TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

- 1. Report No: DRTFCC1904-0127
- 2. Customer
- Name (FCC) : Canon Korea Business Solutions Inc.
- Name (IC) : CANON KOREA BUSINESS SOLUTIONS INC.
- Address (FCC) : 575, Sihwabencheo-ro, Danwon-gu, Ansan-si, Gyeonggi-do, South Korea
- Address (IC) : 575, Sihwabencheo-ro, Danwon-gu, Ansan-si, Gyeonggi-do Korea (Republic Of)
- 3. Use of Report : FCC & IC Original Grant
- 4. Product Name / Model Name : Projector / Rayo S1 FCC ID : 2AR9TRAYOS1 / IC : 498G-RAYOS1
- 5. Test Method Used : KDB789033 D02v02r01, ANSI C 63.10-2013 Test Specification : FCC Part 15.407 Subpart E

RSS-247 Issue 2 (2017-02), RSS-GEN Issue 5 (2018-04)

- 6. Date of Test : 2019.01.02 ~ 2019.03.06
- 7. Testing Environment : Refer to appended test report.
- 8. Test Result : Refer to the attached test result.

Affirmation	Tested by	but	Reviewed by	AA				
Ammation	Name : InHee Bae	the h	Name : Geunki Son	(Signature)				
The test	results presented in this test rep	port are limited	only to the sample supp	lied by applicant and				
the use of the	his test report is inhibited other t	han its purpose	. This test report shall n	ot be reproduced except				
	in full, without the	e written approv	val of DT&C Co., Ltd.					
	2019.04.22.							
DT&C Co., Ltd.								

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1904-0127	Apr. 22, 2019	Initial issue

CONTENTS

1. EUT DESCRIPTION4
2. Information about test items5
2.1 Transmitting configuration of EUT52.2 Tested Channel Information52.3 Testing Environment62.4 EMI Suppression Device(s)/Modifications62.5 Measurement Uncertainty6
3. SUMMARY OF TESTS7
4. TEST METHODOLOGY
4.1 EUT configuration 8 4.2 EUT exercise 8 4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9
6. FACILITIES AND ACCREDITATIONS
6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9
8. TEST RESULT
8.1 Emission Bandwidth (26 dB Bandwidth)10
8.2 Minimum Emission Bandwidth (6 dB Bandwidth)15
8.3 Maximum Conducted Output Power20
8.4 Maximum Power Spectral Density23
8.5 Frequency Stability34
8.6 Radiated Spurious Emission Measurements
8.7 AC Conducted Emissions
8.8 Occupied Bandwidth (99%)47
9. LIST OF TEST EQUIPMENT
APPENDIX I
APPENDIX II
APPENDIX III

1. EUT DESCRIPTION

Equipment Class	Unlicensed National Information Infrastructure (UNII)
Product	Projector
Model Name(HVIN)	Rayo S1
Add Model Name	NA
FVIN	3.10.X
Power Supply	DC 3.7 V
Modulation type	OFDM
Antenna Specification	Antenna type: FPC Antenna Antenna gain U-NII 1: 1.34 dBi U-NII 3: 1.04 dBi

5GHz Band	Mode	Frequency range (MHz)	Max power(dBm)
U-NII 1	802.11a	5180 ~ 5240	10.03
	802.11n(HT20)	5180 ~ 5240	10.49
U-NII 3	802.11a	5745 ~ 5825	11.56
	802.11n(HT20)	5745 ~ 5825	12.21

2. Information about test items

2.1 Transmitting configuration of EUT

Mode	Data rate	
802.11a	6 ~ 54 Mbps	
802.11n(HT20)	MCS 0 ~ 7	

2.2 Tested Channel Information

5GHz Band	802.11a/n(HT20)			
	Channel	Frequency [MHz]		
	36	5180		
U-NII 1	40	5200		
	48	5240		
	149	5745		
U-NII 3	157	5785		
	165	5825		

2.3 Testing Environment

Temperature	: +22 °C ~ +25 °C
Relative humidity content	: 43 % ~ 48 %
Details of power supply	: DC 3.7 V

2.4 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

2.5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C 63.4-2014 and ANSI C 63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty		
Transmitter Output Power	0.9 dB (The confidence level is about 95 %, k = 2)		
Conducted spurious emission	0.9 dB (The confidence level is about 95 %, k = 2)		
AC conducted emission	2.4 dB (The confidence level is about 95 %, k = 2)		
Radiated spurious emission (1 GHz Below)	5.1 dB (The confidence level is about 95 %, k = 2)		
Radiated spurious emission (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, k = 2)		
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, k = 2)		

3. SUMMARY OF TESTS

FCC Part Section(s)	RSS Section(s)	Parameter	Limit	Test Condition	Status Note 1
15.407(a)	-	Emission Bandwidth (26 dB Bandwidth)	N/A		С
15.407(e)	RSS-247[6.2.4]	Minimum Emission Bandwidth (6 dB Bandwidth)	> 500 kHz in 5725 ~ 5850 MHz		С
15.407(a)	RSS-247[6.2]	Maximum Conducted Output Power	Refer to the section 8.3		С
15.407(a)	RSS-247[6.2]	Peak Power Spectral Density	Refer to the section 8.4	Conducted	С
-	RSS GEN[6.7]	Occupied Bandwidth (99%)	N/A		С
15.407(g)	-	Frequency Stability	N/A		С
15.407(h)	RSS-247[6.3]	Dynamic Frequency Selection	FCC 15.407(h)		NA Note 3
15.205 15.209 15.407(b)	RSS-247[6.2] RSS-GEN[8.9] RSS-GEN[8.10]	Undesirable Emissions	Refer to the section 8.6	Radiated	C Note 4
15.207	RSS-GEN[8.8]	AC Conducted Emissions	FCC 15.207	AC Line Conducted	С
15.203	-	Antenna Requirements	FCC 15.203	-	С

Note 1: **C** = Comply **NC** = Not Comply **NT** = Not Tested **NA** = Not Applicable

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: This device does not supported DFS bands.

Note 4: These test items were performed in each axis and the worst case data was reported.

4. TEST METHODOLOGY

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB 7899033 D02v02r01 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB789033 D02v02r01. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB789033 D02v02r01. So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB789033 D02v02r01. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on KDB789033 D02v02r01.

The EUT is placed on a non-conductive table, which is 0.8 m above ground plane. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 1 or 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axis.

4.4 Description of test modes

The EUT has been tested with all modes of operating conditions to determine the worst case emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode with maximum fixed duty cycle.

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 Facilities

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC MRA Accredited Test Firm No. : KR0034

- IC Test site No. : 5740A

www.dtnc.net		
Telephone		+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

6.2 Equipment

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, loop, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

```
The antenna is permanently attached. (Refer to Internal Photo file.) Therefore this EUT complies with the requirement of §15.203.
```

8. TEST RESULT

8.1 Emission Bandwidth (26 dB Bandwidth)

Test Requirements

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. The 26 dB bandwidth is used to determine the conducted output power limit.

Test Configuration

Refer to the APPENDIX I.

Test Procedure

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB789033 D02v02r01.

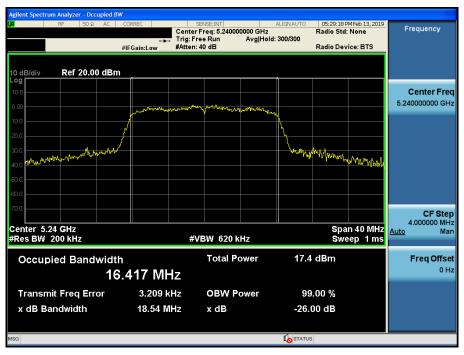
- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.

Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

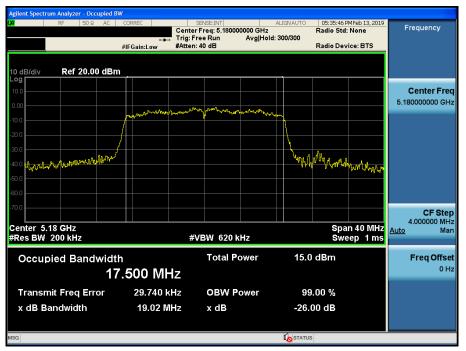
Mode	Band	Channel	Frequency [MHz]	Test Result [MHz]
	U-NII 1	36	5180	18.65
802.11a		40	5200	18.81
		48	5240	18.54
802.11n (HT20)	U-NII 1	36	5180	19.02
		40	5200	18.89
		48	5240	19.02

TEST RESULTS: Comply

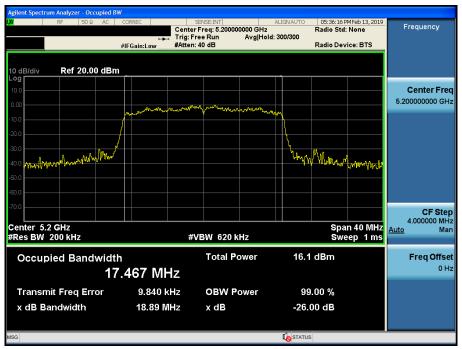
Result Plots

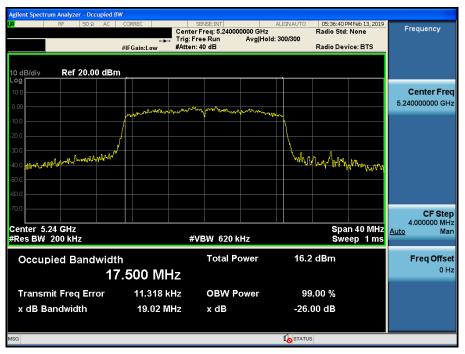

26 dB Bandwidth

Test Mode: 802.11a & Ch.36



26 dB Bandwidth





Test Mode: 802.11n HT20 & Ch.36

26 dB Bandwidth

8.2 Minimum Emission Bandwidth (6 dB Bandwidth)

Test Requirements

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Configuration

Refer to the APPENDIX I.

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of **KDB789033 D02v02r01**.

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth \geq 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST RESULTS: Comply

Mode	Band	Channel	Frequency [MHz]	Test Result [MHz]
	U-NII 3	149	5745	15.61
802.11a		157	5785	15.60
		165	5825	15.96
802.11n (HT20)	U-NII 3	149	5745	17.08
		157	5785	17.42
		165	5825	17.26

RESULT PLOTS

6 dB Bandwidth

Test Mode: 802.11a & Ch.149

6 dB Bandwidth

Agilent Spectrum Analyzer - Occupied B					
μα RF 50Ω AC	Trig:	sense:INT er Freq: 5.825000000 GH: Free Run Avg Ho en: 40 dB	ALIGNAUTO 2 bid: 300/300	05:32:00 PMFeb 13, 2019 Radio Std: None Radio Device: BTS	Frequency
10 dB/div Ref 20.00 dBn					
0.00	Martin and a starting and a starting	vor Jann alman altrian in	m		Center Freq 5.825000000 GHz
-10.0			- Wardena	Man Martin Martin	
-20.0				· · · · · · · · · · · · · · · · · · ·	
-50.0					
-70.0 Center 5.825 GHz				Chop 40 Mila	CF Step 4.000000 MHz
#Res BW 200 kHz		#VBW 620 kHz		Span 40 MHz Sweep 1 ms	<u>Auto</u> Man
Occupied Bandwidt	^h 5.873 MHz	Total Power	18.8	dBm	Freq Offset 0 Hz
Transmit Freq Error	-14.884 kHz	OBW Power	99	.00 %	
x dB Bandwidth	15.96 MHz	x dB	-6.	00 dB	
MSG				6	

Test Mode: 802.11n HT20 & Ch.149

6 dB Bandwidth

Dt&C

Agilent Spectrum Analyzer - Occupied B					
μχμ RF 50 Ω AC	Cente	SENSE:JNT r Freq: 5.825000000 GHz iree Run Avg Hol :: 40 dB	Rad d: 300/300	5:33:50 PMFeb 13, 2019 dio Std: None dio Device: BTS	Frequency
10 dB/div Ref 20.00 dBn	n				
0.00	how have have have have have	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	vium		Center Freq 5.825000000 GHz
-10.0 -20.0 -30.0			h low many		
-30.0				and the second sec	
-60.0					
Center 5.825 GHz #Res BW 200 kHz	#	VBW 620 kHz		Span 40 MHz Sweep 1 ms	CF Step 4.000000 MHz <u>Auto</u> Man
Occupied Bandwidt 17	հ 7.637 MHz	Total Power	18.1 dB	m	Freq Offset 0 Hz
Transmit Freq Error	-4.175 kHz	OBW Power	99.00	%	
x dB Bandwidth	17.26 MHz	x dB	-6.00 d	IB	
MSG			I STATUS		

8.3 Maximum Conducted Output Power

Test Requirements

Part. 15.407(a)

(1) For the band 5.15 - 5.25 GHz.

(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725 5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

RSS-247[6.2]

(1) For band 5150 - 5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

(2) For band 5250 - 5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

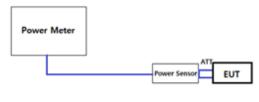
Devices, other than devices installed in vehicles, shall comply with the following:

a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;

b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

(3) For band 5470 - 5600 MHz and 5650 - 5725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.


The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than

500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

(4) For band 5725 - 5850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Configuration

Method PM-G

Test Procedure

Method PM-G of KDB789033 D02v02r01

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Test Results: Comply

- Output Power	•
----------------	---

Mode	СН	Freq.[MHz]	Conducted Output Power[dBm]	Antenna Gain[dBi]	e.i.r.p ^{Note1} [dBm]
	36	5180	9.97	1.34	11.31
	40	5200	10.03	1.34	11.37
802.11a	48	5240	10.02	1.34	11.36
002.11d	149	5745	10.56	1.04	11.60
	157	5785	10.96	1.04	12.00
	165	5825	11.56	1.04	12.60
Mode	СН	Freq.[MHz]	Conducted Output Power[dBm]	Antenna Gain[dBi]	e.i.r.p ^{Note1} [dBm]
Mode	СН 36	Freq.[MHz]	Output		
Mode			Output Power[dBm]	Gain[dBi]	[dBm]
	36	5180	Output Power[dBm] 9.81	Gain[dBi] 1.34	[dBm] 11.15
Mode 802.11n(HT20)	36 40	5180 5200	Output Power[dBm] 9.81 10.16	Gain[dBi] 1.34 1.34	[dBm] 11.15 11.50
	36 40 48	5180 5200 5240	Output Power[dBm] 9.81 10.16 10.49	Gain[dBi] 1.34 1.34 1.34	[dBm] 11.15 11.50 11.83

Note 1: e.i.r.p = Conducted Output Power + Antenna Gain

Test requirements

Part. 15.407(a)

(1) For the band 5.15 - 5.25 GHz.

(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. note1

(ii) For an indoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. ^{note1}

(iii) For fixed point-to-point access points operating in the band 5.15 - 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}

- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}
- (3) For the band 5.725 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.^{note1,note2}
- Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- Note2: Fixed point to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

RSS-247[6.2]

(1) For band 5150 - 5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

(2) For band 5250 - 5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;

b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

(3) For band 5470 - 5600 MHz and 5650 - 5725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than

500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

(4) For band 5725 - 5850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test configuration

Refer to the APPENDIX I.

Test procedure

Maximum Power Spectral Density is measured using Measurement Procedure of KDB789033 D02v02r01

- Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA - 1, SA - 2, SA - 3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- 2) Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 3) Make the following adjustments to the peak value of the spectrum, if applicable:
 a) If Method SA 2 or SA 2 Alternative was used, add 10 log(1 / x), where x is the duty cycle, to the peak of the spectrum.
 - b) If Method SA 3 Alternative was used and the linear mode was used in step II.E.2.g (viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- 4) The result is the Maximum PSD over 1 MHz reference bandwidth.
- 5) For devices operating in the bands 5.15 5.25 GHz, 5.25 5.35 GHz, and 5.47 5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in §15.407(a)(5). For devices operating in the band 5.725 5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz
 - a) Set RBW \geq 1 / T, where T is defined in section II.B.1.a). (Refer to Appendix II)
 - b) Set VBW ≥ 3 RBW.
 - c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log(500 kHz / RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log(1 MHz / RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW = 100 kHz is available on nearly all spectrum analyzers.

