

FCC Test Report

Report No.: AGC01612190902FE02

FCC ID		2AR8XMH-670-AWD
APPLICATION PURPOSE		Original Equipment
PRODUCT DESIGNATION	:	MH670 Dongle
BRAND NAME	:	COOLER MASTER
MODEL NAME	:	MH-670-AWD
APPLICANT	÷	Cooler Master Technology Inc.
DATE OF ISSUE		Sep. 23, 2019
STANDARD(S)	:	FCC Part 15.247
REPORT VERSION	:	V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC01612190902FE02 Page 2 of 52

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Sep. 23, 2019	Valid	Initial Release

Report No.: AGC01612190902FE02 Page 3 of 52

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	
2.GENERAL INFORMATION	
2.1PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3 RELATED SUBMITTAL(S)/GRANT(S)	
2.4TEST METHODOLOGY	8
2.5 SPECIAL ACCESSORIES	
2.6 EQUIPMENT MODIFICATIONS	
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	
5.1 CONFIGURATION OF TESTED SYSTEM	
5.2 EQUIPMENT USED IN TESTED SYSTEM	
5.3. SUMMARY OF TEST RESULTS	11
6. TEST FACILITY	
7. PEAK OUTPUT POWER	
7.1. MEASUREMENT PROCEDURE	
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3. LIMITS AND MEASUREMENT RESULT	
8. 6 DB BANDWIDTH	14
8.1. MEASUREMENT PROCEDURE	
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	
9.1. MEASUREMENT PROCEDURE	
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3. MEASUREMENT EQUIPMENT USED	
9.4. LIMITS AND MEASUREMENT RESULT	
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	

Report No.: AGC01612190902FE02 Page 4 of 52

10.1 MEASUREMENT PROCEDURE	
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	25
10.3 MEASUREMENT EQUIPMENT USED	25
10.4 LIMITS AND MEASUREMENT RESULT	25
11. RADIATED EMISSION	
11.1. MEASUREMENT PROCEDURE	
11.2. TEST SETUP	
11.3. LIMITS AND MEASUREMENT RESULT	
11.4. TEST RESULT	
12. FCC LINE CONDUCTED EMISSION TEST	
12.1. LIMITS OF LINE CONDUCTED EMISSION TEST	
12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	
12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	
12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	
12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	
APPENDIX B: PHOTOGRAPHS OF EUT	

1. VERIFICATION OF COMPLIANCE

Applicant	Cooler Master Technology Inc.		
Address	8F., No788-1, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23586, Taiwan		
Manufacturer	GUANGDONG TAKSTAR ELECTRONIC CO., LTD.		
Address	DINGGANG, NO.5 TEAM, XIALIAO VILLAGE, LONGXI TOWN, BOLUO COUNTY, HUIZHOU CITY		
Factory	Cooler Master Technology Inc.		
Address	8F., No788-1, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23586, Taiwan		
Product Designation	MH670 Dongle		
Brand Name	COOLER MASTER		
Test Model	MH-670-AWD		
Date of test	Aug. 28, 2019 to Sep. 23, 2019		
Deviation	None		
Condition of Test Sample	Normal		
Test Result	Pass		
Report Template	AGCRT-US-BLE/RF		

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247.

Jonjon Aucorg Prepared By **Donjon Huang** Sep. 23, 2019 (Project Engineer) Max Zhang **Reviewed By** Max Zhang Sep. 23, 2019 (Reviewer) Forrest Un Approved By Forrest Lei Sep. 23, 2019 (Authorized Officer)

2.GENERAL INFORMATION

2.1PRODUCT DESCRIPTION

The EUT is designed as a "MH670 Dongle". It is designed by way of utilizing the GFSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.404 GHz to 2.478GHz			
RF Output Power	0.938dBm(Max)			
Modulation	GFSK			
Number of channels	38 Channel			
Antenna Designation	Two Ceramic Antennas which cannot support MIMO(Comply with requirements of the FCC part 15.203)			
Antenna Gain	0.4dBi			
Hardware Version	V0.3			
Software Version	V0.6			
Power Supply	DC 5V by PC			

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
- 60 C	• 1	2404MHZ
	2	2406MHZ
	3	2408MHZ
	4	2410MHZ
	5	2412MHZ
C 2	6	2414MHZ
2400~2483.5MHZ	7	2416MHZ
2400~2400.00012	8	2418MHZ
	9	2420MHZ
	10	2422MHZ
	. 11	2424MHZ
	12	2426MHZ
	13	2428MHZ

Report No.: AGC01612190902FE02 Page 7 of 52

14	2430MHZ
15	2432MHZ
16	2434MHZ
17	2436MHZ
18	2438MHZ
19	2440MHZ
20	2442MHZ
21	2444MHZ
22	2446MHZ
23	2448MHZ
24	2450MHZ
25	2452MHZ
26	2454MHZ
27	2456MHZ
28	2458MHZ
29	2460MHZ
30	2462MHZ
31	2464MHZ
32	2466MHZ
33	2468MHZ
34	2470MHZ
35	2472MHZ
36	2474MHZ
37	2476MHZ
38	2478 MHZ

Note: Channel spacing is 2M.

