

Global United Technology Services Co., Ltd.

Report No.: GTSL202101000201F01

TEST REPORT

Applicant: Shenzhen Wenhui Technology Development Co., Ltd.

Address of Applicant: 8th Floor, Building A, Lingyun Industrial Zone, Xingye 3rd

Road, Fenghuang Fuyong, Bao'an District, Shenzhen China

Manufacturer: Shenzhen Wenhui Technology Development Co., Ltd.

Address of 8th Floor, Building A, Lingyun Industrial Zone, Xingye 3rd Road, Fenghuang Fuyong, Bao'an District, Shenzhen China Manufacturer:

Equipment Under Test (EUT)

Product Name: Smart switch socket

Model No.: WHD02

Trade Mark: **GINTEC**

FCC ID: 2AR95-WHD02

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jan. 25, 2021

Date of Test: Jan. 25, 2021- Feb. 25, 2021

Date of report issued: Feb. 25, 2021

PASS * **Test Result:**

Authorized Signature:

Robinson Luo Laboratory Manager

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	Feb. 25, 2021	Original

Tested/ Prepared By:	Joseph Cly	Date:	Feb. 25, 2021
	Project Engineer	_	
Check By:	Johnson Lux	Date:	Feb. 25, 2021
	Poviower	_	_

3 Contents

			Page
1	COV	/ER PAGE	1
2		SION	
- 3		ITENTS	
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6	TEST FACILITY	7
	5.7	TEST LOCATION	7
	5.8	Additional Instructions	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	
	7.1 7.2	CONDUCTED EMISSIONS	
	7.2 7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	
	7.6.		
	7.7	Spurious Emission	
	7.7.		
	7.7.2		
8	TES	T SETUP PHOTO	39
9	_	CONSTRUCTIONAL DETAILS	
J	⊏UI	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	rtainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 4 of 39

5 General Information

5.1 General Description of EUT

Product Name:	Smart switch socket
Model No.:	WHD02
Series model:	WHD01, WHD03, WHD04, WHD05, WHD06, WHD07, WHD08, WHD09, WHD10, WHF01, WHF02, WHF03, WHF04, WHF05, WHF06, WHF07, WHF08, WHF09, WHF10
Test sample(s) ID:	GTSL202101000201-1(Engineer sample)
	GTSL202101000201-2(Normal sample)
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20)
Antenna Type:	PCB ANT
Antenna Gain:	-1.00dBi
Power supply:	Input: AC100-240V, 50/60Hz; Output: AC100-240V, 50/60Hz; Current: 16A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Toot shannel	Frequency (MHz)
Test channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	/
Data rate	1Mbps	6Mbps	6.5Mbps	/

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special AT test command provided by manufacturer
Power level setup	Default

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021		
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021		
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021		
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021		
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021		
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021		
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021		

Cond	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021		

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021			

Gene	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021				
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

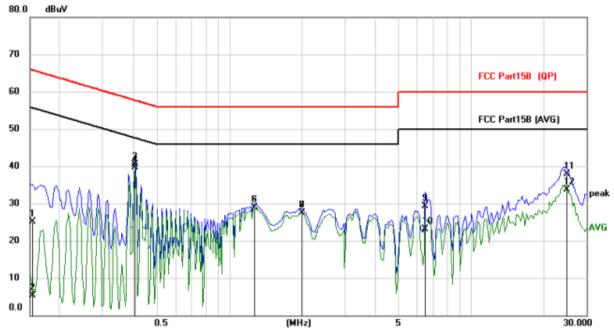
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

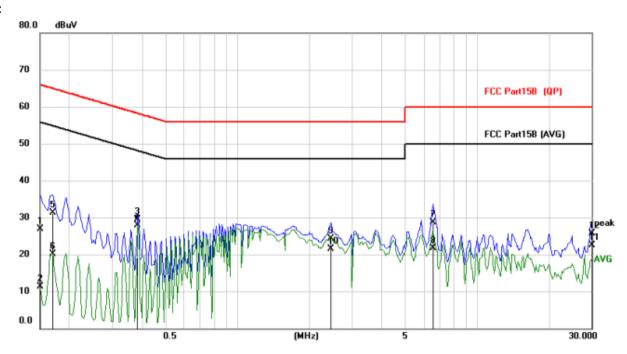
The antennas are PCB ANT, the best case gain of the antennas are -1.00dBi, reference to the appendix II for details