Test results: Comply

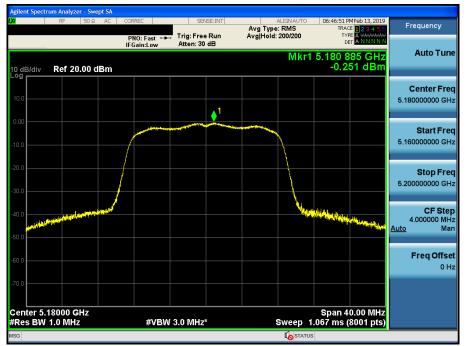
- Power spectral density: Single

Mode	Channel	Frequency [MHz]	Reading [dBm]	T.F ^{Note 1} [dB]	Power Spectral Density[dBm]	Antenna Gain [dBi]	e.i.r.p Spectral Density [dBm]
	36	5180	-0.25		-0.12	1.34	1.22
	40	5200	0.78	0.13	0.91	1.34	2.25
802.11a	48	5240	0.95		1.08	1.34	2.42
002.11a	149	5745	-7.21	7.12	-0.09	1.04	0.95
	157	5785	-6.13		0.99	1.04	2.03
	165	5825	-6.58		0.54	1.04	1.58
	36	5180	-1.69		-1.55	1.34	-0.21
	40	5200	-0.62	0.14	-0.48	1.34	0.86
802.11n	48	5240	-0.52		-0.38	1.34	0.96
(HT20)	149	5745	-8.15		-1.02	1.04	0.02
	157	5785	-7.18	7.13	-0.05	1.04	0.99
	165	5825	-7.36		-0.23	1.04	0.81

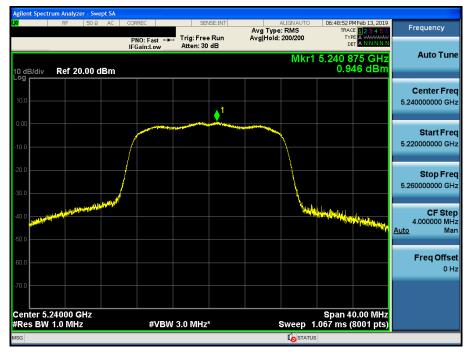
Note 1: "U-NII 1 [T.F] = DCCF"

"U-NII 3 [T.F] = 10*LOG(500kHz/100kHz) + DCCF"

For DCCF(Duty Cycle Correction Factor) please refer to appendix II.

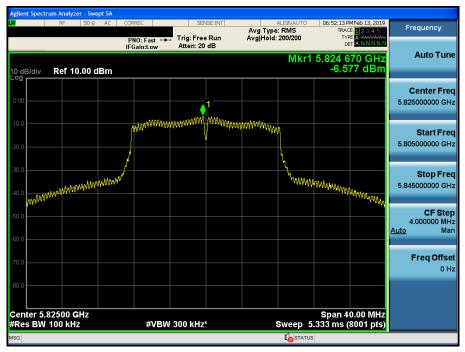

Note 2: Test Result = Measurement Data + T.F

Note 3: e.i.r.p Spectral Density= Power spectral density + Antenna Gain


RESULT PLOTS

- Power spectral density
- Maximum Power Spectral DensityTest Mode: 802.11a& Ch.36

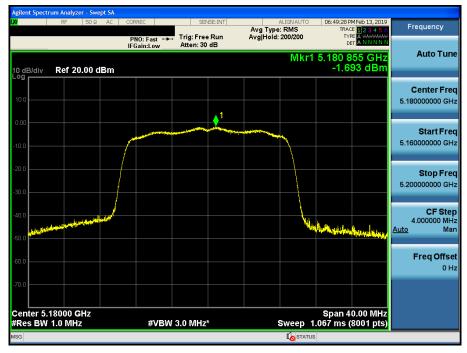
Maximum Power Spectral Density Test



eb 13, 2019 Frequency Avg Type: RMS Avg|Hold: 200/200 Trig: Free Run Atten: 20 dB TYPE A WANNAM PNO: Fast 🔸 Auto Tune Mkr1 5.745 295 GHz -7.206 dBm 10 dB/div Ref 10.00 dBm **Center Freq** 5.745000000 GHz ø MANAMANA MANAMANA Start Freq 5.725000000 GHz Stop Freq 5.765000000 GHz wwwwwwww CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz Center 5.74500 GHz #Res BW 100 kHz Span 40.00 MHz Sweep 5.333 ms (8001 pts) #VBW 300 kHz* IL STA

Maximum Power Spectral Density

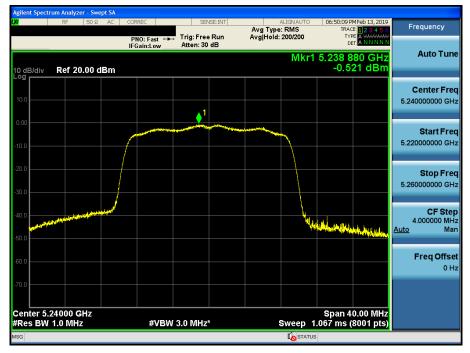
Test Mode: 802.11a & Ch.157




TDt&C

Maximum Power Spectral Density

Test Mode: 802.11n HT20 & Ch.36



Maximum Power Spectral Density

Dt&C

Maximum Power Spectral Density

Dt&C

Maximum Power Spectral Density

Test Mode: 802.11n HT20 & Ch.149

Maximum Power Spectral Density

8.5 Frequency Stability

Test requirements

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Test Procedure

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -20°C and +50°C. The temperature was incremented by 10°C intervals and the unit was allowed to stabilize at each measurement. And the edge point of EBW (26dB or 6dB bandwidth) was reported.

Test Results: Comply

U-NII 1 : (5180 MHz ~ 5240 MHz)

Quanta		Operating Frequency				
Supply Voltage	темр (°С)	5180 MHz	5240 MHz			
(V DC)	(0)	26dBc low edge (Hz)	26dBc High edge(Hz)			
	+20(Ref)	5,170,721,000	5,249,163,000			
	+50	5,170,753,000	5,249,185,000			
	+40	5,170,742,000	5,249,179,000			
	+30	5,170,725,000	5,249,167,000			
3.70	+20	5,170,721,000	5,249,163,000			
	+10	5,170,719,000	5,249,158,000			
	0	5,170,711,000	5,249,153,000			
	-10	5,170,707,000	5,249,147,000			
	-20	5,170,703,000	5,249,139,000			
4.26	+20	5,170,747,000	5,249,142,000			
3.55	+20	5,170,735,000	5,249,169,000			

U-NII 3 : (5745 MHz ~ 5825 MHz)

Cummlus		Operating	Frequency
Supply Voltage	темр (°С)	5745 MHz	5825 MHz
(V DC)	(0)	6dBc low edge (Hz)	6dBc low edge (Hz)
	+20(Ref)	5,737,413,000	5,832,519,000
	+50	5,737,447,000	5,832,539,000
	+40	5,737,435,000	5,832,533,000
	+30	5,737,424,000	5,835,524,000
3.70	+20	5,737,413,000	5,832,519,000
	+10	5,737,411,000	5,832,513,000
	0	5,737,407,000	5,832,503,000
	-10	5,737,395,000	5,832,497,000
	-20	5,737,381,000	5,832,493,000
4.26	+20	5,737,421,000	5,832,517,000
3.55	+20	5,737,429,000	5,832,509,000

8.6 Radiated Spurious Emission Measurements

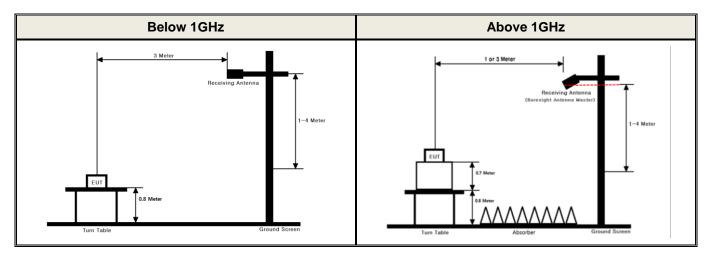
Test Procedure

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F(KHz)	300
0.490 – 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

* Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:


MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.52025	160.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	12.57675 ~	160.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	12.57725	160.7 ~ 160.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358		
	25.5 ~ 25.67	960 ~ 1240	3600 ~ 4000		
	37.5 ~ 38.25				
	73 ~ 74.6				
	74.8 ~ 75.2				