2.3 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for FCC ID: 2AR8XMH-670-AWD filing to comply with the FCC Part 15.247 requirements.

2.4TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, $Uc = \pm 3.2 dB$
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8$ dB
- Uncertainty of RF power density, conducted, Uc = ±2.6dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth: $Uc = \pm 2 \%$

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION		
1	Low channel TX		
2	Middle channel TX		
3	High channel TX		

Note:

1. Only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

4. EUT connects the computer, and then enters the test mode through the test software (VMI debug v1.1.6.56).

5. SYSTEM TEST CONFIGURATION

5.1 CONFIGURATION OF TESTED SYSTEM

Radiated Emission Configure :

EUT	_	AE

5.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	MH670 Dongle	MH-670-AWD	2AR8XMH-670-AWD	EUT
2	PC	161301-01	N/A	Support
3	Adapter	XIAOMI	DC 5V	Support

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(3)	Peak Output Power	Compliant
15.247 (a)(2)	6 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.247 (e)	Maximum Conducted Output Power Density	Compliant
15.209	Radiated Emission	Compliant
15.207	Conducted Emission	Compliant

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd					
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China					
Designation Number	CN1259					
FCC Test Firm Registration Number	975832					
A2LA Cert. No.	5054.02					
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA					

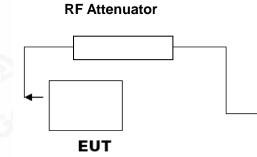
TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun. 12, 2019	Jun. 11, 2020
LISN	R&S	ESH2-Z5	100086	Aug. 26, 2019	Aug. 25, 2020

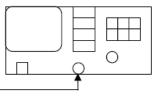
TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun. 11, 2020
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2019	Jun. 11, 2020
Attenuator	Weinachel Corp	58-30-33	N/A	Jun. 12, 2019	Jun. 11, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 25, 2018	Oct. 24, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019

7. PEAK OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For peak power test:


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW≥DTS bandwidth
- 3. VBW≥3*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP

Spectrum Analyzer

RF Cable

7.3. LIMITS AND MEASUREMENT RESULT

	Antenna 1						
	PEAK OUTPUT POWER MEASUREMENT RESULT						
	FOR GFSK MOUDUL	ATION					
FrequencyPeak Power(GHz)(dBm)		Applicable Limits (dBm)	Pass or Fail				
2.404	0.938	30	Pass				
2.440	0.667	30	Pass				
2.478	0.402	30	Pass				

CH1

RF 50 Ω AC larker 1 2.40428800000	PNO: Fast Atten: 20 dB	ALIGN AUTO C Avg Type: Log-Pwr Avg Hold:>100/100	3:18:06 PM Sep 23, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Peak Search
0 dB/div Ref 10.00 dBm	FGam:Low Atten. 20 db	Mkr1 2.	404 288 GHz 0.938 dBm	Next Pea
	↓ ¹			Next Pk Rig
0.0				Next Pk Le
0.0				Marker De
0.0				Mkr→C
0.0				Mkr→RefL
enter 2.404000 GHz	#VBW 6.0 MHz	Sweep 1.00	Span 6.000 MHz	Mo 1 of

CH19

CH38

🍺 k	Keysight Spectrum Analyzer - Swep			01100				
<mark>ихи</mark> Ма	RF 50 Ω rker 1 2.47823400		SENSE:II	Avg Type	ALIGN AUTO	TRACE	Sep 23, 2019	Peak Search
		PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB	n Avg Hold		DET	PNNNN	NextBack
10 c	B/div Ref 10.00 dl	Bm			Mkr1	2.478 2 0.40	34 GHz)2 dBm	Next Peak
0.0				1				Next Pk Right
-10.0								
-20.0								Next Pk Left
-30.0								
-40.0								Marker Delta
-50.0								Mkr→CF
-60.0								
-70.0								Mkr→RefLvi
-80.0								More
	nter 2.478000 GHz es BW 2.0 MHz	#VB	W 6.0 MHz		Sweep 1	Span 6. .000 ms (1	000 MHz 1001 pts)	1 of 2
MSG					STATUS			