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	veep time=auto					
Limit:	[[] [] [] [] [] [] [] [] [] [Limit	(dBuV)				
	Frequency range (MHz)	Quasi-peak Average					
	0.15-0.5	66 to 56*	56 to	o 46*			
	0.5-5	56		16			
	5-30	60	5	50			
Test setup:	* Decreases with the logarithm Reference Plane	of the frequency.					
Test procedure:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a	Filter — AC p		through a			
rest procedure:	 Ine E.O.1 and simulators a line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). Both sides of A.C. line are content interference. In order to find positions of equipment and according to ANSI C63.10:2 	network (L.I.S.N.). dance for the measurals connected to the 1/50uH coupling imported the block diagram of the checked for maximum the maximum emisural of the interface contacts.	This provides uring equipm e main powe edance with of the test sem conducted sion, the related by the sion of the sion o	s a lent. er through a 500hm etup and dive			
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Measurement data

Line:

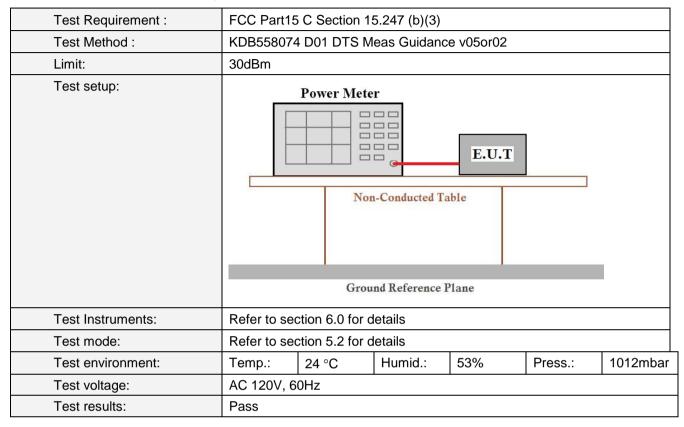


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1539	14.13	10.92	25.05	65.79	-40.74	QP	
2		0.1539	-5.63	10.92	5.29	55.79	-50.50	AVG	
3		0.4074	29.66	10.92	40.58	57.70	-17.12	QP	
4	*	0.4074	28.83	10.92	39.75	47.70	-7.95	AVG	
5		1.2732	17.97	10.94	28.91	56.00	-27.09	QP	
6		1.2732	18.06	10.94	29.00	46.00	-17.00	AVG	
7		1.9947	16.59	10.96	27.55	56.00	-28.45	QP	
8		1.9947	16.54	10.96	27.50	46.00	-18.50	AVG	
9		6.4671	18.05	11.17	29.22	60.00	-30.78	QP	
10		6.4671	11.96	11.17	23.13	50.00	-26.87	AVG	
11		24.8322	26.08	11.87	37.95	60.00	-22.05	QP	
12		24.8322	21.89	11.87	33.76	50.00	-16.24	AVG	

GTS

Neutral:

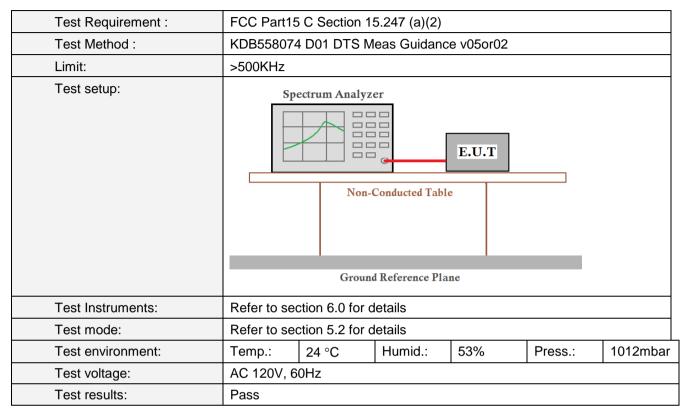
Report No.: GTSL202101000201F01


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	15.97	10.92	26.89	66.00	-39.11	QP	
2		0.1500	0.46	10.92	11.38	56.00	-44.62	AVG	
3		0.3840	18.56	10.92	29.48	58.19	-28.71	QP	
4	*	0.3840	16.96	10.92	27.88	48.19	-20.31	AVG	
5		0.1695	20.47	10.92	31.39	64.98	-33.59	QP	
6		0.1695	9.25	10.92	20.17	54.98	-34.81	AVG	
7		6.5412	17.60	11.18	28.78	60.00	-31.22	QP	
8		6.5412	10.46	11.18	21.64	50.00	-28.36	AVG	
9		2.4549	13.27	10.98	24.25	56.00	-31.75	QP	
10		2.4549	10.43	10.98	21.41	46.00	-24.59	AVG	
11		30.0000	10.36	12.09	22.45	60.00	-37.55	QP	
12		30.0000	13.69	12.09	25.78	50.00	-24.22	AVG	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + Correct Factor
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