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

• FCC Part 15.407 (b): Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the **5.15-5.25 GHz band**: all emissions outside of the **5.15-5.35 GHz band** shall not exceed an **EIRP of -27 dBm/MHz**.
- (2) For transmitters operating in the **5.25-5.35 GHz band**: all emissions outside of the **5.15-5.35 GHz band** shall not exceed an **EIRP of -27 dBm/MHz**.
- (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Test Procedure

Test Procedure

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turn table shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1m or 3 m away from the receiving antenna, which is varied from 1m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Radiated spurious emission measured using following Measurement Procedure of KDB789033 D02v02r01

General Requirements for Unwanted Emissions Measurements

The following requirements apply to all unwanted emissions measurements, both in and outside of the restricted bands:

- EUT Duty Cycle
 - (1) The EUT shall be configured or modified to transmit continuously except as stated in (ii), below. The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.
 - (2) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations of the EUT (e.g., overheating), the following additions to the measurement and reporting procedures are required:
 - The EUT shall be configured to operate at the maximum achievable duty cycle.
 - Measure the duty cycle, x, of the transmitter output signal.
 - Adjustments to measurement procedures (e.g., increasing test time and number of traces averaged) shall be performed as described in the procedures below.
 - The test report shall include the following additional information:
 - The reason for the duty cycle limitation.
 - The duty cycle achieved for testing and the associated transmit duration and interval between transmissions.
 - The sweep time and the amount of time used for trace stabilization during max-hold measurements for peak emission measurements.
- (3) Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

► Measurements below 1000 MHz

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".
- b) Compliance shall be demonstrated using **CISPR quasi-peak detection**; however, **peak detection** is permitted as an alternative to quasi-peak detection.

Measurements Above 1000 MHz (Peak)

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".b) Peak emission levels are measured by setting the analyzer as follows:
 - (i) **RBW** = 1 **MHz**.
 - (ii) **VBW** ≥ 3 MHz.
 - (iii) Detector = Peak.
 - (iv) Sweep time = Auto.
 - (v) Trace mode = Max hold.
 - (vi) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

► Measurements Above 1000 MHz (Method AD)

- (i) **RBW = 1 MHz**.
- (ii) VBW ≥ 3 MHz.
- (iii) Detector = RMS, if span / (# of points in sweep) ≤ RBW / 2. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, the detector mode shall be set to peak.
- (iv) Averaging type = power (i.e., RMS)
 - As an alternative, the detector and averaging type may be set for linear voltage averaging. Some analyzers require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
- (v) Sweep time = Auto.
- (vi) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50 percent duty cycle, at least 200 traces shall be averaged.
- (vii) If tests are performed with the EUT transmitting at a duty cycle less than 98 percent, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - If power averaging (RMS) mode was used in step (iv) above, the correction factor is 10 log(1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 3 dB must be added to the measured emission levels.
 - If linear voltage averaging mode was used in step (iv) above, the correction factor is 20 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 6 dB must be added to the measured emission levels.
 - If a specific emission is demonstrated to be continuous (100 percent duty cycle) rather than turning on and off with the transmit cycle, no duty cycle correction is required for that emission.

Please refer to Appendix II for the duty correction factor

Measurement Data:

Radiated Spurious Emissions data(9 kHz ~ 1 GHz) : 802.11a

Band	Tested Channel	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		57.14	Н	Х	QP	33.40	-7.00	N/A	N/A	26.40	40.00	13.60
	316.03	Н	Х	QP	33.80	-5.40	N/A	N/A	28.40	46.00	17.60	
		400.00	V	Х	QP	34.90	-3.60	N/A	N/A	31.30	46.00	14.70
U-NII 3	165 (5825 MHz)	838.08	Н	Х	QP	31.90	5.10	N/A	N/A	37.00	46.00	9.00
	· · · · ·	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-

Note.

1. Exploratory testing has been performed to determine the emissions characteristic of this EUT.

And 5825MHz of 802.11a(TM2) was selected for final testing and reported.

2. No other unwanted emissions were found above listed frequencies.

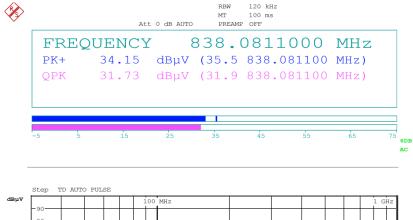
3. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3 m to 1 m. In this case, the distance factor (-9.54 dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

4. Sample Calculation.


Margin = Limit - Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL - AG

 $\label{eq:Where, T.F = Total Factor, \quad AF = Antenna \ Factor, \quad CL = Cable \ Loss, \quad AG = Amplifier \ Gain,$

DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

802.11a & 5825MHz & X axis & Hor

Detector Mode : QP

 1 PK
 -80
 -</t

Radiated Spurious Emi	ssions data(1 ~ 40	GHz) : <u> <i>802.11a_</i></u>
------------------------------	--------------------	--------------------------------

-		-									r	-
Band	Tested Channel	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5148.33	V	Y	PK	53.57	1.80	N/A	N/A	55.37	74.00	18.63
	36 (5180 MHz)	5148.74	V	Y	AV	42.61	1.80	0.13	N/A	44.54	54.00	9.46
	. ,	10362.14	V	Y	PK	46.21	6.04	N/A	N/A	52.25	74.00	21.75
U-NII 1	40 (5200 MHz)	10401.54	V	Y	PK	46.60	6.05	N/A	N/A	52.65	74.00	21.35
		5391.40	V	Y	PK	51.41	2.63	N/A	N/A	54.04	74.00	19.96
	48 (5240 MHz)	5392.11	V	Y	AV	41.85	2.63	0.13	N/A	44.61	54.00	9.39
	()	10477.86	V	Y	PK	44.97	6.08	N/A	N/A	51.05	74.00	22.95
		5714.18	Н	Z	PK	67.99	2.79	N/A	N/A	70.78	109.17	38.39
	149	5724.88	Н	Z	PK	79.88	2.65	N/A	N/A	82.53	121.93	39.40
	(5745 MHz)	11489.66	Н	Y	PK	46.15	8.26	N/A	N/A	54.41	74.00	19.59
		11489.34	Н	Y	AV	35.02	8.26	0.13	N/A	43.41	54.00	10.59
U-NII 3	157	11571.78	Н	Y	PK	45.86	8.34	N/A	N/A	54.20	74.00	19.80
U-INII S	(5785 MHz)	11569.96	Н	Y	AV	35.44	8.34	0.13	N/A	43.91	54.00	10.09
		5851.72	Н	Z	PK	67.23	3.12	N/A	N/A	70.35	118.28	47.93
	165	5862.31	Н	Z	PK	59.78	3.15	N/A	N/A	62.93	108.75	45.82
	(5825 MHz)	11649.45	Н	Y	PK	46.10	8.40	N/A	N/A	54.50	74.00	19.50
		11647.84	Н	Y	AV	35.59	8.40	0.13	N/A	44.12	54.00	9.88

Note.

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3 m to 1 m. In this case, the distance factor (-9.54 dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. The limit is converted to field strength.

E[dBuV/m] = EIRP[dBm] + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m

Radiated Spurious Emissions data(1 ~ 40 GHz)) : 802.11n(HT20)

				•	• 40 CH2)	/	<u> </u>		-			
Band	Tested Channel	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5148.53	V	Y	PK	53.37	1.80	N/A	N/A	55.17	74.00	18.83
	36 (5180 MHz)	5148.75	V	Y	AV	42.85	1.80	0.14	N/A	44.79	54.00	9.21
	. ,	10361.68	V	Y	PK	45.91	6.04	N/A	N/A	51.95	74.00	22.05
U-NII 1	40 (5200 MHz)	10398.07	V	Y	PK	46.19	6.05	N/A	N/A	52.24	74.00	21.76
		5448.03	V	Y	PK	51.97	2.86	N/A	N/A	54.83	74.00	19.17
	48 (5240 MHz)	5399.92	V	Y	AV	41.73	2.66	0.14	N/A	44.53	54.00	9.47
	. ,	10478.62	V	Y	PK	45.87	6.08	N/A	N/A	51.95	74.00	22.05
		5714.23	Н	Z	PK	66.33	2.79	N/A	N/A	69.12	109.18	40.06
	149	5724.10	Н	Z	PK	79.69	2.66	N/A	N/A	82.35	120.15	37.80
	(5745 MHz)	11487.94	Н	Y	PK	45.17	8.25	N/A	N/A	53.42	74.00	20.58
		11489.52	Н	Y	AV	34.97	8.26	0.14	N/A	43.37	54.00	10.63
U-NII 3	157	11570.81	Н	Y	PK	46.10	8.34	N/A	N/A	54.44	74.00	19.56
0-1111 3	(5785 MHz)	11568.04	Н	Y	AV	35.49	8.34	0.14	N/A	43.97	54.00	10.03
		5850.90	Н	Z	PK	65.67	3.11	N/A	N/A	68.78	120.15	51.37
	165	5861.09	Н	Z	PK	58.72	3.15	N/A	N/A	61.87	109.09	47.22
	(5825 MHz)	11652.04	Н	Y	PK	45.37	8.41	N/A	N/A	53.78	74.00	20.22
		11647.94	Н	Y	AV	35.76	8.40	0.14	N/A	44.30	54.00	9.70

Note.

