

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

IEEE 802.11b/g/n 2T2R USB WiFi Module

MODEL NUMBER: SKO.W7603.2

FCC ID: 2AR82-SKOW7603201

REPORT NUMBER: 4789010100-1

ISSUE DATE: June 05, 2019

Prepared for

Guangzhou Shikun Electronics Co., Ltd NO.192 KEZHU ROAD,SCIENCE PARK GUANGZHOU,GUANGDONG,CHINA Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

6	2
C	צ

		Revision History	
Rev.	Issue Date	Revisions	Revised By
V0	6/05/2019	Initial Issue	

Summary of Test Results			
Clause Test Items		FCC Rules	Test Results
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2)	Pass
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3)	Pass
3	Power Spectral Density	FCC Part 15.247 (e)	Pass
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass
6	Conducted Emission Test For AC Power Port	FCC Part 15.207	Pass
7	Antenna Requirement	FCC Part 15.203	Pass

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	. 6
2.	TES	ST METHODOLOGY	. 7
3.	FA	CILITIES AND ACCREDITATION	. 7
4.	CA	LIBRATION AND UNCERTAINTY	. 8
2	4.1.	MEASURING INSTRUMENT CALIBRATION	. 8
2	4.2.	MEASUREMENT UNCERTAINTY	. 8
5.	EQ	UIPMENT UNDER TEST	. 9
ł	5.1.	DESCRIPTION OF EUT	. 9
Ę	5.2.	MAXIMUM OUTPUT POWER	. 9
Ę	5.3.	CHANNEL LIST	10
Ę	5. <i>4.</i>	TEST CHANNEL CONFIGURATION	10
Ę	5.5.	THE WORSE CASE CONFIGURATIONS	10
Ę	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
Ę	5.7.	THE WORSE CASE CONFIGURATIONS	11
Ę	5.8.	DESCRIPTION OF TEST SETUP	12
6.	МЕ	ASURING INSTRUMENT AND SOFTWARE USED	12
о.		ASUNING INSTRUMENT AND SUFTWARE USED	IS
o. 7.		ASURING INSTRUMENT AND SOFTWARE USED	
-	ME	ASUREMENT METHODS	14
7. 8.	ME	ASUREMENT METHODS	14 15
7. 8.	ME AN	ASUREMENT METHODS	14 15 15
7. 8.	ME AN 3. 1. 3.2. 8.2.	ASUREMENT METHODS	14 15 <i>15</i> <i>18</i> 19
7. 8.	ME AN 3.1. 3.2. 8.2. 8.2.	ASUREMENT METHODS	14 15 <i>15</i> <i>18</i> 19 23
7. 8.	ME AN 3.1. 3.2. 8.2. 8.2.	ASUREMENT METHODS	14 15 <i>15</i> <i>18</i> 19 23 27
7. 8. 8.	ME AN 3. 1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.2.	ASUREMENT METHODS	14 15 <i>18</i> 19 23 27 35 <i>43</i>
7. 8. 8.	ME AN 3. 1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3	ASUREMENT METHODS	14 15 <i>18</i> 19 23 27 35 <i>43</i> 44
7. 8. 8.	ME. AN 3. 1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2.	ASUREMENT METHODS	14 15 <i>18</i> 19 23 27 35 <i>43</i> 44 44
7. 8. 8.	ME AN 3. 1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3	ASUREMENT METHODS	14 15 <i>18</i> 19 23 27 35 <i>43</i> 44 44 45
7. 8. 8. 8.	ME AN 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.	ASUREMENT METHODS	14 15 <i>15</i> <i>18</i> <i>19</i> <i>23</i> <i>27</i> <i>35</i> <i>43</i> <i>44</i> <i>45</i> <i>45</i> <i>46</i>
7. 8. 8. 8.	ME AN 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.	ASUREMENT METHODS	14 15 <i>18</i> <i>19</i> <i>27</i> <i>35</i> <i>43</i> <i>44</i> <i>45</i> <i>45</i> <i>46</i> <i>47</i>
7. 8. 8. 8.	ME AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4. 8. 4. 8. 4.	ASUREMENT METHODS	14 15 18 19 27 3 43 44 45 46 47 49 51
7. 8. { { { { { { { {}}}}}}}	ME AN 3. 1. 3. 2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3	ASUREMENT METHODS	14 15 <i>1</i> 9 227 3 <i>4</i> 4 45 <i>4</i> 6 47 49 51 55
7. 8. { { { { { { { { {}}}}}}}	ME AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 4. 8. 5. 8. 5. 8. 5. 8. 5. 8. 7. 8. 7. 8	ASUREMENT METHODS	14 15 <i>18</i> <i>19</i> <i>2275</i> <i>44</i> <i>455</i> <i>44</i> <i>455</i> <i>47</i> <i>49</i> <i>555</i> <i>59</i>

		Fage 5 01 175
8.5.2.	802.11g SISO MODE	64
8.5.3.	802.11n HT20 MIMO MODE	
8.5.4.	802.11n HT40 MIMO MODE	
9. RADIA	TED TEST RESULTS	
9.1. RE	ESTRICTED BANDEDGE	
9.1.1.	802.11b SISO MODE	
9.1.2.	802.11g SISO MODE	
9.1.3.	802.11n HT20 MIMO MODE	
9.1.4.	802.11n HT40 MIMO MODE	
9.2. SF	PURIOUS EMISSIONS (3~18GHz)	
9.2.1.	802.11b SISO MODE	
9.2.2.	802.11g SISO MODE	
9.2.3.	802.11n HT20 MIMO MODE	
9.2.4.	802.11n HT40 MIMO MODE	
9.3. SF	PURIOUS EMISSIONS (1~3GHz)	
9.3.1.	802.11b SISO MODE	
9.3.2.	802.11g SISO MODE	
9.3.3.	802.11n HT20 MIMO MODE	
9.3.4.	802.11n HT40 MIMO MODE	
9.4. SF	PURIOUS EMISSIONS (18~26GHz)	
9.4.1.		
9.5. SF	PURIOUS EMISSIONS (0.03 ~ 1 GHz)	
9.5.1.		
9.6. SF	PURIOUS EMISSIONS BELOW 30M	
9.6.1.		
	POWER LINE CONDUCTED EMISSIONS	
10.1. 8	802.11n HT20 MIMO MODE	
11. ANTI	ENNA REQUIREMENTS	175
		······································

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Guangzhou Shikun Electronics Co., Ltd
Address:	NO.192 KEZHU ROAD, SCIENCE PARK
	GUANGZHOU,GUANGDONG,CHINA

Manufacturer Information

Company Name:	
Address:	

Guangzhou Shikun Electronics Co., Ltd NO.192 KEZHU ROAD, SCIENCE PARK GUANGZHOU, GUANGDONG, CHINA

EUT Description

EUT Name: Model: Sample Status: Sample ID: Sample Received Date: Date of Tested:

IEEE 802.11b/g/n 2T2R USB WiFi Module SKO.W7603.2 Normal 2299676 May. 17, 2019 May. 17~Jun. 04, 2019

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PA	RT 15 SUBPART C	PASS	
Prepared By: Checked By:			

kebo. zhang.

Sherry lies

Shawn Wen Laboratory Leader

Kebo Zhang **Engineer Project Associate**

Approved By:

ephentrio

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.
	has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62dB	
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB	
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB	
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	5.78dB (1GHz-18Gz)	
	5.23dB (18GHz-26Gz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	IEEE 802.11b/g/n 2T2R USB WiFi Module
Model	SKO.W7603.2
Radio Technology	IEEE802.11b/g/n HT20/HT40
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Rated Input	DC 5V

5.2. MAXIMUM OUTPUT POWER

Number of		Frequency		Max PK
Transmit Chains	IEE Std. 802.11	(MHz)	Channel Number	
(NTX)		(1011 12)		(dBm)
2	IEEE 802.11b SISO	2412-2462	1-11[11]	19.824
2	IEEE 802.11g SISO	2412-2462	1-11[11]	25.614
2	IEEE 802.11nHT20 MIMO	2412-2462	1-11[11]	25.287
2	IEEE 802.11nHT40 MIMO	2422-2452	3-9[7]	25.294

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)								
Channel	Frequency (MHz)	Channel	el Frequency (MHz) Channel Frequency (MHz) Channel (MHz)						
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452	/	/		

	Channel List for 802.11n (40 MHz)								
ChannelFrequency (MHz)Frequench (MHz)Frequency (MHz)Frequency (MHz)Frequency (MHz)Frequency (MHz)Frequency (MHz)							Frequency (MHz)		
3	2422	5	2432	7	2442	9	2452		
4	2427	6	2437	8	2447	/	/		

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT40)	CH 3, CH 6, CH 9	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE CONFIGURATIONS

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	/are		M	T7662U_QA	_Tool_V1.0.	3.0		
	Transmit			Test C	Channel			
Modulation Mode	Antenna	1	NCB: 20MH	lz	Ν	ICB: 40MHz		
Mode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	default	default	default				
002.110	2	default	default	default				
002 11a	1	default	default	default		1		
802.11g	2	default	default	default	7			
802.11n HT20	1	default	default	default				
002.11111120	2	default	default	default	1			
802.11n HT40	1		1		default	default	default	
002.11111140	2		Ι		default	default	default	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	PIFA Antenna	2.24
2	2412-2462	PIFA Antenna	2.24

Note: Directional gain= GANT + 10 log(NANT) =5.25 < 6dBi N_{ANT}: the number of Antenna

Test Mode	Transmit and Receive Mode	Description			
IEEE 802.11b	⊠2TX, 2RX	ANT 1, 2 can be used as transmitting/receiving antenna.			
IEEE 802.11g	⊠2TX, 2RX	ANT 1, 2 can be used as transmitting/receiving antenna.			
IEEE 802.11n HT20	⊠2TX, 2RX	ANT 1, 2 can be used as transmitting/receiving antenna.			
IEEE 802.11n HT40	⊠2TX, 2RX	ANT 1, 2 can be used as transmitting/receiving antenna.			
Note: 1. Only 802.11n HT20/HT40 support MIMO mode					

5.7. THE WORSE CASE CONFIGURATIONS

For SISO modes, there are two transmission antennas. The antenna used in any given time can be either ANTENNA 1 or ANTENNA 2. All antenna ports have the same power; so only the worst data for ANTENNA 2 are recorded in the report.

For 2TX MIMO modes, ANTENNA 1 and ANTENNA 2, used at the same time and have the same power setting, so only the worst MIMO mode test data were recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

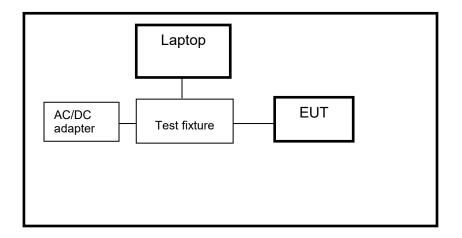
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	PC	Dell	Vostro 3902	8KNDDB2
2	Debug	N/A	N/A	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	PCIEX	N/A	N/A	0.1	N/A
2	USB	N/A	N/A	0.5	N/A


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	Power Adapter	N/A	HW-120150E2W	INPUT:100-240V~50/60Hz, 0.5A OUTPUT:12.0V, 1.5A

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

6. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions							
			Instru	ument				
Used	Equipment	Manufacturer	Mod	del No.	Serial N	lo.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S	E	SR3	10196	1	Dec.10,2018	Dec.10,2019
\checkmark	Two-Line V- Network	R&S	EN	IV216	10198	3	Dec.10,2018	Dec.10,2019
\checkmark	Artificial Mains Networks	Schwarzbeck	NSL	K 8126	812646	65	Dec.10,2018	Dec.10,2019
			Soft	ware				
Used	Des	cription		Manu	ufacturer	•	Name	Version
\checkmark	Test Software for C	Conducted distu	rbance	e F	arad		EZ-EMC	Ver. UL-3A1
		Rad	iated	Emissio	ons			
			Instru	ument				
Used	Equipment	Manufacturer	Mod	del No.	Serial N	lo.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N9	038A	MY564 036	00	Dec.10,2018	Dec.10,2019
V	Hybrid Log Periodic Antenna	TDK	HLP	-3003C	13096	0	Sep.17, 2018	Sep.17, 2021
V	Preamplifier	HP	84	147D	2944A0 99	90	Dec.10,2018	Dec.10,2019
V	EMI Measurement Receiver	R&S	ES	SR26	10137	7	Dec.10,2018	Dec.10,2019
\checkmark	Horn Antenna	TDK	HRN	N-0118	13093	9	Sep.17, 2018	Sep.17, 2021
V	High Gain Horn Antenna	Schwarzbeck	BBH.	A-9170	691		Aug.11, 2018	Aug.11, 2021
V	Preamplifier	TDK	PA-0	2-0118	TRS-30 0006		Dec.10,2018	Dec.10,2019
\checkmark	Preamplifier	TDK	PA	-02-2	TRS-30 00003		Dec.10,2018	Dec.10,2019
\checkmark	Loop antenna	Schwarzbeck	15	519B	00008	3	Jan.01,2019	Jan.01, 2022
V	Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS		4		Dec.10,2018	Dec.10,2019
V	High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS		23		Dec.10,2018	Dec.10,2019
			Soft	ware				
Used	Descr	iption	Ν	Manufact	turer		Name	Version
\checkmark	Test Software for R	adiated disturba	ince	Farac	k		EZ-EMC	Ver. UL-3A1

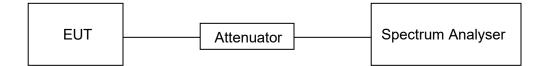
	Other instruments								
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.			
\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.10,2019			
\checkmark	Power Meter	Keysight	N1911A	MY55416024	Dec.10,2018	Dec.10,2019			
\checkmark	Power Sensor	Keysight	U2021XA	MY5100022	Dec.10,2018	Dec.10,2019			

7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Peak Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2
8	99% Bandwidth	ANSI C63.10-2013	6.9.3

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	59%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

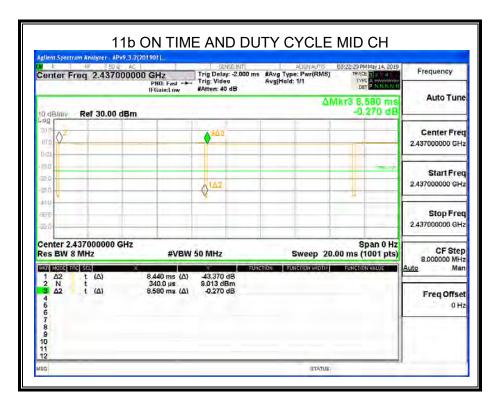
RESULTS

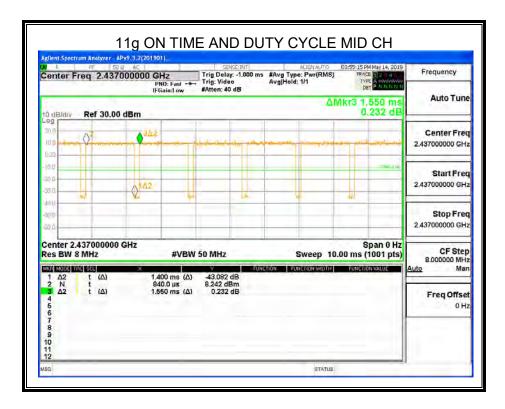
ANTENNA2

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11b SISO	8.440	8.580	0.98	98	0.088	0.118	0.5
11g SISO	1.400	1.550	0.90	90	0.458	0.714	1
11n20 MIMO	1.320	1.470	0.90	90	0.458	0.758	1
11n40 MIMO	0.655	0.810	0.81	81	0.915	1.527	2

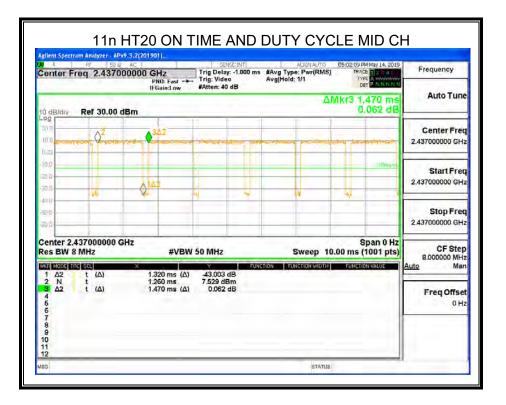
Note:

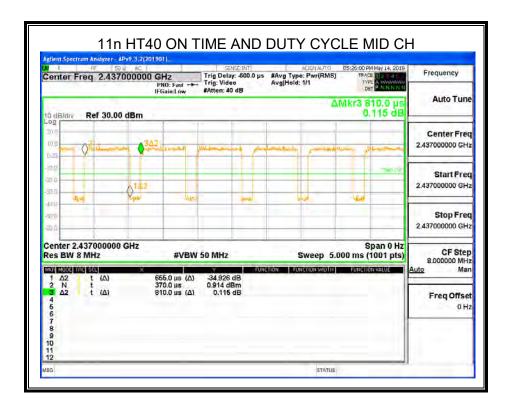
Duty Cycle Correction Factor= $10\log(1/x)$.


