

# FCC 47 CFR PART 15 SUBPART C ISED Canada RSS-210

#### **CERTIFICATION TEST REPORT**

For

**NFC Function Board** 

**MODEL NUMBER: SRP.NFC.01** 

FCC ID: 2AR82-SRPNFC0101

IC: 24728-SRPNFC0101

**REPORT NUMBER: 4789095658** 

ISSUE DATE: August 12, 2019

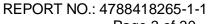
# Prepared for

# Guangzhou Shikun Electronics Co., Ltd

# NO.192 KEZHU ROAD, SCIENCE PARK GUANGZHOU, GUANGDONG, CHINA

# Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China


> Tel: +86 769 22038881 Fax: +86 769 33871725 Website: www.ul.com



REPORT NO.: 4788418265-1-1 Page 2 of 30

| Rev. | Issue Date | Revisions     | Revised By |
|------|------------|---------------|------------|
|      | 08/12/2019 | Initial Issue |            |

**Revision History** 





Page 3 of 30

| Summary of Test Results |                                                                   |                                                                 |              |  |  |  |
|-------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------|--|--|--|
| Clause                  | Test Items                                                        | FCC/ISED Rules                                                  | Test Results |  |  |  |
| 1                       | Transmitter AC Conducted<br>Emissions                             | Part 15.207<br>RSS-Gen 8.8                                      | PASS         |  |  |  |
| 2                       | Transmitter Fundamental Field<br>Strength                         | Part 15.225(a)(b)(c)(d)<br>RSS-Gen 6.12/RSS-210<br>B.6          | PASS         |  |  |  |
| 3                       | Transmitter Radiated Emissions                                    | Part 15.209(a)/ 15.225(d)<br>RSS-Gen 6.13/RSS-210<br>B.6        | PASS         |  |  |  |
| 5                       | Transmitter Band Edge Radiated Emissions                          | Part 15.209(a)/<br>15.225(c)(d)<br>RSS-Gen 6.13/ RSS-210<br>B.6 | PASS         |  |  |  |
| 6                       | Transmitter 99% Emission<br>Bandwidth / 20dB Bandwidth            | RSS-Gen 6.7/<br>Part 15.215 (c)                                 | PASS         |  |  |  |
| 7                       | Transmitter Frequency Stability (Temperature & Voltage Variation) | Part 15.225(e)<br>RSS-Gen 6.11/ RSS-210<br>B.6                  | PASS         |  |  |  |
| 8                       | Antenna Requirement                                               | FCC Part 15.203<br>RSS-GEN Clause 6.8                           | PASS         |  |  |  |



# **TABLE OF CONTENTS**

| 1. A        | TTESTATION OF TEST RESULTS             | 5        |
|-------------|----------------------------------------|----------|
| 2. TI       | EST METHODOLOGY                        | 6        |
| 3. F        | ACILITIES AND ACCREDITATION            | 6        |
| 4. C        | ALIBRATION AND UNCERTAINTY             | 7        |
| 4.1.        | MEASURING INSTRUMENT CALIBRATION       |          |
| 4.2.        | MEASUREMENT UNCERTAINTY                | 7        |
| 5. E        | QUIPMENT UNDER TEST                    | 8        |
| 5.1.        | DESCRIPTION OF EUT                     | 8        |
| 5.2.        | MAXIMUM FIELD STRENGTH                 | 8        |
| 5.3.        | CHANNEL LIST                           | 8        |
| <i>5.4.</i> | THE WORSE CASE CONFIGURATION           | 8        |
| 5.5.        | DESCRIPTION OF TEST SETUP              | 9        |
| 5.6.        | MEASURING INSTRUMENT AND SOFTWARE USED | 10       |
| 6. Al       | NTENNA PORT TEST RESULTS               | 11       |
| 6.1.        | AC CONDUCTED SPURIOUS EMISSIONS        | 11       |
| 6.          | RADIATED EMISSION                      | 19<br>21 |
| 6.3.        | 99%/20dB BANDWIDTH                     |          |
| 6.4.        | TRANSMITTER FREQUENCY STABILITY        |          |
| 7 AI        | NITENNIA DECLIDEMENTS                  | 20       |



Page 5 of 30

# 1. ATTESTATION OF TEST RESULTS

Company Name: Guangzhou Shikun Electronics Co., Ltd

Address: NO.192 KEZHU ROAD, SCIENCE PARK

GUANGZHOU, GUANGDONG, CHINA

**Manufacturer Information** 

Company Name: Guangzhou Shikun Electronics Co., Ltd

Address: NO.192 KEZHU ROAD, SCIENCE PARK

GUANGZHOU, GUANGDONG, CHINA

EUT Name: NFC Function Board

Model: SRP.NFC.01
Sample Status: Normal
Sample ID: 12955306
Sample Received Date: July 23, 2019

Date of Tested: July 23~August 12, 2019

#### **APPLICABLE STANDARDS**

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C PASS
ISED RSS-210 Issue 9 PASS

ISED RSS-GEN Issue 5 PASS

Prepared By: Checked By:

Kebo Zhang Shawn Wen

Engineer Laboratory Leader

Approved By:

kelo. zhang.

