

TEST REPORT

Reference No.	2m	WTZ20F06038182-1W
FCC ID	J.S.E	2ARBY-CS108-NK
Applicant	it.	Arovast Corporation
Address	:	1202 N Miller St. Suite A, Anaheim, CA 92806.USA
Manufacturer		Zhongshan An Bo Er Electrical Appliance Co.Ltd.
Address	:	San Yi Wei, Tongmao, Dongsheng Town, Zhongshan, Guangdong,
Product Name	NO.P.	China Kettle
Model No	J.E.K	CS108-NK
Standards	:	FCC CFR47 Part 15 Subpart C (Section 15.247): 2019
Date of Receipt sample	: /	2020-06-22
Date of Test	:	2020-07-03
Date of Issue	:	2020-07-06
Test Result	:	Pass which and the set of the set

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By: Waltek Services (Foshan) Co., Ltd. Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Compiled by:

Roy Hong / Project Engineer

Approved by: SERVICE NOU am WALTEK STREPODanny Zhou / M ber

Waltek Services (Foshan) Co.,Ltd. http://www.waltek.com.cn

Page 1 of 43

1 Revision History

Test Report No.	Date of Issue	Description	Status
WTZ20F06038182-1W	2020-07-06	Original	Valid

2 Contents

		Page
1	REVISION HISTORY	2
2 <	CONTENTS	
3	GENERAL INFORMATION	
	 3.1 GENERAL DESCRIPTION OF E.U.T 3.2 TECHNICAL CHARACTERISTICS OF EUT 3.3 STANDARDS APPLICABLE FOR TESTING 3.4 TEST FACILITY 3.5 SUBCONTRACTED 3.6 ABNORMALITIES FROM STANDARD CONDITIONS 	
4	EUT SETUP AND TEST MODE	6
5	EQUIPMENT USED DURING TEST	<u>, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10</u>
	 5.1 EQUIPMENT LIST 5.2 SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT 5.3 MEASUREMENT UNCERTAINTY 	
6 🗠	SUMMARY OF TEST RESULT	
	 6.1 ANTENNA REQUIREMENT 6.2 CONDUCTED EMISSION 6.3 RF EXPOSURE REQUIREMENT 6.4 RADIATED SPURIOUS EMISSIONS 6.5 POWER SPECTRAL DENSITY 6.6 DTS BANDWIDTH 6.7 RF OUTPUT POWER 6.8 OUT OF BAND EMISSIONS 	11 15 16 23 25 27
7	PHOTOGRAPHS TEST SETUP	
	 7.1 PHOTOGRAPHS - RADIATED EMISSION TEST SETUP 7.2 PHOTOGRAPHS - CONDUCTED EMISSION TEST SETUP 	
8	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	
	8.1 EUT - External View 8.2 EUT - Internal View	

3 General Information

3.1 General Description of E.U.T

Product Name	÷	Kettle
Model No.	:	CS108-NK
Model Description	:	NTTER WALTER WALTER
Rated Voltage	5	AC 120V, 60Hz, 1200W
Battery Capacity	j. L	ret while whe wh
Power Adapter	:	t- at stet ste

3.2 Technical Characteristics of EUT

Bluetooth Version	*	V4.0(BLE mode)
Frequency Range	:	2402-2480MHz
RF Output Power	:	0.386dBm (Conducted)
Modulation	:	GFSK
Data Rate	1	2Mbps
Quantity of Channels	, i	40
Channel Separation	:	2MHz
Type of Antenna	÷:	PCB Printed Antenna
Antenna Gain	:	0dBi
Lowest Oscillation	÷	16MHz

3.3 Standards Applicable for Testing

The tests were performed according to following standards:

FCC Rules Part 15.247	Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
558074 D01 15.247 Meas Guidance v05r02	Guidance For Compliance Measurements On Digital Transmission System, Frequency Hopping Spread Spectrum System, And Hybrid System Devices Operating Under Section 15.247 Of The FCC Rules
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

3.4 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 21895-1

Waltek Services (Foshan) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration IC number:21895-1, Nov. 14, 2016.

• FCC – Registration No.: 820106

Waltek Services (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 820106, August 16, 2018

• FCC – Designation No.: CN5034

Waltek Services (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation No. CN5034.

• NVLAP – Lab Code: 600191-0

Waltek Services (Foshan) Co., Ltd. EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 600191-0.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

3.5 Subcontracted

Whether parts of tests for the product have been subcontracted to other labs:

🗌 Yes 🛛 No

If Yes, list the related test items and lab information:

Test items: ---

Lab information: ---

3.6 Abnormalities from Standard Conditions

None.

4 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
TM1	Low Channel	2402MHz
TM2	Middle Channel	2442MHz
TM3	High Channel	2480MHz

	Test Conditions		JNY .	NA	JN.	- 20.
Temperature:		22~25°C				JUE
Relative Humidity:	ret ouret wourer	50~55%		IL V	Maria	5° *
Atmospheric pressure:	W. TEK	101.9kPa	ex uni	TEX M	LIER W	LITE .