Where: x is Duty Cycle (Linear)


Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used. Antenna 1 and Antenna 2 has the same duty cycle, only Antenna 2 data show here.

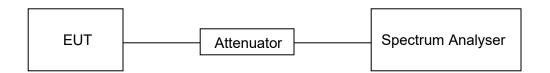

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



8.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500KHz	2400-2483.5	
ANSI C63.10-2013 Section 6.9.3	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5	


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6dB Bandwidth :100K For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
VBW	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

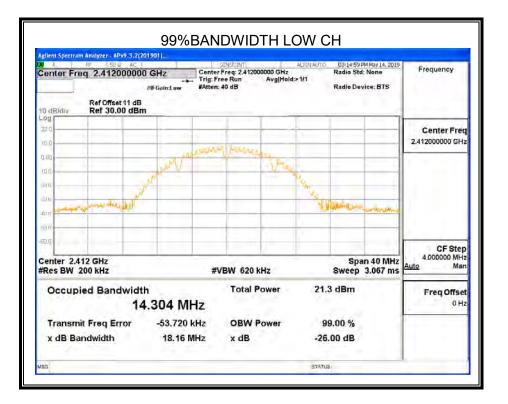

Temperature	23.8°C	Relative Humidity	59%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

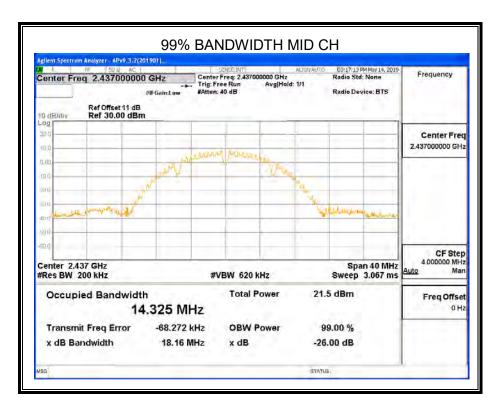
RESULTS

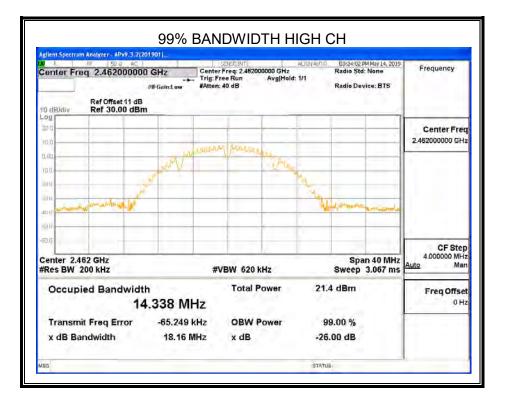
8.2.1. 802.11b SISO MODE

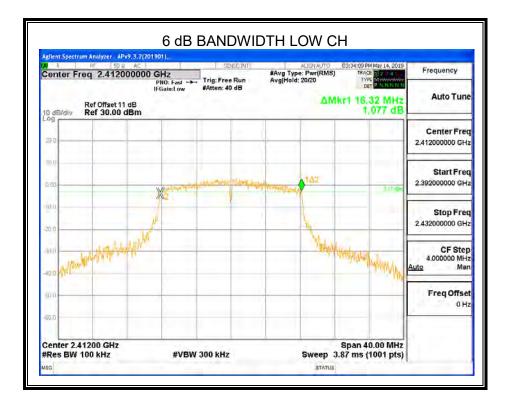

ANTENNA2

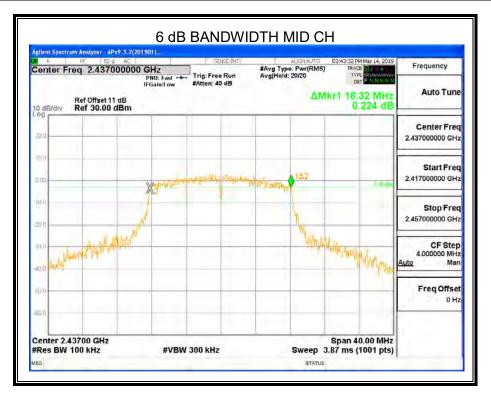
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	9.520	14.304	≥500	Pass
Middle	9.560	14.325	≥500	Pass
High	9.120	14.338	≥500	Pass

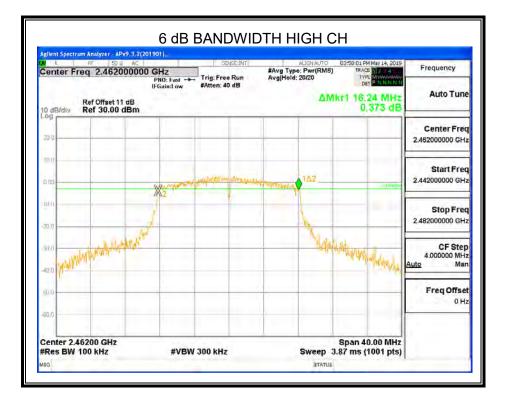




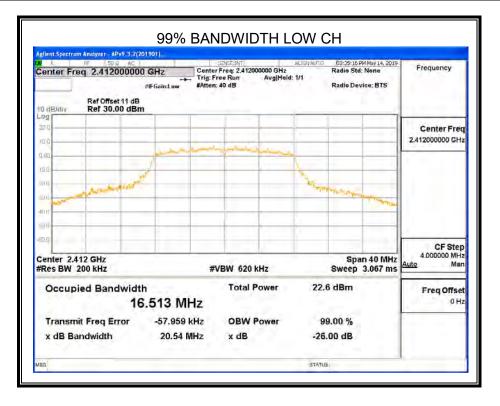


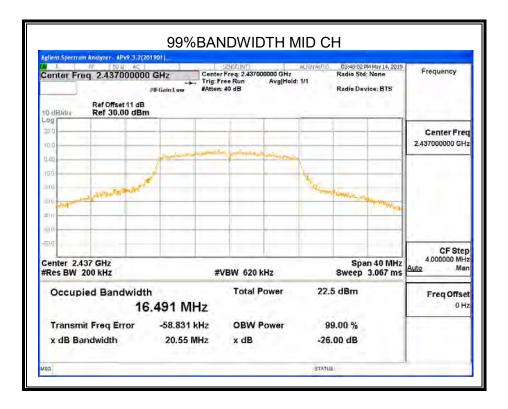


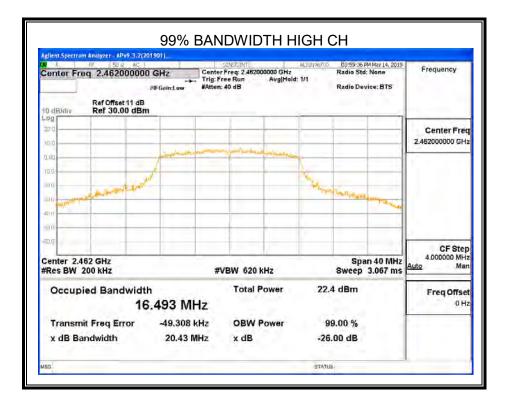

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

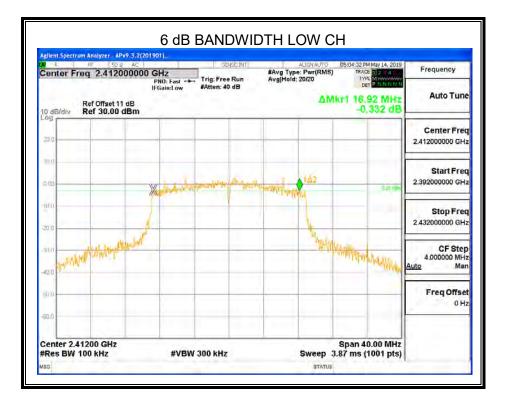

8.2.2. 802.11g SISO MODE

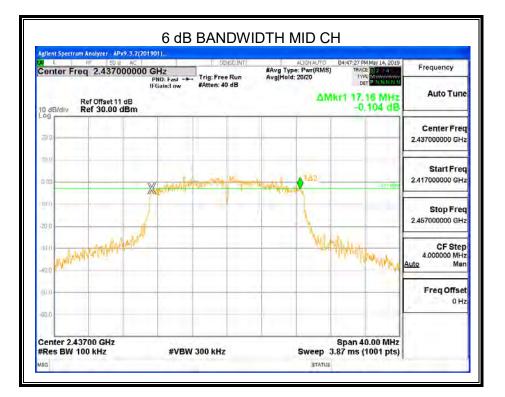
ANTENNA2


Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	16.320	16.513	≥500	Pass
Middle	16.320	16.491	≥500	Pass
High	16.240	16.493	≥500	Pass

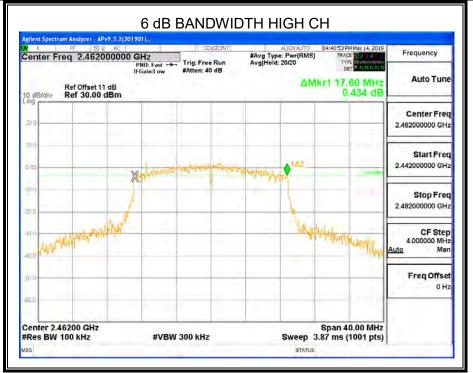


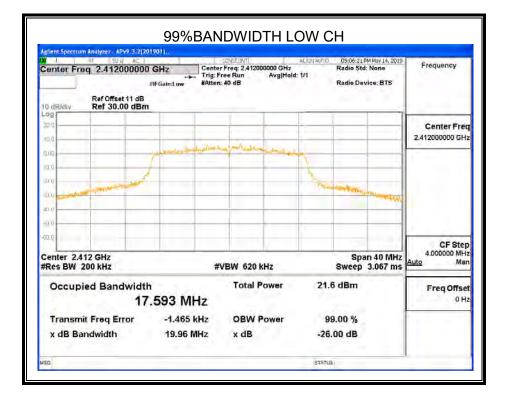


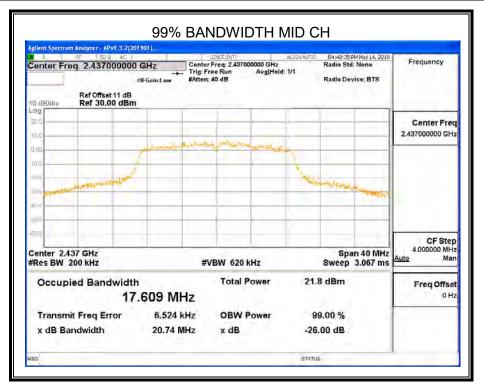

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.



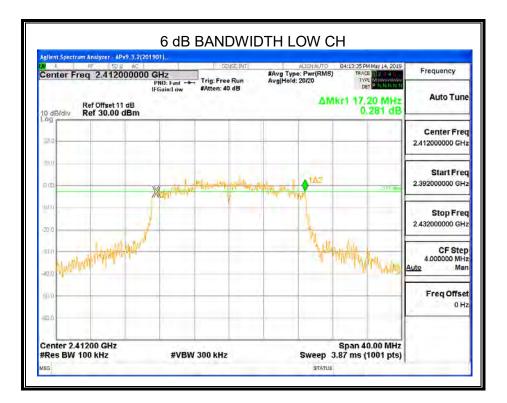
8.2.3. 802.11n HT20 MIMO MODE

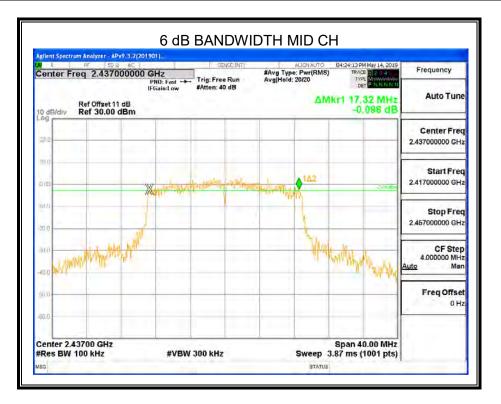

ANTENNA1

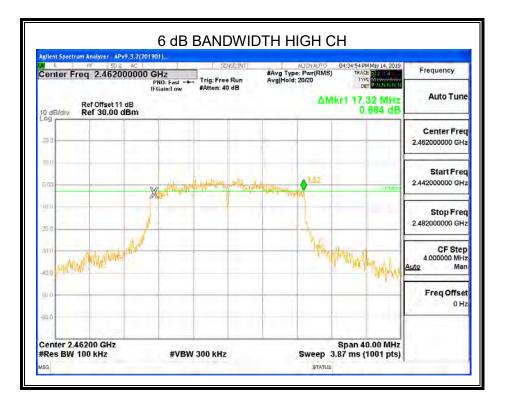

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	16.920	17.593	≥500	Pass
Middle	17.160	17.609	≥500	Pass
High	17.600	17.580	≥500	Pass



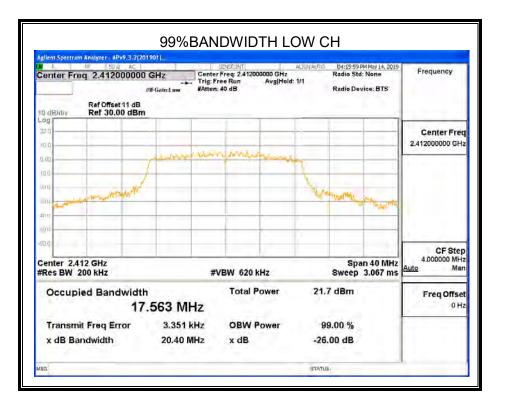


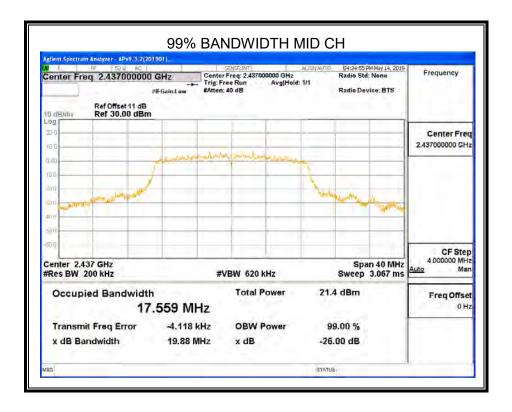


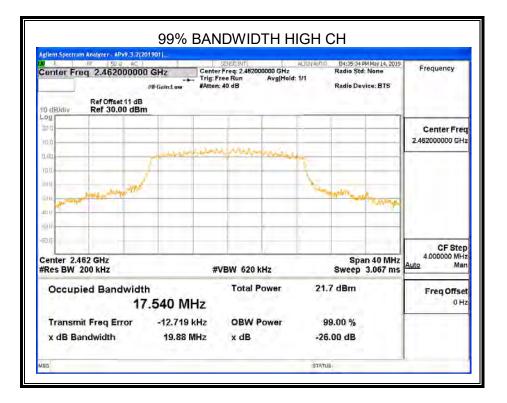


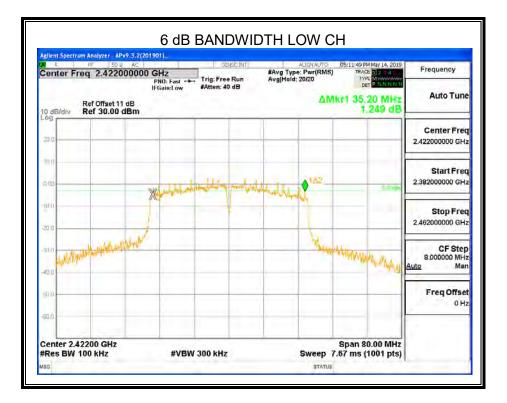

ANTENNA2

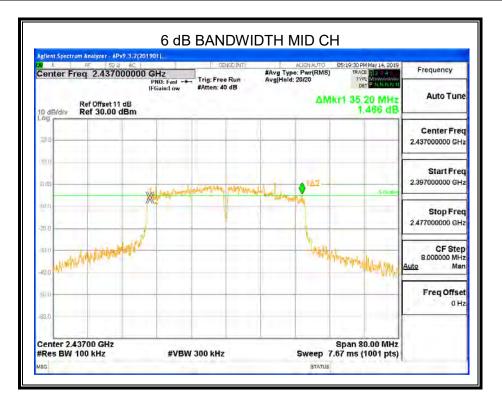
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	17.200	17.563	≥500	Pass
Middle	17.320	17.559	≥500	Pass
High	17.320	17.540	≥500	Pass



