

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202305351F02

TEST Report

Applicant: Shenzhen Wenhui Technology Development Co., Ltd.

Address of Applicant: 401, No.7, Xingye 3rd Road, Fenghuang Community, Fuyong

Street, Bao'an District, Shenzhen

Manufacturer: Shenzhen Wenhui Technology Development Co., Ltd.

Address of 401, No.7, Xingye 3rd Road, Fenghuang Community, Fuyong

Manufacturer: Street, Bao'an District, Shenzhen

Equipment Under Test (EUT)

Product Name: Video doorbell

Model No.: WF001

Series model: WF002, WF003, WF004, WF005,

WF006, WF007, WF008, WF009, WF010

Trade Mark: N/A

FCC ID: 2AR95-WF001

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: May.22,2023

Date of Test: May.22,2023~May.26,2023

Date of report issued: May.26,2023

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	May.26,2023	Original

Tested/ Prepared By	Heber He	Date:	May.26,2023
	Project Engineer	_	
Check By:	Bruce 2hu	Date:	May.26,2023
	Reviewer	INO	
Approved By :	Kevin Yang HT	Toate:	May.26,2023
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS 5. TEST INSTRUMENTS LIST	
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED PEAK OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGE 6.5.1. Conducted Emission Method 6.5.2. Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1. Conducted Emission Method 6.6.2. Radiated Emission Method 6.6.2. Radiated Emission Method 6.6.3. RADIENNA REQUIREMENT	
7. TEST SETUP PHOTO	33
8. FUT CONSTRUCTIONAL DETAILS	33

3. Test Summary

<u> </u>		
Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
6dB Bandwidth	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

•						
Test Item	Frequency Range Measurement Uncertaint		Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~6GHz	3.54 dB	(1)			
Radiated Emission	6~40GHz	5.38 dB	(1)			
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

4. General Information

4.1. General Description of EUT

Conordi 2000. piion oi 201			
Product Name:	Video doorbell		
Model No.:	WF001		
Series model:	WF002, WF003, WF004, WF005, WF006, WF007, WF008, WF009, WF010		
Test sample(s) ID:	HTT202305351-1(Engineer sample) HTT202305351-2(Normal sample)		
Channel numbers:	802.11b: 11		
Channel separation:	5MHz		
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)		
Antenna Type:	Internal Antenna		
Antenna gain:	1.80dBi		
Power supply:	DC 3.7V From Battery and DC 5V From External Circuit		

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
	802.11b
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	
Data rate	1Mbps	

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been accredited by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Shenzhen HTT Technology Co.,Ltd.

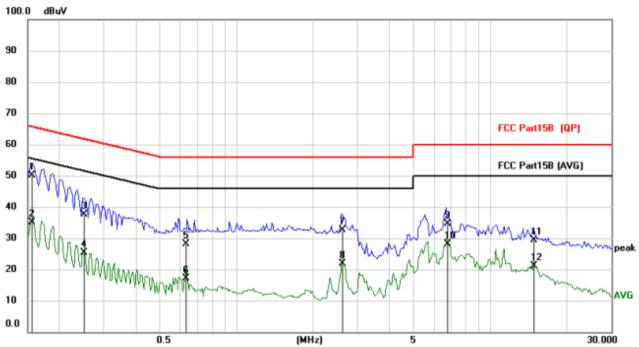
Tel: 0755-23595200 Fax: 0755-23595201

5. Test Instruments list

	. Test instruments list						
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date	
	0 0 : 1 :	0		No.	(mm-dd-yy)	(mm-dd-yy)	
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024	
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024	
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2023	Apr. 25 2024	
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2023	Apr. 25 2024	
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2023	Apr. 25 2024	
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2023	Apr. 25 2024	
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2023	Apr. 25 2024	
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2023	Apr. 25 2024	
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2023	May. 20 2024	
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2023	May. 19 2024	
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2023	Apr. 25 2024	
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2023	Apr. 25 2024	
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2023	Apr. 25 2024	
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2023	Apr. 25 2024	
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2023	Apr. 25 2024	
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2023	Apr. 25 2024	
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2023	May. 22 2024	
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2023	May. 22 2024	
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2023	Apr. 25 2024	
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2023	Apr. 25 2024	
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2023	Apr. 25 2024	
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024	
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2023	Apr. 25 2024	
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2023	Apr. 25 2024	
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2023	Apr. 25 2024	
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2023	Apr. 25 2024	
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2023	Apr. 25 2024	
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2023	Apr. 27 2024	
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A	
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A	
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A	