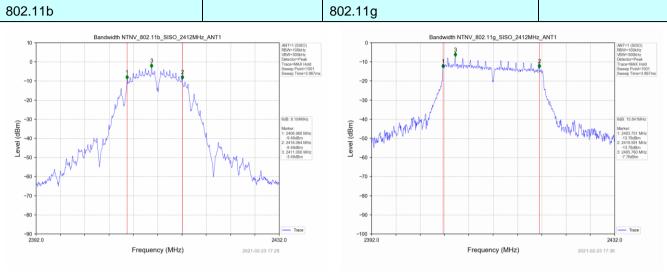
7.3 Conducted Peak Output Power



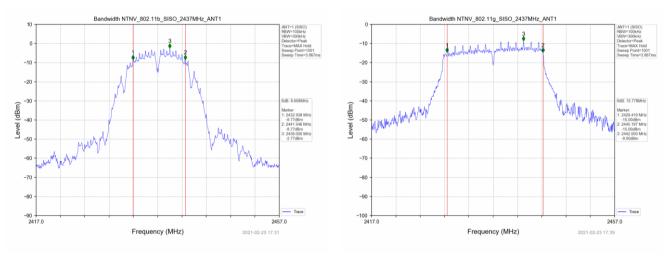
Measurement Data

Test CH		Limit(dBm)	Result			
	802.11b	Limit(abin)	result			
Lowest	7.61	9.68	7.56			
Middle	8.05	9.05	7.22	30.00	Pass	
Highest	7.60	9.15	7.57			

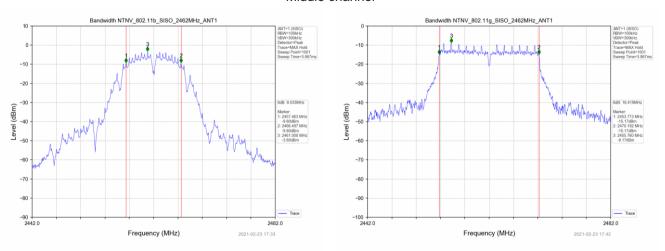
7.4 Channel Bandwidth


Measurement Data

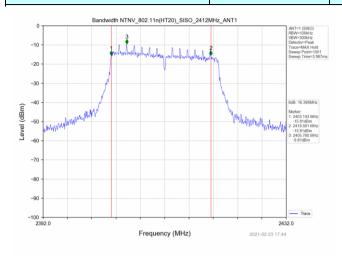
Test CH		Limit(KHz)	Result			
	802.11b	Liiiii((Ki iZ)	Result			
Lowest	9.104	15.841	16.398			
Middle	8.608	15.778	16.381	>500	Pass	
Highest	9.033	16.419	17.637			

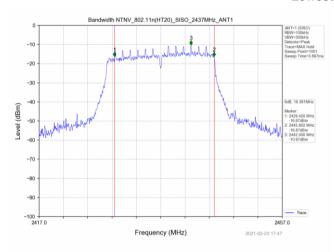


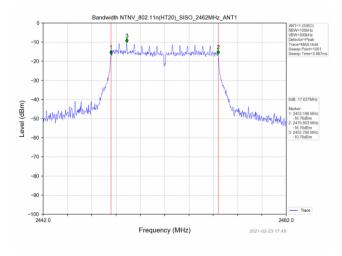
Test plot as follows:


Report No.: GTSL202101000201F01

Lowest channel


Middle channel


Highest channel


802.11n

Lowest channel

Middle channel

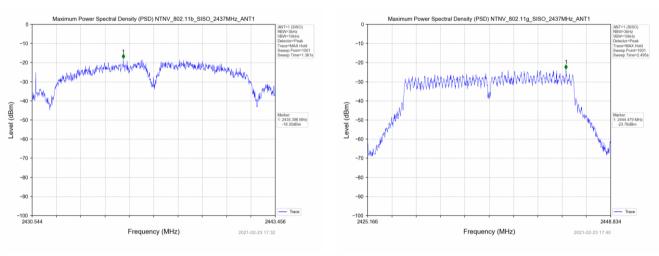
Highest channel

7.5 Power Spectral Density

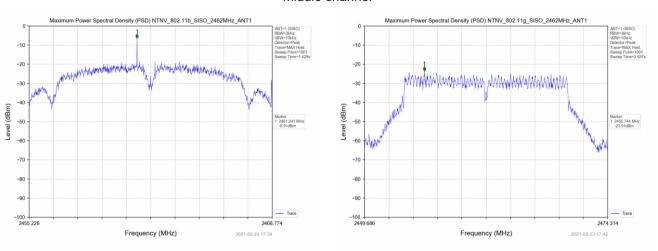
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (e)						
Test Method:	KDB558074	KDB558074 D01 DTS Meas Guidance v05or02						
Limit:	8dBm/3kHz	7						
Test setup:	Sp	Non-						
Test Instruments:	Refer to se	ction 6.0 for	details					
Test mode:	Refer to se	ction 5.2 for	details					
Test environment:	Temp.:	24 °C	Humid.:	53%	Press.:	1012mbar		
Test voltage:	AC 120V, 6	AC 120V, 60Hz						
Test results:	Pass							