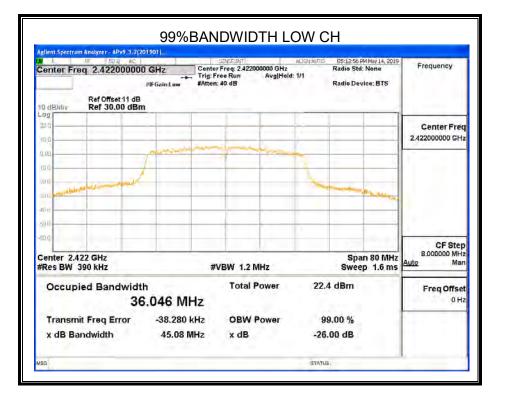


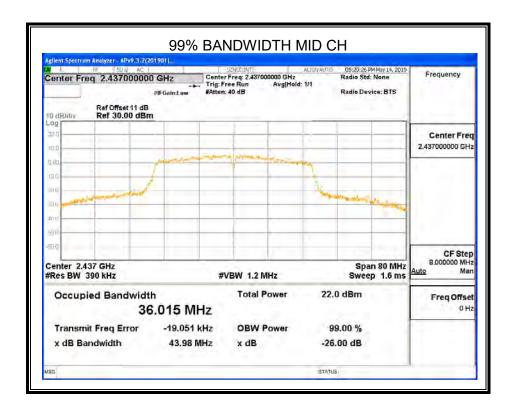


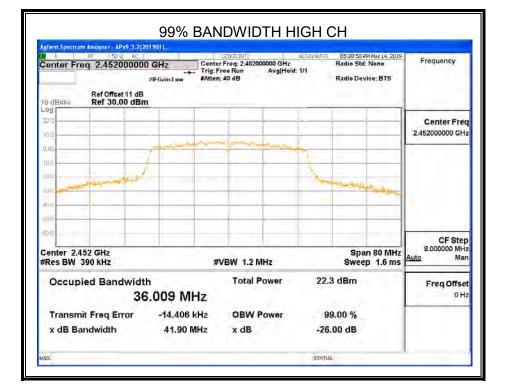

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

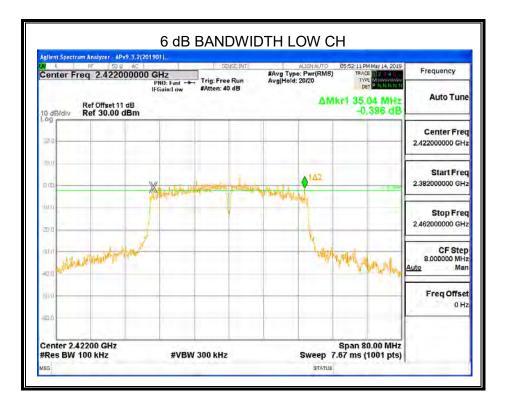

8.2.4. 802.11n HT40 MIMO MODE

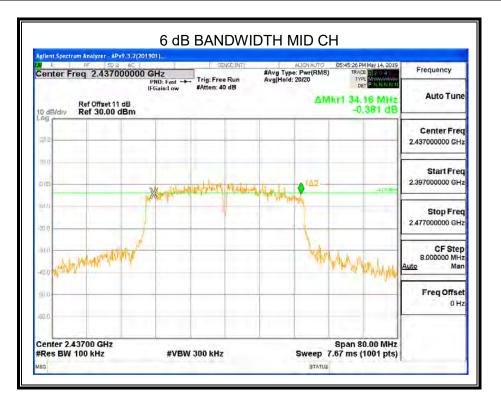
ANTENNA1

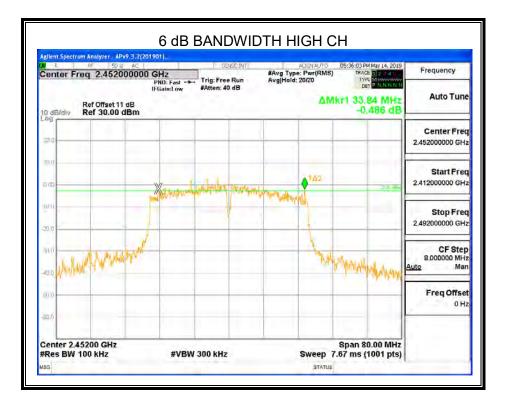

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	35.200	36.046	≥500	Pass
Middle	35.200	36.015	≥500	Pass
High	35.040	36.009	≥500	Pass

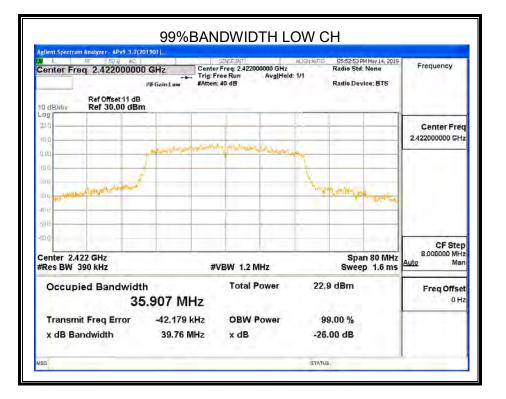


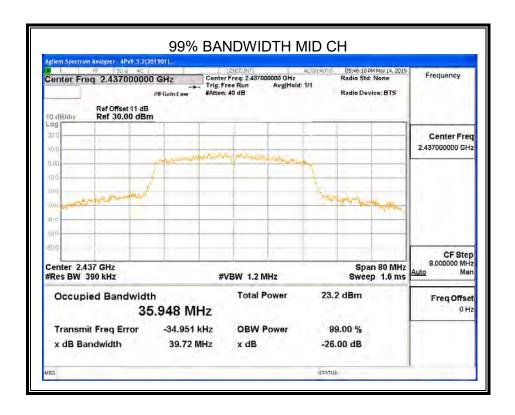


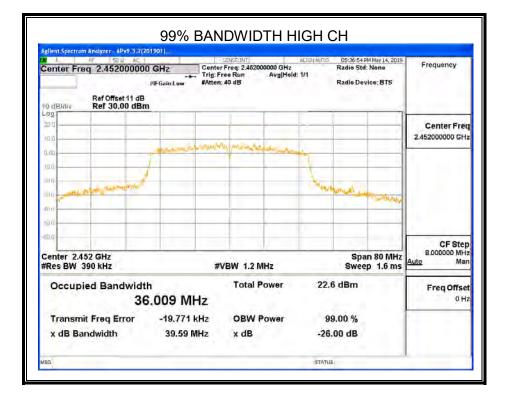





ANTENNA2


Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	35.040	35.907	≥500	Pass
Middle	34.160	35.948	≥500	Pass
High	33.840	36.009	≥500	Pass





Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

8.3. PEAK CONDUCTED OUTPUT POWER

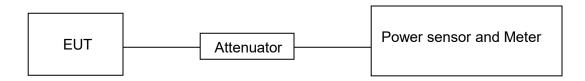
LIMITS

	CFR 47 FCC Part15 (1	5.247) Subpart C		
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	
Note: 1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. 2. Note: Directional gain= GANT + 10 log(NANT) =5.25< 6dBi				

2. Note: Directional gain= GANT + 10 log(NANT) N_{ANT}: the number of Antenna

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.


Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	59%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

Test Channel	ANT.	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
Channel		(dBm)	(dBm)	dBm
	1	19.564	16.456	
Low	2	19.615	16.506	30
Middle	1	19.678	16.631	00
wilddie	2	19.824	16.720	30
Lliab	1	19.579	16.589	20
High	2	19.656	16.634	30

8.3.1. 802.11b SISO MODE

8.3.2. 802.11g SISO MODE

Test Channel	ANT.	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
Channel		(dBm)	(dBm)	dBm
Low	1	25.114	15.789	
Low	2	25.341	15.962	30
Middle	1	25.261	15.047	00
Middle	2	25.514	15.138	30
Lligh	1	25.317	15.863	00
High	2	25.614	16.103	30

Test Channel ANT		Maximum Condu Power(P (dBm	K)	Maximum Conducted Output Power(AV) (dBm)		LIMIT
		Single	Total	Single	Total	dBm
Low	1	24.939	28.13	15.061	18.18	30
Low	2	25.287		15.272		
Middle	1	24.983	28.04	15.110	18.24	00
ivildale	2	25.069	20.04	15.337	10.24	30
Lliab	1	25.162	28.18	15.117	18.20	20
High	2	25.182	20.10	15.261	18.20	30

8.3.3. 802.11n HT20 MIMO MODE

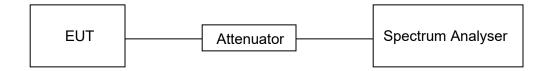
8.3.4. 802.11n HT40 MIMO MODE

Test Channel ANT.		Maximum Condu Power(P (dBm	rK)	Maximum Conducted Output Power(AV) (dBm)		LIMIT
		Single	Total	Single	Total	dBm
Low	1	25.121	20.42	15.068	18.02	00
Low	2	25.119	28.13	14.941	10.02	30
Middle	1	25.171	28.20	15.006	18.04	
Middle	2	25.206	20.20	15.046	10.04	30
Llinda	1	25.158	28.24	15.031	10 10	00
High	2	25.294	20.24	15.179	18.12	30

8.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5		
Note: 1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. 2. Note: Directional gain= GANT + 10 log(NANT) =5.25< 6dBi N _{ANT} : the number of Antenna					


TEST PROCEDURE

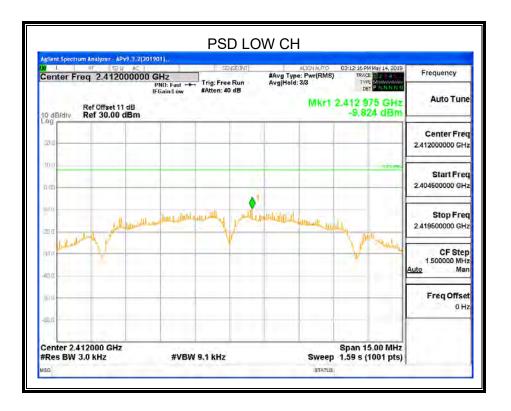
Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	3 kHz ≤ RBW ≤100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

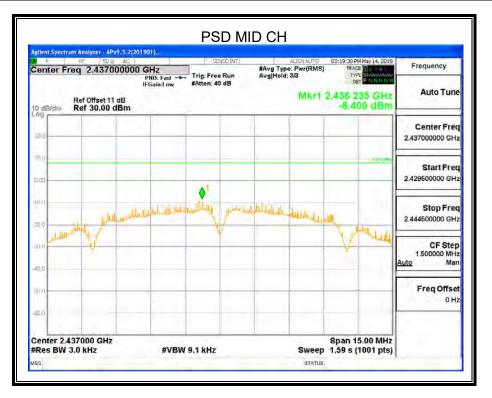
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

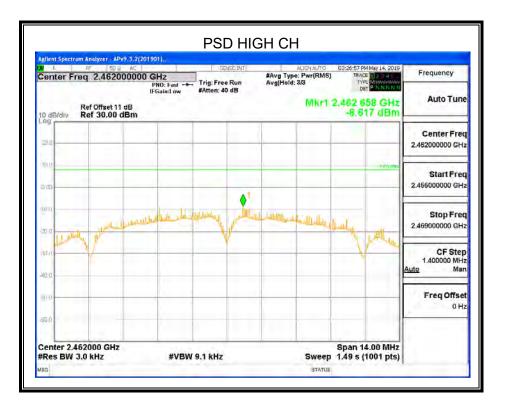
TEST SETUP

TEST ENVIRONMENT

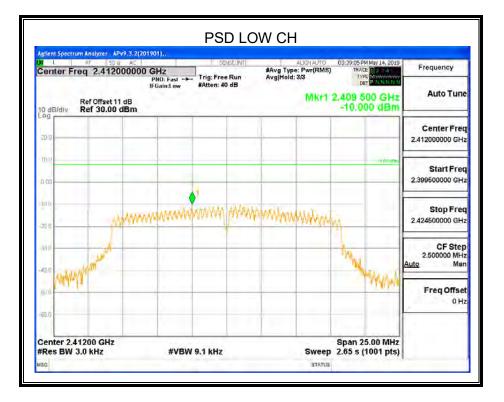

			Tuge +1 of 110
Temperature	23.8°C	Relative Humidity	59%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

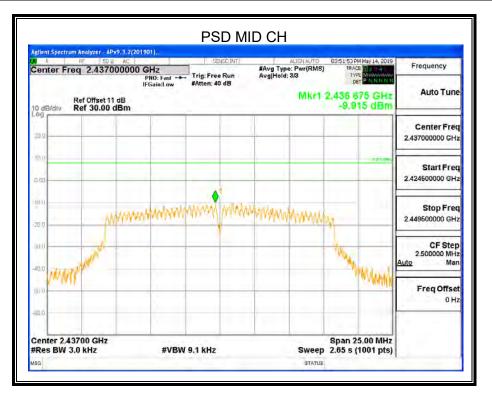
RESULTS

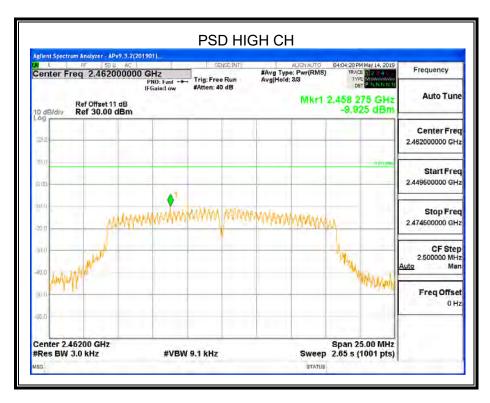

8.4.1. 802.11b SISO MODE


ANTENNA2

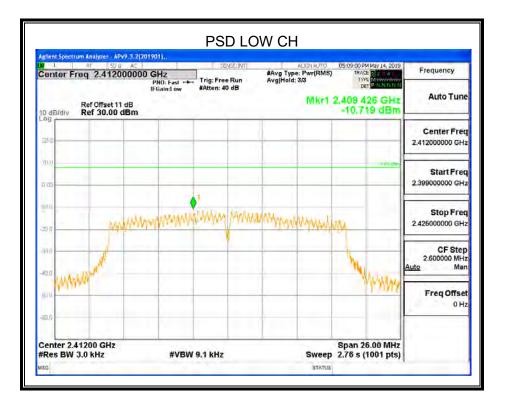
Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-9.824	8	PASS
Middle	-8.409	8	PASS
High	-8.617	8	PASS