5 Equipment Used during Test

5.1 Equipment List

Condu	icted Emissions	t at	JEt JIEr	NHIE MUN	white white	211 -
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal Date	Cal Due Date
1.	EMI Test Receiver	RS	ESCI	101178	2020-01-09	2021-01-08
2.	LISN	RS	ENV216	101215	2020-01-09	2021-01-08
3.	Cable	HUBER+SUHNER	CBL2-NN-3M	223NN322	2020-01-09	2021-01-08
4.	Test Software	FARATRONIC	EZ-EMC CON-03A1	NITEK MITE	t whitek wh	JEC WALTE
3m Se	mi-anechoic Chambe	er for Radiation Em	issions	In m		* At
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
່ 1. 🗸	EMI Test Receiver	RS	ESR7	101566	2020-01-09	2021-01-08
- 2.	EMC Analyzer	Agilent	N9020A	MY48011796	2020-01-09	2021-01-08
3.	Active Loop Antenna	SCHWARZBECK	FMZB1519B	00004	2020-01-09	2021-01-08
4.	Trilog Broadband Antenna	SCHWARZBECK	VULB 9162	9162-117	2020-01-09	2021-01-08
5.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	01561	2020-01-09	2021-01-08
6.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2020-01-09	2021-01-08
<i>ं</i> 7.	Amplifier	Lunar E M	LNA1G18-40	20160501002	2020-01-09	2021-01-08
8.	Coaxial Cable (below 1GHz)	H+S	CBL3-NN- 12+3 m	214NN320	2020-01-09	2021-01-08
.9.	Coaxial Cable (above 1GHz)	Times-Micorwave	CBL5-NN	t miner white	2020-01-09	2021-01-08
10.	Test Software	FARATRONIC	RA-03A1-1		Turet all	ex intrex
RF Co	nducted Testing		until which	inter se	an w	L.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	Spectrum Analyzer	Agilent	N9020A	MY48011796	2020-01-09	2021-01-08
2.	Spectrum Analyzer	R&S	FSP40	100501	2020-01-09	2021-01-08
3.	Vector Signal Generator	Agilent	N5182A	MY50141533	2020-01-09	2021-01-08
4.	Analog Signal Generator	Agilent	N5181A	MY48180720	2020-01-09	2021-01-08
5.	Environmental Chamber	KSON	THS-D4C-100	5244K	2020-01-09	2021-01-08
6.	RF Control Unit	CHANGCHUANG	JS0806-2	all all .	2020-01-09	2021-01-08

5.2 Special Accessories and Auxiliary Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.
1.	at jet jet	the mill wat	an my m	

5.3 Measurement Uncertainty

Parameter	Uncertainty		
RF Output Power	±0.95dB		
Occupied Bandwidth	±1.5%		
Conducted Spurious Emission	±2.7dB		
Conducted Emission ±2.7dB			
L at - at a fit	±3.8dB (for 25MHz-1GHz)		
Transmitter Spurious Emission	±5.0dB (for 1GHz-18GHz)		

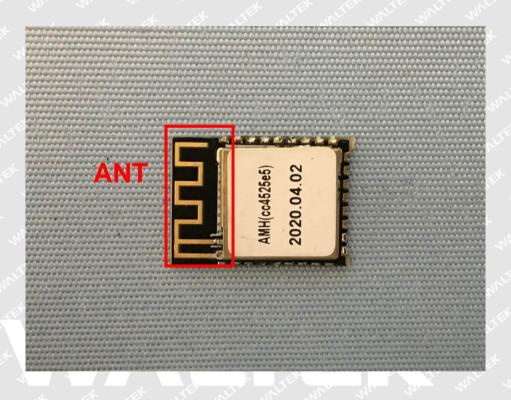
6 Summary of Test Result

Test Items	FCC Rules	Result
Antenna Requirement	§15.203; §15.247(b)(4)(i)	Compliance
Restricted Band of Operation	§15.205	Compliance
Conducted Emissions	§15.207(a)	Compliance
Radiated Spurious Emissions	§15.209(a)	Compliance
Power Spectral Density	§15.247(e)	Compliance
DTS Bandwidth	§15.247(a)(2)	Compliance
RF Output Power	§15.247(b)(3)	Compliance
Band edge (Out of Band Emissions)	§15.247(d)	Compliance
RF Exposure	§2.1093	Compliance

Remark:

Pass	Test item meets the requirement
Fail	Test item does not meet the requirement

N/A Test case does not apply to the test object


6.1 Antenna Requirement

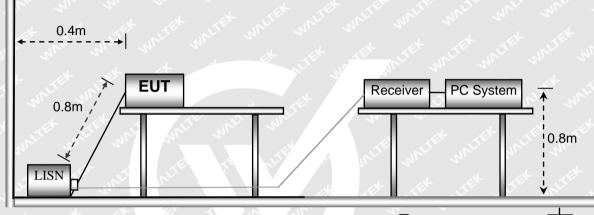
6.1.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

6.1.2 Evaluation Information

The EUT has an PCB Printed Antenna, the gain is 0dBi, fulfil the requirement of this section.