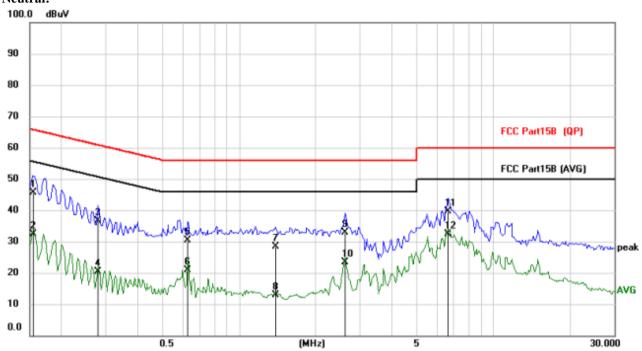
6. Test results and Measurement Data

6.1. Conducted Emissions


	<u> </u>				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz,	Sweep time=auto			
Limit:	Fraguency range (MHz)	Limit	t (dBuV)		
	Frequency range (MHz)	Quasi-peak		erage	
	0.15-0.5	66 to 56*	-	o 46*	
	0.5-5	56		46	
	5-30	60		50	
Test setup:	* Decreases with the logarith				
Test procedure:	AUX Equipment E.U.T Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	AUX Equipment Test table/Insulation plane Remark E.U.T EMI Receiver EUT: Equipment Under Test LISN: Line Impedence Stabilization Network			
	 50ohm/50uH coupling im The peripheral devices at LISN that provides a 50ot termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment ar according to ANSI C63.10 	pedance for the meas re also connected to the nm/50uH coupling impute to the block diagram re checked for maximute the maximum emisted all of the interface of	uring equipmed main powed ance with of the test some conducted asion, the reliables must be	nent. er through a 50ohm etup and d ative oe changed	
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C Hu	umid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz	I	1	1	
Test results:	Pass				
	1				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



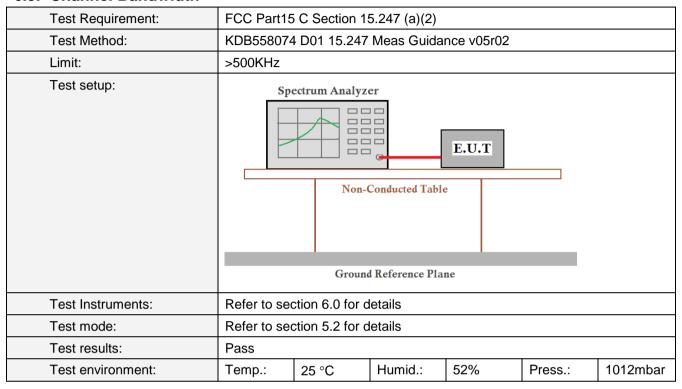
No	Mk.	Freq.	Reading Level	Correct	Measure-	Limit	Over	
NO.	IVIK.	rieq.	Level	Factor	ment	Litting	010	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1556	39.82	10.26	50.08	65.70	-15.62	QP
2		0.1556	24.84	10.26	35.10	55.70	-20.60	AVG
3		0.2514	27.42	10.22	37.64	61.71	-24.07	QP
4		0.2514	15.17	10.22	25.39	51.71	-26.32	AVG
5		0.6336	17.47	10.55	28.02	56.00	-27.98	QP
6		0.6336	6.51	10.55	17.06	46.00	-28.94	AVG
7		2.6082	21.74	10.84	32.58	56.00	-23.42	QP
8		2.6082	10.96	10.84	21.80	46.00	-24.20	AVG
9		6.7635	23.72	10.93	34.65	60.00	-25.35	QP
10		6.7635	17.15	10.93	28.08	50.00	-21.92	AVG
11		14.8281	17.19	12.17	29.36	60.00	-30.64	QP
12		14.8281	9.01	12.17	21.18	50.00	-28.82	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1548	35.38	10.26	45.64	65.74	-20.10	QP
2	0.1548	22.09	10.26	32.35	55.74	-23.39	AVG
3	0.2787	26.29	10.24	36.53	60.85	-24.32	QP
4	0.2787	10.26	10.24	20.50	50.85	-30.35	AVG
5	0.6297	19.77	10.54	30.31	56.00	-25.69	QP
6	0.6297	10.31	10.54	20.85	46.00	-25.15	AVG
7	1.3941	17.48	10.81	28.29	56.00	-27.71	QP
8	1.3941	2.02	10.81	12.83	46.00	-33.17	AVG
9	2.6148	21.97	10.84	32.81	56.00	-23.19	QP
10	2.6148	12.59	10.84	23.43	46.00	-22.57	AVG
11	6.6348	28.73	10.93	39.66	60.00	-20.34	QP
12 *	6.6348	21.34	10.93	32.27	50.00	-17.73	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