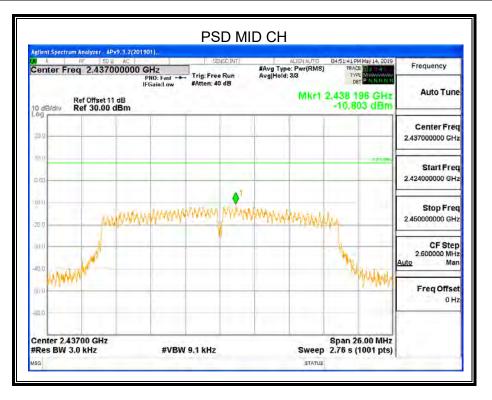

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

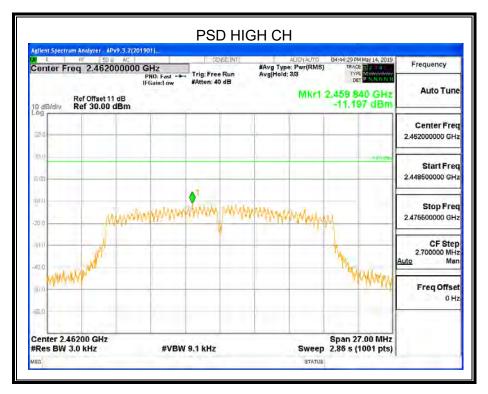

8.4.2. 802.11g SISO MODE


ANTENNA2

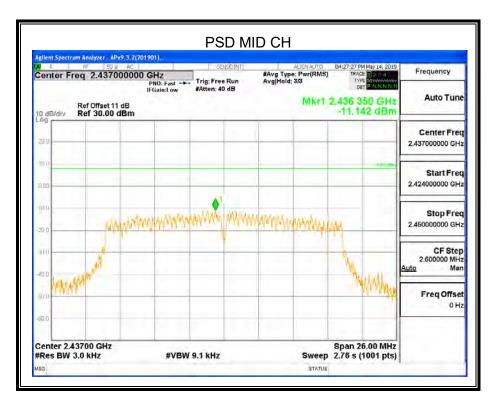
Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-10.000	8	PASS
Middle	-9.915	8	PASS
High	-9.925	8	PASS

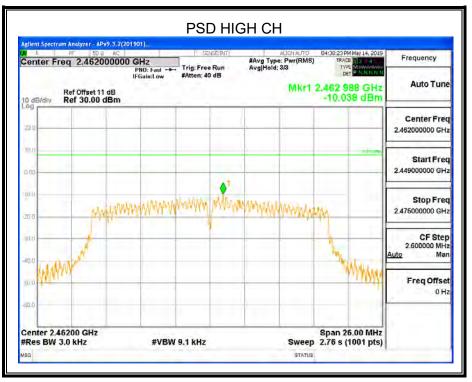

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

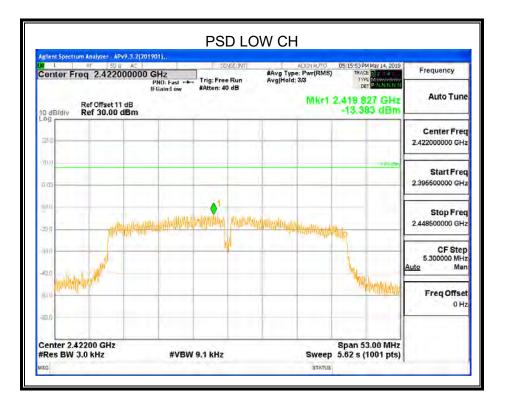

8.4.3. 802.11n HT20 MIMO MODE

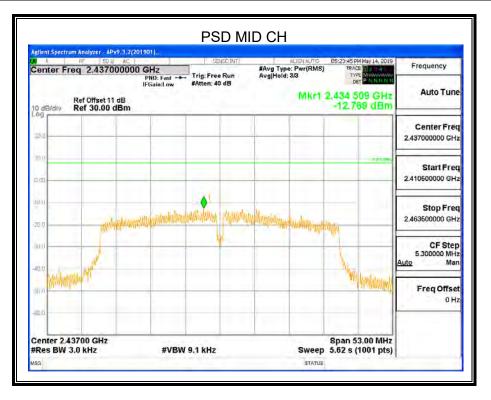

Test Channel	ANT	Power Spectral (dBm/3kh	Limit		
		Single	Total	(dBm/3kHz)	
Low	1	-10.719	-6.87		
Low	2	-9.177	-0.07	0	
Middle	1	-10.803	7.06		
Middle	2	-11.142	-7.96	8	
Lligh	1	-11.197	-7.57		
High	2	-10.038	-7.57		

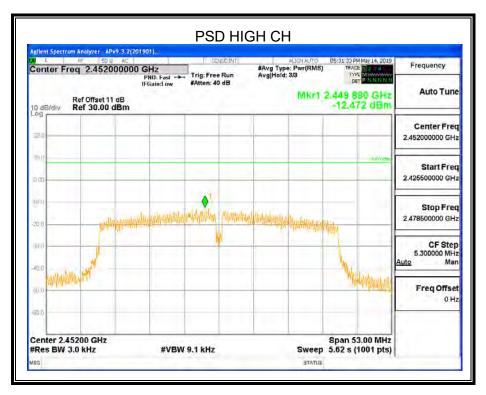
ANTENNA1



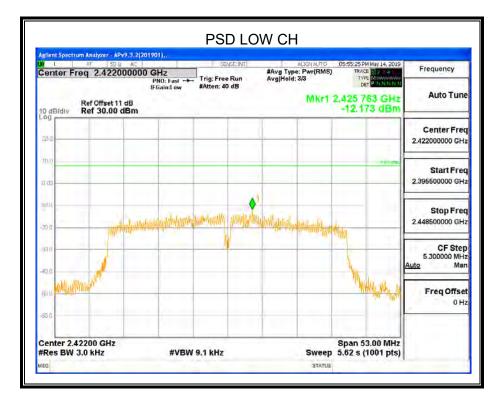


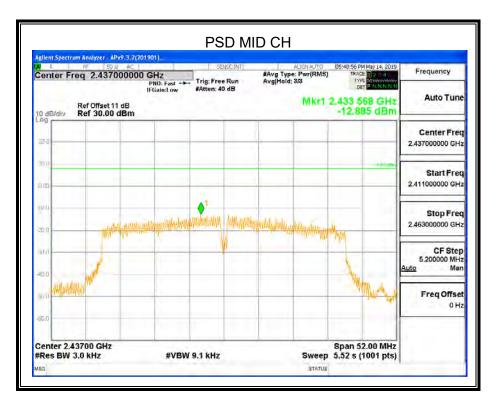

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.


8.4.4. 802.11n HT40 MIMO MODE

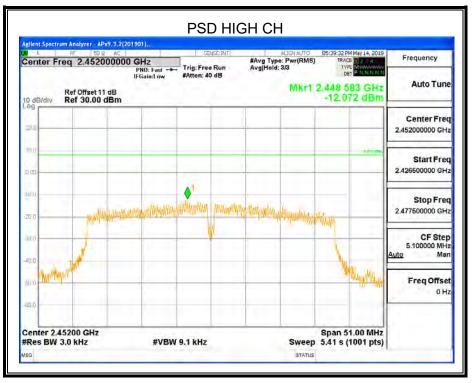

Test Channel	ANT	Power Spectral (dBm/3kF	Limit		
		Single	Total	(dBm/3kHz)	
	1	-13.383	-9.73		
Low	2	-12.173	-9.73	0	
Middle	1	-12.769	0.92		
Ivildule	2	-12.885	-9.82	8	
Lliab	1	-12.472	-9.26		
High	2	-12.072	-9.20		

ANTENNA1





Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.



ANTENNA2

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

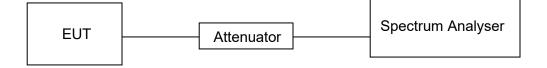
LIMITS

	CFR 47 FCC Part15 (15.247) Subpart C										
Section	Section Test Item Limit										
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power									

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum PSD level.

12090	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	59%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

RESULTS

8.5.1. 802.11b SISO MODE

ANTENNA2

20.0

10.0

0.00 -10.0

-20.0

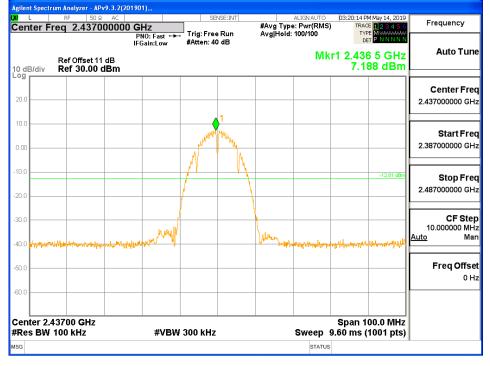
-30.0 -40.0

-50.0

MSG

LOW CH BANDEDGE er - APv9.3.2(201901), SENSE:INT Frequency Center Freq 2.400000000 GHz #Avg Type: Pwr(RMS) Avg|Hold: 100/100 Trig: Free Run PNO: Fast IFGain:Low #Atten: 40 dB Auto Tune Mkr1 2.411 5 GHz 7.001 dBm Ref Offset 11 dB Ref 30.00 dBm 10 dB/div Log **Center Freq** 2.400000000 GHz Start Freq 2.350000000 GHz $\langle \rangle^{3} \langle \rangle$ Stop Freq 2.450000000 GHz

-60.0	\vdash		-		_													2.450000000 GHz
Cen #Re:				0 GHz kHz			#V	вw	300 kH:	z				Sweep			00.0 MHz 1001 pts)	
MKR I	MODE	TRC	SCL			×			Y		FUNC	TION	FUN	CTION WIDTH	H	FUNCTIO	IN VALUE	<u>Auto</u> Man
1	N		f			2.411 (7.001 c									
3	Ň		f			2.397 (-33.377 (Freq Offset
5																		0 Hz
7																		
8 9 10																		
10 11																		
12																		


LOW CH SPURIOUS EMISSIONS 30M-26G

STATUS

Agilent Spectrum Ar	nalyzer - APv9.3.2(2	01901),,				
XI L RF Center Freq	F 50 Q AC 13.01500000	00 GHz PN0: Fast ↔ IEGain:Low	SENSE:INT Trig: Free Run #Atten: 40 dB	ALIGNAUTO #Avg Type: Pwr(RMS) Avg Hold: 10/10	03:13:52 PM May 14, 2019 TRACE 1 2 3 4 5 6 TYPE MWAMAAN DET P. N N N N N	Frequency
	f Offset 11 dB f 30.00 dBm	IFGain:Low	#Atten: 40 dB	Mkr4	25.941 1 GHz -26.335 dBm	Auto Tun
20.0	1					Center Fre 13.015000000 GH
10.0 20.0						Start Fre 30.000000 Mi
0.0						Stop Fr 26.00000000 G
tart 30 MHz Res BW 100		#VBI	V 300 kHz	•	Stop 26.00 GHz 2.48 s (30000 pts)	CF Ste 2.597000000 G
KE MODE TRC SCI 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 6	2. 4. 7.	412 0 GHz 324 0 GHz 236 0 GHz 941 1 GHz	4 F 5.831 dBm -36.866 dBm -38.837 dBm -26.335 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto M Freq Offs 0
7 8 9 0 1 2						
SG				STATUS		

MID CH BANDEDGE

MID CH SPURIOUS EMISSIONS 30M-26G

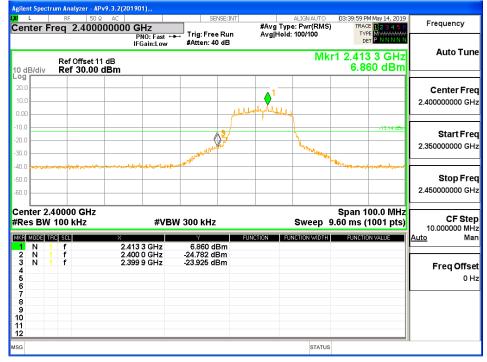
U

HIGH CH BANDEDGE

	RF 50 Ω AC		SENSE:INT	ALIGN AUTO	03:27:33 PM May 14, 2019	Frequency
enter Freq	2.4835000	PNO: Fast ←	📕 Trig: Free Run	#Avg Type: Pwr(RM: Avg Hold: 100/100	S) TRACE 123456 TYPE MWWWWW DET P N N N N N	Trequency
		IFGain:Low	#Atten: 40 dB			Auto Tui
0 dB/div R	ef Offset 11 dB ef 30.00 dBm			MI	r1 2.461 5 GHz 7.090 dBm	
og 20.0						Center Fr
10.0		\				2.483500000 G
	1	mary many				
0.0	/V	N			-12.91 dDm	Start Fi
0.0						2.433500000
0.0	may		Mary and 3		a	2.400000000
0.0 	eA/ ·····N		Mar way water water	win and a state of the state of	= escalation confight and should be	Oton F
0.0						Stop Fi 2.533500000 0
0.0						2.000000000
enter 2.483 Res BW 100		#VB	W 300 kHz	Sweep	Span 100.0 MHz 9.60 ms (1001 pts)	CF SI
KR MODE TRC SO	a >		Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	10.000000 M Auto
1 N 1 f 2 N 1 f		2.461 5 GHz 2.522 5 GHz	7.090 dBm -36.967 dBm			
3 N 1 f		2.483 5 GHz	-40.296 dBm			Freq Off
4 5						
6 7						
8 9						
0 1						
2						
iG				STATU	c	

APv9.3.2(201901) ALIGNAUTO #Avg Type: Pwr(RMS) Avg|Hold: 10/10 35 PM May 14, 2019 03:32 Frequency Center Freq 13.015000000 GHz TRACE Trig: Free Run #Atten: 40 dB TYPE M DET P PNO: Fast Auto Tune Mkr4 25.493 6 GHz Ref Offset 11 dB Ref 30.00 dBm -26.804 dBm 10 dB/div Log **Center Freq** 13.015000000 GHz 0.00 -10.0 Start Freq -20.0 30.000000 MHz -30.0 7) -40.0 Stop Freq -50.0 26.00000000 GHz .60.1 Start 30 MHz #Res BW 100 kHz Stop 26.00 GHz **CF Step** 2.597000000 GHz #VBW 300 kHz Sweep 2.48 s (30000 pts) MKR MODE TRC SCL FUNCTION WIDTH FUNCTION VALU Mar FUNCTION Auto 7.144 dBm -38.749 dBm -39.043 dBm -26.804 dBm 2.462 0 GHz 4.924 0 GHz 7.386 0 GHz 25.493 6 GHz 1 2 3 4 5 6 7 8 9 10 11 12 N N N Freq Offset 0 Hz STATUS MSG

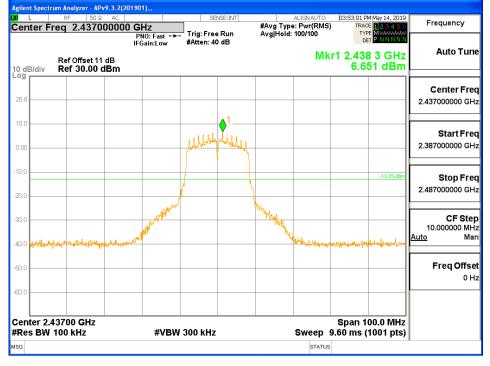
HIGH CH SPURIOUS EMISSIONS 30M-26G


Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

8.5.2. 802.11g SISO MODE

ANTENNA2

LOW CH BANDEDGE



LOW CH SPURIOUS EMISSIONS 30M-26G

MID CH BANDEDGE

MID CH SPURIOUS EMISSIONS 30M-26G

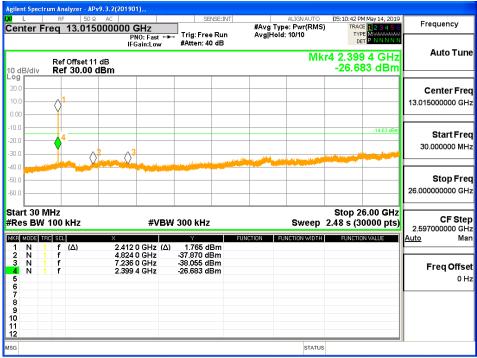
U

HIGH CH BANDEDGE

			SENSE:INT	ALIGN AU		
enter Freq	2.483500000) GHz PNO: Fast ← IFGain:Low	► Trig: Free Run #Atten: 40 dB	#Avg Type: Pwr(R Avg Hold: 100/100		
0 dB/div Re	f Offset 11 dB ff 30.00 dBm			Ν	//kr1 2.463 3 GHz 6.907 dBm	
	المراجع	1 Included a				Center Fr 2.483500000 G
0.0					-13.09 dBm	Start F
0.0 0.0	NA WE WH		And Hallow 3		all the property of the proper	2.433500000 0
D.0						Stop F 2.533500000 0
enter 2.4835 Res BW 100		#VB	W 300 kHz	Swee	Span 100.0 MHz p 9.60 ms (1001 pts)	
R MODE TRC SCI N 1 f 2 N 1 f	2. 2.	463 3 GHz 531 7 GHz	6.907 dBm -35.862 dBm	FUNCTION FUNCTION WI	DTH FUNCTION VALUE	Auto
3 N 1 f 4 5	2.	483 5 GHz	-38.744 dBm			Freq Off
5 7 3 9 0						
0 1 2 9					ATUS	

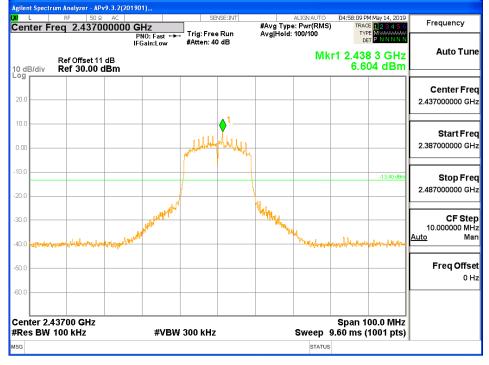
HIGH CH SPURIOUS EMISSIONS 30M-26G

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.