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3 m to 1 m. In this case, the distance factor (-9.54 dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL - AG

 $\label{eq:Where, T.F = Total Factor, \quad AF = Antenna \ Factor, \quad CL = Cable \ Loss, \quad AG = Amplifier \ Gain,$

 $\mathsf{DCCF} = \mathsf{Duty}\ \mathsf{Cycle}\ \mathsf{Correction}\ \mathsf{Factor},\quad \mathsf{DCF} = \mathsf{Distance}\ \mathsf{Correction}\ \mathsf{Factor}$ 4. The limit is converted to field strength.

E[dBuV/m] = EIRP[dBm] + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m

8.7 AC Conducted Emissions

Test Requirements and limit, §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Conducted Limit (dBuV)					
Frequency Range (MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs for the actual connections between EUT and support equipment.

Test Procedure

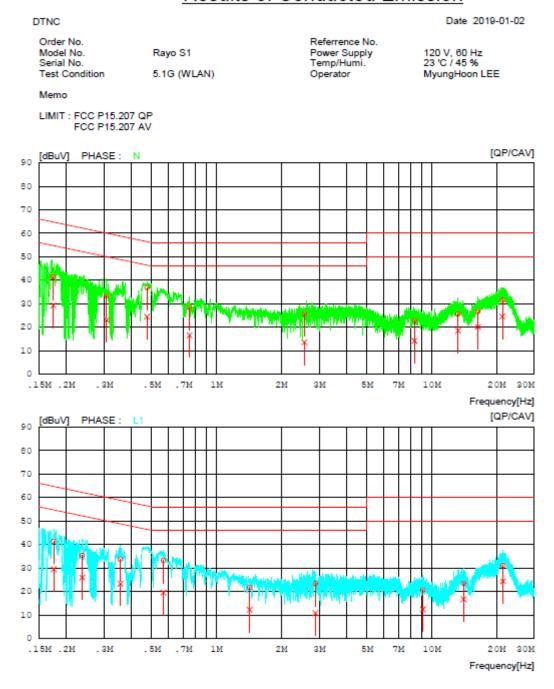
Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.

3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.


Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data for worst case result.

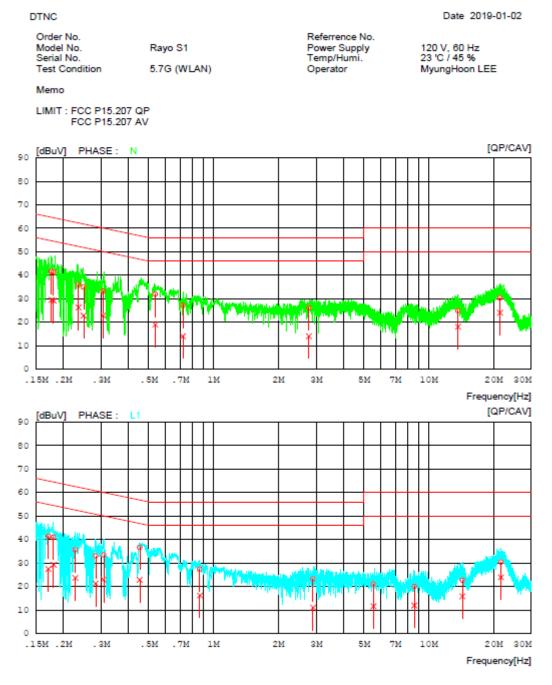
AC Line Conducted Emissions (Graph)

Test Mode: U-NII 1 & 802.11a & 5180 MHz Results of Conducted Emission

DTNC

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 1 & 802.11a & 5180 MHz Results of Conducted Emission


Date 2019-01-02

Order No. Model No. Rayo S1 Serial No. Test Condition 5.1G (WLAN)		Referrence No. Power Supply Temp/Humi. Operator	120 V, 60 Hz 23 'C / 45 % MyungHoon LEE
Memo			
LIMIT : FCC P15 FCC P15			
NO FREQ	READING C.FACTOR QP CAV [dBuV][dBuV] [dB]	QP CAV QP CAV	MARGIN PHASE QP CAV] [dBuV] [dBuV]
2 0.30834 3 0.47499 4 0.74881 5 2.56160 6 8.32320 7 13.27220 8 16.37820 9 21.27440 10 0.17519 11 0.23817	12.52 3.91 10.31 15.19 8.01 10.45 16.14 9.60 10.51 20.88 14.00 10.58 31.27 19.51 9.96 25.26 15.91 9.95 23.72 13.30 9.96 23.13 9.47 9.97 11.66 2.14 10.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.4225.50 N 26.5627.02 N 19.6421.90 N 27.6529.41 N 30.2932.41 N 34.3631.54 N 34.3631.54 N 28.5425.42 N 28.5425.42 N 23.4825.24 L1 26.9526.30 L1 25.1025.52 L1 25.9026.56 L1 34.3433.86 L1 32.7835.27 L1
	10.19 1.99 10.29 12.96 6.17 10.42 20.4113.75 10.52	20.4812.28 60.00 50.00 23.3816.59 60.00 50.00 30.9324.27 60.00 50.00	39.5237.72 L1 36.6233.41 L1 29.0725.73 L1

AC Line Conducted Emissions (Graph)

Test Mode: U-NII 3 & 802.11a & 5745 MHz

Results of Conducted Emission

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 3 & 802.11a & 5745 MHz

Results of Conducted Emission

DTNC			Date 2	019-01-02
Order No. Model No. Rayo S Serial No. Test Condition 5.7G (V Memo		Referrence No. Power Supply Temp/Humi. Operator	120 V, 60 H 23 'C / 45 % MyungHoon	
LIMIT : FCC P15.207 QP FCC P15.207 AV				
NO FREQ READING QP CAV [MHz] [dBuV][dBuV]	C.FACTOR RESULT QP CAV] [dB] [dBuV][dBu		MARGIN QP CAV [dBuV][dBuV]	PHASE
10 21.42360 19.71 13.48 11 0.17093 31.32 17.40 12 0.18061 30.94 19.19 13 0.22777 25.53 13.64 14 0.28323 23.01 11.19 15 0.30870 23.37 12.94 16 0.45364 26.58 12.79	9.98 36.0426.26 9.98 34.9622.76 9.99 31.2322.26 9.99 31.9118.97 10.02 27.2214.04 10.11 26.1714.04 10.45 24.8517.96 10.58 30.2924.06 9.96 41.2827.33 9.96 40.9029.18 9.95 35.4823.55 9.95 32.9621.14 9.95 32.222.85 9.95 32.222.27.35 9.96 36.5422.73	64.45 54.45 62.24 52.24 61.78 51.78 7 60.04 50.04 7 56.00 46.00 8 56.00 46.00 6 60.00 50.00 6 60.00 50.00 5 64.92 54.92 5 64.45 54.45 9 62.52 52.52 4 60.72 50.72 5 6.81 46.81	29.7125.94 23.6427.56 23.5525.30 27.0528.94 27.7629.58 26.6927.12 20.2724.06	N N N N N N N N N L L L L L L L L L L L
18 2.90320 13.01 0.86 19 5.53640 10.85 1.28	9.98 27.3216.00 10.07 23.0810.93 10.18 21.0311.46 10.28 19.9411.79 10.44 22.5515.73 10.52 30.3323.82	56.00 46.00 60.00 50.00 60.00 50.00 60.00 50.00 60.00 50.00	28.6829.92 32.9235.07 38.9738.54 40.0638.21 37.4534.27 29.6726.18	L1 L1 L1 L1 L1 L1 L1