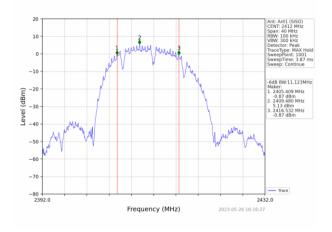
6.2. Conducted Peak Output Power


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	KDB558074	KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	30dBm							
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table							
		Ground Reference Pla	ane					
Test Instruments:	Refer to se	ction 6.0 for c	letails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

Measurement Data

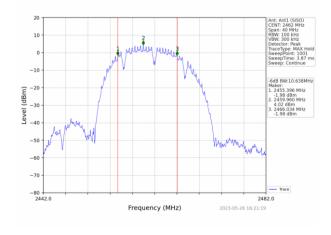
Test CH	Peak Output Power (dBm) 802.11b	Limit(dBm)	Result
Lowest	17.35		
Middle	16.39	30.00	Pass
Highest	16.10		

6.3. Channel Bandwidth


Measurement Data

Test CH	Channel Bandwidth (MHz) 802.11b	Limit(KHz)	Result
Lowest	11.123		
Middle	11.138	>500	Pass
Highest	10.638		

Test plot as follows:


802.11b

Lowest channel

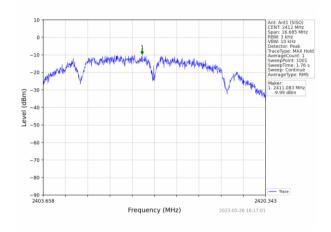
Middle channel

Highest channel

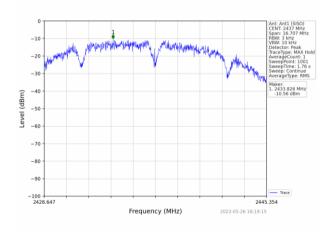
6.4. Power Spectral Density

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (e)							
Test Method:	KDB55807	KDB558074 D01 15.247 Meas Guidance v05r02							
Limit:	8dBm/3kH	Z							
Test setup:	SI	Non-							
Test Instruments:	Refer to se	Refer to section 6.0 for details							
Test mode:	Refer to se	Refer to section 5.2 for details							
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

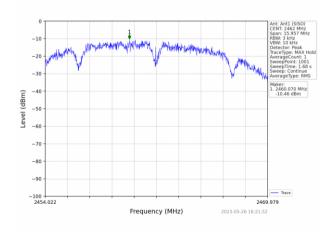
Measurement Data


Test CH	Power Spectral Density (dBm/3kHz) 802.11b	Limit (dBm/3kHz)	Result
Lowest	-9.99		
Middle	-10.56	8.00	Pass
Highest	-10.46		

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



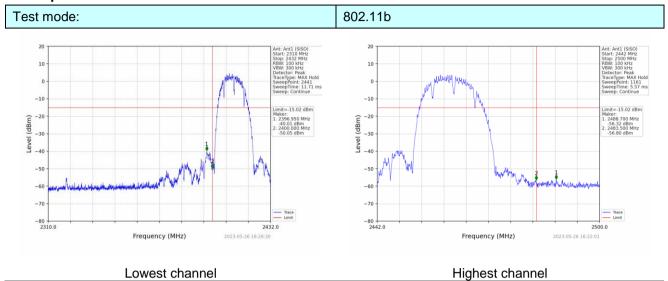
Test plot as follows:


802.11b		
002.110		

Lowest channel

Middle channel

Highest channel


6.5. Band Edge

6.5.1. Conducted Emission Method

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)						
Test Method:	KDB558074	KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	spectrum in produced by 100 kHz ba desired po	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Test plot as follows:

6.5.2. Radiated Emission Method

Toot Doguiroment	FCC Part15	C Section 19	5 209 2	and 15.2	205		
Test Requirement:	FCC Part15 C Section 15.209 and 15.205 ANSI C63.10: 2013						
Test Method:	All of the restrict bands were tested, only the worst band's (2310MHz to						
Test Frequency Range:	2500MHz) data was showed.						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequenc			RBW			mark
	Above 1GH	-Iz Pea		1MH:			k Value
1	Fro	Pea		1MH:			ge Value
Limit:	Fie	quency	L		3uV/m @3m 54.00		emark ge Value
	Abov	ve 1GHz			74.00		k Value
Test setup:	Turn Table (150cm > 4)						
Test Procedure:	1 The FUT	was placed		top of a	Preamplifier-	ole 1.5 meters	s above the
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 						
Test Instruments:	Refer to sec					in a data she	
Test mode:	Refer to sec	tion 5.2 for d	letails				
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

Measurement Data

Report No.: HTT202305351F02

	Test mode:	802.11b	Test channel:	Lowest
١	1 001 1110 001	002.1.10	1 oot onarmon	2011001

Horizontal (Worst case)

	110112011441 (1101010400)							
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	50.89	26.20	5.72	33.30	49.51	74.00	-24.49	peak
2390	46.33	26.20	5.72	33.30	44.95	54.00	-9.05	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	61.35	26.20	5.72	33.30	59.97	74.00	-14.03	peak
2390	45.96	26.20	5.72	33.30	44.58	54.00	-9.42	AVG

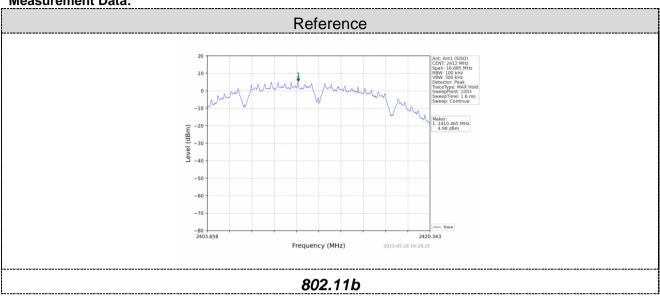
|--|

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	57.41	28.60	6.97	32.70	60.28	74.00	-13.72	peak
2483.5	42.74	28.60	6.97	32.70	45.61	54.00	-8.39	AVG

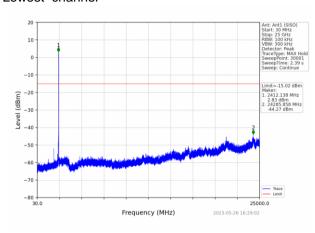
Vertical:

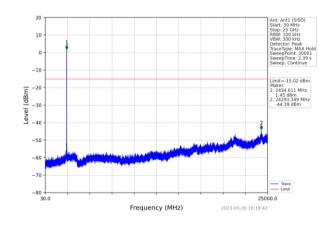
Fraguenay	Meter Reading	Antenna		Preamp	Emission Level	Limits	Morgin	
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	LIIIIIIS	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	55.90	28.60	6.97	32.70	58.77	74.00	-15.23	peak
2483.5	43.68	28.60	6.97	32.70	46.55	54.00	-7.45	AVG