8.5.3. 802.11n HT20 MIMO MODE

ANTENNA2

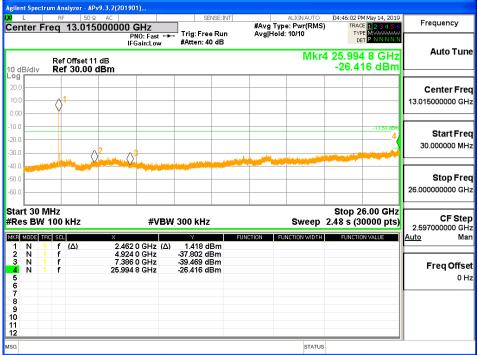
,	alyzer - APv9.3.2(20	1901),,					t:
enter Frea	50 Q AC 2.400000000	GHz	SENS	#Avg 1	ALIGNAUTO ype: Pwr(RMS)	05:09:44 PM May 14, 2019 TRACE 123456	Frequency
		PNO: Fast ↔ IFGain:Low	#Atten: 40 c		old: 100/100	DET P NNNN	Auto Tu
) dB/div Re	f Offset 11 dB f 30.00 dBm				Mkr	1 2.413 3 GHz 5.367 dBm	Auto Tu
9 0.0							Center Fr
0.0							2.400000000 G
.0						-14,63 dBm	
1.0				¥	- And -		Start Fr 2.350000000 G
).0		L	- A MANYAN AND AND AND AND AND AND AND AND AND A		hadeler harde	The house a los of	
).0	Hall dan di mencenan dan d						Stop Fr
0.0							2.450000000 G
enter 2.4000 Res BW 100		#VB\	₩ 300 kHz		Sweep 9	Span 100.0 MHz .60 ms (1001 pts)	CF St
R MODE TRC SCI	. ×		Y		FUNCTION WIDTH	FUNCTION VALUE	10.000000 M <u>Auto</u> N
N 1 f 2 N 1 f 3 N 1 f	2.4	133 GHz (Δ	-27.202 dBr	n			
	2.3	99 8 GHz	-24.237 dBr	n			Freq Offs
5							
3							
) 1 2							
3					STATUS		


LOW CH BANDEDGE

LOW CH SPURIOUS EMISSIONS 30M-26G

MID CH BANDEDGE

MID CH SPURIOUS EMISSIONS 30M-26G



U

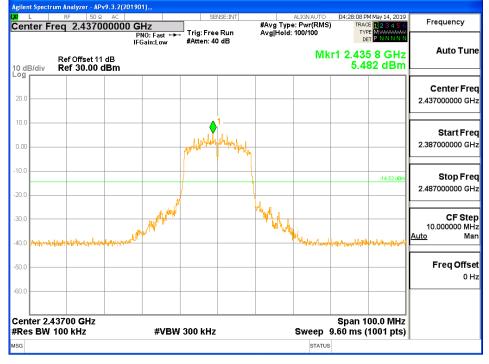
HIGH CH BANDEDGE

K L RF 50 G Center Freq 2.4835	2 AC	SENSE:INT	ALIGNA	RMS) TRACE 1 2 3 4 5 6	Frequency
Ref Offset 1	PNO: Fast IFGain:Low 1 dB	+++- Trig: Free Run #Atten: 40 dB	Avg[Hold: 100/10	0 TYPE MUNANU DET P NNNN Mkr1 2.463 3 GHz 6.502 dBm	Auto Tune
	1 Lablace Malue				Center Fred 2.483500000 GHz
-10.0 -20.0 -30.0		Martingen Martinet	2	-13:50 dBm	Start Free 2.433500000 GHz
-40.0			and the second	a payo at an	Stop Freq 2.533500000 GHz
Center 2.48350 GHz #Res BW 100 kHz	×		Swee	Span 100.0 MHz ep 9.60 ms (1001 pts) лотн Function Value	
1 N 1 f (Δ) 2 N 1 f 3 N 1 f 3 N 1 f 4 5 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1	2.463 3 GHz 2.497 9 GHz 2.483 5 GHz	(Δ) 6.502 dBm -37.177 dBm -38.856 dBm			Freq Offsel
8 9 10 11 12					

HIGH CH SPURIOUS EMISSIONS 30M-26G

ANTENNA2

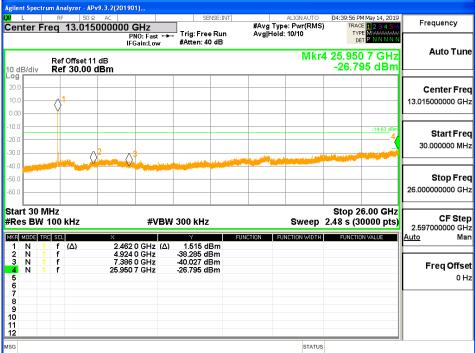
Agilent Spectrum Analyzer - APv9.3.2(20				
Center Freq 2.40000000		#Avg Type: Pwr(RMS	04:21:04 PM May 14, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
Ref Offset 11 dB	PNO: Fast ↔ Trig: Free Rt IFGain:Low #Atten: 40 dt	3	r1 2.413 3 GHz 5.443 dBm	Auto Tune
10 dB/div Ref 30.00 dBm 20.0 10.0 0.00		1 . 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	5.445 dBm	Center Fred 2.400000000 GHz
-10.0	33	James J. Carry	-14.56 dBm	Start Fred 2.350000000 GHz
-40.0				Stop Fred 2.450000000 GH
Center 2.40000 GHz #Res BW 100 kHz MKR MODE TRC SCL	#VBW 300 kHz	Sweep	Span 100.0 MHz 9.60 ms (1001 pts) EUNCHION VALUE	CF Stej 10.000000 MH Auto Ma
2 N 1 f 2.4 3 N 1 f 2.3 4 5 6 6	413 3 GHz 5.443 dBm 400 0 GHz -27.523 dBm 399 5 GHz -23.603 dBm			Freq Offse
7 8 9 10 11 12				
MSG		STATUS	5	


LOW CH BANDEDGE

LOW CH SPURIOUS EMISSIONS 30M-26G

U

MID CH BANDEDGE


MID CH SPURIOUS EMISSIONS 30M-26G

U

HIGH CH BANDEDGE

Enservement	M May 14, 2019		ALIGN AUTO		SENSE:INT	9			50 \$	RF		L
Frequency Auto Tune	CE 123456 PE Maaaaaa ET P NNNNN	TRAC TYP DR	e: Pwr(RMS) 100/100	#Avg Tyj Avg Hold		Trig: Fr #Atten:	GHz PNO: Fast IFGain:Lov	00000	2.4835	req	er Fr	ent
	9 5 GHz 66 dBm		Mkr						Offset 1 30.00		/div) dE
Center Fi 2.483500000 G							I Yalkarta	Lawelyna				0.0 0.0
Start Fr 2.433500000 G	-14.63 dBm		2		3	Hantlewelwin	Y -		phadren w	dest ^w).0 =).0 =).0 =
Stop Fi 2.533500000 G		hand have been a second	<u>بەرەلىرىكى ئەرىكى ئەرەپ ئەرەلى</u>	ngematrijetidigensf	1. Krakishaan						n n n n n n n n n n n n n n n n n n n	1.0 1.0 1.0
CF St 10.000000 N		.60 ms (Sweep 9.		z	300 KH	#V		0 GHz kHz		er 2.4 BW 1	
Auto M	IN VALUE	FUNCTIO	ICTION WIDTH	NCTION	dBm dBm	Δ) 5.366 -37.374 -37.865	59 5 GHz 02 2 GHz 33 5 GHz	2.5	(Δ)	f f f	dde tri N 1 N 1 N 1	1 2 3
0 H												4 5 5 7
												B 9 0 1 2

HIGH CH SPURIOUS EMISSIONS 30M-26G

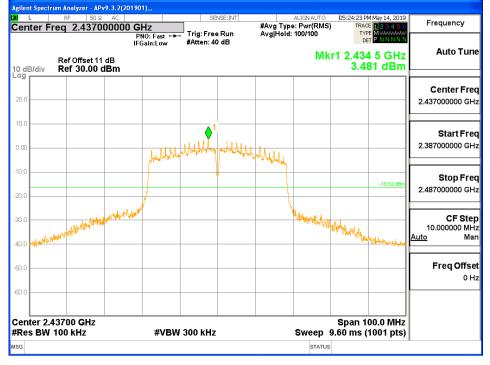
Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.


8.5.4. 802.11n HT40 MIMO MODE

ANTENNA2

	RF 50 Ω AC		SEN	SE:INT		ALIGNAUTO E: Pwr(RMS)		4 May 14, 2019	Frequency
enter Fred	2.40000000	PNO: Fast + IEGain:Low	Trig: Free #Atten: 40	Run .	Avg Hold:		TYP		
	ef Offset 11 dB ef 30.00 dBm	II COMILECT				Mkr		3 GHz 0 dBm	Auto Tui
0.0 0.0 .00				يىلىلىلىر	ر المحمد الم	1	مسأليا راليار الريار		Center Fr 2.400000000 G
).0).0).0			A A A A A A A A A A A A A A A A A A A	2				-16.80 dBm	Start Fr 2.350000000 G
1.0 <mark>Wrand, and and and and and and and and and and</mark>	an a								Stop Fr 2.45000000 G
enter 2.400 tes BW 10 e xooe nee s	0 kHz	#VB	W 300 kHz	FUNCTI		Sweep 9			CF St 10.000000 M Auto M
N 1 1 2 N 1 1 3 N 1 1 4 5	F (Δ) 2. F 2.	418 3 GHz(/ 400 0 GHz 398 3 GHz		m m			FUNCTIO		Freq Offs 0
7 3 9 0									

LOW CH BANDEDGE


LOW CH SPURIOUS EMISSIONS 30M-26G

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

MID CH BANDEDGE

MID CH SPURIOUS EMISSIONS 30M-26G

U

HIGH CH BANDEDGE

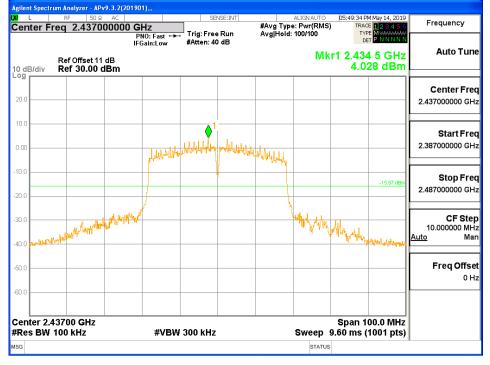
L	RF 50 Ω			SENSE:INT	#A T	ALIGNAUTO be: Pwr(RMS)		1 May 14, 2019	Frequency
enter Fre	q 2.4835	00000 GHz PNO: Fa		g:FreeRun ten:40dB		1: 100/100	TYP		,
		IFGain:L	W #At	ten: 40 ab		Mkr	_	5 GHz	Auto Tu
0 dB/div	Ref Offset 11 Ref 30.00 (IVIKI		7 dBm	
0.0									Center Fi
0.0	1								2.483500000 0
	-	and the weather the state	14						
0.0	↓		M					-16.65 dBm	Start F
0.0				A3					2.433500000 0
0.0			" diritalise	marger and which when					
0.0					when we want the start of	halahaggi a baga ang pangalan ing	an all the second of	-cef-fyriaesterler	Stop F
0.0									2.533500000 (
enter 2.48 Res BW 1		#	VBW 300	kH7		Sweep 9		00.0 MHz	CF S
(R MODE TRC		×	4 D 1 1 3 0 0		FUNCTION FI		FUNCTIO		10.000000 M Auto
1 N 1	f	2.449 5 GH		347 dBm	onemon		Tokeno	N VALUE	
2 N 1 3 N 1	f	2.483 5 GH 2.483 5 GH		103 dBm 103 dBm					Freq Off
4 5									
5 7									
3 9									
ō									
1 2									
G						STATUS			

HIGH CH SPURIOUS EMISSIONS 30M-26G

ANTENNA2

- APv9.3.2(201901) Uz ni . TRACE 12 #Avg Type: Pwr(RMS) Avg|Hold: 100/100 Frequency Center Freq 2.400000000 GHz TYPE M DET P Trig: Free Run PNO: Fast IFGain:Low #Atten: 40 dB Auto Tune Mkr1 2.424 5 GHz 3.762 dBm Ref Offset 11 dB Ref 30.00 dBm 10 dB/div Log 20. **Center Freq** 10. 2.40000000 GHz -10.0 Start Freq -20.0 (h 2.350000000 GHz -30.0 -40.0 -50.0 Stop Freq 2.450000000 GHz -60.0 Center 2.40000 GHz #Res BW 100 kHz Span 100.0 MHz CF Step 10.000000 MHz #VBW 300 kHz Sweep 9.60 ms (1001 pts) MKR MODE TRC SCL FUNCTION FUNCT FUNCTION Ma NWIDTH ۹uto 2.424 5 GHz (Δ) 2.400 0 GHz 2.399 2 GHz 3.762 dBm -30.199 dBm -26.615 dBm N N N f (Δ) 1 2 3 4 5 6 7 8 9 10 11 12 Freq Offset 0 Hz STATUS MSG

LOW CH BANDEDGE


LOW CH SPURIOUS EMISSIONS 30M-26G

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

MID CH BANDEDGE

MID CH SPURIOUS EMISSIONS 30M-26G

U

HIGH CH BANDEDGE

L	RF 50 Ω AC		SENSE:IN		ALIGN AUTO		May 14, 2019	Frequency
enter Free	q 2.4835000	PNO: Fast +	📕 Trig: Free Run		e: Pwr(RMS) I: 100/100	TYPE	123456 MMMMM PNNNNN	Frequency
		IFGain:Low	#Atten: 40 dB					Auto Tu
0 dB/div	tef Offset 11 dB tef 30.00 dBm				MKI	1 2.449 3.62	5 GHz 7 dBm	Autoru
0.0								Center F
0.0	↓							2.483500000 0
00 John Million	Altomboli Mary provident	the war have been by						
0.0	V						-16.37 dBm	Start F
0.0		}	³²					2.433500000
0.0			Mar Marine Provent	ubrall the work to an electric		المترقبين سيلم	and and the second second	
0.0								Stop F
0.0								2.533500000
enter 2.48:	350 GHz					Snan 1(0.0 MHz	
Res BW 10	0 kHz	#VB	N 300 kHz		Sweep 9			CF S 10.000000 M
R MODE TRC 1			Y	FUNCTION FI	JNCTION WIDTH	FUNCTION	N VALUE	Auto I
2 N 1	f	2.449 5 GHz 2.484 5 GHz	3.627 dBm -32.881 dBm					
4	f	2.483 5 GHz	-34.793 dBm					Freq Off
5 6 7								c
3								
9								
1								
G					STATUS			

APv9.3.2(201901) ALIGNAUTO #Avg Type: Pwr(RMS) Avg|Hold: 10/10 12 PM May 14, 2019 05:44 Frequency Center Freq 13.015000000 GHz TRACE Trig: Free Run #Atten: 40 dB TYPE M DET P PNO: Fast Auto Tune Mkr4 25.925 6 GHz Ref Offset 11 dB Ref 30.00 dBm -26.634 dBm 10 dB/div Log 20. **Center Freq** 13.015000000 GHz 0.00 -10.0 Start Freq -20.0 30.000000 MHz -30.0 -40.0 Stop Freq -50.0 26.00000000 GHz .60.1 Start 30 MHz #Res BW 100 kHz Stop 26.00 GHz **CF Step** 2.597000000 GHz #VBW 300 kHz Sweep 2.48 s (30000 pts) MKR MODE TRC SCL FUNCTION WIDTH FUNCTION VALU Mar FUNCTION Auto -3.583 dBm -39.141 dBm -39.777 dBm -26.634 dBm 2.452 0 GHz 4.904 0 GHz 7.356 0 GHz 25.925 6 GHz N N N 1 2 3 4 5 6 7 8 9 10 11 12 Freq Offset 0 Hz STATUS MSG