8.8 Occupied Bandwidth (99%)

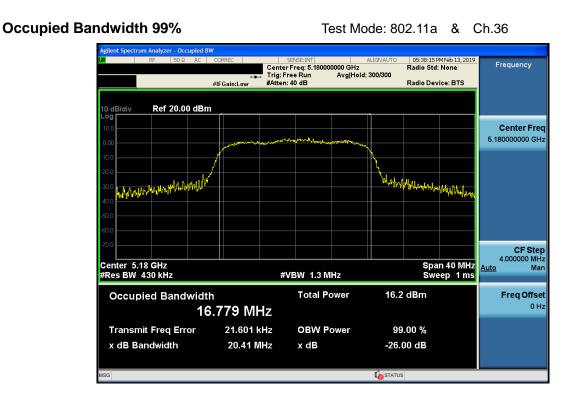
Test Requirements

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured

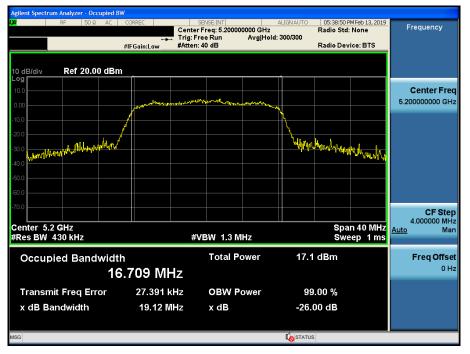
Test Configuration

Refer to the APPENDIX I.

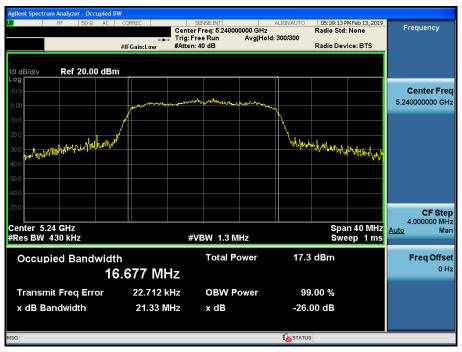
TEST PROCEDURE


- Procedure: RSS-Gen[6.7]

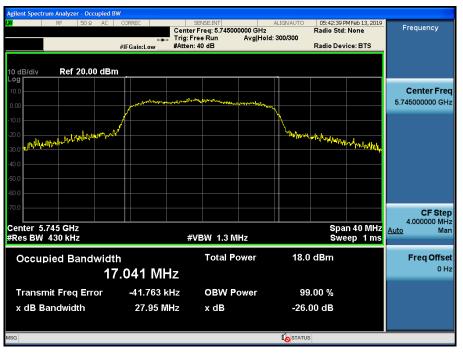
- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.


Test Result : Comply

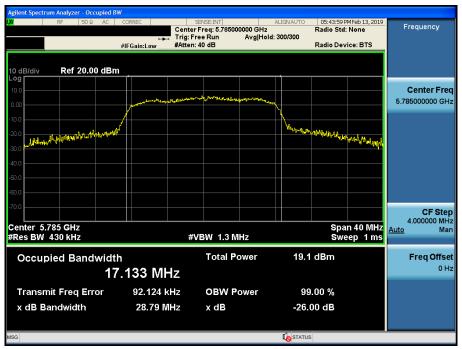
Mode	Bands	Channel	Frequency [MHz]	Test Result [MHz]	
		36	5180	16.78	
	U-NII 1	40	5200	[MHz] 16.78 16.71 16.68 17.04 17.13 17.44 17.58 17.59 17.59	
802.11a		48	5240	16.68	
002.11d		149	5745	17.04	
	U-NII 3	157	5785	17.13	
		165	5825	17.44	
		36	5180	17.58	
	U-NII 1	40	5200	17.59	
802.11n(HT20)		48	5240	17.59	
δ υ Ζ.ΤΠ(ΠΤΖυ)		149	5745	17.69	
	U-NII 3	157	5785	17.76	
		165	5825	17.87	


RESULT PLOTS

Occupied Bandwidth 99%



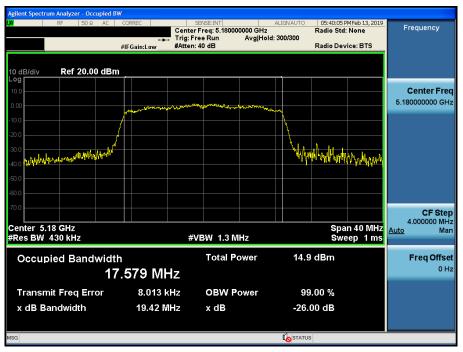
Occupied Bandwidth 99%



Occupied Bandwidth 99%

Test Mode: 802.11a & Ch.149

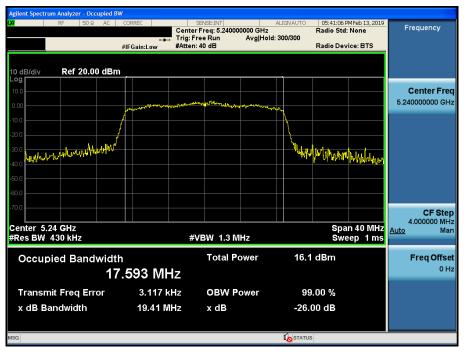
Occupied Bandwidth 99%



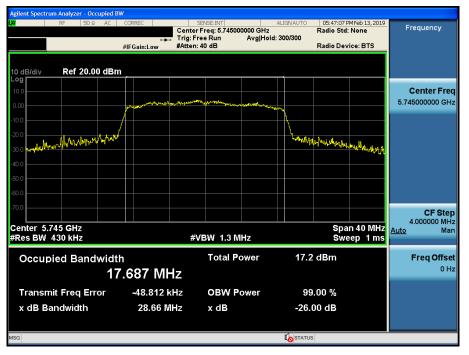
Occupied Bandwidth 99%

Agilent Spectrum Analyzer - Occupied B 04 RF 50 Ω AC 10 dB/div Ref 20.00 dBrr	CORREC Cente #IFGain:Low #Atten	SENSE:INT F Freq: 5.82500000 GHz ree Run Avg Hol : 40 dB	Radio d: 300/300	:21 PMFeb 13, 2019 Std: None Device: BTS	Frequency
10.0 0.00		My Minute for markening	~		Center Freq 5.825000000 GHz
-20.0 -30.0			Virilentileriterieliteri	Anninternet	
-40.0 -50.0 -60.0					
-70.0 Center 5.825 GHz #Res BW 430 kHz	#	VBW 1.3 MHz	2 2 2	span 40 MHz sweep 1 ms	CF Step 4.000000 MHz <u>Auto</u> Man
Occupied Bandwidt	^h ′.441 MHz	Total Power	18.8 dBm		Freq Offset 0 Hz
Transmit Freq Error x dB Bandwidth	13.524 kHz 32.50 MHz	OBW Power x dB	99.00 % -26.00 dB		
MSG					