Measurement Data

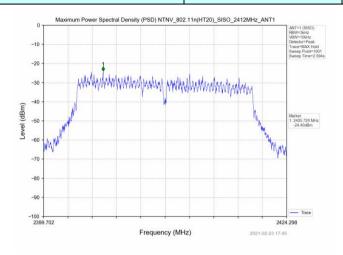
Test CH	Po	Limit	Result			
1651 011	802.11b	802.11g	802.11n(HT20)	, ID (0111)	result	
Lowest	-8.64	-22.87	-24.40			
Middle	-18.30	-23.76	-25.01	8.00	Pass	
Highest	-6.91	-23.91	-23.15			

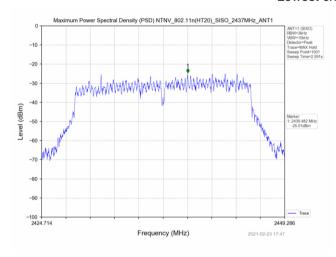


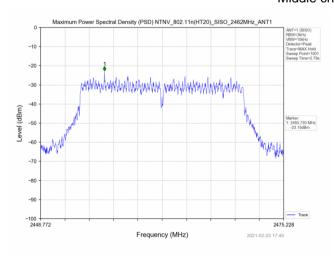
Test plot as follows:


Report No.: GTSL202101000201F01

Lowest channel


Middle channel

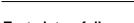

Highest channel


802.11n

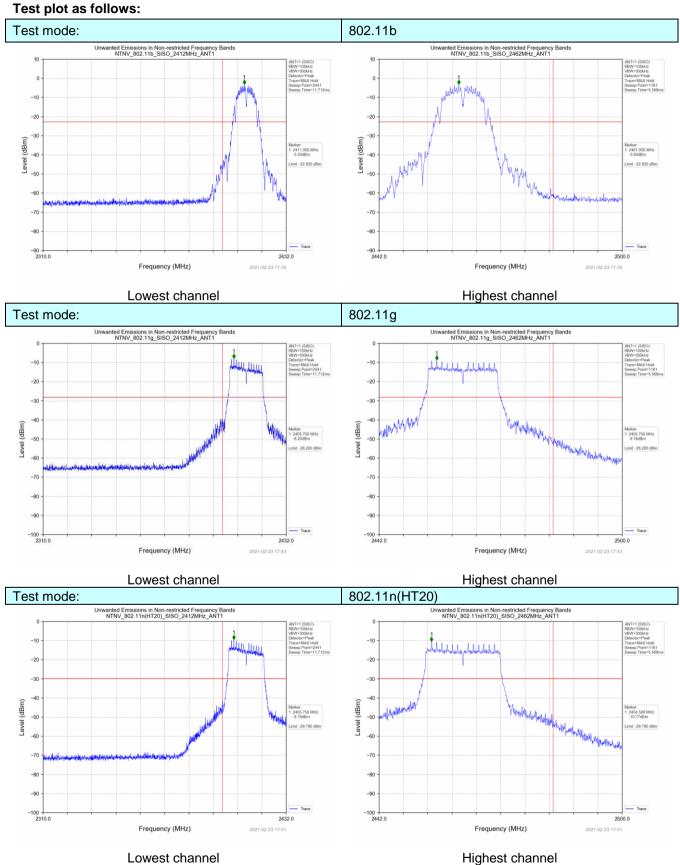
Lowest channel

Middle channel

Highest channel



7.6 Band edges


7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D01 DTS Meas Guidance v05or02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test environment:	Temp.: 24 °C Humid.: 53% Press.: 1012mbar
Test voltage:	AC 120V, 60Hz
Test results:	Pass