HIGH CH SPURIOUS EMISSIONS 30M-26G

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

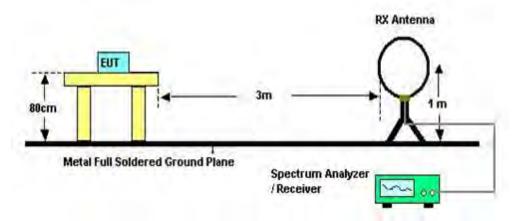
Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)				
Frequency (Miriz)	Peak	Average			
Above 1000	74	54			

FCC Restricted bands of operation:


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

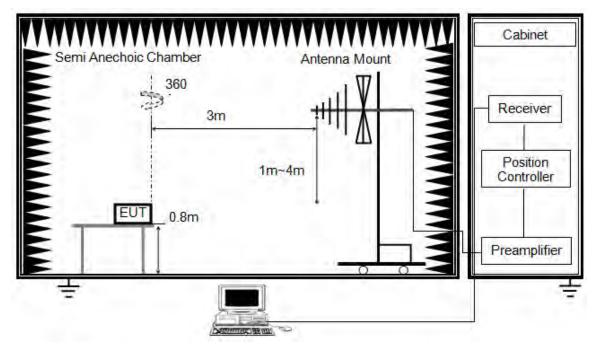
The setting of the spectrum analyser

Trace	Max hold
Detector	Peak/QP/ Average
Sweep	Auto
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

6. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

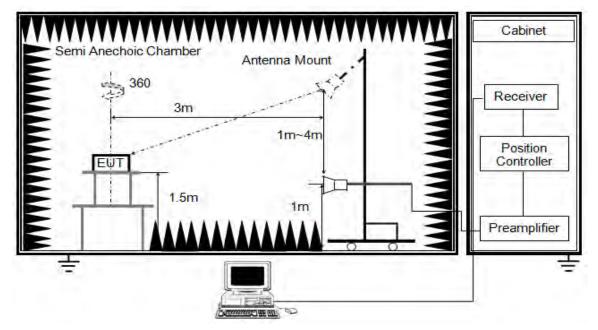
Below 1G

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

ABOVE 1G

The setting of the spectrum analyser

RBW	1M
IV BVV	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

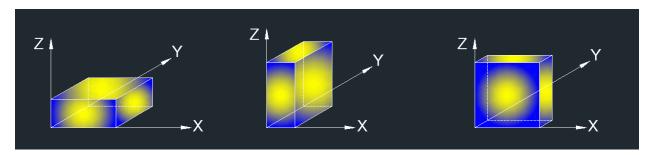
1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.


6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video

bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T

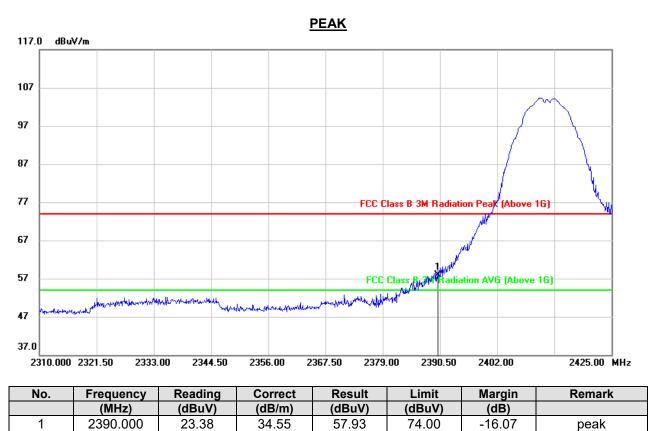
video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 8.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note : For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (Z axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

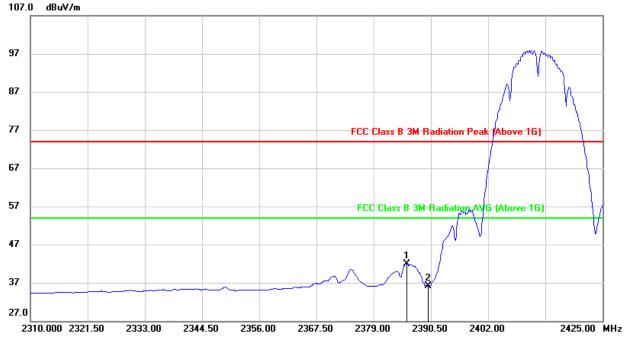


9.1. RESTRICTED BANDEDGE

9.1.1. 802.11b SISO MODE

ANTENNA2

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

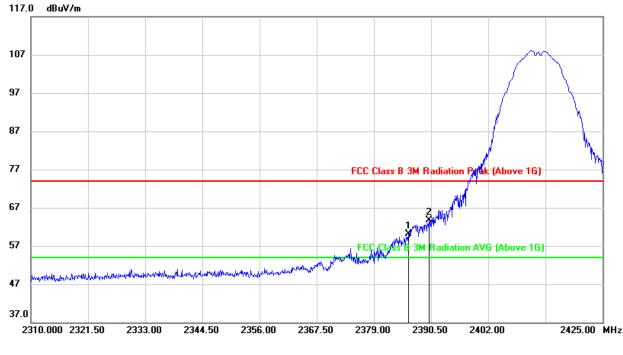
3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2385.670	7.39	34.53	41.92	54.00	-12.08	AVG
2	2390.000	1.63	34.55	36.18	54.00	-17.82	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

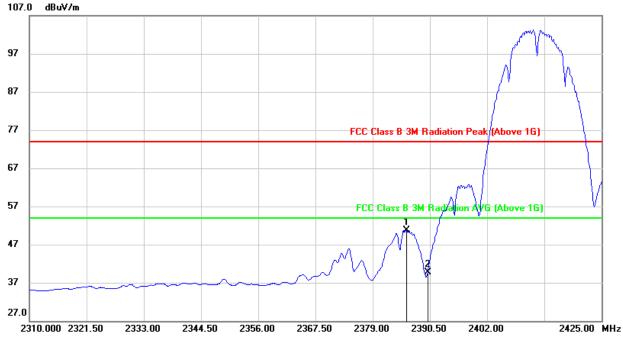

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2385.785	25.53	34.53	60.06	74.00	-13.94	peak
2	2390.000	29.18	34.55	63.73	74.00	-10.27	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

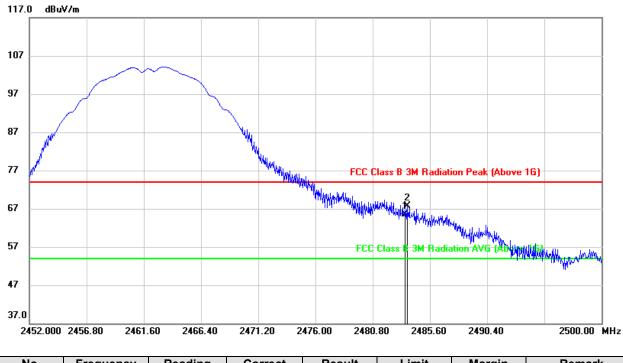
3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2385.785	16.21	34.53	50.74	54.00	-3.26	AVG
2	2390.000	5.13	34.55	39.68	54.00	-14.32	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

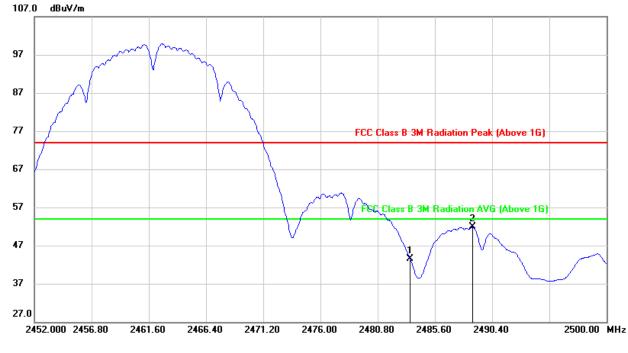
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	30.14	35.28	65.42	74.00	-8.58	peak
2	2483.680	32.34	35.29	67.63	74.00	-6.37	peak


Note: 1. Measurement = Reading Level + Correct Factor.

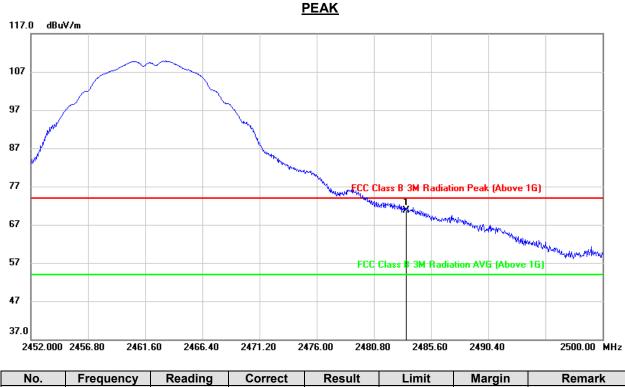
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	8.25	35.28	43.53	54.00	-10.47	AVG
2	2488.768	16.48	35.33	51.81	54.00	-2.19	AVG

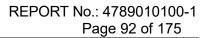
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

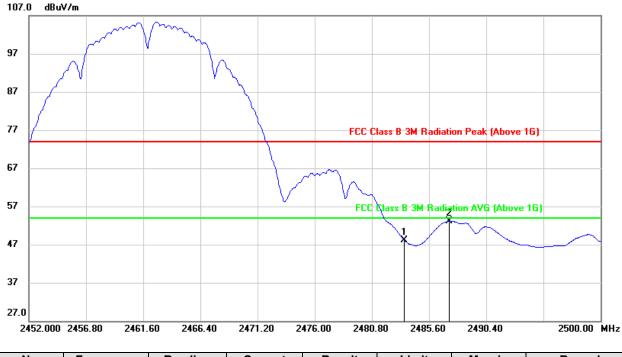
4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	35.52	35.28	70.80	74.00	-3.20	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

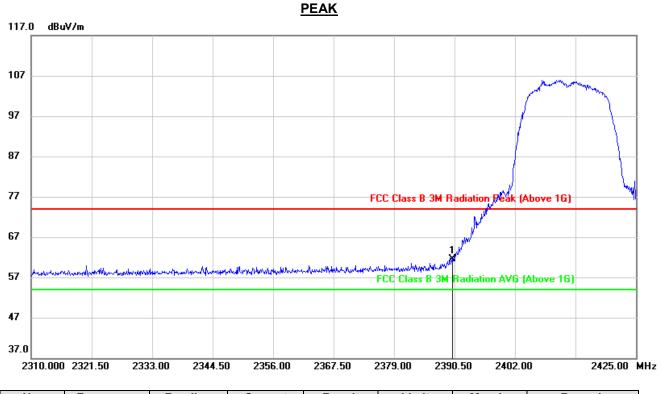
3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	12.88	35.28	48.16	54.00	-5.84	AVG
2	2487.232	17.81	35.32	53.13	54.00	-0.87	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 8.1.


5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

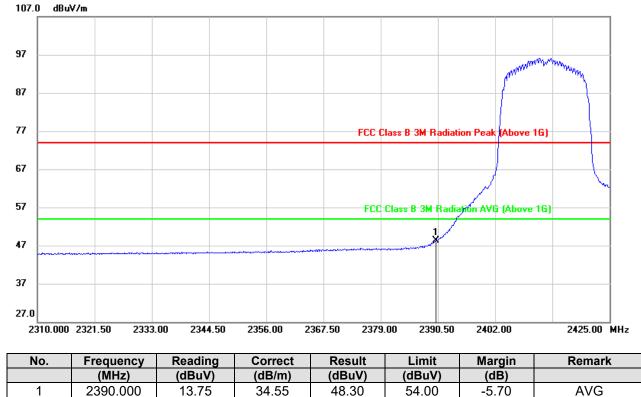
Note: All antennas have been tested, only the worst data record in the report.

9.1.2. 802.11g SISO MODE

ANTENNA2

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2390.000	26.93	34.55	61.48	74.00	-12.52	peak
-							


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

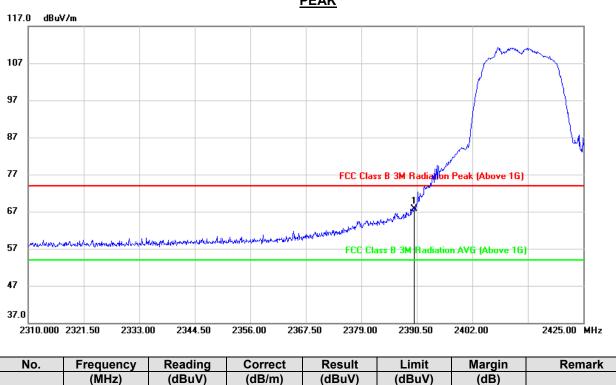
AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.


1

-6.39

peak

74.00

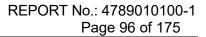
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

33.06

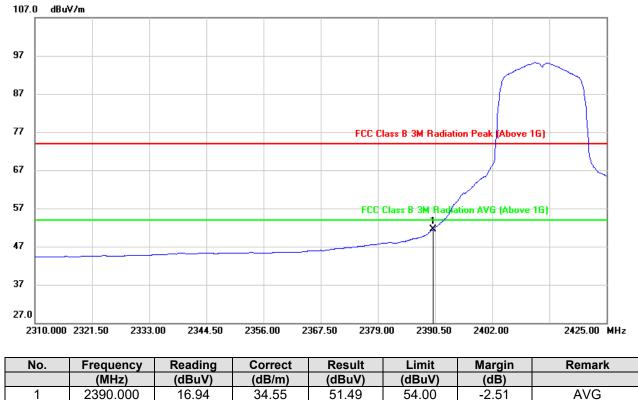
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

67.61


3. Peak: Peak detector.

2390.000

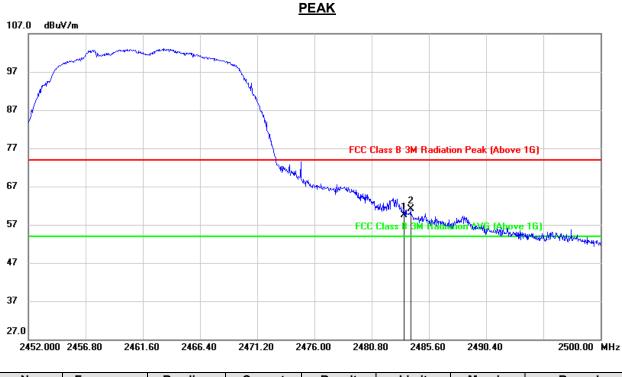
4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


34.55

PEAK

<u>AVG</u>

Note: 1. Measurement = Reading Level + Correct Factor.

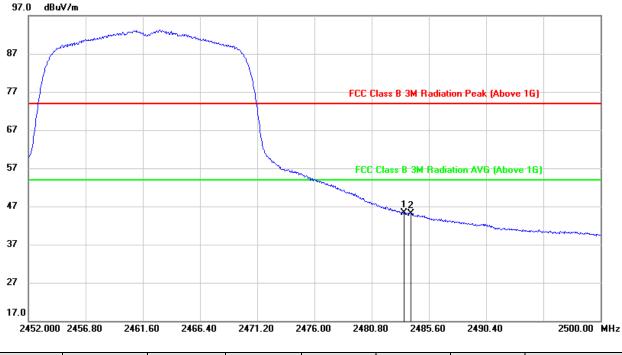

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	26.00	33.58	59.58	74.00	-14.42	peak
2	2484.064	27.44	33.58	61.02	74.00	-12.98	peak


Note: 1. Measurement = Reading Level + Correct Factor.