6.6. Spurious Emission

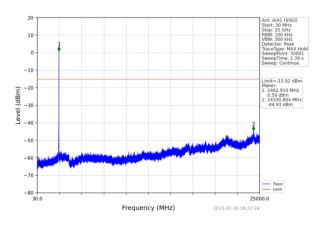
6.6.1. Conducted Emission Method

Test Requirement:	FCC Part15	C Section 1	5.247 (d)			
Test Method:	KDB558074	4 D01 15.247	Meas Guida	nce v05r02		
Limit:	spectrum in produced by 100 kHz ba	kHz bandwid Itentional rad y the intention Indwidth with Indwer, based Int.	iator is opera nal radiator sl in the band	ting, the radional hall be at least that contains	o frequency p at 20 dB belo the highest	oower that is w that in the level of the
Test setup:	Sp					
Test Instruments:	Refer to sec	ction 6.0 for c	letails			
Test mode:	Refer to sec	ction 5.2 for c	letails			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar


Measurement Data:


802.11b

Lowest channel


30MHz~25GHz

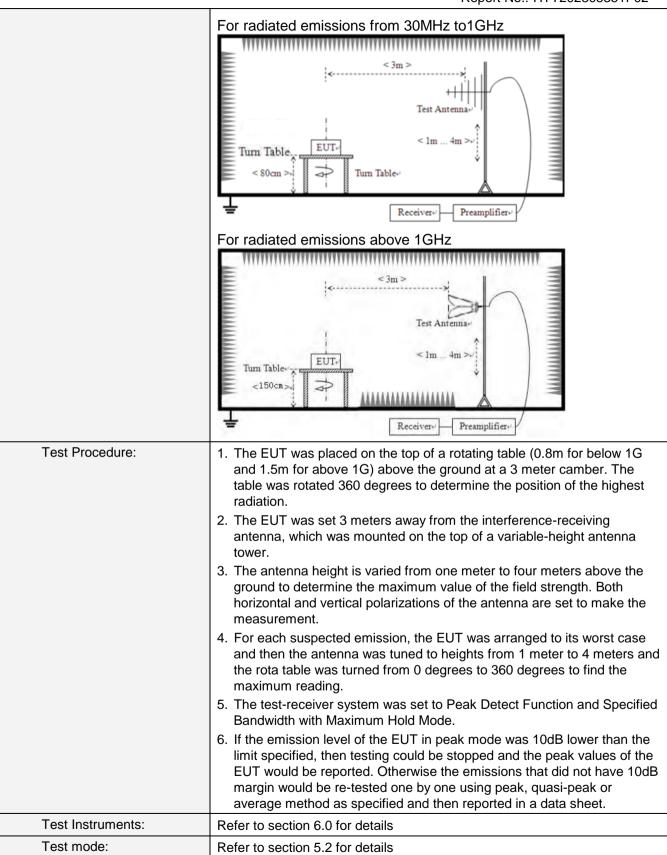
Middle channel

30MHz~25GHz

Highest channel

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201



30MHz~25GHz

6.6.2. Radiated Emission Method

0.0.2. Radiated L	illission wethou							
Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RBV	N	VBW	,	Value
	9KHz-150KHz	Qι	ıasi-peak	200H	Ηz	600H	z	Quasi-peak
	150KHz-30MHz	150KHz-30MHz Qua		9KF	łz	30KH:	z	Quasi-peak
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	lz	Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	<u>z</u>	Peak
	Above 1G112		Peak	1MF	Ιz	10Hz		Average
Limit:	Frequency		Limit (u\	//m)	V	alue	M	easurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP		30m
	1.705MHz-30MH	Z	30			QP		30m
	30MHz-88MHz		100			QP		
	88MHz-216MHz	<u>-</u>	150			QP		
	216MHz-960MH	Z	200			QP	3m	
	960MHz-1GHz					QP		OIII
	Above 1GHz		500		Av	erage		
	7.5575 151.12		5000)	F	Peak		
Test setup:	For radiated emiss	sions	from 9kH	z to 30)MH	Z		
	Turn Table EUT		< 3m >	ntenna 1m				

Shenzhen HTT Technology Co.,Ltd.