6.2 Conducted Emission


6.2.1 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013measurement procedure. The specification used was with the FCC Part 15.207Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

6.2.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

:50Ω Terminator

6.2.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

6.2.4 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.2.5 Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF(Voltage Division Facotr), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Measurement=Reading Level+Correct Factor

Correct Facotor=LISN VDF+Cable Loss

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin=Limit-Measurement

6.2.6 Test Result

5

6

7

8

9

10

11 12

13

14

15

16

Test Mode Communication Test Voltage AC 120V/60Hz Phase Live 100.0 dBu¥ 90 80 70 FCC Part 15 Conduction(QP) 60 FCC Parts15 Conduction(AVG) Statimon Manual 1. ANALY 50 **M**M ANV MM manumenter ai 40 MUM MAN ANA MAWA. May Manual Mon Mary peak 30 AVG 20 10 0.0 0.5 (MHz) 30.000 0.150 5 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV MHz dB dBuV dBuV dB Detector Comment 42.77 QP 1 0.1539 9.64 52.41 65.79 -13.38 2 0.1539 41.83 9.64 51.47 55.79 -4.32AVG 3 41.83 51.47 64.77 -13.30 QP 0.1740 9.64 4 0.1740 40.78 9.64 50.42 54.77 -4.35 AVG

An initial pre-scan was performed on the live and neutral lines.

Waltek Services (Foshan) Co.,Ltd. http://www.waltek.com.cn

40.28

38.88

39.13

37.11

37.81

35.92

38.59

29.77

37.43

28.72

39.66

29.66

0.1980

0.1980

0.2208

0.2208

0.2420

0.2420

1.4260

1.4260

4.3820

4.3820

8.3700

8.3700

49.92

48.52

48.77

46.75

47.45

45.56

48.28

39.46

47.18

38.47

49.48

39.48

9.64

9.64

9.64

9.64

9.64

9.64

9.69

9.69

9.75

9.75

9.82

9.82

63.69

53.69

62.79

52.79

62.03

52.03

56.00

46.00

56.00

46.00

60.00

50.00

-13.77

-5.17

-14.02

-6.04

-14.58

-6.47

-7.72

-6.54

-8.82

-7.53

-10.52

-10.52

QP

AVG

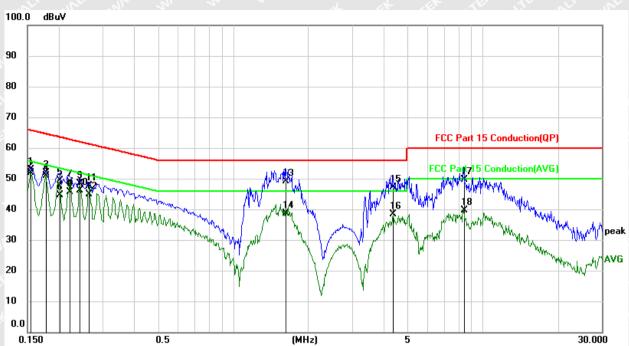
QP

AVG

QP

AVG

QP


AVG

QP

AVG

QP

AVG

Test Mode Communication Test Voltage AC 120V/60Hz Phase Neutral

υ.	.130		0.,			[miiz]		3		30.000
No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over		4.	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1548	43.29	9.64	52.93	65.74	-12.81	QP		
2		0.1548	42.22	9.64	51.86	55.74	-3.88	AVG		
3		0.1768	42.31	9.64	51.95	64.63	-12.68	QP		
4	*	0.1768	41.21	9.64	50.85	54.63	-3.78	AVG		
5		0.2020	39.66	9.64	49.30	63.53	-14.23	QP		
6		0.2020	35.04	9.64	44.68	53.53	-8.85	AVG		
7		0.2220	39.21	9.64	48.85	62.74	-13.89	QP		
8		0.2220	35.88	9.64	45.52	52.74	-7.22	AVG		
9		0.2429	38.69	9.64	48.33	62.00	-13.67	QP		
10		0.2429	36.45	9.64	46.09	52.00	-5.91	AVG		
11		0.2644	37.90	9.64	47.54	61.29	-13.75	QP		
12		0.2644	35.14	9.64	44.78	51.29	-6.51	AVG		
13		1.6260	39.47	9.70	49.17	56.00	-6.83	QP		
14		1.6260	29.03	9.70	38.73	46.00	-7.27	AVG		
15		4.3820	37.35	9.75	47.10	56.00	-8.90	QP		
16		4.3820	28.53	9.75	38.28	46.00	-7.72	AVG		
17		8.3700	39.84	9.82	49.66	60.00	-10.34	QP		
18		8.3700	29.85	9.82	39.67	50.00	-10.33	AVG		

6.3 RF Exposure Requirement

6.3.1 Standard Applicable

According to§1.1307 and §2.1093, the portable transmitter must comply the RF exposure requirements.

6.3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report WTZ20F06038182-2W $\,$.

6.4 Radiated Spurious Emissions

6.4.1 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

6.4.2 Test Procedure

1) The EUT is placed on a turntable, which is 0.8m(Below 1G) 1.5m(above 1G)above ground plane.

2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3) EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4) Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

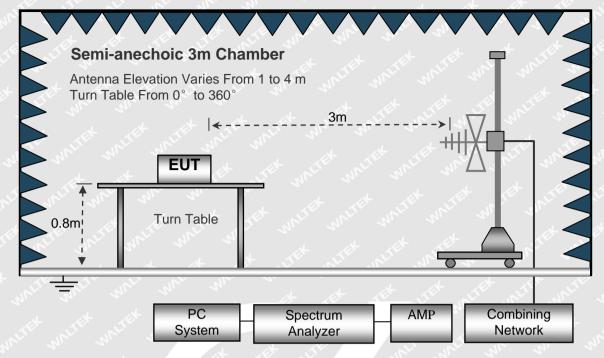
5) And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6) Repeat above procedures until the measurements for all frequencies are complete.