GTS

Report No.: GTSL202101000201F01

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Radiated Emission Method

Report No.: GTSL202101000201F01

Test Requirement:	FCC Part15 C S	Section 15.209	9 and 15.2	205			
Test Method:	ANSI C63.10: 2	013					
Test Frequency Range:	All of the restrict 2500MHz) data			only the wo	rst band's	(2310MHz to	
Test site:	Measurement D						
Receiver setup:	Frequency	Detector	RBV	V VB\	N	Value	
·		Peak	1MH	lz 3MF	-lz	Peak	
	Above 1GHz	Average	1MH	lz 3MH	Hz A	verage	
Limit:	Freque	Frequency Limit (dBuV/m @3m)					
			•	54.00	,	Value verage	
	Above 1	GHZ		74.00		Peak	
Test Procedure:	1. The EUT was the ground as determine the 2. The EUT was antenna, whistower. 3. The antenna ground to deshorizontal an measuremer 4. For each sus and then the and the rotathe maximum 5. The test-recespecified Bas 6. If the emission limit specified the EUT wou 10dB margin average met 7. The radiation	s placed on the ta 3 meter case position of the set 3 meters che was mountained the management of the set of t	ne top of a mber. The he highes is away from ted on the ed from on aximum warizations dion, the Entuned to I med from on was set to Maximum EUT in poly a could be did. Otherwitested one ided and the ints are pe	e table was t radiation. m the inter top of a va- ne meter to value of the of the anter UT was are neights from degrees to Peak Dete Hold Mode eak mode value stopped are se the emise by one us en reported rformed in	ference-recardable-height four meter of four meter of field strength for a maged to its managed to its managed to its managed to its managed for the peak sing peak, quin a data strength for the strength for a data strength for the strength for a data strength for a data strength for the peak strength for a data strength for a data strength for the strength for a data strength for the strength for a data	o degrees to seiving the antenna as above the gth. Both to make the sworst case of 4 meters to 4 meters to 4 meters to 5 and and and and tower than the values of did not have uasi-peak or sheet.	
		node is record			23 0000, 01	,	
Test Instruments:	Refer to section			. 500111			
Test mode:	Refer to section						
Test environment:				51%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Measurement data:

Note: 802.11b/802.11g/802.11n (H20) and all have been tested, only worse case 802.11b is reported

Horizontal: 802.11b Mode TX CH Low (2412MHz)

110112011141. 002.	TID WOOL TA OI	T LOW (Z+TZIVII	12)			
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390	67.33	-5.68	61.65	74.00	-12.35	peak
2390	47.49	-5.68	41.81	54.00	-12.19	AVG
			!			

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical: 802.11b Mode TX CH Low (2412MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotactor Type	
(MHz)	(dBµV)	(dB)	(dBµV/m) (dBµV/m) ((dB)	Detector Type	
2390	67.59	-5.68	61.91	74.00	-12.09	peak	
2390	48.44	-5.68	42.76	54.00	-11.24	AVG	
						!	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Horizontal: 802.11b Mode TX CH HIGH (2462MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m) (dBµV/m) (dB)		Detector Type	
2483.5	64.06	-5.85	58.21	74.00	-15.79	peak
2483.5	2483.5 48.49 -5.85 42.64		42.64	54.00	-11.36	AVG
	•	•	•	•		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical: 802.11b Mode TX CH HIGH (2462MHz)

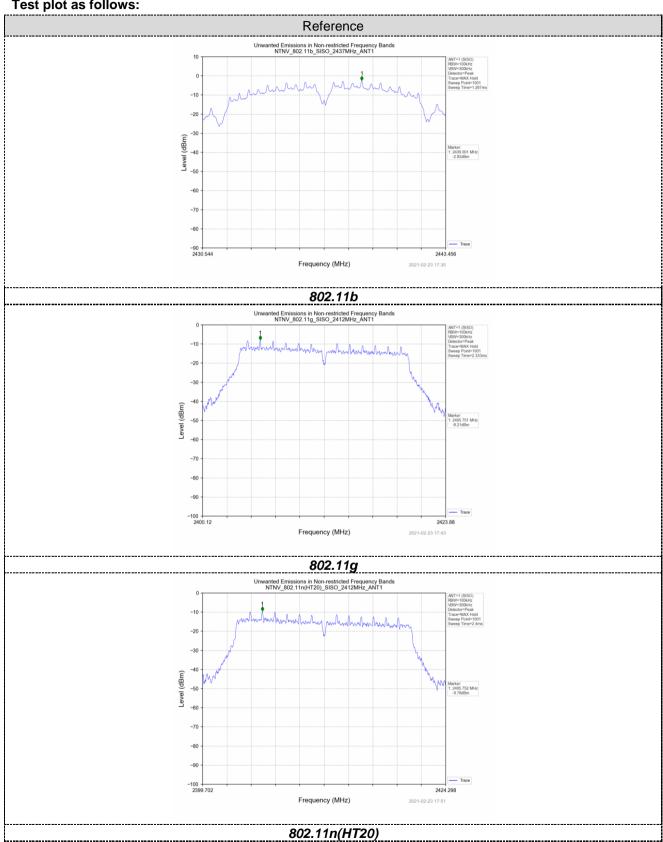
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