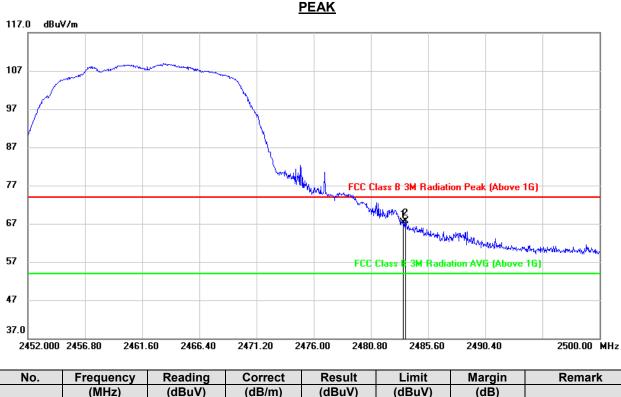
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	11.78	33.58	45.36	54.00	-8.64	AVG
2	2484.064	11.49	33.58	45.07	54.00	-8.93	AVG

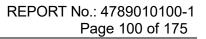
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

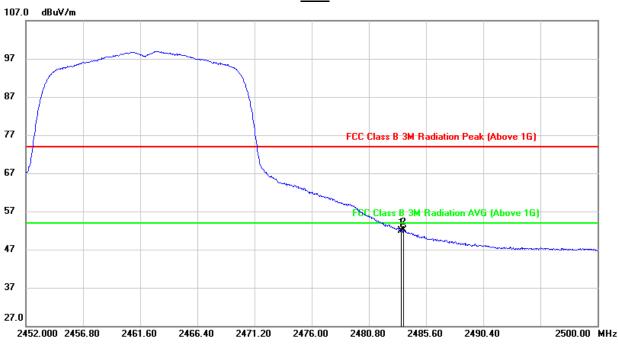
3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	33.64	33.58	67.22	74.00	-6.78	peak
2	2483.680	34.06	33.58	67.64	74.00	-6.36	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

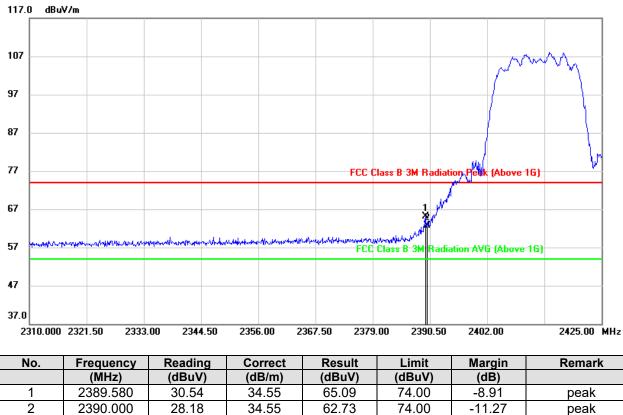
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	18.37	33.58	51.95	54.00	-2.05	AVG
2	2483.680	18.49	33.58	52.07	54.00	-1.93	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

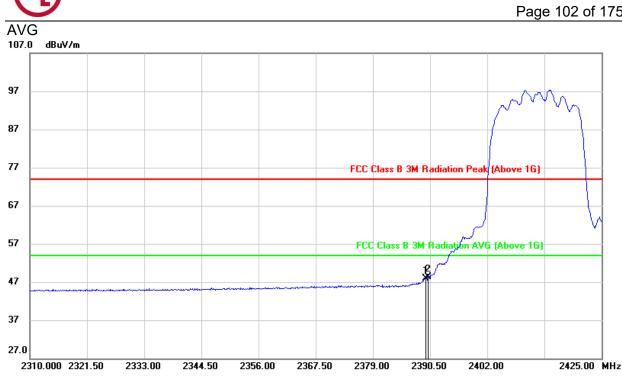
4. For transmit duration, please refer to clause 8.1.


5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: All antennas have been tested, only the worst data record in the report.

9.1.3. 802.11n HT20 MIMO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

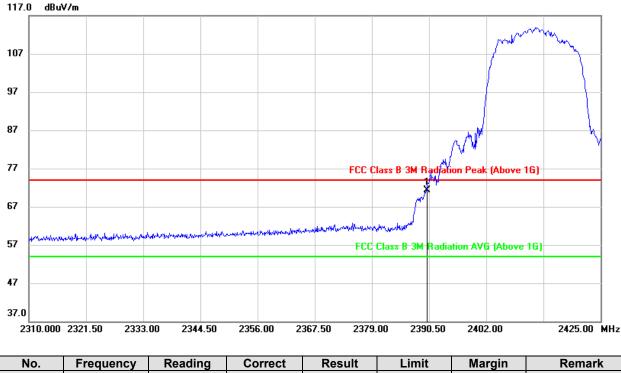
4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2389.580	13.36	34.55	47.91	54.00	-6.09	AVG
2	2390.000	13.78	34.55	48.33	54.00	-5.67	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

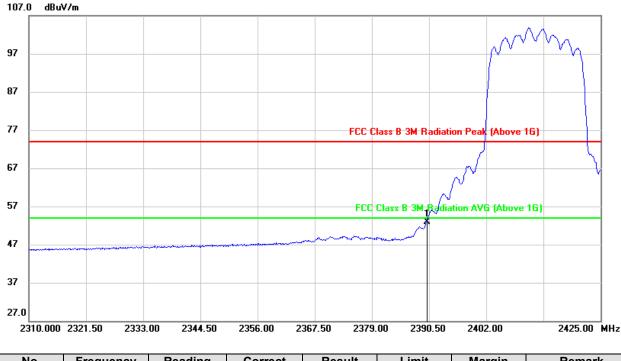

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2390.000	36.83	34.55	71.38	74.00	-2.62	peak


Note: 1. Measurement = Reading Level + Correct Factor.

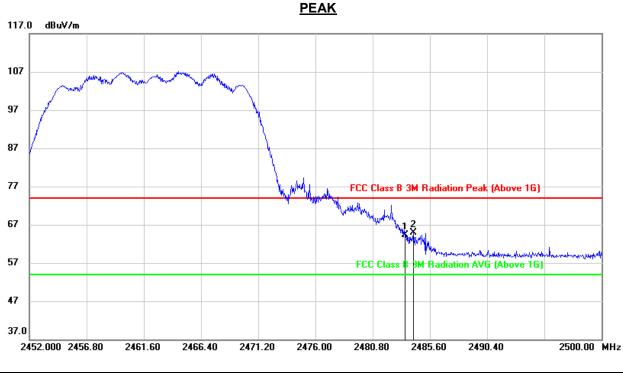
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2390.000	18.40	34.55	52.95	54.00	-1.05	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

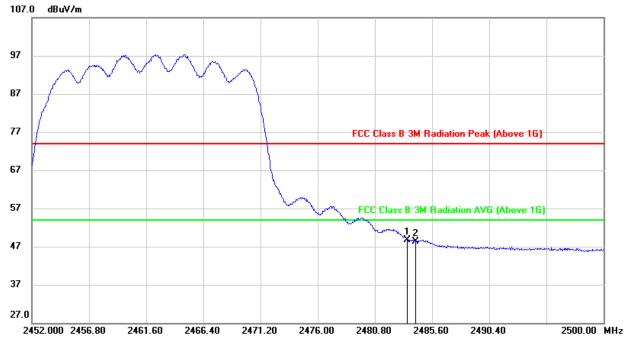

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	30.64	33.58	64.22	74.00	-9.78	peak
2	2484.208	31.34	33.58	64.92	74.00	-9.08	peak


Note: 1. Measurement = Reading Level + Correct Factor.

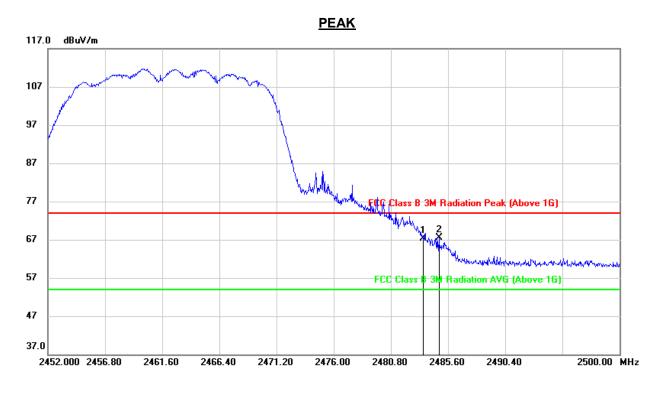
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	15.21	33.58	48.79	54.00	-5.21	AVG
2	2484.208	14.71	33.58	48.29	54.00	-5.71	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

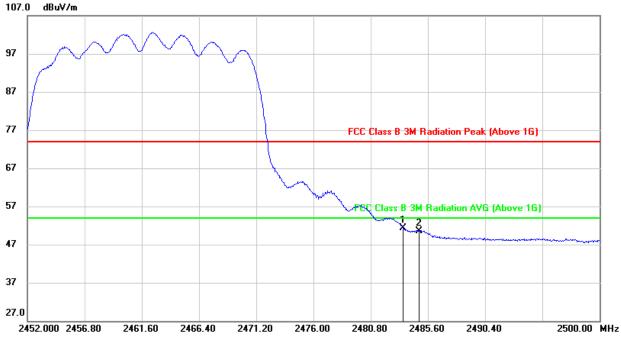

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	33.73	33.58	67.31	74.00	-6.69	peak
2	2484.832	33.94	33.59	67.53	74.00	-6.47	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

(UL)

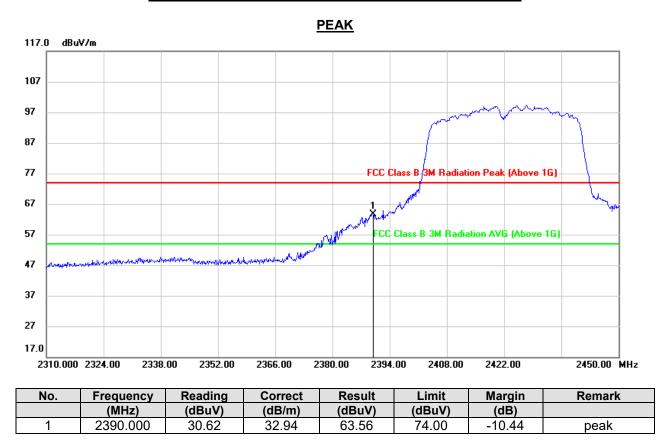
AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	17.74	33.58	51.32	54.00	-2.68	AVG
2	2484.832	16.97	33.59	50.56	54.00	-3.44	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

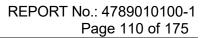
3. AVG: VBW=1/Ton where: ton is transmit duration.


4. For transmit duration, please refer to clause 8.1.

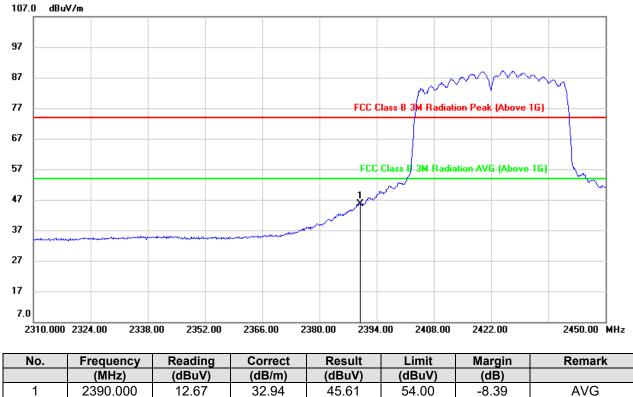
5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: All constructions have been tested, only the worst data record in the report

9.1.4. 802.11n HT40 MIMO MODE



RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

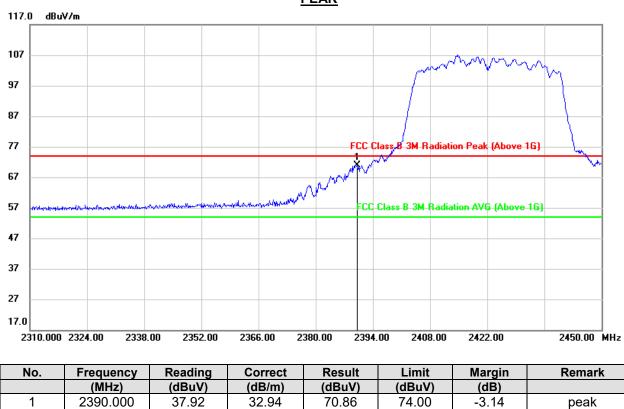

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVG</u>

Note: 1. Measurement = Reading Level + Correct Factor.

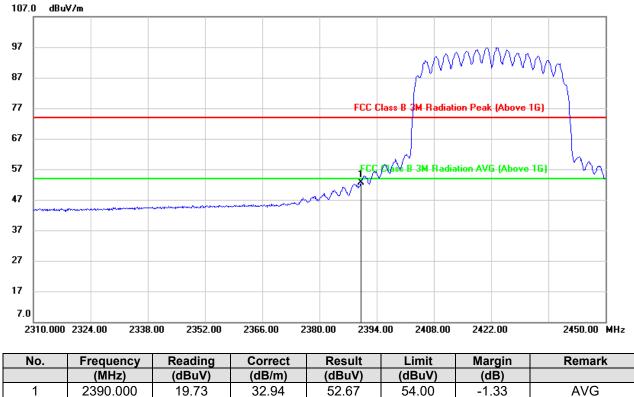

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

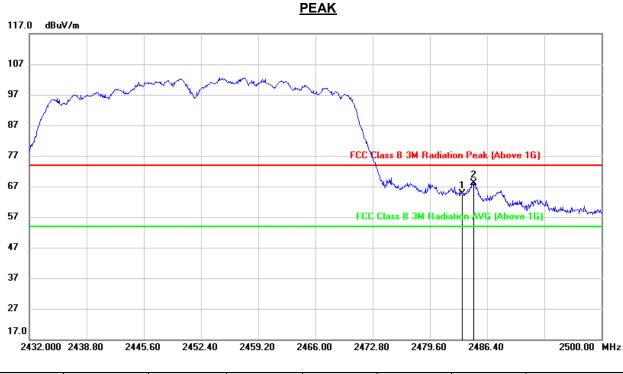

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>PEAK</u>

Note: 1. Measurement = Reading Level + Correct Factor.

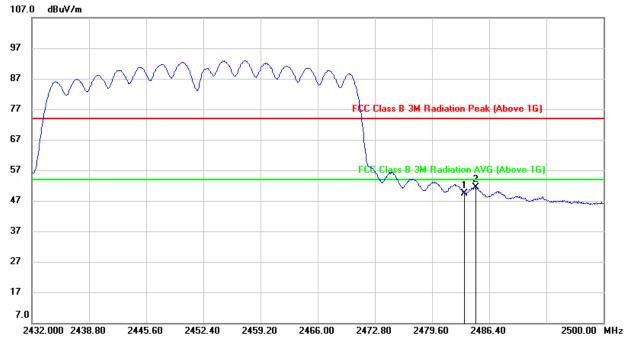

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	30.98	33.58	64.56	74.00	-9.44	peak
2	2484.768	34.66	33.59	68.25	74.00	-5.75	peak


Note: 1. Measurement = Reading Level + Correct Factor.

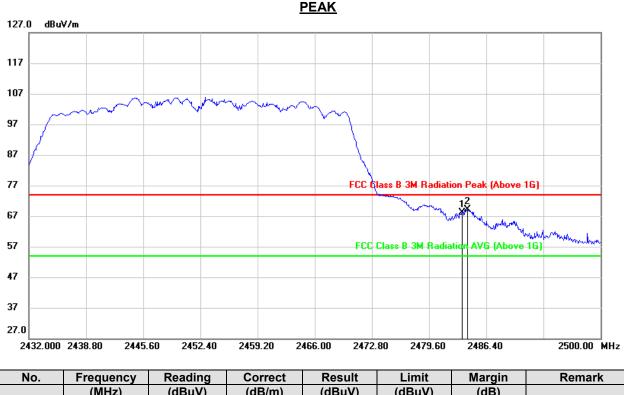
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	15.72	33.58	49.30	74.00	-24.70	peak
2	2484.768	17.78	33.59	51.37	74.00	-22.63	peak

Note: 1. Measurement = Reading Level + Correct Factor.