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

	Antenna 2						
	PEAK OUTPUT POWER MEASUREMENT RESULT						
FOR GFSK MOUDULATION							
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail				
2.404	-0.148	30	Pass				
2.440	-0.267	30	Pass				
2.478	-0.462	30	Pass				

				CH1				
🎉 Keysight S	pectrum Analyzer - Swept SA		051105 1	er l			0	
Center I	RF 50 Ω AC Freq 2.404000000	GHz	SENSE:IN	Avg Ty	ALIGN AUTO	TRAC	Sep 23, 2019	Frequency
		PNO: Fast 🖵	Trig: Free Run Atten: 20 dB	n AvgiHo	ld:>100/100	DE		
10 dB/div	Ref 10.00 dBm				Mkr1	2.404 3	06 GHz 18 dBm	Auto Tune
0.00				♦ ¹				Center Freq 2.404000000 GHz
								2.404000000 GH2
-10.0								Start Freq
-20.0								2.401000000 GHz
20.0								
-30.0								Stop Freq
-40.0								2.407000000 GHz
-40.0								
-50.0								CF Step 600.000 kHz
-60.0								<u>Auto</u> Man
								Erog Offer
-70.0								Freq Offset 0 Hz
-80.0								
Center 2	404000 GHz					Span 6.	000 MHz	
#Res BW		#VBW	6.0 MHz		Sweep 1	.000 ms (1001 pts)	
MSG					STATU	5		

Attestation of Global Compliance

CH19

CH38

Keysight Spectrum Analyzer - Swept SA					
Aarker 1 2.478270000000	GHz PNO: Fast	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	03:21:12 PM Sep 23, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Peak Search
	IFGain:Low	Atten: 20 dB		1 2.478 270 GHz	NextPeal
0 dB/div Ref 10.00 dBm				-0.462 dBm	
0.00		∮ ¹			Next Pk Righ
10.0					Next Pk Let
20.0					
30.0					
40.0					Marker Delt
50.0					Mkr→C
60.0					
70.0					Mkr→RefL
80.0					
					Mor
Center 2.478000 GHz #Res BW 2.0 MHz	#VBW	/ 6.0 MHz	Sween	Span 6.000 MHz 1.000 ms (1001 pts)	1 of:
ISG			STAT		

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

8.6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW \ge 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

8.3. LIMITS AND MEASUREMENT RESULTS

LIMITS AND MEASUREMENT RESULT						
	Applicable Limits					
Applicable Limits	Test Data	(kHz)	Criteria			
>500KHZ	Low Channel	1638	PASS			
	Middle Channel	1632	PASS			
	High Channel	1668	PASS			

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

🔰 Keysight Spectrum Analyzer - Occupied	BW				
Center Freq 2.40400000		SENSE:INT enter Freq: 2.404000000 C rig: Free Run Avg Atten: 20 dB	ALIGN AUTO GHz Hold:>10/10	03:10:26 PM Sep 23, 2019 Radio Std: None Radio Device: BTS	Frequency
10 dB/div Ref 10.00 dE	3m				
-10.0			······································	man and a second se	Center Freq 2.404000000 GHz
-20.0					
-50.0					
-70.0					
Center 2.404 GHz #Res BW 100 kHz		#VBW 300 kHz		Span 3 MHz Sweep 1 ms	300.000 kHz
Occupied Bandwig		Total Powe	r 9.25	dBm	<u>Auto</u> Man
	.9195 MHz				Freq Offset 0 Hz
Transmit Freq Error x dB Bandwidth	95.087 kHz 1.638 MHz			.00 % 00 dB	0112
	1.030 MI12		-0.1		
MSG			STATUS	2	

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,


TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Note: All modes of both antennas were tested, and the report only showed the worst data for the worst antenna(Antenna 1).