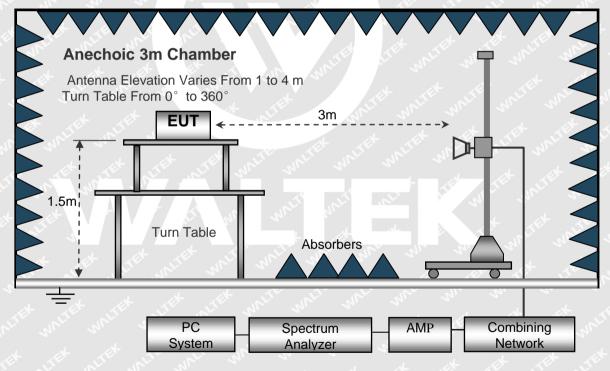
7) The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown was the Z position only.

6.4.3 Test Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.


The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

The test setup for emission measurement below 30MHz.


	choic 3m Chan	nber		
	EUT	Subject subject subject		
0.8m	Turn Table	et whitet		
Let whilet whilet	PC System	Spectrum Analyzer	AMP	Combining Network

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

Page 19 of 43

6.4.4 Spectrum Analyzer Setup

9KHz-30MHz	30MHz-1GHz	Above 1GHz
RBW=10kHz	RBW=120kHz	RBW=1MHz
VBW=30kHz	VBW=300kHz	VBW=3MHz(Peak), 10MHz(AV)
Sweep time=Auto	Sweep time=Auto	Sweep time=Auto
Trace=Max hold	Trace=Max hold	Trace=Max hold
Detector function=peak	Detector function=peak, QP	Detector function=peak, AV

6.4.5 Corrected Amplitude & Margin Calculation

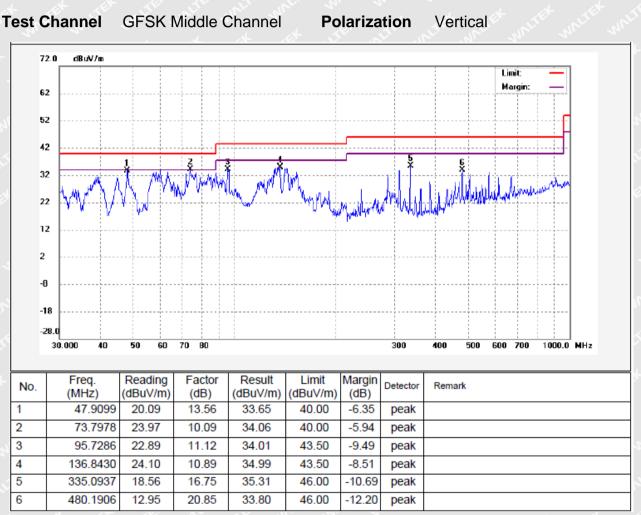
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Corr. Factor

Corr.Factor=Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

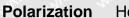
Margin = Corr. Ampl. – Limit

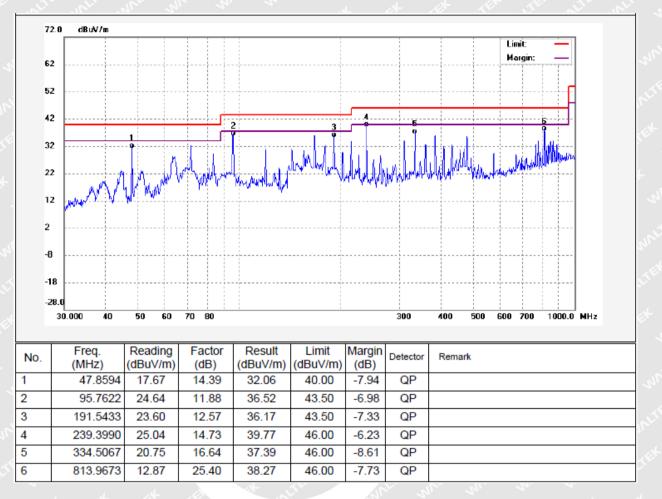

\bigotimes

6.4.6 Test Results

Test Frequency: 9 kHz~30 MHz

The measurements were more than 20 dB below the limit and not reported.