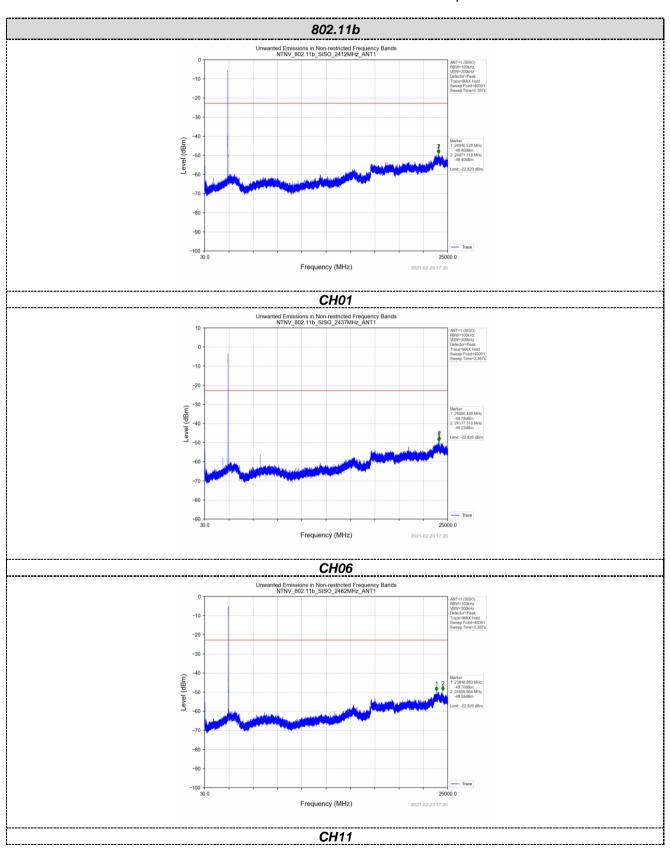
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB) (dBµV/m)		(dBµV/m)	(dB)	Detector Type	
2483.5	64.57	-5.65	58.92	74.00	-15.08	peak	
2483.5	48.03	-5.85	42.18	54.00	-11.82	AVG	

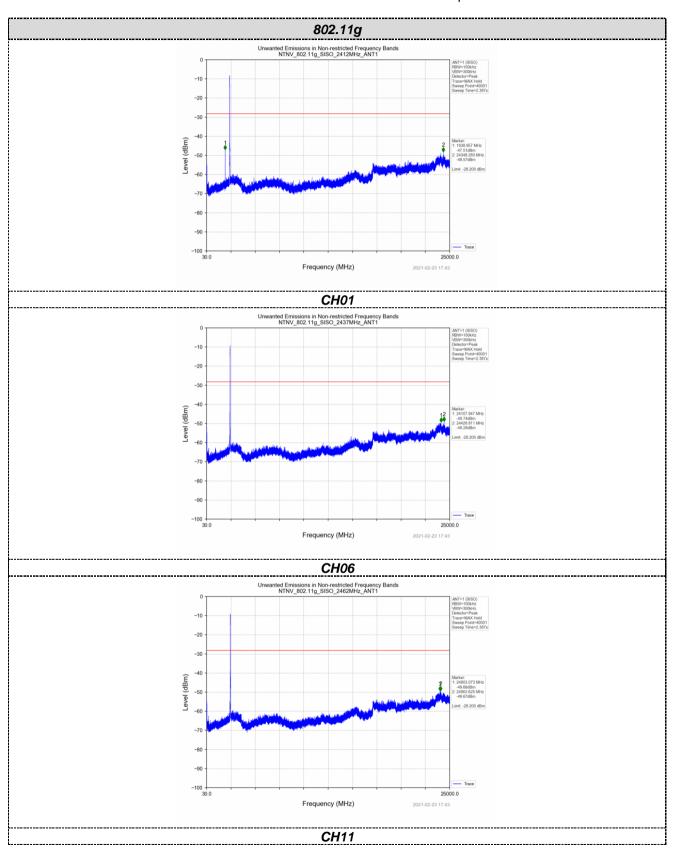
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

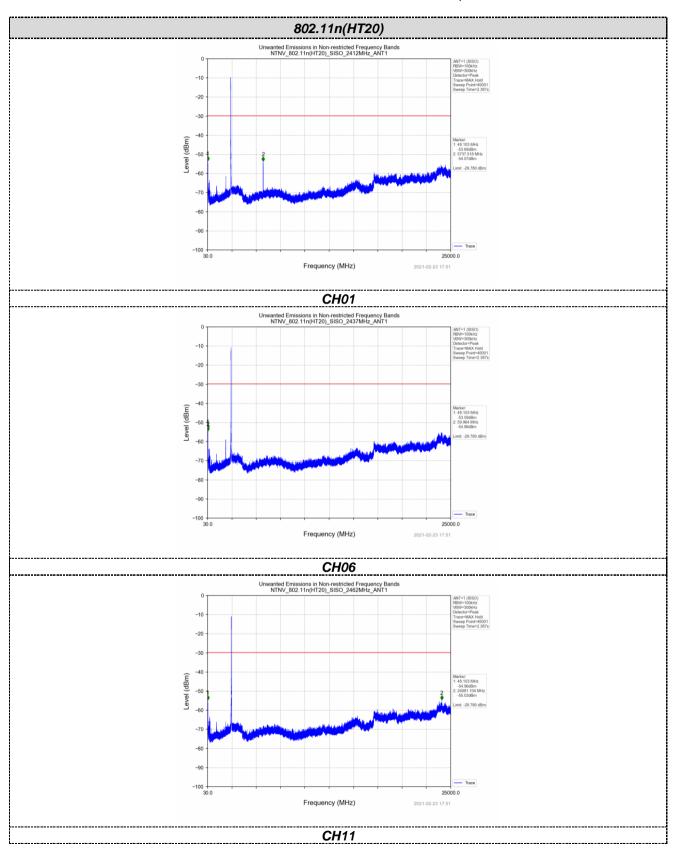
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