Stephen Guo

Laboratory Manager

Sephenbuo

Page 6 of 30

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB414788 D01 Radiated Test Site v01, ISED RSS-210 Issue 9 and ISED RSS-GEN Issue 5.

| AND ACCREDITATION                                                                       |
|-----------------------------------------------------------------------------------------|
| A2LA (Certificate No.: 4102.01)                                                         |
| UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.                   |
| has been assessed and proved to be in compliance with A2LA.                             |
| IAS (Lab Code: TL-702)                                                                  |
| UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.                   |
| has demonstrated compliance with ISO/IEC Standard 17025:2005,                           |
| General requirements for the competence of testing and calibration                      |
| laboratories                                                                            |
| FCC (FCC Designation No.: CN1187)                                                       |
| UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.                   |
| Has been recognized to perform compliance testing on equipment subject                  |
| to the Commission's Delcaration of Conformity (DoC) and Certification                   |
| rules                                                                                   |
| ISED (Company No.: 21320)                                                               |
| UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.                   |
| has been registered and fully described in a report filed with ISED. The                |
| Company Number is 21320.                                                                |
| VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)                          |
| UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.                   |
| has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. |
| Facility Name:                                                                          |
| Chamber D, the VCCI registration No. is G-20019 and R-20004                             |
| Shielding Room B, the VCCI registration No. is C-20012 and T-20011                      |
|                                                                                         |

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.



4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

# 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Test Item                                                                          | Uncertainty         |
|------------------------------------------------------------------------------------|---------------------|
| Uncertainty for Conduction emission test                                           | 2.90dB              |
| Uncertainty for Radiation Emission test(include Fundamental emission) (9KHz-30MHz) | 2.2dB               |
| Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz) | 4.52dB              |
| Uncertainty for Radiation Emission test                                            | 5.04dB(1-6GHz)      |
| (1GHz to 26GHz)( include Fundamental                                               | 5.30dB (6GHz-18Gz)  |
| emission)                                                                          | 5.23dB (18GHz-26Gz) |

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 30

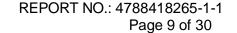
# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

| Equipment NFC Function Board |            |
|------------------------------|------------|
| Model Name                   | SRP.NFC.01 |
| Operation frequency          | 13.56 MHz  |
| Modulation Technique         | ASK        |
| Rated Input Power            | DC 5V      |

# 5.2. MAXIMUM FIELD STRENGTH

| Frequency<br>(MHz) | Number of Transmit<br>Chains<br>(NTX) | Frequency<br>(MHz) | Channel Number | Max field<br>strength<br>(dBµV/m) |
|--------------------|---------------------------------------|--------------------|----------------|-----------------------------------|
| 13.56              | 1                                     | 13.56              | 1              | 40.24                             |


# 5.3. CHANNEL LIST

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| 1       | 13.56              | /       | /                  | /       | /                  | /       | /                  |

# 5.4. THE WORSE CASE CONFIGURATION

Test ware completed under engineering sample and the engineering sample can work in a continue transmission mode.

With and without tag have considered and continue transmission mode deemed to a worst case mode.





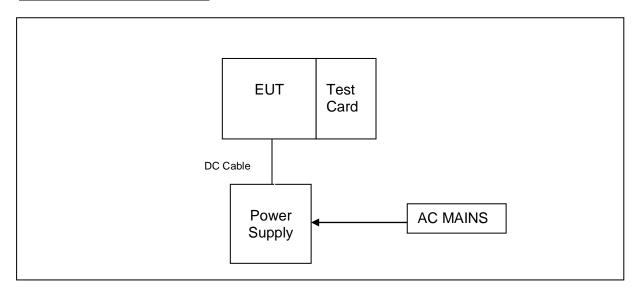
5.5. DESCRIPTION OF TEST SETUP

# **SUPPORT EQUIPMENT**

| Item | Equipment    | Brand Name | Model Name | P/N           |
|------|--------------|------------|------------|---------------|
| 1    | Laptop       | ThinkPad   | T460S      | SL10K24796 JS |
| 2    | Test Card    | N/A        | N/A        | N/A           |
| 3    | Power Supply | N/A        | N/A        | N/A           |

# **I/O PORT**

| Cable No | Port     | Connector Type | Cable Type | Cable Length(m) | Remarks |
|----------|----------|----------------|------------|-----------------|---------|
| 1        | USB Port | /              | /          | /               | 1       |


#### **ACCESSORY**

| Item | Accessory | Brand Name | Model Name | Description |
|------|-----------|------------|------------|-------------|
| 1    | /         | /          | /          | /           |

# **TEST SETUP**

The EUT can continue work normally after power on, the test card only use for ensure the sample working states.