Test Frequency: 30MHz ~ 1GHz (worst case)



Test Channel G

GFSK Middle Channel

Horizontal

Test Frequency: 1GHz~18GHz

Frequency (MHz)	Reading (dBµV/m)	Detector	Polar (H/V)	Corrected Factor (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	x x	Low	Channel-2	402MHz	MUT M	-MI	14
1446.500	48.86	PK	Н	-13.59	35.27	74	-38.73
1446.500	38.26	AV AV	, H	-13.59	24.67	54	-29.33
7392.000	45.12	PK	Н	3.33	48.45	74	-25.55
7392.000	33.95	AV	روالل H مرارا	J 3.33 J	37.28	54	-16.72
9119.250	45.38	PK V	V	5.93	51.31	<u>_</u> 74_	-22.69
9119.250	34.72	AV	V	5.93	40.65	54	-13.35
10000.500	45.61	PK	V	7.48	53.09	74	-20.91
10000.500	34.47	AV S	V	7.48	41.95	54	-12.05
Intre MA	it with wi	Midd	le Channel-	2442MHz	THE JE	NITER OF	LTE. N
1787.250	46.87	PK	H	-12.80	34.07	74	-39.93
1787.250	36.75	AV	Н	-12.80	23.95	54	-30.05
7121.750	44.14	РК	Ster Hour	2.83	46.97	74	-27.03
7121.750	32.90	AV	Н	2.83	35.73	54	-18.27
8308.500	44.74	PK	V	4.14	48.88	74	-25.12
8308.500	34.52	AV	V	4.14	38.66	54	-15.34
9260.250	44.43	PK		5.66	50.09	74	-23.91
9260.250	33.84	AV	V	5.66	39.50	54	-14.50
+ 0	- 11 1	High	h Channel-2	480MHz	24	14. 14	L .
1446.500	48.80	PK	Н	-13.59	35.21	J 74 J	-38.79
1446.500	37.80	AV	Н	-13.59	24.21	54	-29.79
6628.250	43.96	PK	Н	0.98	44.94	74	-29.06
6628.250	- 33.67	AV	Hu	0.98	34.65	54	-19.35
7697.500	43.75	PK	V	3.80	47.55	74	-26.45
7697.500	32.71	AV	m V m	3.80	36.51	54	-17.49
8484.750	44.88	PK	V	4.25	49.13	N ² 74	-24.87
8484750	33.86	AV	VI VI	4.25	38.11	54	-15.89

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

6.5 Power Spectral Density

6.5.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.5.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.10.2, the test method of power spectral density as below:

a) Set analyzer center frequency to DTS channel center frequency.

- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq 3 × RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.5.3 Test Result

Test Mode	Test Channel	Power Spectral Density dBm/10kHz	Limit dBm/3kHz
untite with with w	Low	-7.483	million 8 million
GFSK(BLE)	Middle	-7.619	.8
and at the	High	-5.780	8

Low Channel

Aller Spectrum Andyzer. Swept SA The first operation of the first o

High Channel

6.6 DTS Bandwidth

6.6.1 Standard Applicable

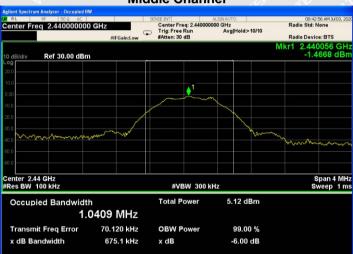
According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.6.2 Test Procedure

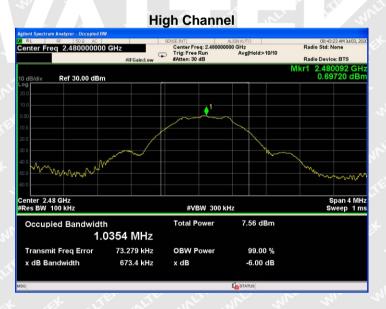
According to the KDB 558074 D01 v05r02 Subclause 8.2 and ANSI C63.10-2013 Subclause 11.8.1, the test method of DTS Bandwidth as below:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


6.6.3 Test Result

Test Mode	Test Channel	6dB Bandwidth kHz	Limit kHz
- at let set	Low	673.2	≥ 500
GFSK(BLE)	Middle	675.1	≥ 500
with an tex white w	High	673.4	≥ 500



Low Channel

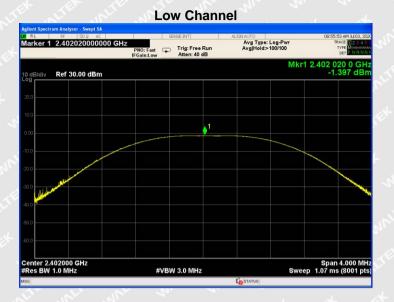
Middle Channel

6.7 RF Output Power

6.7.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

6.7.2 Test Procedure


According to the KDB-558074 D01 v05r02 Subclause 8.3.1.1 and ANSI C63.10-2013 Subclause 11.9.1.1, this procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW \geq 3 × RBW.
- c) Set span \ge 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

6.7.3 Test Result

Modulation	Test Channel	Reading (dBm)	Output Power (mW)	Limit (mW)
white when	Low	-1.397	0.725	1000
GFSK(BLE)	Middle	-0.960	0.802	1000
WAL WAY W	High	0.386	1.093	1000

6.8 Out of Band Emissions

6.8.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

6.8.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.11, the Emissions in nonrestricted frequency bands test method as follows:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

According to the KDB 558074 D01 v05r02 Subclause 8.5 and ANSI C63.10-2013 Subclause 11.12, the Emissions in restricted frequency bands test method as follows:

A. Radiated emission measurements:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge,

as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz

for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak/average; Trace = max hold

All the trace to stabilize, set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emissions must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205.

Note that the method of measurement KDB publication number: 913591 may be used for the radiated band edge measurements.