7.7 Spurious Emission


7.7.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	KDB558074 D01 DTS Meas Guidance v05or02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.: 24 °C Humid.: 53% Press.: 1012mbar						
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						


Page 26 of 39



Test plot as follows:

7.7.2 Radiated Emission Method

FCC Part15 C Section	on 15	5.209					
ANSI C63.10: 2013							
9kHz to 25GHz							
Measurement Distar	nce: 3	3m					
Frequency		Detector	RB\	Ν	VBW	Value	
9KHz-150KHz	Qı	ıasi-peak	2001	Ηz	600H	z Quasi-peak	
150KHz-30MHz	150KHz-30MHz Qua		9KF	Ιz	30KH:	z Quasi-peak	
30MHz-1GHz Qua		ıasi-peak	100K	Ήz	300KH	Iz Quasi-peak	
Above 1GHz		Peak	1MF	Ηz	3MHz	z Peak	
Above 1G112		Peak	1MF	Ηz	10Hz	Average	
Frequency Limit (u			//m)	٧	'alue	Measurement Distance	
0.009MHz-0.490M	2400/F(k	(Hz)		QP	300m		
0.490MHz-1.705M	lHz	24000/F(-(KHz)		QP	300m	
1.705MHz-30MH	lz	30	30		QP	30m	
30MHz-88MHz		100			QP		
88MHz-216MHz		150			QP		
216MHz-960MH	z 200				QP	3m	
960MHz-1GHz		500		QP		3111	
Above 1GHz		500		Average			
7.5575 7.57.12		5000		Peak			
For radiated emiss	sions	from 9kH	z to 30	MH	Z		
Tum Table Tum Table Im Receivers For radiated emissions from 30MHz to1GHz							
	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz For radiated emiss	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3 Frequency 9KHz-150KHz Qu 150KHz-30MHz 30MHz-1GHz Qu Above 1GHz Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz For radiated emissions	9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Peak Peak Peak Peak Peak Peak 10.009MHz-0.490MHz 2400/F(R 1.705MHz-30MHz 24000/F(R 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 For radiated emissions from 9kH	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBN 9KHz-150KHz Quasi-peak 2001 150KHz-30MHz Quasi-peak 9KH 30MHz-1GHz Quasi-peak 100K Above 1GHz Peak 1MH Peak 1MH Frequency Limit (uV/m) 0.009MHz-0.490MHz 2400/F(KHz) 0.490MHz-1.705MHz 24000/F(KHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 5000 For radiated emissions from 9kHz to 30 For radiated emissions from 9kHz to 30 Tum Table EUT- Tum Table 1 Tum Table 1 Im	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 100KHz Above 1GHz Peak 1MHz Peak 1MHz Frequency Limit (uV/m) V 0.009MHz-0.490MHz 2400/F(KHz) 0.490MHz-1.705MHz 24000/F(KHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 Av 5000 F For radiated emissions from 9kHz to 30MH	ANSI C63.10: 2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 100KHz 300KHz Above 1GHz Peak 1MHz 10Hz Frequency Limit (uV/m) Value 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-1.705MHz 24000/F(KHz) QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 QP Above 1GHz 500 Average 5000 Peak For radiated emissions from 9kHz to 30MHz	

Report No.: GTSL202101000201F01 Test Antenna EUT Turn Table Tum Tables < 80cm Preamplifier. For radiated emissions above 1GHz < 1m ... 4m > EUT Turn Table <150cm Preamplifier+ Receiver+ Test Procedure: The EUT was placed on the top of a rotating table (0.8m for below 1G 1. and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

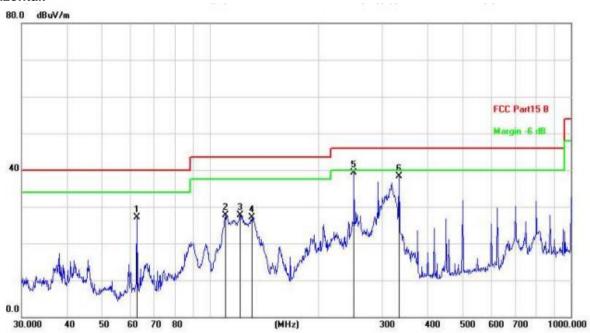
Report No	GTSL20	1210100	0201F01

Test voltage:	AC120V 60	AC120V 60Hz					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 6	AC 120V, 60Hz					
Test results:	Pass						