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT						
	Measurement Res	sult				
Applicable Limits	Test Data	Criteria				
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	At least -20dBc than the reference level	PASS PASS				

TEST RESULT FOR ENTIRE FREQUENCY RANGE GFSK MODULATION IN LOW CHANNEL

Attestation of Global Compliance

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

 Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088

 E-mail:
 agc@agc-cert.com

 Service Hotline:400 089 2118

GFSK MODULATION IN MIDDLE CHANNEL



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

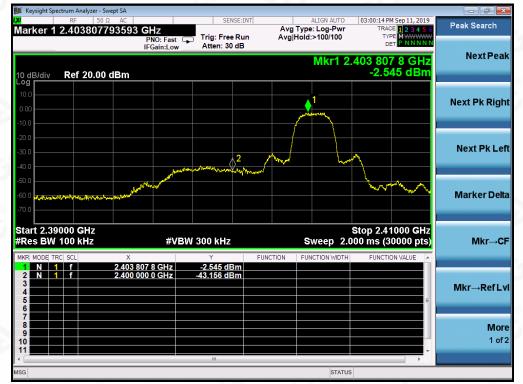
Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

GFSK MODULATION IN HIGH CHANNEL

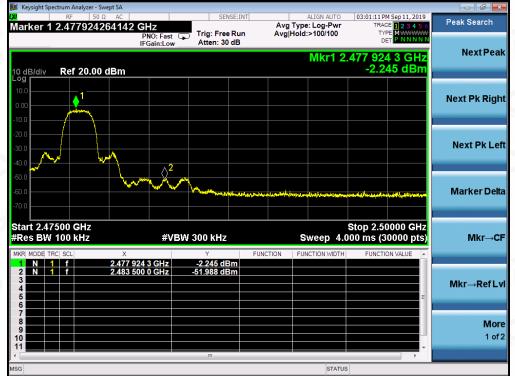
Note:

- 1. The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.
- 2. All modes of both antennas were tested, and the report only showed the worst data for the worst antenna(Antenna 1).



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,


Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118

TEST RESULT FOR BAND EDGE GFSK MODULATION IN LOW CHANNEL

GFSK MODULATION IN HIGH CHANNEL

Note: All modes of both antennas were tested, and the report only showed the worst data for the worst antenna(Antenna 1).

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

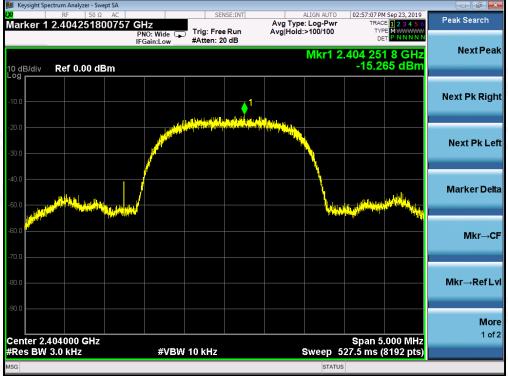
10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 7.2.


10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

	Antenna		
Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-15.265	8	Pass
Middle Channel	-14.721	8	Pass
High Channel	-15.119	8	Pass

TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, ChinaTel:+86-755 2523 4088E-mail: agc@agc-cert.comService Hotline:400 089 2118

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118



Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-15.100	8	Pass
Middle Channel	-15.339	8	Pass
High Channel	-15.707	8	Pass

TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

TEST PLO	T OF SPECTRA	AL DENSITY	FOR HIGH	CHANN	EL
Keysight Spectrum Analyzer - Swept SA					
Marker 1 2.478419057502	GHz	Avg Type	: Log-Pwr TRA	M Sep 23, 2019 CE 1 2 3 4 5 6 PE M	Peak Search
	PNO: Wide Trig: Free IFGain:Low #Atten: 20		>100/100	ET P NNNNN	
10 dB/div Ref 10.00 dBm			Mkr1 2.478 41 -15.7	9 1 GHz '07 dBm	Next Peak
					Next Pk Right
0.00					NEXTERNIQU
-10.0		1			
-20.0	the phylosophic states and the second states and t				Next Pk Left
-20.0			'1		
-30.0		'			Marker Delta
-40.0	/		<u>\</u>		Walker Della
				1 sateli	
	N .		No literation of the second		Mkr→CF
-60.0					
-70.0					Mkr→RefLv
10.0					
-80.0					
					More 1 of 2
Center 2.478000 GHz #Res BW 3.0 kHz	#VBW 10 kHz		Span : Sweep 527.5 ms	5.000 MHz (8192 pts)	
MSG			STATUS		