#### **SETUP DIAGRAM FOR TESTS**





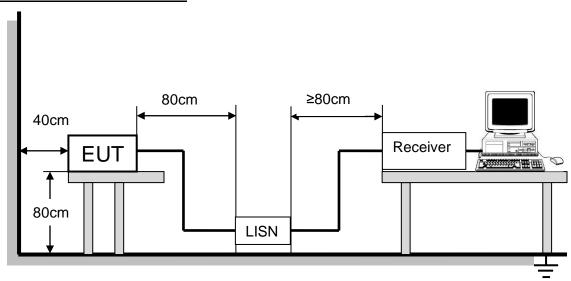
Page 10 of 30

# MEASURING INSTRUMENT AND SOFTWARE USED

|                         | MEASURING INSTRUMENT AND SOFTWARE USED |                  |               |           |       |              |              |              |
|-------------------------|----------------------------------------|------------------|---------------|-----------|-------|--------------|--------------|--------------|
|                         | Conducted Emissions                    |                  |               |           |       |              |              |              |
| Used                    | Equipment                              | Manufacturer     | Model No.     |           | Seria | al No.       | Last Cal.    | Next Cal.    |
| $\overline{\checkmark}$ | EMI Test Receiver                      | R&S              |               | ESR3      | 101   | 1961         | Dec.10,2018  | Dec.10,2019  |
| V                       | Two-Line V-<br>Network                 | R&S              | Е             | NV216     | 101   | 1983         | Dec.10,2018  | Dec.10,2019  |
| V                       | Artificial Mains<br>Networks           | Schwarzbeck      | NS            | LK 8126   | 812   | 6465         | Dec.10,2018  | Dec.10,2019  |
|                         |                                        | Rad              | iated         | d Emissio | ns    |              |              |              |
| Used                    | Equipment                              | Manufacturer     | Мо            | odel No.  | Seria | al No.       | Last Cal.    | Next Cal.    |
| V                       | MXE EMI Receiver                       | KESIGHT          | HT N9038A     |           |       | 6400<br>36   | Dec.10,2018  | Dec.10,2019  |
| V                       | Hybrid Log Periodic<br>Antenna         | TDK              | TDK HLP-3003C |           | 130   | 960          | Sep.17, 2018 | Sep.17, 2021 |
| V                       | Preamplifier                           | HP               | 8447D         |           |       | A090<br>9    | Dec.10,2018  | Dec.10,2019  |
| V                       | EMI Measurement<br>Receiver            | R&S              | ESR26         |           | 101   | 377          | Dec.10,2018  | Dec.10,2019  |
| V                       | Preamplifier                           | TDK              | PA-02-0118    |           |       | -305-<br>066 | Dec.10,2018  | Dec.10,2019  |
| V                       | Preamplifier                           | TDK              | PA-02-2       |           |       | -307-<br>003 | Dec.10,2018  | Dec.10,2019  |
| V                       | Loop antenna                           | Schwarzbeck      | arzbeck 1519B |           | 00    | 800          | Jan.01,2019  | Jan.01, 2022 |
|                         | Software                               |                  |               |           |       |              |              |              |
| Used                    | ed Description                         |                  |               | Manufact  | urer  |              | Name         | Version      |
| V                       | Test Software for Ra                   | adiated disturba | nce           | Farac     | d     |              | EZ-EMC       | Ver. UL-3A1  |



6. ANTENNA PORT TEST RESULTS


# 6.1. AC CONDUCTED SPURIOUS EMISSIONS

#### **LIMITS**

| FCC Reference:         | Part 15.207             |
|------------------------|-------------------------|
| ISED Canada Reference: | RSS-Gen 8.8             |
| Test Method Used:      | ANSI C63.10 Section 6.2 |

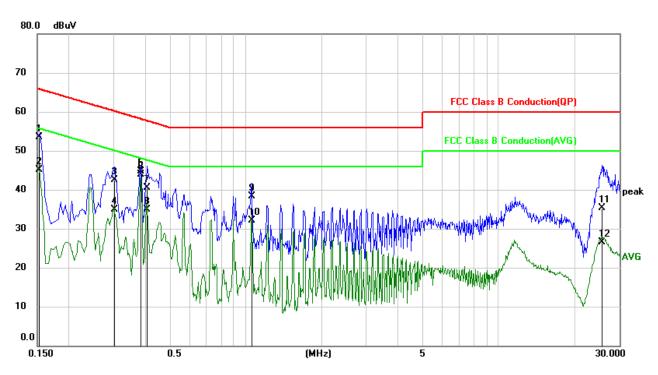
| FREQUENCY (MHz) | Quasi-peak | Average   |
|-----------------|------------|-----------|
| 0.15 -0.5       | 66 - 56 *  | 56 - 46 * |
| 0.50 -5.0       | 56.00      | 46.00     |
| 5.0 -30.0       | 60.00      | 50.00     |

#### **TEST SETUP AND PROCEDURE**



The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

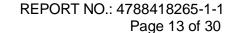
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.




Page 12 of 30

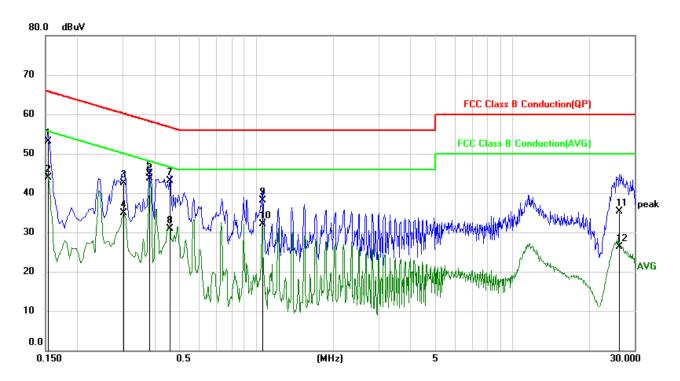
#### **TEST ENVIRONMENT**

| Temperature         | 24.2°C | Relative Humidity | 62%         |
|---------------------|--------|-------------------|-------------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V60Hz |