B. Antenna-port conducted measurements

Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 9/
- b) VBW \geq [3 × RBW].
- c) Detector = peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.

f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be lengthened for low-duty-cycle applications.)

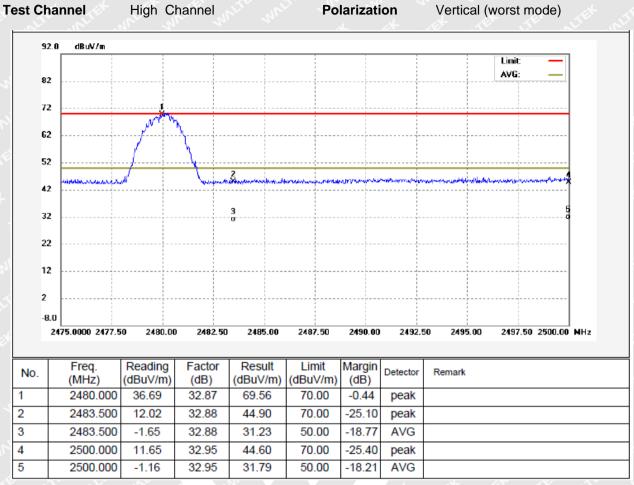
Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1000 MHz	100 kHz to 120 kHz
>1000 MHz	1 MHz

Table 9-RBW as a function of frequency

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in section 8.1.

6.8.3 Test Result


Radiated Test

	92.0 dBuV/m									
									Linit	—
	82								AVG:	
	72									
	62								/	
	52									Inne
	42	a manakaka na kalawa	alternet and	and the second	Managhali ann ann ann	*,169+4-*-4+69+4	and a second	*~~~**********************************	*****	
	32 8							4	6	
	22									
	12									
	2									
	-8.0 2310.0000 2320.	00 2330.00	2340.00	2350.00	2360.00	2370.00	2380.0	0 2390.00	2400.00	2410.00 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark		
	2310.000		32.11	43.65	70.00	-26.35	peak			
	2310.000	-1.88	32.11	30.23	50.00	-19.77	AVG			
	2390.000		32.47	43.63	70.00	-26.37	peak			
	2390.000	-1.72	32.47	30.75	50.00	-19.25	AVG			
	2400.000	11.43	32.51	43.94	70.00	-26.06	peak			
	2400.000 2402.000		32.51	30.85 71.19	50.00	-19.15	AVG			

Reference No.: WTZ20F06038182-1W

Page 32 of 43

Conducted Test

	IF	PNO: Fast 🖵 FGain:Low	Trig: Free Run Atten: 40 dB	Avg fyp Avg Hold	e: Log-Pwr I:>100/100		ACE 1 2 3 TYPE M W
	.00 dBm				Mk	r4 2.379 5 -52.	30 0 C 788 d
.00			1				
0.0							-21
D.0		2					
).0 .0	and the name of the William of the Andrew Start Day	**************************************	minimperio	artentistation and betractions	ann hann an hair ann an h	ngmportany.Mytheta	Mit of the star of the
enter 2.40200 G Res BW 100 kHz		#\/B\A	/ 300 kHz		 S18/4	Span eep 5.87 ms	60.00
R MODE TRC SCL	×	Y	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	(0001
2 N 1 f 3 N 1 f	2.402 060 0 GHz 2.390 000 0 GHz 2.400 000 0 GHz	-2.927 di -51.808 di -51.424 di	Bm Bm				
4 N 1 f 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.379 530 0 GHz	-52.788 df	Bm				
7							
0 							
9 0 1 2 G	r - Swept SA		LIFE	STATUS	LIFE W	ir. M	Ŷ
D 1 2 2 3 3 ilent Spectrum Analyzer RL RF	50 Ω AC .86 dBm	PN0: Fast → Gaint.ow	NSE:INT Trig: Free Run Atten: 40 dB	ALIGNAUTO	e: Log-Pwr	TF	ACE 123
ilent Spectrum Analyze RL RF Splay Line -24	50Ω AC .86 dBm IF	PNO: Fast ↔	Trig: Free Run	ALIGNAUTO		Mkr2 12	
a ilent Spectrum Analyze RL RF isplay Line -24 0 dB/div Ref 30 0 0	50 Ω AC .86 dBm	PNO: Fast ↔	Trig: Free Run	ALIGNAUTO		Mkr2 12	
Ilent Spectrum Analyze RL PF isplay Line -24	50Ω AC .86 dBm IF	PNO: Fast ↔	Trig: Free Run	ALIGNAUTO		Mkr2 12	
G ilent Spectrum Analyze RL RF Splay Line -24	50Ω AC .86 dBm IF	PNO: Fast ↔	Trig: Free Run	ALIGNAUTO		Mkr2 12	.20 d
0 1 2 1 2 1 3 1 4 RF 1 RF 1 RF 1 1 0 1 0 1 0 1 0 1	50Ω AC .86 dBm IF	PNO: Fast ↔	Trig: Free Run Atten: 40 dB	ALIGNAUTO Avg Typ	e: Log-Pwr	TF Mkr2 12 -44	ACE 1 2 3 TYPE WWW DET P N N 009 C .20 d
a ilent Spectrum Analyze RL RF isplay Line -24 a a a a b a b a b a b a b a b a b a b a a a a a a a a a a a a a	50Ω AC .86 dBm	PNO: Fast	Trig: Free Run Atten: 40 dB	ALIGNAUTO Avg Typ	e: Log-Pwr	Mkr2 12	ACE 1 2 3 TYPE WWW DET P N N 009 (.20 d
0 1 2 1 2 1 2 1 3 1 3 1 4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	50Ω AC .86 dBm IF	PNO: Fast ↔	Trig: Free Run Atten: 40 dB	ALIGNAUTO Avg Typ	e: Log-Pwr	Tr Mkr2 12: -44	
a ilent Spectrum Analyze RL RF splay Line -24 dB/div Ref 30 db/div Ref 30 d	50 Ω AC .86 dBm	PNO: Fast	Trig: Free Run Atten: 40 dB	ALIGNAUTO Avg Typ	e: Log-Pwr	Tr Mkr2 12: -44	ACE 2 6.000
Image: Spectrum Analyze RL RL RL RL RL RE Res RMDE RMDE RE RMDE RE RE R	50 Ω AC .86 dBm .00 dBm .0	PNO: Fast Gain:Low #VBW Y 4.86 dl	2 2 300 kHz FUNCTION Bm	ALIGNAUTO Avg Typ	e: Log-Pwr	The stop	-24.
0 1 2 1 2 1 3 1 4 1	50 Ω AC .86 dBm	PNO: Fast Gain:Low #VBW Y 4.86 dl	2 2 300 kHz FUNCTION Bm	ALIGNAUTO Avg Typ	e: Log-Pwr	The second secon	-24.
Image: Spectrum Analyze RL RL RL RL RL RE Res RMDE RMDE RE RMDE RE RE R	50 Ω AC .86 dBm .00 dBm .0	PNO: Fast Gain:Low #VBW Y 4.86 dl	2 2 300 kHz FUNCTION Bm	ALIGNAUTO Avg Typ	e: Log-Pwr	The second secon	-24.

