar B 	Over limit dB 	Limit level dBuV/m 74.00	MHz) 1evel dBu∛/m 37.97	Frequency (I Preamp factor dB 	Cable loss dB 4.69	Antenna factor dB/m 31.27	Reading level dBuV 40.39	Freq MHz 4882.000

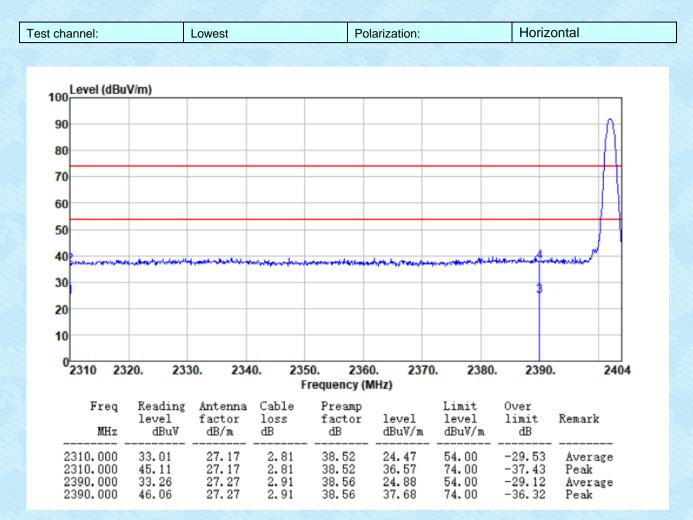
Report No.: GTS202209000148F02


st channel:	Mi	ddle		Polar	ization:		Vertical	
100 Level (dBu	V/m)							
90								
80								
70								
60								
50				3	ليتم والمار والمار والمار والمار والم	Andrew and a state	haded for your grown had been been been been been been been bee	userenter
40		-	work and	Martin Marting	Pridate - Andreway			
	and and the							
30								
20								
20	4000.	6000.	8000 FI	. 1000 requency (M		00. 140	00. 16	000. 18000
20	4000. Reading level dBuV	6000. Antenna factor dB/m	F			00. 140 Limit level dBuV/m	00. 16 Over limit dB	000. 18000 Remark

Report No.: GTS202209000148F02

est channel:	Highest	Polari	zation:	Horizontal
100 Level (dBuV	//m)			
90				
80				
70				
60				
50			and the second	and have been and a first and a state of the second s
40	1. Martiney	www.www.armanaresonanaeses.Arm	Contraction of the second s	
30 the labor	- cup different is of			
20				
10				
0				
~1000	4000. 600	0. 8000. 100 Frequency (16000. 16000. 18000
Freq MHz	Reading Antenn level factor dBuV dB/m	r loss factor	Limit level level dBuV/m dBuV/m	Over limit Remark dB
4960.000 7440.000	38.21 31.49 37.49 36.38		36.10 74.00 41.61 74.00	-37.90 Peak -32.39 Peak

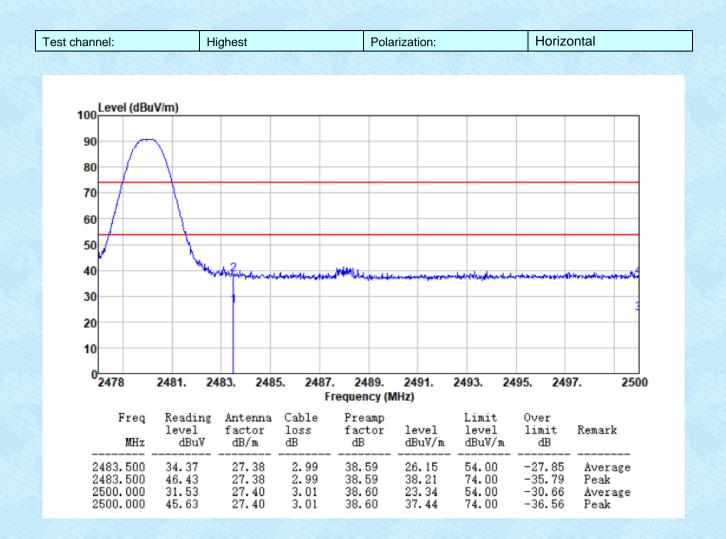
Report No.: GTS202209000148F02

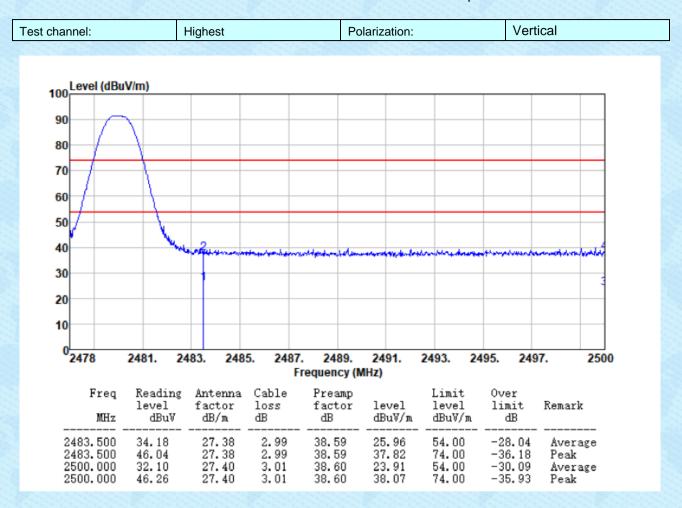


Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of frequencies range from 18GHz-25GHz are very lower than the limit and not show in test report.

Unwanted Emissions in Non-restricted Frequency Bands




Report No.: GTS202209000148F02

channel:	L	owest		Pol	arization:		Vertic	al
Level (dB	uV/m)							
100								
90								Δ
80								— A
70								
60								
50								
40		wheneverthelesee				shales the transaction	- marken the	manash
30							3	
20								
10								
0								
2310 2	320. 233	30. 234		50. 236 Frequency (I		0. 2380	. 2390	. 2404
Freq	Reading	Antenna	Cable	Preamp		Limit	Over	
	level dBuV	factor dB/m	loss dB	factor dB	level dBu∛/m	level dBu∛/m	limit dB	Remark
MHz								
2310.000	31.73	27.17	2.81	38.52	23.19	54.00	-30.81	Average
		27.17 27.17 27.27 27.27	2.81 2.81 2.91 2.91	38.52 38.52 38.56 38.56 38.56	23.19 36.98 24.03 37.89	54.00 74.00 54.00 74.00	-30.81 -37.02 -29.97 -36.11	Average Peak Average Peak

Report No.: GTS202209000148F02

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: GTS202209000148F02

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----