# **LINE N RESULTS (WORST-CASE CONFIGURATION)**



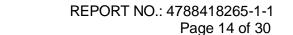
| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1522    | 43.91   | 9.60    | 53.51  | 65.88  | -12.37 | QP     |
| 2   | 0.1522    | 35.43   | 9.60    | 45.03  | 55.88  | -10.85 | AVG    |
| 3   | 0.3026    | 32.97   | 9.60    | 42.57  | 60.17  | -17.60 | QP     |
| 4   | 0.3026    | 25.22   | 9.60    | 34.82  | 50.17  | -15.35 | AVG    |
| 5   | 0.3844    | 35.17   | 9.60    | 44.77  | 58.18  | -13.41 | QP     |
| 6   | 0.3844    | 34.40   | 9.60    | 44.00  | 48.18  | -4.18  | AVG    |
| 7   | 0.4094    | 30.97   | 9.60    | 40.57  | 57.66  | -17.09 | QP     |
| 8   | 0.4094    | 25.29   | 9.60    | 34.89  | 47.66  | -12.77 | AVG    |
| 9   | 1.0580    | 28.74   | 9.61    | 38.35  | 56.00  | -17.65 | QP     |
| 10  | 1.0580    | 22.43   | 9.61    | 32.04  | 46.00  | -13.96 | AVG    |
| 11  | 25.6837   | 25.25   | 10.04   | 35.29  | 60.00  | -24.71 | QP     |
| 12  | 25.6837   | 16.48   | 10.04   | 26.52  | 50.00  | -23.48 | AVG    |


Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.






#### **LINE L RESULTS (WORST-CASE CONFIGURATION)**



| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1538    | 43.58   | 9.61    | 53.19  | 65.79  | -12.60 | QP     |
| 2   | 0.1538    | 34.34   | 9.61    | 43.95  | 55.79  | -11.84 | AVG    |
| 3   | 0.3033    | 32.86   | 9.60    | 42.46  | 60.15  | -17.69 | QP     |
| 4   | 0.3033    | 25.23   | 9.60    | 34.83  | 50.15  | -15.32 | AVG    |
| 5   | 0.3830    | 35.21   | 9.60    | 44.81  | 58.21  | -13.40 | QP     |
| 6   | 0.3830    | 34.05   | 9.60    | 43.65  | 48.21  | -4.56  | AVG    |
| 7   | 0.4585    | 33.51   | 9.60    | 43.11  | 56.72  | -13.61 | QP     |
| 8   | 0.4585    | 21.32   | 9.60    | 30.92  | 46.72  | -15.80 | AVG    |
| 9   | 1.0564    | 28.55   | 9.61    | 38.16  | 56.00  | -17.84 | QP     |
| 10  | 1.0564    | 22.47   | 9.61    | 32.08  | 46.00  | -13.92 | AVG    |
| 11  | 26.1530   | 25.41   | 9.92    | 35.33  | 60.00  | -24.67 | QP     |
| 12  | 26.1530   | 16.38   | 9.92    | 26.30  | 50.00  | -23.70 | AVG    |

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.





6.2. RADIATED EMISSION

# **TEST PROCEDURE**

# Fundamental field strength

| FCC Reference:         | Part 15.225(a)(b)(c)(d) & 15.209(a)   |
|------------------------|---------------------------------------|
| ISED Canada Reference: | RSS-Gen 6.13 & RSS-210 B.6            |
| Test Method Used:      | ANSI C63.10 Sections 6.3, 6.4 and 6.5 |

| Frequency<br>(MHz)          | Field Strength (uV/m) | Field Strength (dBuV/m) at 30M | Field Strength (dBuV/m) at 3M |
|-----------------------------|-----------------------|--------------------------------|-------------------------------|
| 13.553-13.567               | 15848                 | 84                             | 123.90                        |
| 13.410-13.553/13.567-13.710 | 334                   | 50.47                          | 90.47                         |
| 13.110-13.410/13.710-14.010 | 106                   | 40.51                          | 80.51                         |

# Note(s):

- 1. The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.
- 2. The limit is specified at a test distance of 30 meters. However, as specified by FCC Section 15.31 (f)(2) / RSS-Gen Section 6.4, measurements may be performed at a closer distance and the measured level corrected to the specified measurement distance by using the square of an inverse linear distance extrapolation factor (40dB/decade).

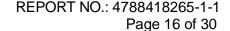


Page 15 of 30

# Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

| Frequency   | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (microvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| 960~1000    | 500                | 3                    |

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

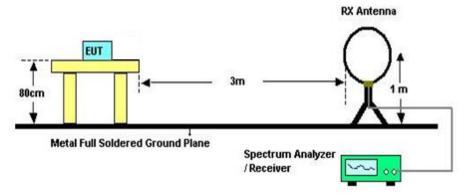

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Restricted bands of operation