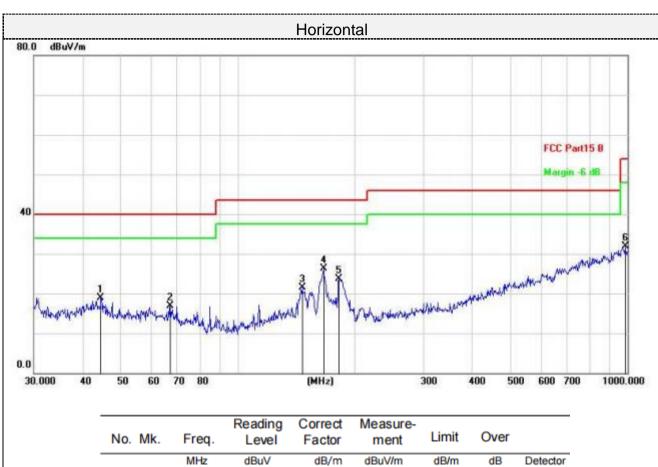
Tel: 0755-23595200 Fax: 0755-23595201

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 6	AC 120V, 60Hz					
Test results:	Pass						

Remarks:

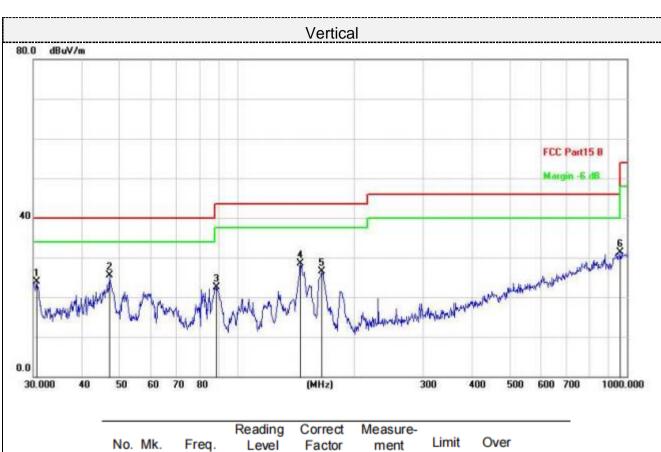
- 1. Only the worst case Main Antenna test data.
- 2.Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

■ Below 1GHz


Pre-scan all test modes, found worst case at 802.11b 2437MHz, and so only show the test result of 802.11b 2437MHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		44.5868	29.16	-10.28	18.88	40.00	-21.12	QP
2		67.2022	29.67	-12.85	16.82	40.00	-23.18	QP
3		146.3735	32.47	-11.04	21.43	43.50	-22.07	QP
4	*	166.0680	37.06	-10.81	26.25	43.50	-17.25	QP
5		181.9202	36.67	-12.89	23.78	43.50	-19.72	QP
6		986.0717	28.28	3.68	31.96	54.00	-22.04	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		30.6379	36.03	-12.09	23.94	40.00	-16.06	QP
2	*	46.9948	36.20	-10.72	25.48	40.00	-14.52	QP
3		88.3421	37.99	-15.48	22.51	43.50	-20.99	QP
4		145.3506	39.66	-11.17	28.49	43.50	-15.01	QP
5		164.9075	37.22	-10.78	26.44	43.50	-17.06	QP
6		962.1623	27.86	3.46	31.32	54.00	-22.68	QP

Final Level = Receiver Read level + Correct Factor

■ Above 1-25GHz

802.11b:Lowest

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4824	51.22	31.40	8.18	31.50	59.30	74.00	-14.70	peak
4824	37.42	31.40	8.18	31.50	45.50	54.00	-8.50	AVG
7236	44.13	35.80	10.83	31.40	59.36	74.00	-14.64	peak
7236	29.05	35.80	10.83	31.40	44.28	54.00	-9.72	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifie	· ·				

Vertical:

Neter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
							Detector
(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
51.74	31.40	8.18	31.50	59.82	74.00	-14.18	peak
38.05	31.40	8.18	31.50	46.13	54.00	-7.87	AVG
45.26	35.80	10.83	31.40	60.49	74.00	-13.51	peak
28.77	35.80	10.83	31.40	44.00	54.00	-10.00	AVG
	(dBµV) 51.74 38.05 45.26 28.77	(dBµV) (dB/m) 51.74 31.40 38.05 31.40 45.26 35.80 28.77 35.80	(dBµV) (dB/m) (dB) 51.74 31.40 8.18 38.05 31.40 8.18 45.26 35.80 10.83 28.77 35.80 10.83	(dBµV) (dB/m) (dB) (dB) 51.74 31.40 8.18 31.50 38.05 31.40 8.18 31.50 45.26 35.80 10.83 31.40 28.77 35.80 10.83 31.40	(dBμV) (dB/m) (dB) (dB) (dBμV/m) 51.74 31.40 8.18 31.50 59.82 38.05 31.40 8.18 31.50 46.13 45.26 35.80 10.83 31.40 60.49 28.77 35.80 10.83 31.40 44.00	(dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) 51.74 31.40 8.18 31.50 59.82 74.00 38.05 31.40 8.18 31.50 46.13 54.00 45.26 35.80 10.83 31.40 60.49 74.00 28.77 35.80 10.83 31.40 44.00 54.00	(dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 51.74 31.40 8.18 31.50 59.82 74.00 -14.18 38.05 31.40 8.18 31.50 46.13 54.00 -7.87 45.26 35.80 10.83 31.40 60.49 74.00 -13.51 28.77 35.80 10.83 31.40 44.00 54.00 -10.00

802.11b:Middle

Horizontal:

	A .		_	1		1	1
	Antenna		Preamp				
Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
							Detector
(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
53.04	31.40	9.17	32.10	61.51	74.00	-12.49	peak
37.55	31.40	9.17	32.10	46.02	54.00	-7.98	AVG
44 17	35.80	10.83	31 40	59 40	74 00	-14 60	peak
	00.00	10.00	01.10	00.10	7 1.00	11.00	pount
28.67	35.80	10.83	31.40	43.90	54.00	-10.10	AVG
	(dBµV) 53.04 37.55 44.17 28.67	(dBµV) (dB/m) 53.04 31.40 37.55 31.40 44.17 35.80 28.67 35.80	Meter Reading Factor Cable Loss (dBμV) (dB/m) (dB) 53.04 31.40 9.17 37.55 31.40 9.17 44.17 35.80 10.83 28.67 35.80 10.83	Meter Reading Factor Cable Loss Factor (dBμV) (dB/m) (dB) (dB) 53.04 31.40 9.17 32.10 37.55 31.40 9.17 32.10 44.17 35.80 10.83 31.40 28.67 35.80 10.83 31.40	Meter Reading Factor Cable Loss Factor Emission Level (dBμV) (dB/m) (dB) (dB) (dBμV/m) 53.04 31.40 9.17 32.10 61.51 37.55 31.40 9.17 32.10 46.02 44.17 35.80 10.83 31.40 59.40 28.67 35.80 10.83 31.40 43.90	Meter Reading Factor Cable Loss Factor Emission Level Limits (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) 53.04 31.40 9.17 32.10 61.51 74.00 37.55 31.40 9.17 32.10 46.02 54.00 44.17 35.80 10.83 31.40 59.40 74.00 28.67 35.80 10.83 31.40 43.90 54.00	Meter Reading Factor Cable Loss Factor Emission Level Limits Margin (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) (dBμV/m) (dB 53.04 31.40 9.17 32.10 61.51 74.00 -12.49 37.55 31.40 9.17 32.10 46.02 54.00 -7.98 44.17 35.80 10.83 31.40 59.40 74.00 -14.60 28.67 35.80 10.83 31.40 43.90 54.00 -10.10

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	50.99	31.40	9.17	32.10	59.46	74.00	-14.54	peak
4874	36.84	31.40	9.17	32.10	45.31	54.00	-8.69	AVG
7311	43.14	35.80	10.83	31.40	58.37	74.00	-15.63	peak
7311	28.30	35.80	10.83	31.40	43.53	54.00	-10.47	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

802.11b:Highest

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	50.31	31.40	9.17	32.10	58.78	74	-15.22	peak
4924	35.64	31.40	9.17	32.10	44.11	54	-9.89	AVG
7386	44.16	35.80	10.83	31.40	59.39	74	-14.61	peak
7386	29.36	35.80	10.83	31.40	44.59	54	-9.41	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	51.11	31.40	9.17	32.10	59.58	74	-14.42	peak
4924	36.47	31.40	9.17	32.10	44.94	54	-9.06	AVG
7386	45.62	35.80	10.83	31.40	60.85	74	-13.15	peak
7386	28.88	35.80	10.83	31.40	44.11	54	-9.89	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 1.80dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