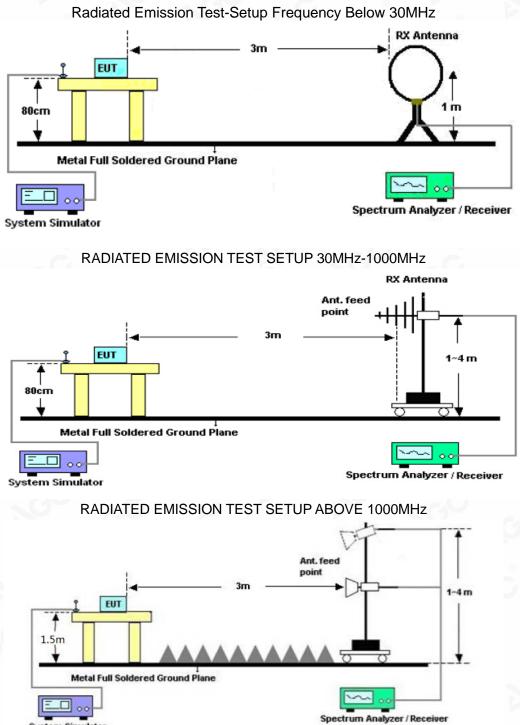
Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Service Hotline: 400 089 2118

11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE


- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report No.: AGC01612190902FE02 Page 30 of 52

11.2. TEST SETUP

Attestation of Global Compliance

System Simulator

11.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

Note: All modes were tested For restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.4. TEST RESULT

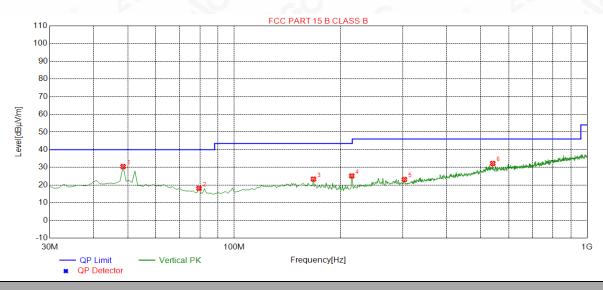
RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.



Report No.: AGC01612190902FE02 Page 32 of 52

EUT	MH670 Dongle	Model Name	MH-670-AWD			
Temperature	25° C	Relative Humidity	55.4%			
Pressure	960hPa	Test Voltage	Normal Voltage			
Test Mode	Mode 1	Antenna	Horizontal			


NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	36.7900	22.90	14.16	40.00	17.10	100	322	Horizontal
2	48.4300	24.59	14.71	40.00	15.41	100	238	Horizontal
3	78.5000	20.14	10.46	40.00	19.86	150	4	Horizontal
4	141.550	29.37	14.88	43.50	14.13	150	359	Horizontal
5	215.270	31.61	12.98	43.50	11.89	150	268	Horizontal
6	263.770	33.13	14.88	46.00	12.87	100	252	Horizontal

RESULT: PASS

EUT	MH670 Dongle	Model Name	MH-670-AWD
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	48.4300	30.47	14.71	40.00	9.53	100	1	Vertical
2	79.4700	18.12	10.26	40.00	21.88	100	11	Vertical
3	167.740	23.35	14.17	43.50	20.15	100	135	Vertical
4	215.270	25.15	12.98	43.50	18.35	100	223	Vertical
5	303.540	23.15	16.03	46.00	22.85	100	200	Vertical
6	540.220	32.22	23.06	46.00	13.78	100	3	Vertical

RESULT: PASS

Note:

1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been tested. The mode 1 is the worst case and recorded in the report.3. All modes of both antennas were tested, and the report only showed the worst data for the worst antenna(Antenna 1).

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

RADIATED EMISSION ABOVE 1GHZ						
	MH670 Dongle		Model Name	MH-		

EUT	MH670 Dongle	Model Name	MH-670-AWD
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	· · · ·
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4808.011	49.87	0.08	49.95	74	-24.05	peak
4808.011	47.07	0.08	47.15	54	-6.85	AVG
7212.022	43.63	2.21	45.84	74	-28.16	peak
7212.022	37.7	2.21	39.91	54	-14.09	AVG
C	8				Q	
				- 62		
Remark:			8			- 6
actor = Ante	enna Factor + Ca	ble Loss –	Pre-amplifier.			NO

EUT	MH670 Dongle	Model Name	MH-670-AWD
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB) 💿	value Type
4808.011	48.76	0.08	48.84	74	-25.16	peak 💿
4808.011	46.86	0.08	46.94	54	-7.06	AVG
7212.022	42.53	2.21	44.74	74	-29.26	peak
7212.022	38.17	2.21	40.38	54	-13.62	AVG
-		8		<u>G</u>	-0-	
emark:		2.0	8		0	60
actor = Ante	enna Factor + C	able Loss -	Pre-amplifier.	®		

Attestation of Global Compliance

EUT	MH670 Dongle Model Name		MH-670-AWD	
Temperature	25° C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	Mode 2	Antenna	Horizontal	