Low Channel

Middle Channel

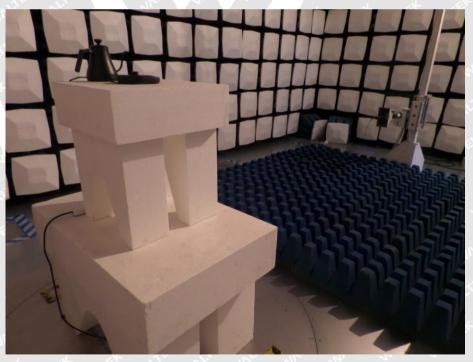
gilent Spectrur	n Analyzer -	- Swept SA											
isplay Li		50Ω AC 54 dBr	n	SENSE:INT				AL	IGNAUTO Avg Type Avg Hold:	: Log-Pwr	09:03:16 AM Jul 03, 2 TRACE 1 2 3 4 TYPE M 4444		
				PNO: Fast FGain:Low		g: Free F ten: 40 d			Avg Hold:			DET PNN	
										Mk	r2 2.443 8	377 5 G .064 di	
0 dB/div og	Ref 30.0	00 dBm									~41	.064 ui	
0.0													
0.0						_	1						
						Ì	1						
0.0													
0.0						1							
0.0								2					
0.0 envidentinis ter	nin ⁱ stantiquiantes	alang de Calada	washing and the second	and the second	www.		Y	* WILLIAM	Par get Milling		hadestand and the	aya ya kata sa	
0.0													
enter 2.44	1000 GH	7									Spar	ן ה 60.00 N	
Res BW 1				#	VBW 30	0 kHz				Sw	eep 5.87 m	s (8001	
KR MODE TRC	SCL	>			Ý	FUNC	TION	FUNCT	TION WIDTH		FUNCTION VALUE		
1 N 1 2 N 1	f		0 007 5 GHz 3 877 5 GHz	-2.	364 dBm 064 dBm								
3													
5													
7													
9													
1													
2 1									STATUS				
a									STATUS				

			AV.										10
Agilent Spect	rum Analyze	er - Swept SA											
LXI RL	RF	50 Ω AC			SENSE:INT		ALI	IGN AUTO				09:21:	39 AM Jul 03, 202
Display	Line -2	6.29 dBn	F	PNO: Fast ↔ Gain:Low	. Trig: Free Atten: 40 d			Avg Typ	e: Log-F	^o wr		Π	RACE 12345 TYPE WWWWWWW DET PNNNN
10 dB/div	Ref 30	0.00 dBm									M	kr2 8 -41	.214 GH: 3.20 dBm
20.0													
10.0													
0.00													
-10.0													
-20.0													-26.29 dBr
-40.0				<u>2</u>							din them a		التراف التولية ومستري
-50.0		المحاصية الم			al manufacture	All a faith and a set		und and the second	in di	all a start a	d. and	w.A.M	h.
-60.0	letter and a second												
Start 30 I #Res BW		z		#VB	W 300 kHz					Sw	/eep	Stop 2.48 s	26.00 GHz 6 (8001 pts
MKR MODE T	RC SCL	×	2.439 GHz	ү -6.29		CTION	FUNCT	ION WIDTH		FI	JNCTION	VALUE	
	1 f		8.214 GHz	-48.20	dBm								
4													
6													
8													
10													
12													
MSG							[STATUS					