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

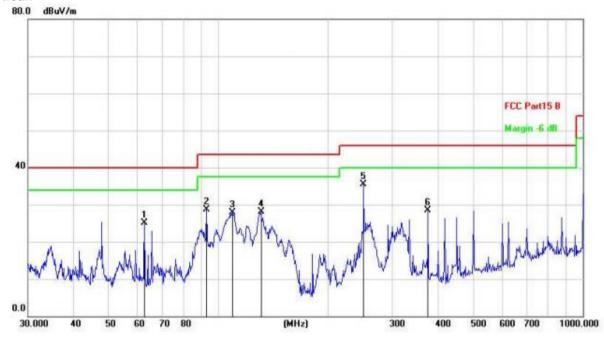
Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

■ Below 1GHz

Horizontal:



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		62.6507	46.16	-19.06	27.10	40.00	-12.90	QP			
2		110.1816	47.89	-20.20	27.69	43.50	-15.81	QP			
3		121.1231	47.48	-19.84	27.64	43.50	-15.86	QP			
4		130.3789	46.28	-19.27	27.01	43.50	-16.49	QP			
5	*	250.3012	58.38	-19.13	39.25	46.00	-6.75	QP			
6		333.6867	56.30	-18.00	38.30	46.00	-7.70	QP			

Final Level =Receiver Read level + Correct Factor

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		62.6507	44.17	-19.06	25.11	40.00	-14.89	QP			
2		92.7871	49.71	-21.09	28.62	43.50	-14.88	QP			
3		109.4116	48.07	-20.23	27.84	43.50	-15.66	QP			
4		130.8369	47.29	-19.23	28.06	43.50	-15.44	QP			
5	*	250.3012	54.81	-19.37	35.44	46.00	-10.56	QP			
6		375.9385	45.77	-17.27	28.50	46.00	-17.50	QP			

Final Level = Receiver Read level + Correct Factor

■ Above 1GHz

Note: 802.11b/802.11g/802.11n (H20) and all have been tested, only worse case 802.11b is reported

Horizontal: LOW CH1 (802.11b Mode)/2412

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	64.55	-3.67	60.88	74.00	-13.12	peak
4824	45.79	-3.64	42.15	54.00	-11.85	AVG
7236	59.78	-0.90	58.88	74.00	-15.12	peak
7236	41.97	-0.90	41.07	54.00	-12.93	AVG
	Antonna Factor					

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical: LOW CH1 (802.11b Mode)/2412

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	dBμV/m) (dBμV/m)		Type
4824	64.03	-3.67	60.36	74.00	-13.64	peak
4824	45.78	-3.64	42.14	54.00	-11.86	AVG
7236	57.05	-0.90	56.15	74.00	-17.85	peak
7236	41.67	-0.90	40.77	54.00	-13.23	AVG
Domorly Footor	Antonno Footor	. Coble Less	Dro omplifior		•	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Horizontal: MID CH6 (802.11b Mode)/2437

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	//m) (dBµV/m) (dB)		Type
4874	62.30	-3.53	58.77	74.00	-15.23	peak
4874	45.22	-3.53	41.69	54.00	-12.31	AVG
7311	57.06	-0.85	56.21	74.00	-17.79	peak
7311	42.21	-0.85	41.36	54.00	-12.64	AVG
					1	
					-	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical: MID CH6 (802.11b Mode)/2437

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	62.33	-3.53	58.80	74.00	-15.20	peak
4874	45.46	-3.53	41.93	54.00	-12.07	AVG
7311	57.71	-0.85	56.86	74.00	-17.14	peak
7311	43.09	-0.85	42.24	54.00	-11.76	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Horizontal: HIGH CH11 (802.11b Mode)/2462

(dBµV) 64.56 45.76	(dB) -3.49 -3.49	(dBµV/m) 61.07 42.27	(dBµV/m) 74.00 54.00	(dB) -12.93 -11.73	Type peak AVG
					-
45.76	-3.49	42.27	54.00	-11.73	AVG
					1
59.85	-0.78	59.07	74.00	-14.93	peak
41.11	-0.78	40.33	54.00	-13.67	AVG
	41.11	41.11 -0.78	41.11 -0.78 40.33	41.11 -0.78 40.33 54.00	41.11 -0.78 40.33 54.00 -13.67

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical: HIGH CH11 (802.11b Mode)/2462

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	63.36	-3.49	59.87	74.00	-14.13	peak
4924	45.47	-3.49	41.98	54.00	-12.02	AVG
7386	58.25	-0.78	57.47	74.00	-16.53	peak
7386	42.13	-0.78	41.35	54.00	-12.65	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----