Meter Reading (dBµV)	Factor (dB)	Emission Level	Limits	Margin	
(dBµV)	(dB)				
	(22)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
47.53	0.14	47.67	74	-26.33	peak
46.74	0.14	46.88	54	-7.12	AVG
43.33	2.36	45.69	74	-28.31	peak
37.48	2.36	39.84	54 💿	-14.16	AVG
8				®	
6					· (C)
		8			- 6
na Factor + Cal	ble Loss – I	Pre-amplifier.			
r	43.33 37.48	43.33 2.36 37.48 2.36	43.33 2.36 45.69	43.33 2.36 45.69 74 37.48 2.36 39.84 54	43.33 2.36 45.69 74 -28.31 37.48 2.36 39.84 54 -14.16

EUT	MH670 Dongle	Model Name	MH-670-AWD
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.050	46.7	0.14	46.84	74 💿	-27.16	peak
4880.050	45.63	0.14	45.77	54	-8.23	AVG
7230.080	42.61	2.36	44.97	74	-29.03	peak
7230.080	39.48	2.36	41.84	54	-12.16	AVG
S.			60		6	
emark:			N . (G	8
actor = Ante	enna Factor + Ca	ble Loss –	Pre-amplifier.			6

EUT	MH670 Dongle	Model Name	MH-670-AWD
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4956.012	46.55	0.22	46.77	74	-27.23	peak
4956.012	45.15	0.22	45.37	54	-8.63	AVG
7434.027	42.55	2.64	45.19	74	-28.81	peak
7434.027	36.8	2.64	39.44	54	-14.56	AVG
C.	0			C.	0	
		3			- C.	(3)
Remark:			8			- 6
actor = Ante	enna Factor + Ca	ble Loss –	Pre-amplifier.			~0~

EUT	MH670 Dongle	Model Name	MH-670-AWD
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4956.013	45.11	0.22	45.33	74	-28.67	peak
4956.013	44.03	0.22	44.25	54 🥯	-9.75	AVG
7434.027	42.19	2.64	44.83	74	-29.17	peak
7434.027	37.7	2.64	40.34	54	-13.66	AVG
emark:			2.6	8		

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. 1. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All modes of both antennas were tested, and the report only showed the worst data for the worst 2. antenna(Antenna 1).

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

Report No.: AGC01612190902FE02 Page 37 of 52

EUT	MH670 Dongle	Model Name MH-670-AWD		
Temperature	25° C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	Mode 1	Antenna	Horizontal	

ΡK

AV

RESULT: PASS



Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Report No.: AGC01612190902FE02 Page 38 of 52

EUT	MH670 Dongle	Model Name	MH-670-AWD
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

RESULT: PASS

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

Report No.: AGC01612190902FE02 Page 39 of 52

EUT	MH670 Dongle	Model Name	MH-670-AWD		
Temperature	25° C	Relative Humidity	55.4%		
Pressure	960hPa	Test Voltage	Normal Voltage		
Test Mode	Mode 3	Antenna	Horizontal		
		DIC			

-				PK				W.		
Peak Searc	23456	03:27:05 PM Sep 11 TRACE 2 TYPE MW DET P N	ALIGN AUTO Type: Log-Pwr Hold:>100/100	Avg	SENSE: Trig: Free Ro Atten: 20 dE	REC	2 AC CON 000000 GI	Analyzer - Sv F 50 S 783500	1	
NextP		2.478 350 (5.167 dBµ'					9 dBµV/m	ef 116.9	R	3/div
Next Pk R								1		
Next Pk					;					2
Marker D		genergen op dee gesteren	18 maarin 7 ja 20 jarry marak 8 aa		and a second					
Mkr-	0 GHz 1 pts)	top 2.50000 00 ms (1001	Sweep 1.		3.0 MHz	#VBW		GHz MHz		
Mkr→Ret	LUE ·	FUNCTION VALU	FUNCTION WIDTH	FUNCTION	Y .167 dBµV/m .620 dBµV/m .724 dBµV/m	0 GHz 51	× 2.478 35 2.483 50 2.484 70		TRC S	MODE N N
N 1										
			STATUS						_	

RESULT: PASS

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

Report No.: AGC01612190902FE02 Page 40 of 52

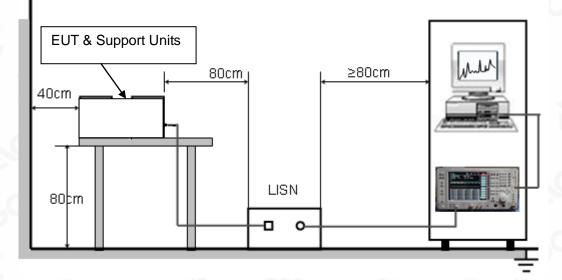
EUT	MH670 Dongle	Model Name	MH-670-AWD
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical
		DIZ	