| MHz                      | MHz                 | MHz           | GHz              |
|--------------------------|---------------------|---------------|------------------|
| 0.090-0.110              | 16.42-16.423        | 399.9-410     | 4.5-5.15         |
| <sup>1</sup> 0.495-0.505 | 16.69475-16.69525   | 608-614       | 5.35-5.46        |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240      | 7.25-7.75        |
| 4.125-4.128              | 25.5-25.67          | 1300-1427     | 8.025-8.5        |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5   | 9.0-9.2          |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5 | 9.3-9.5          |
| 6.215-6.218              | 74.8-75.2           | 1660-1710     | 10.6-12.7        |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2 | 13.25-13.4       |
| 6.31175-6.31225          | 123-138             | 2200-2300     | 14.47-14.5       |
| 8.291-8.294              | 149.9-150.05        | 2310-2390     | 15.35-16.2       |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4        |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900     | 22.01-23.12      |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267     | 23.6-24.0        |
| 12.29-12.293             | 167.72-173.2        | 3332-3339     | 31.2-31.8        |
| 12.51975-12.52025        | 240-285             | 3345.8-3358   | 36.43-36.5       |
| 12.57675-12.57725        | 322-335.4           | 3600-4400     | ( <sup>2</sup> ) |
| 13.36-13.41              |                     |               |                  |

Note: <sup>1</sup>Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup>Above 38.6c



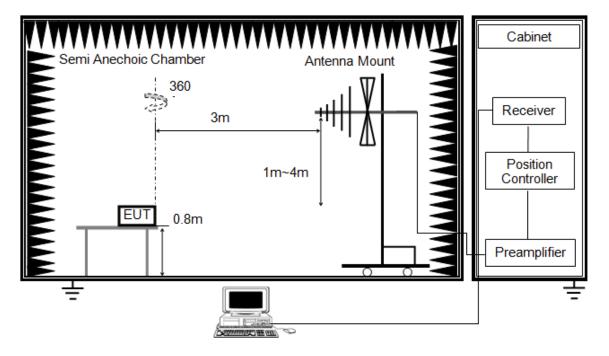



| FCC Reference:    | Parts 15.231(b) / 15.209         |
|-------------------|----------------------------------|
| Test Method Used: | ANSI C63.10 Sections 6.3 and 6.5 |

#### **TEST SETUP**

Below 30MHz




The setting of the spectrum analyser

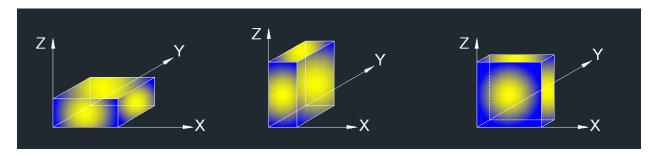
| The detailing of the operation analyses |                                                            |  |  |  |  |
|-----------------------------------------|------------------------------------------------------------|--|--|--|--|
| RBW                                     | 200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz) |  |  |  |  |
| VBW                                     | 200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz) |  |  |  |  |
| Sweep                                   | Auto                                                       |  |  |  |  |
| Detector                                | Peak/QP/ Average                                           |  |  |  |  |
| Trace                                   | Max hold                                                   |  |  |  |  |

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.



Below 1G




# The setting of the spectrum analyser

| RBW      | 120K     |
|----------|----------|
| VBW      | 300K     |
| Sweep    | Auto     |
| Detector | Peak/QP  |
| Trace    | Max hold |

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

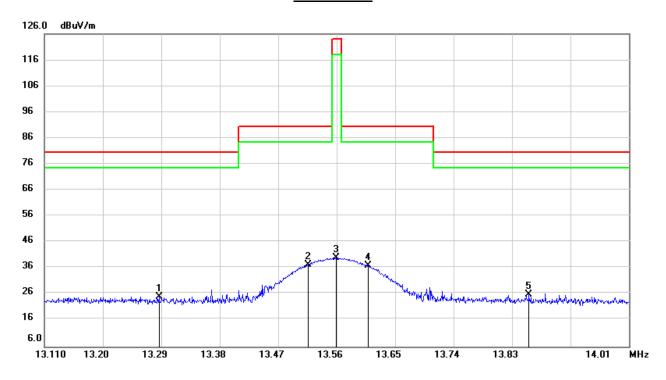


X axis, Y axis, Z axis positions:



Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

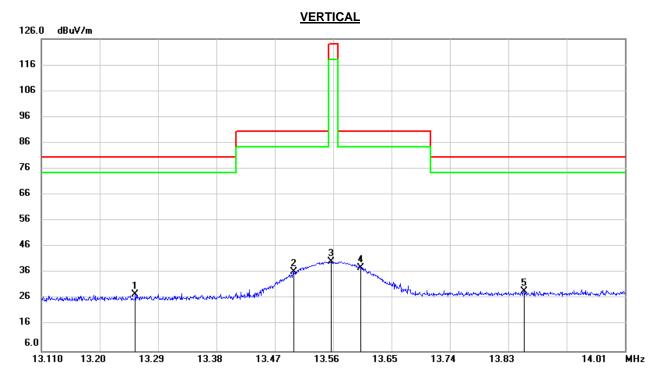



#### **RESULTS**

# **TEST ENVIRONMENT**

| Temperature         | 24.5°C | Relative Humidity | 62%         |
|---------------------|--------|-------------------|-------------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V60Hz |