High Channel

gilent Spectrum Analyze RL RF Isplay Line -2'	50 Ω AC	SENSE			e: Log-Pwr		:23 AM Jul 03 RACE <mark>1</mark> 2 3
	I		rig: Free Run Atten: 40 dB	Avg Hold	l:>100/100		DET P N N
0 dB/div Ref 30	0.00 dBm				Mk	r4 2.508 8 -48	15 0 G 849 di
og							
20.0							
0.00			{1				
0.0			Δ				
0.0							-21
0.0							
0.0				²		. 03	
0.0 Annalysis Antonis	tenteneringinghalet gestjongerendet	and a state of the second of the second	and the way	and the second	these longitudes and the state	In a sub- a constant in the	يد مدر الجمع مدينة وا
0.0							
enter 2.48000 G	iHz	I I				Span	60.00
Res BW 100 kHz	z	#VBW 3	00 kHz		Sw	eep 5.87 m	s (8001
KR MODE TRC SCL	×	Y A AF4 IP	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
1 N 1 f 2 N 1 f	2.480 015 0 GHz 2.483 500 0 GHz	-0.951 dBn -51.241 dBn	า				
3 N 1 f	2.500 000 0 GHz 2.508 815 0 GHz	-50.933 dBn -48.849 dBn	1 1				
5							
7							
8							
0							
2							
G				I N STATUS			

					<u></u>							-			10
Agilent Si	pectrum	Analy	zer - Swept Si	٨											
LXI RL		RF	50 Ω AC			SENSE:]	INT		۵I ا	IGNAUTO				09:06:	59 AM Jul 03, 202
	r 2 9		80775000		PNO: Fast • IFGain:Low	📕 Tri	ig:FreeF ten:40 d				/pe:Log-	Pwr		П	RACE 12345 TYPE WWWWWW DET PNNNN
10 dB/d Log	liv	Ref (30.00 dBn	n									M		.918 GHz 6.42 dBm
20.0															
10.0															
0.00															
-10.0		Ľ													
-20.0															-22.74 dDn
-30.0															-22.14 000
-40.0						2									an abaatima t
				and the s			and the	a. J. materia		مارو المرازي	الماري الدادي	uniui anta		www/	
	, All Mark			Street	Network and the second second			1.1							
-60.0															
Start 3 #Res I			Hz		#V	/BW 30	10 kHz					Sw	eep	Stop 2.48 s	26.00 GHz 6 (8001 pts
MKR MOD				×	Y		FUNC	TION	FUNCT	ION WIDTH		FI	JNCTION	VALUE	
1 N 2 N		f		2.481 GH 9.918 GH		74 dBm 42 dBm									
3				3.310 GF	-40.5										
4															
6															
7															
9															
10															
12															
MSG									1	🕼 status					



7 Photographs Test Setup

7.1 Photographs - Radiated Emission Test Setup

Above 1GHz

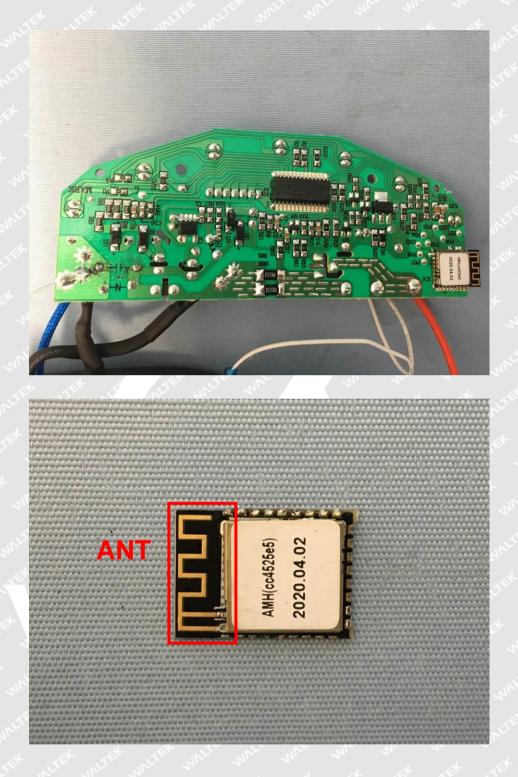
7.2 Photographs – Conducted Emission Test Setup

8 Photographs - Constructional Details

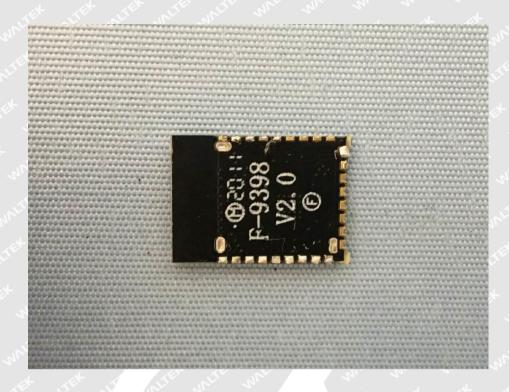
8.1 EUT - External View

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Page 40 of 43



8.2 EUT - Internal View



Reference No.: WTZ20F06038182-1W

Page 43 of 43

=====End of Report======