RESULT: PASS

Note:

- The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μV) to represent the Amplitude. Use the F dB(μV/m) to represent the Field Strength. So A=F.
- 2. All modes of both antennas were tested, and the report only showed the worst data for the worst antenna(Antenna 1)

12. FCC LINE CONDUCTED EMISSION TEST


12.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Francisco	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

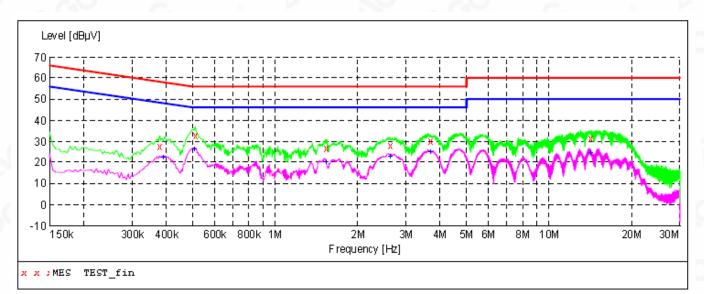
Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by PC which received AC120V/60Hz power by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.


Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less -2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

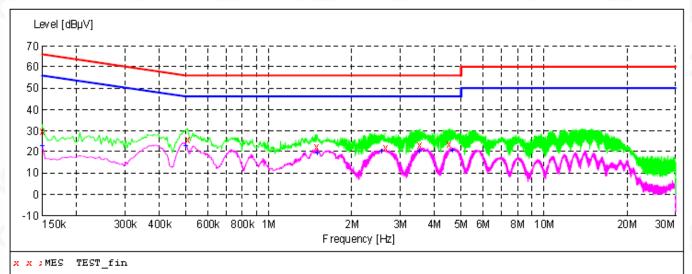
Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT: "TEST_fin"

9/2/2019 9:342	AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0,378000	27,80	10.4	58	30.5	QP	L1	FLO
0,510000	32,90	11.1	56	23,1	QP	L1	FLO
1,526000	26,50	11,5	56	29,5	Q̈́Ρ	L1	FLO
2,626000	28,20	11,5	56	27.8	Q̈́Ρ	L1	FLO
3,670000	30,10	11,6	56	25,9	QP	L1	FLO
14,158000	31,30	12.1	60	28.7	ÕP	L1	FLO

MEASUREMENT RESULT: "TEST fin2"

9/2/2019 9:342	AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
	~~ ~^	1 A 4	4.0			T 1	B TO
0,390000	22,20	10.4	48	25,9	AV	L1	FLO
0,506000	26,40	11,2	46	19,6	AV	L1	FLO
1,530000	20,00	11,5	46	26.0	AV	L1	FLO
2,626000	23,00	11,5	46	23.0	AV	L1	FLO
3,670000	24,80	11,6	46	21,2	AV	L1	FLO
14,138000	24.70	12,1	50	25,3	AV	L1	FLO


Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Report No.: AGC01612190902FE02 Page 44 of 52

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT: "TEST_fin"

9/2/2019 9:26AM

Z/Z019 9:28 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.506000 1.490000 2.634000 3.510000 4.514000	29.50 26.00 22.20 22.10 23.30 23.60	10.8 11.2 11.5 11.5 11.6 11.6	66 56 56 56 56	36.5 30.0 33.8 33.9 32.7 32.4	QP QP QP QP QP QP	N N N N N	FLO FLO FLO FLO FLO FLO

MEASUREMENT RESULT: "TEST fin2"

9/2/2019 9:26	5AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0,150000	23,00	10,8	56	33.0	AV	N	FLO
0,498000	23,00	11.2	46	23.0	AV	N	FLO
1,490000	19,30	11,5	46	26.7	AV	N	FLO
2,562000	20,10	11,5	46	25,9	AV	N	FLO
3,510000	20,00	11,6	46	26.0	AV	N	FLO
4,654000	20.70	11,6	46	25.3	AV	N	FLO

Note: All modes of both antennas were tested, and the report only showed the worst data for the worst antenna(Antenna 1)

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Report No.: AGC01612190902FE02 Page 45 of 52