# 6.2.1. FUNDAMENTAL FIELD STRENGTH


#### **HORIZONTAL**

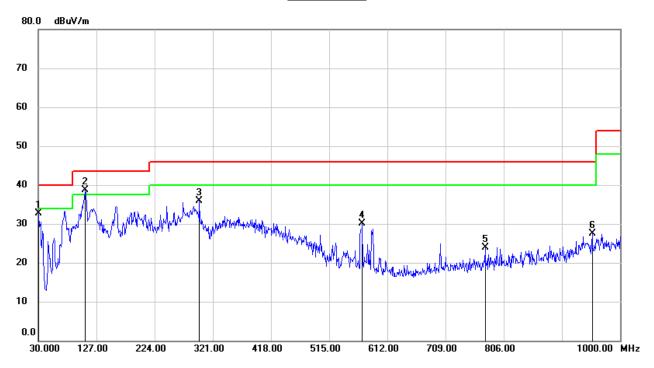


| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     |           |         |         | (3m)     | (3m)     |        |        |
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 13.2864   | 55.83   | -30.84  | 24.99    | 80.51    | -55.52 | peak   |
| 2   | 13.5159   | 68.24   | -30.84  | 37.40    | 90.47    | -53.07 | peak   |
| 3   | 13.5591   | 71.01   | -30.84  | 40.17    | 123.90   | -83.73 | peak   |
| 4   | 13.6085   | 68.03   | -30.84  | 37.19    | 90.47    | -53.28 | peak   |
| 5   | 13.8560   | 56.73   | -30.84  | 25.89    | 80.51    | -54.62 | peak   |

Note: 1. Result 3m= Reading+ Correct Factor 2. Result 30m= Result 3m-40 dBuV/m





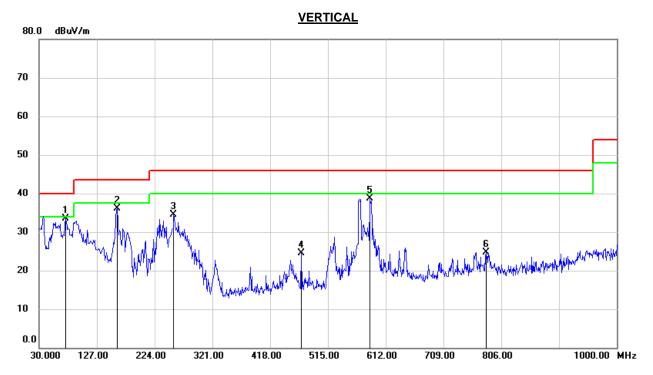

| No. | Frequency | Reading | Correct | Result<br>(3m) | Limit<br>(3m) | Margin | Remark |
|-----|-----------|---------|---------|----------------|---------------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m)       | (dBuV/m)      | (dB)   |        |
| 1   | 13.2549   | 58.45   | -30.84  | 27.61          | 80.51         | -52.90 | peak   |
| 2   | 13.4997   | 67.16   | -30.84  | 36.32          | 90.47         | -54.15 | peak   |
| 3   | 13.5573   | 71.08   | -30.84  | 40.24          | 123.90        | -83.66 | peak   |
| 4   | 13.6023   | 68.83   | -30.84  | 37.99          | 90.47         | -52.48 | peak   |
| 5   | 13.8543   | 59.86   | -30.84  | 29.02          | 80.51         | -51.49 | peak   |

Note: 1. Result 3m= Reading+ Correct Factor 2. Result 30m= Result 3m-40 dBuV/m



# 6.2.2. SPURIOUS EMISSIONS BELOW 1G

# **HORIZONTAL**




| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 30.0000   | 49.65   | -17.00  | 32.65    | 40.00    | -7.35  | QP     |
| 2   | 107.6000  | 60.28   | -21.56  | 38.72    | 43.50    | -4.78  | QP     |
| 3   | 298.6900  | 49.89   | -13.93  | 35.96    | 46.00    | -10.04 | QP     |
| 4   | 570.2900  | 39.17   | -8.99   | 30.18    | 46.00    | -15.82 | QP     |
| 5   | 774.9600  | 29.61   | -5.72   | 23.89    | 46.00    | -22.11 | QP     |
| 6   | 953.4400  | 30.86   | -3.37   | 27.49    | 46.00    | -18.51 | QP     |

Note: 1. Result Level = Read Level + Correct Factor.

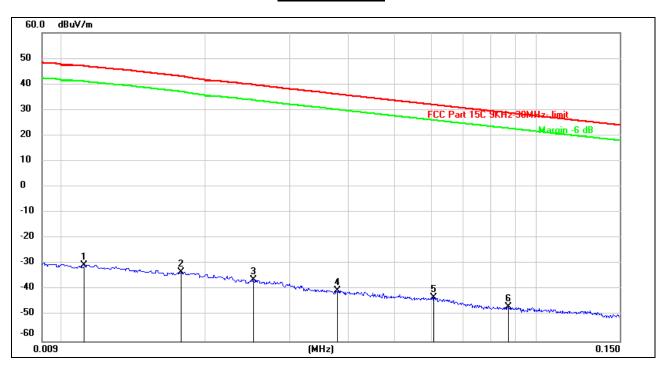
2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.





| No. | Frequency | Reading | Correct | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|---------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 74.6200   | 53.84   | -20.40  | 33.44    | 40.00    | -6.56  | QP     |
| 2   | 160.9500  | 53.73   | -17.72  | 36.01    | 43.50    | -7.49  | QP     |
| 3   | 256.0100  | 50.53   | -15.95  | 34.58    | 46.00    | -11.42 | QP     |
| 4   | 470.3800  | 35.46   | -10.98  | 24.48    | 46.00    | -21.52 | QP     |
| 5   | 585.8100  | 47.47   | -8.68   | 38.79    | 46.00    | -7.21  | QP     |
| 6   | 780.7800  | 30.30   | -5.60   | 24.70    | 46.00    | -21.30 | QP     |

Note: 1. Result Level = Read Level + Correct Factor.