Occupied Bandwidth 99%


Test Mode: 802.11n(HT20) & Ch.36

Occupied Bandwidth 99%



Occupied Bandwidth 99%

Occupied Bandwidth 99%

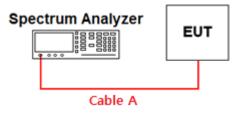
Test Mode: 802.11n(HT20) & Ch.149

Occupied Bandwidth 99%

TDt&C

Occupied Bandwidth 99%

9. LIST OF TEST EQUIPMENT


Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	18/12/19	19/12/19	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	18/12/19	19/12/19	MY50410357
Spectrum Analyzer	Agilent Technologies	N9030A	18/07/09	19/07/09	MY53310140
Horn Antenna	ETS-Lindgren	3115	18/01/30	20/01/30	6419
Horn Antenna	Schwarzbeck	BBHA 9120C	17/12/04	19/12/04	9120C-561
Horn Antenna	A.H.Systems Inc.	SAS-574	17/07/31	19/07/31	155
Loop Antenna	Schwarzbeck	FMZB1513	18/01/30	20/01/30	1513-128
Biglog Antenna	Schwarzbeck	VULB 9160	18/07/13	20/07/13	3359
EMI Test Receiver	Rohde Schwarz	ESCI7	18/03/13	19/03/13	100364
EMI Test Receiver	Rohde Schwarz	ESCI7	18/02/12 19/01/30	19/02/12 20/01/30	- 100910
Multimeter	FLUKE	17B	18/12/18	19/12/18	26030065WS
Thermohygrometer	BODYCOM	BJ5478	18/07/09	19/07/09	NA
Thermohygrometer	BODYCOM	BJ5478	18/01/03	19/01/03	120612-1
Thermohygrometer	BODYCOM	BJ5478	18/12/27 18/01/03 18/12/27	19/12/27 19/01/03 19/12/27	- 120612-2
HYGROMETER	TESTO	608-H1	18/02/10 19/01/31	19/02/10 20/01/31	34862883
Signal Generator	Rohde Schwarz	SMBV100A	18/12/19	19/12/19	255571
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	18/09/27	19/09/27	101333
LISN	SCHWARZBECK	NNLK 8121	18/03/20	19/03/20	06183
PreAmplifier	H.P	8447D	18/12/18	19/12/18	2944A07774
PreAmplifier	tsj	MLA-0118-J01-45	18/12/19	19/12/19	17138
PreAmplifier	tsj	MLA-1840-J02-45	18/07/06	19/07/06	16966-10728
Attenuator	SMAJK	SMAJK-2-3	18/07/02	19/07/02	3
Attenuator	Aeroflex/Weinschel	56-3	18/07/02	19/07/02	Y2370
Attenuator	SRTechnology	F01-B0606-01	18/07/02	19/07/02	13092403
Attenuator	Hefei Shunze	SS5T2.92-10-40	18/07/03	19/07/03	16012202
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	18/07/02	19/07/02	3
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	18/07/02	19/07/02	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	18/07/02	19/07/02	1
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	18/07/04	19/07/04	1338003 1249304
Cable	Radiall	TESTPRO3	18/07/06	19/07/06	M-01
Cable	Junkosha	MWX315	18/11/19	19/11/19	M-05
Cable	Junkosha	MWX221	18/11/19	19/11/19	M-06
Cable	Junkosha	MWX241	18/06/25	19/06/25	G-07
Cable	DT&C	Cable	18/07/06	19/07/06	G-13
Cable	DT&C	Cable	18/07/06	19/07/06	G-14
Cable	HUBER+SUHNER	SUCOFLEX 104	18/07/06	19/07/06	G-15
Cable	DT&C	CABLE	18/06/25	19/06/25	RF-20
Cable	DT&C	Cable	18/07/05	19/07/05	RF-82

Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

APPENDIX I

Conducted Test set up Diagram

Conducted Measurement

APPENDIX II

Duty Cycle Information

Test Procedure

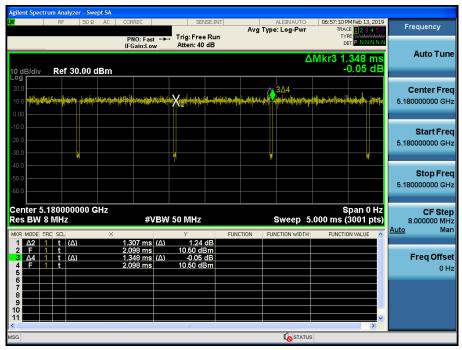
Duty Cycle [X = On Time / (On + Off time)] is measured using Measurement Procedure of KDB789033 D02v02r01

- 1. Set the center frequency of the spectrum analyzer to the center frequency of the transmission.
- 2. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value.
- 3. Set VBW \geq RBW. Set detector = peak.
- 4. Note : The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)
 - T: The minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
 - (*T* = On time of the above table since the EUT operates with above fixed Duty Cycle and it is the minimum On time)

Test Results:

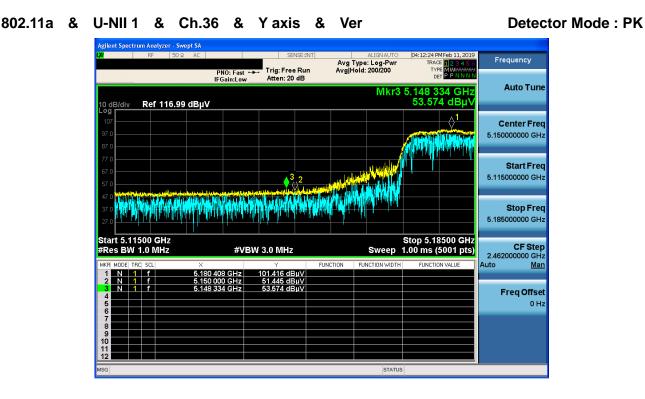
Duty cycle

Mode	Data	Tested Frequency		aximum Achievable Cycle (<i>x</i>) = On / (On	Duty Cycle Correction	50/ <i>T</i>		
mode	Rate	[MHz]	On Time [ms]	(On+Off) Time [ms]	x	Factor [dB]	[kHz]	
802.11a	6Mbps	5180	1.40	1.44	97.08	0.13	35.71	
802.11n (HT20)	MCS0	5180	1.31	1.35	96.96	0.14	38.17	

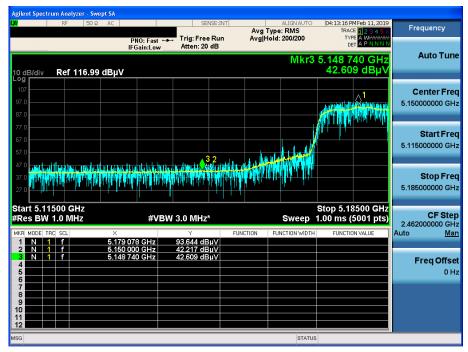


Single Transmit

Test Mode: 802.11a & Ch.36 pt S Frequency Avg Type: Log-Pwr PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 40 dB TYPE DET Auto Tune ΔMkr3 1.437 m -0.52 dl Ref 30.00 dBm **Center Freq** deserved dataset unter an Xight for a substant 5.18000000 GHz Start Freq 5.180000000 GHz Stop Freq 5.18000000 GHz Center 5.180000000 GHz Res BW 8 MHz Span 0 Hz Sweep 5.000 ms (3001 pts) CF Step 8.000000 MHz Man #VBW 50 MHz <u>Auto</u> FUNCTION FUNCT 0.61 dB 11.95 dBm -0.52 dB 11.95 dBm i (Δ) is is (∆) Freq Offset 0 Hz