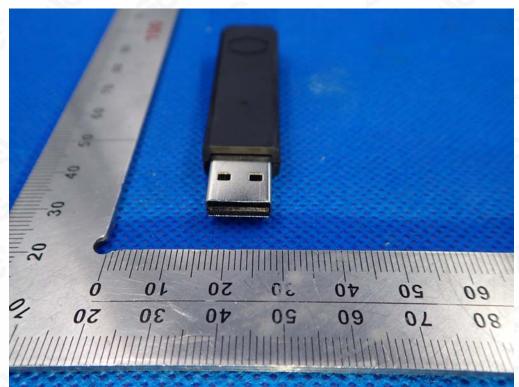
APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHZ

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

Report No.: AGC01612190902FE02 Page 46 of 52

CONDUCTED EMISSION TEST SETUP



Report No.: AGC01612190902FE02 Page 47 of 52

APPENDIX B: PHOTOGRAPHS OF EUT TOP VIEW OF EUT

BOTTOM VIEW OF EUT

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86–755 2523 4088 E-mail:agc@agc-cert.com Service Hotl

Service Hotline:400 089 2118

Report No.: AGC01612190902FE02 Page 48 of 52

n 0, 5.0

FRONT VIEW OF EUT

BACK VIEW OF EUT

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotl

Service Hotline:400 089 2118

Report No.: AGC01612190902FE02 Page 49 of 52

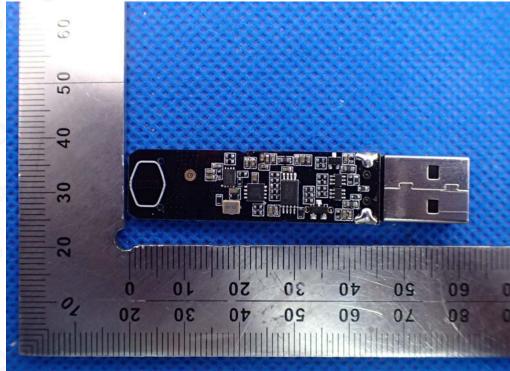
LEFT VIEW OF EUT

RIGHT VIEW OF EUT

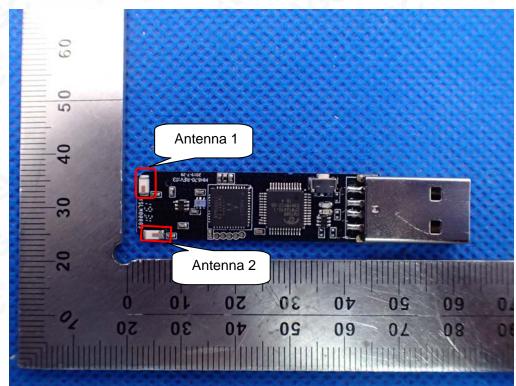
Report No.: AGC01612190902FE02 Page 50 of 52

OPEN VIEW OF EUT-1

OPEN VIEW OF EUT-2

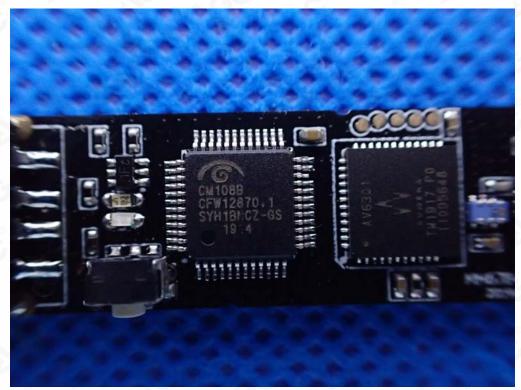

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service

Service Hotline: 400 089 2118

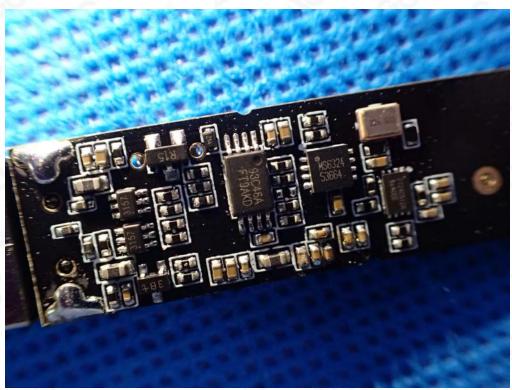


Report No.: AGC01612190902FE02 Page 51 of 52

INTERNAL VIEW OF EUT-2


Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service

Service Hotline: 400 089 2118



Report No.: AGC01612190902FE02 Page 52 of 52

INTERNAL VIEW OF EUT-3

INTERNAL VIEW OF EUT-4

----END OF REPORT----