2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

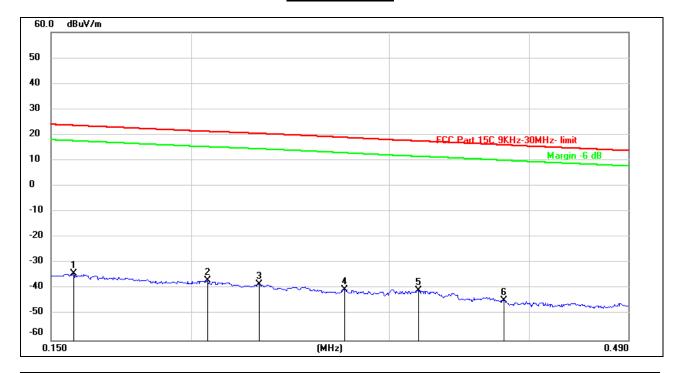


# 6.2.3. SPURIOUS EMISSIONS BELOW 30M

# SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

#### 0.09kHz~ 150kHz





| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.0111    | 70.95   | -101.39 | -30.44 | 46.94  | -77.38 | peak   |
| 2   | 0.0177    | 68.12   | -101.35 | -33.23 | 42.96  | -76.19 | peak   |
| 3   | 0.0252    | 65.32   | -101.37 | -36.05 | 39.75  | -75.80 | peak   |
| 4   | 0.0379    | 61.07   | -101.42 | -40.35 | 36.09  | -76.44 | peak   |
| 5   | 0.0606    | 58.45   | -101.52 | -43.07 | 31.96  | -75.03 | peak   |
| 6   | 0.0873    | 54.96   | -101.69 | -46.73 | 28.80  | -75.53 | peak   |

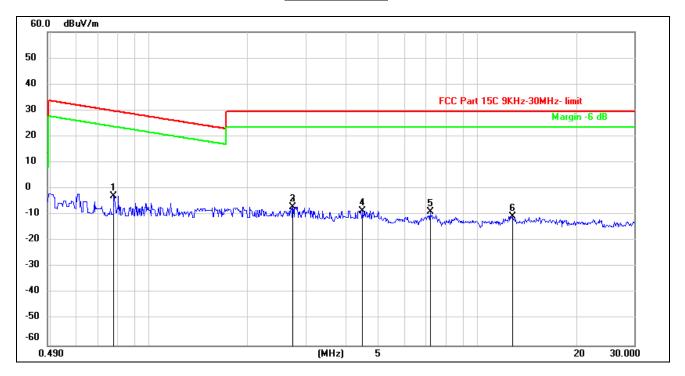
Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.








| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1570    | 67.53   | -101.65 | -34.12 | 23.69  | -57.81 | peak   |
| 2   | 0.2068    | 64.95   | -101.73 | -36.78 | 21.34  | -58.12 | peak   |
| 3   | 0.2298    | 63.55   | -101.77 | -38.22 | 20.53  | -58.75 | peak   |
| 4   | 0.2736    | 61.58   | -101.83 | -40.25 | 18.99  | -59.24 | peak   |
| 5   | 0.3190    | 61.29   | -101.88 | -40.59 | 17.58  | -58.17 | peak   |
| 6   | 0.3800    | 57.52   | -101.94 | -44.42 | 16.06  | -60.48 | peak   |

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.



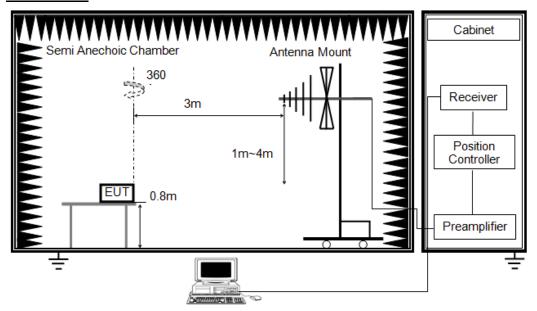
#### 490kHz ~ 30MHz



| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.7799    | 59.40   | -62.13  | -2.73  | 29.77  | -32.50 | peak   |
| 2   | 2.7360    | 54.64   | -61.64  | -7.00  | 29.54  | -36.54 | peak   |
| 3   | 2.7360    | 54.64   | -61.64  | -7.00  | 29.54  | -36.54 | peak   |
| 4   | 4.4739    | 52.88   | -61.40  | -8.52  | 29.54  | -38.06 | peak   |
| 5   | 7.1886    | 52.26   | -61.19  | -8.93  | 29.54  | -38.47 | peak   |
| 6   | 12.7660   | 50.40   | -60.92  | -10.52 | 29.54  | -40.06 | peak   |

Note: 1. Measurement = Reading Level + Correct Factor.

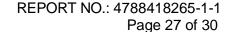
- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.