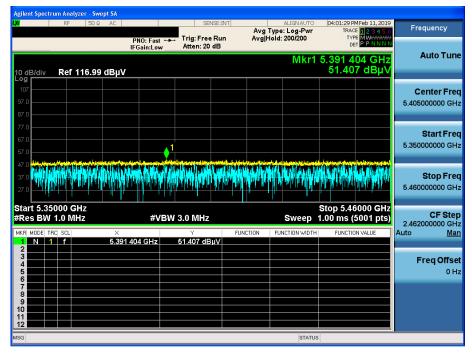

Duty Cycle

Duty Cycle


APPENDIX III

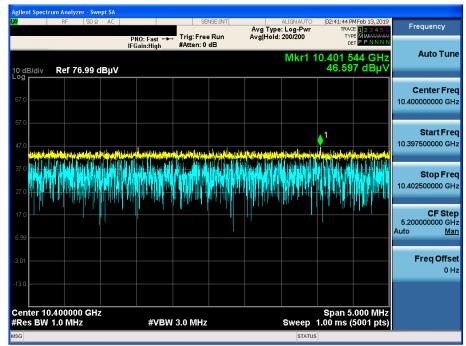
Unwanted Emissions (Radiated) Test Plot

802.11a & U-NII 1 & Ch.36 & Yaxis & Ver


Detector Mode : AV

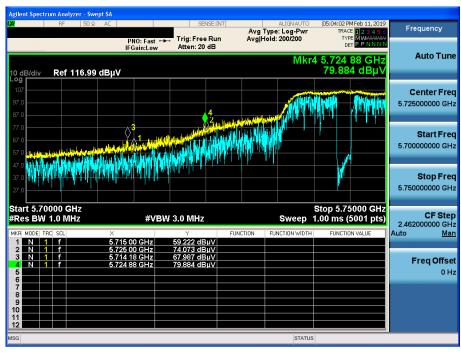
Detector Mode : PK

802.11a & U-NII 1 & Ch.48 & Yaxis & Ver

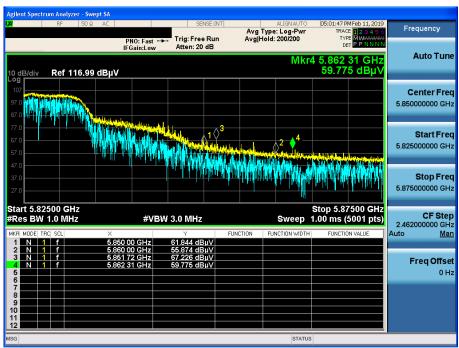

802.11a & U-NII 1 & Ch.48 & Yaxis & Ver

Detector Mode : AV

RF 50	Ω AC	SENSE(IN		ALIGN AUTO	04:00:48 PM Feb 11, 2019	Frequency
	PNO: Fas	Trig: Free Run	Avg Type Avg Hold:		TRACE 1 2 3 4 5 6 TYPE A WARANA	Frequency
	IFGain:Lo				DET A P N N N N	
				Mkr1	5.392 108 GHz	Auto Tui
0 dB/div Ref 116.9	9 dBµV				41.846 dBµV	
107						Center Fr
7.0						5.405000000 G
17.0						0.4000000000
7.0						
7.0						Start Fr
7.0						5.35000000 G
				e data atta		
is in a statistic field of the statistic of the statistic field of t	a alay islaata ji biyata dha dha dha dha	la a l <mark>e</mark> ta la distanal a di a tatu ada. A Kata mangana distangkan distangkan ta			nin and nit we stand with a standard Theory and the standard standard	Stop Fr
2.0 Marth & date of the date of the date of the second second second second second second second second second	albreachd Lath Middle Al al	f in a state of the second	andered and the build of the second		alland in the line of the second second	5.46000000 G
				1		
tart 5.35000 GHz Res BW 1.0 MHz	#1	/BW 3.0 MHz*		Sweep 1	Stop 5.46000 GHz I.00 ms (5001 pts)	CF St
						2.462000000 G
KR MODE TRC SCL	× 5.392 108 GHz	۲ 41.846 dBuV	FUNCTION FUI	NCTION WIDTH	FUNCTION VALUE	Auto <u>N</u>
2	0.002 100 0112					
3						Freq Offs
5						0
7						
8						
0						
1						
1 2						

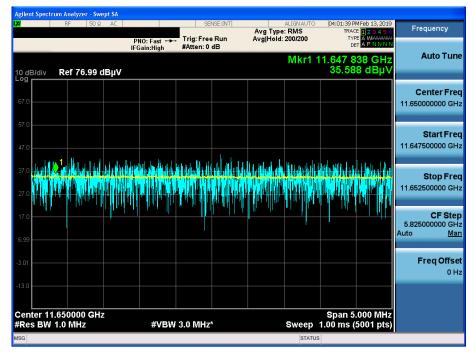

802.11a & U-NII 1 & Ch.40 & Yaxis & Ver

Detector Mode : PK

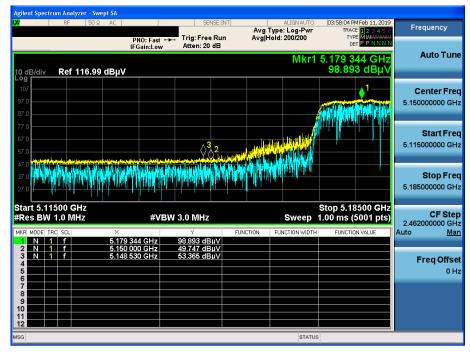

802.11a & U-NII 3 & Ch.149 & Zaxis & Hor

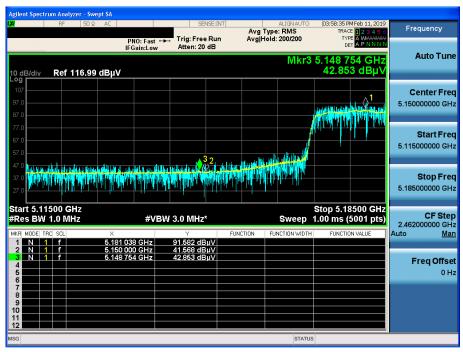
Detector Mode : PK

802.11a & U-NII 3 & Ch.165 & Z axis & Hor

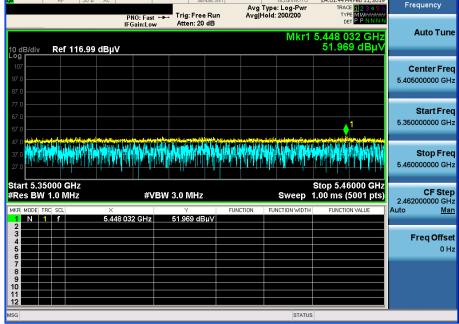

Detector Mode : PK

802.11a & U-NII 3 & Ch.165 & Yaxis & Hor


Detector Mode : AV

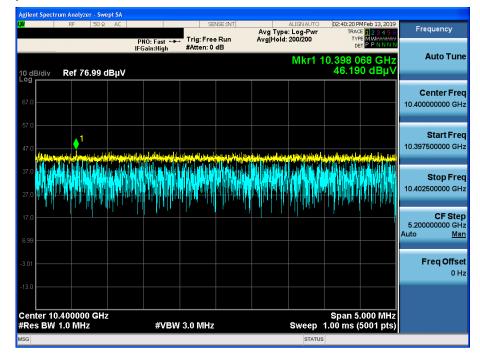

802.11n(HT20) & U-NII 1 & Ch.36 & Yaxis & Ver

Detector Mode : PK


802.11n(HT20) & U-NII 1 & Ch.36 & Yaxis & Ver

Detector Mode : AV

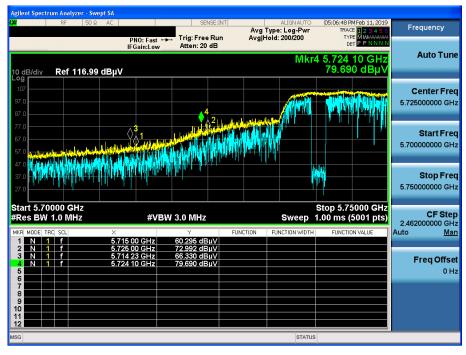
802.11n(HT20) & U-NII 1 & Ch.48 & Yaxis & Ver Detector Mode : PK Aglent Spectrum Analyzer - Swept SA RF 50 Ω AC SENSE:INT ALIGN AUTO 04:01:44 PM Feb 11, 2019 Frequency

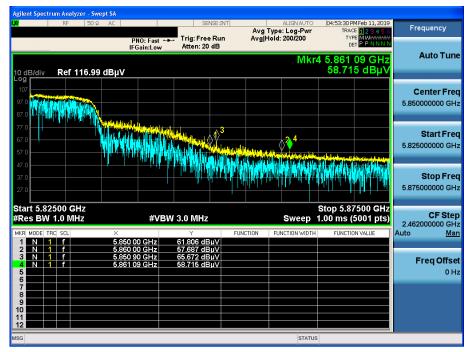


802.11n(HT20) & U-NII 1 & Ch.48 & Yaxis & Ver Detector Mode : AV

Frequency Auto Tur	
Auto Tur	
Auto Tui	
0	
Center Fr 105000000 G	
.05000000 G	
Start Fr	
5.350000000 G	
Stop Fr	
5.460000000 G	
CF Ste	
2.462000000 GI	
Freq Offs	
0	
3	

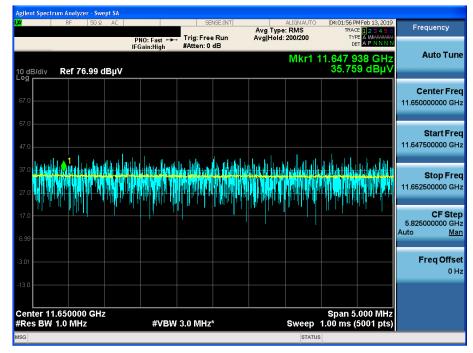
802.11n(HT20) & U-NII 1 & Ch.40 & Yaxis & Ver E


Detector Mode : PK


802.11n(HT20) & U-NII 3 & Ch.149 & Z axis & Hor

Detector Mode : PK

802.11n(HT20) & U-NII 3 & Ch.165 & Z axis & Hor


Detector Mode : PK

802.11n(HT20) & U-NII 3 & Ch.165 & Yaxis & Hor

Detector Mode : AV