# 6.3. 99%/20dB BANDWIDTH

# **LIMITS**

| FCC Part15 (15.247) Subpart C<br>RSS-247 ISSUE 2 |                 |                              |  |  |  |  |  |
|--------------------------------------------------|-----------------|------------------------------|--|--|--|--|--|
| Section                                          | Limit           |                              |  |  |  |  |  |
| ANSI C63.10 Section 6.9.2                        | 20dB% Bandwidth | For reporting purposes only. |  |  |  |  |  |
| RSS-Gen Clause 6.7                               | 99% Bandwidth   | For reporting purposes only. |  |  |  |  |  |


#### **TEST SETUP**



- 1. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 2. The EUT was placed on a turntable with 0.8 meter above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

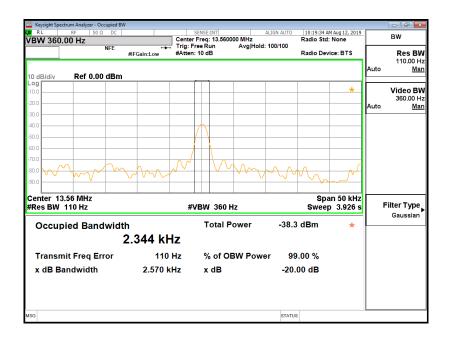
.





4. Connect the UUT to the spectrum analyser and use the following settings:

| Center Frequency | The centre frequency of the channel under test |
|------------------|------------------------------------------------|
| Detector         | Peak                                           |
| RBW              | 1% to 5% of the occupied bandwidth             |
| VBW              | approximately 3×RBW                            |
| Span             | approximately 2 to 3 times the 20 dB bandwidth |
| Trace            | Max hold                                       |
| Sweep            | Auto couple                                    |


Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB and 99% relative to the maximum level measured in the fundamental emission.

#### **TEST ENVIRONMENT**

| Temperature         | 24.5°C | Relative Humidity | 58%         |
|---------------------|--------|-------------------|-------------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V60Hz |

#### **RESULTS**

| Frequency | 99% bandwidth | 20dB bandwidth |
|-----------|---------------|----------------|
| (MHz)     | (KHz)         | (KHz)          |
| 13.56     | 3.089         | 2.945          |



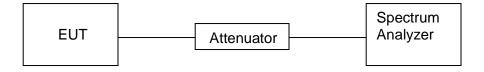
Page 28 of 30

# 6.4. TRANSMITTER FREQUENCY STABILITY

# **LIMITS**

The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of −20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

#### **TEST SETUP AND PROCEDURE**


Connect the UUT to the spectrum analyser and use the following settings:

| Center Frequency | The center frequency of the channel under test               |
|------------------|--------------------------------------------------------------|
| Detector         | PEAK                                                         |
| RBW              | 10KHz                                                        |
| VBW              | ≥3 × RBW                                                     |
| Span             | Encompass the entire emissions bandwidth (EBW) of the signal |
| Trace            | Max hold                                                     |
| Sweep time       | Auto                                                         |

Allow the trace to stabilize, find the peak value of the power envelope and record the frequency, then calculated the frequency drift.

The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

# **TEST SETUP**





Page 29 of 30

# **TEST ENVIRONMENT**

| Temperature         | 24.5°C | Relative Humidity | 58% |
|---------------------|--------|-------------------|-----|
| Atmosphere Pressure | 101kPa | Test Voltage      | /   |

# **TEST RESULTS**

Maximum frequency error of the EUT with variations in ambient temperature

| _                | Time after  |             |             |             |
|------------------|-------------|-------------|-------------|-------------|
| Temperature (°C) | 0 minutes   | 2 minutes   | 5 minutes   | 10 minutes  |
| -20              | 13.5604 MHz | 13.5604 MHz | 13.5605 MHz | 13.5605 MHz |
| -10              | 13.5603 MHz | 13.5605 MHz | 13.5604 MHz | 13.5606 MHz |
| 0                | 13.5605 MHz | 13.5604 MHz | 13.5605 MHz | 13.5604 MHz |
| 10               | 13.5603 MHz | 13.5605 MHz | 13.5606 MHz | 13.5606 MHz |
| 20               | 13.5604 MHz | 13.5606 MHz | 13.5604 MHz | 13.5605 MHz |
| 30               | 13.5605 MHz | 13.5605 MHz | 13.5603 MHz | 13.5604 MHz |
| 40               | 13.5604 MHz | 13.5603 MHz | 13.5605 MHz | 13.5605 MHz |
| 50               | 13.5606 MHz | 13.5604 MHz | 13.5606 MHz | 13.5604 MHz |

Maximum frequency error of the EUT with variations in nominal operating voltage at an ambient

Normal temperature

| Supply<br>Voltage (V) | Nominal<br>Frequency<br>(MHz) | Measured<br>Frequency<br>(MHz) | Tolerance<br>(kHz) | Tolerance<br>(ppm) | Limit<br>(%) | Result |
|-----------------------|-------------------------------|--------------------------------|--------------------|--------------------|--------------|--------|
| 102                   | 13.56                         | 13.5608                        | 0.5000             | 36.87              | 100          | Pass   |
| 120                   | 13.56                         | 13.5606                        | 0.4000             | 29.50              | 100          | Pass   |
| 138                   | 13.56                         | 13.5607                        | 0.5000             | 36.87              | 100          | Pass   |



Page 30 of 30

# 7. ANTENNA REQUIREMENTS

#### **Applicable requirements**

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

# **RESULTS**

Complies

END OF REPORT