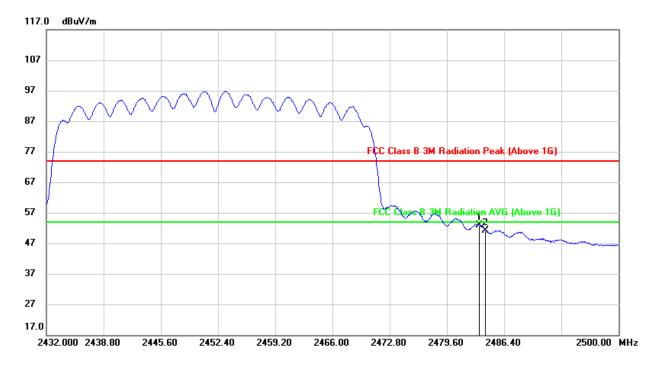

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	34.44	33.58	68.02	74.00	-5.98	peak
2	2484.156	35.61	33.58	69.19	74.00	-4.81	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

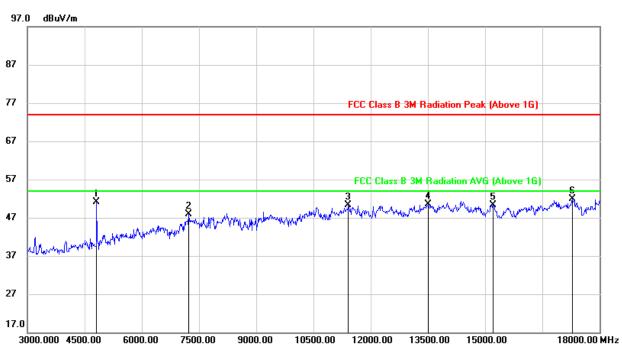
AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2483.500	19.37	33.58	52.95	54.00	-1.05	AVG
2	2484.156	17.59	33.58	51.17	54.00	-2.83	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

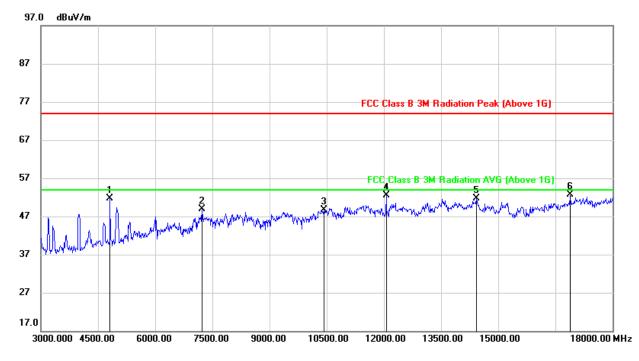

4. For transmit duration, please refer to clause 8.1.

9.2. SPURIOUS EMISSIONS (3~18GHz)

9.2.1. 802.11b SISO MODE

ANTENNA2

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4815.000	51.29	-0.23	51.06	74.00	-22.94	peak
2	7230.000	40.89	6.96	47.85	74.00	-26.15	peak
3	11415.000	36.76	13.46	50.22	74.00	-23.78	peak
4	13515.000	34.71	15.72	50.43	74.00	-23.57	peak
5	15210.000	34.79	15.55	50.34	74.00	-23.66	peak
6	17295.000	30.12	21.86	51.98	74.00	-22.02	peak

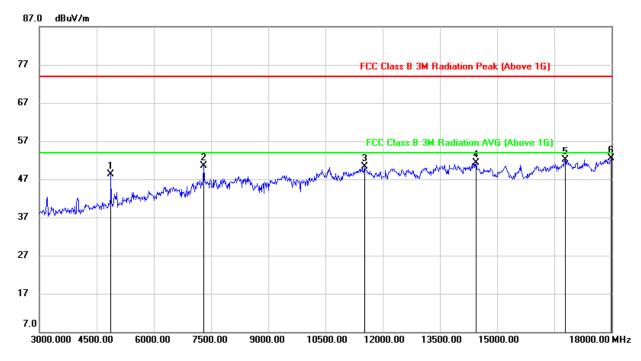
Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. The High Pass filter loss factor already add into the correct factor.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4815.000	51.87	-0.23	51.64	74.00	-22.36	peak
2	7230.000	41.95	6.96	48.91	74.00	-25.09	peak
3	10425.000	37.11	11.58	48.69	74.00	-25.31	peak
4	12060.000	38.15	14.26	52.41	74.00	-21.59	peak
5	14430.000	35.25	16.39	51.64	74.00	-22.36	peak
6	16890.000	32.78	19.93	52.71	74.00	-21.29	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

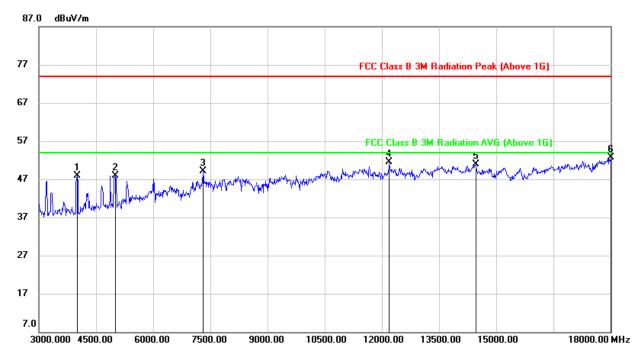
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4875.000	48.38	-0.12	48.26	74.00	-25.74	peak
2	7305.000	43.32	7.15	50.47	74.00	-23.53	peak
3	11520.000	36.28	14.10	50.38	74.00	-23.62	peak
4	14445.000	34.85	16.37	51.22	74.00	-22.78	peak
5	16785.000	32.29	19.90	52.19	74.00	-21.81	peak
6	17985.000	29.31	23.25	52.56	74.00	-21.44	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

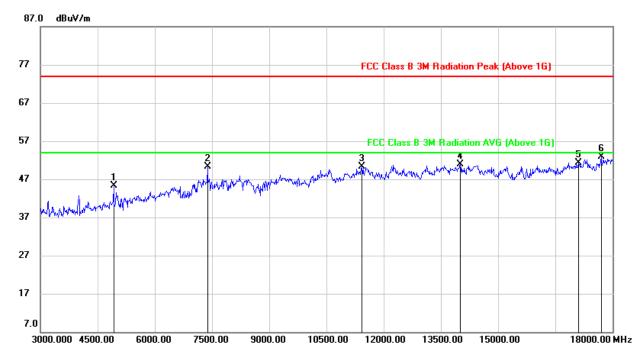
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4005.000	50.85	-2.94	47.91	74.00	-26.09	peak
2	5010.000	47.48	0.50	47.98	74.00	-26.02	peak
3	7305.000	41.90	7.15	49.05	74.00	-24.95	peak
4	12195.000	37.26	14.24	51.50	74.00	-22.50	peak
5	14460.000	34.50	16.35	50.85	74.00	-23.15	peak
6	18000.000	29.46	23.27	52.73	74.00	-21.27	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

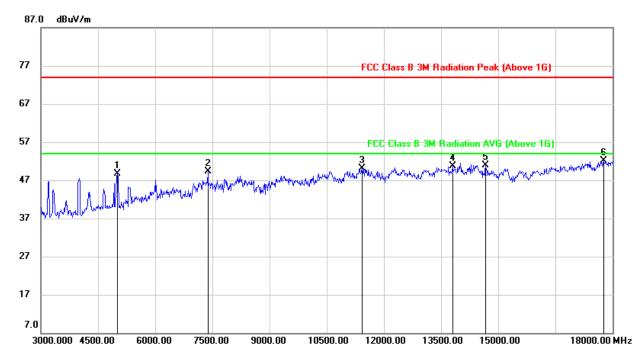
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4920.000	45.32	0.02	45.34	74.00	-28.66	peak
2	7380.000	42.95	7.42	50.37	74.00	-23.63	peak
3	11430.000	36.70	13.57	50.27	74.00	-23.73	peak
4	14010.000	34.49	16.34	50.83	74.00	-23.17	peak
5	17100.000	30.50	20.78	51.28	74.00	-22.72	peak
6	17700.000	30.69	22.24	52.93	74.00	-21.07	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	5010.000	48.16	0.50	48.66	74.00	-25.34	peak
2	7380.000	41.93	7.42	49.35	74.00	-24.65	peak
3	11430.000	36.50	13.57	50.07	74.00	-23.93	peak
4	13800.000	33.98	16.81	50.79	74.00	-23.21	peak
5	14670.000	35.06	15.87	50.93	74.00	-23.07	peak
6	17760.000	29.23	22.83	52.06	74.00	-21.94	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas have been tested, only the worst data record in the report.

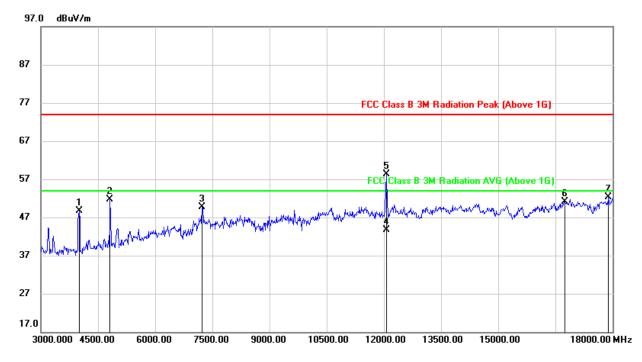
9.2.2. 802.11g SISO MODE

ANTENNA2

97.0 dBu	V/m						
87							
77				FCC (Class B-3M-R adiati	ion Peak (Above	16)
67							
57				FCC	Class B 3M Radia	ition AVG (Above	16)
47	*		mappiner	ward marcharell	manum	man	N. A. MARCEN
37 444144	Josh Wellyman May	ar - Maa					
27							
17.0							
3000.000	4500.00 6000.	00 7500.00	9000.00 1	0500.00 1200	0.00 13500.00	15000.00	18000.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4005.000	45.50	-2.94	42.56	74.00	-31.44	peak
2	4815.000	51.24	-0.23	51.01	74.00	-22.99	peak
3	8145.000	37.85	9.30	47.15	74.00	-26.85	peak
4	12060.000	36.96	14.26	51.22	74.00	-22.78	peak
5	16455.000	32.17	18.75	50.92	74.00	-23.08	peak
6	17745.000	29.52	22.68	52.20	74.00	-21.80	peak

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

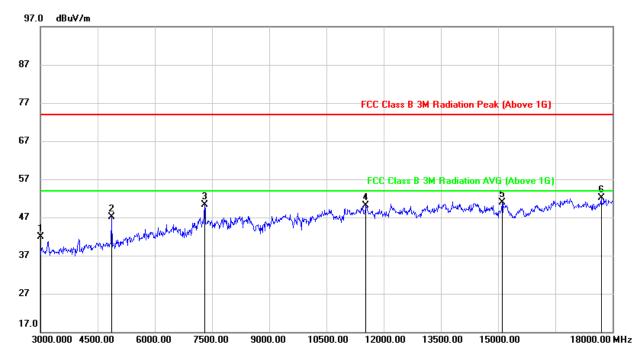
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4005.000	51.55	-2.94	48.61	74.00	-25.39	peak
2	4815.000	51.86	-0.23	51.63	74.00	-22.37	peak
3	7230.000	42.71	6.96	49.67	74.00	-24.33	peak
4	12060.000	29.51	14.25	43.76	54.00	-10.24	AVG
5	12060.000	44.03	14.26	58.29	74.00	-15.71	peak
6	16740.000	31.32	19.87	51.19	74.00	-22.81	peak
7	17895.000	29.07	23.16	52.23	74.00	-21.77	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

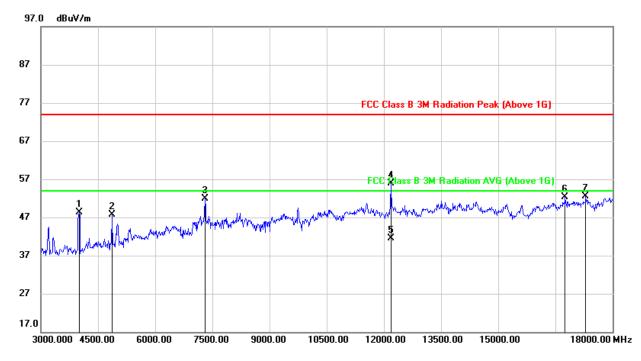
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	3000.000	46.21	-4.26	41.95	74.00	-32.05	peak
2	4860.000	47.30	-0.15	47.15	74.00	-26.85	peak
3	7305.000	43.24	7.15	50.39	74.00	-23.61	peak
4	11535.000	36.06	14.10	50.16	74.00	-23.84	peak
5	15105.000	35.31	15.50	50.81	74.00	-23.19	peak
6	17700.000	29.94	22.24	52.18	74.00	-21.82	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

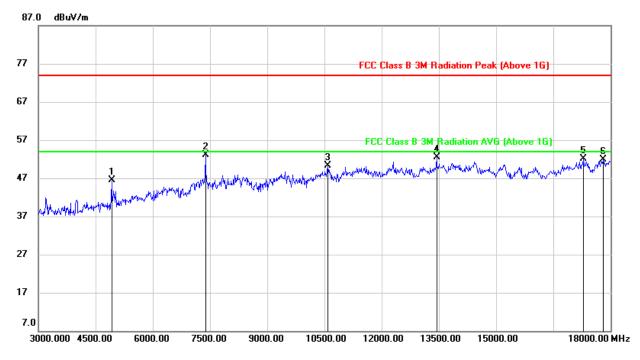
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4005.000	51.18	-2.94	48.24	74.00	-25.76	peak
2	4860.000	47.91	-0.15	47.76	74.00	-26.24	peak
3	7305.000	44.85	7.15	52.00	74.00	-22.00	peak
4	12185.434	41.56	14.25	55.81	74.00	-18.19	peak
5	12185.434	27.30	14.25	41.55	54.00	-12.45	AVG
6	16755.000	32.37	19.87	52.24	74.00	-21.76	peak
7	17295.000	30.56	21.86	52.42	74.00	-21.58	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

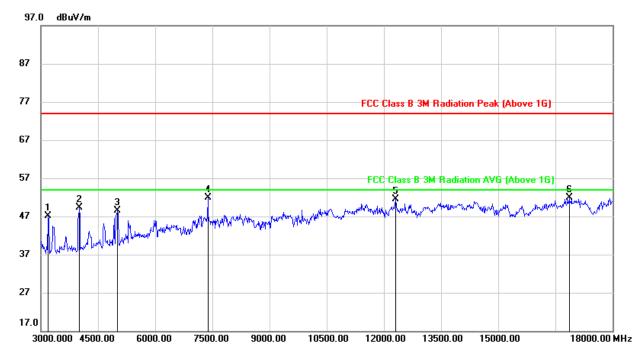
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4920.000	46.42	0.02	46.44	74.00	-27.56	peak
2	7380.000	45.66	7.42	53.08	74.00	-20.92	peak
3	10590.000	37.58	12.68	50.26	74.00	-23.74	peak
4	13440.000	36.64	15.80	52.44	74.00	-21.56	peak
5	17280.000	30.42	21.72	52.14	74.00	-21.86	peak
6	17805.000	28.60	23.22	51.82	74.00	-22.18	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

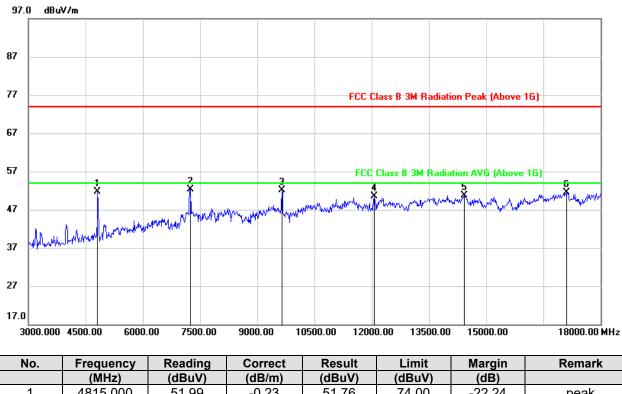
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	3195.000	51.55	-4.51	47.04	74.00	-26.96	peak
2	4005.000	52.16	-2.94	49.22	74.00	-24.78	peak
3	5010.000	47.96	0.50	48.46	74.00	-25.54	peak
4	7380.000	44.55	7.42	51.97	74.00	-22.03	peak
5	12315.000	37.16	14.37	51.53	74.00	-22.47	peak
6	16860.000	31.99	19.92	51.91	74.00	-22.09	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. The High Pass filter loss factor already add into the correct factor.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

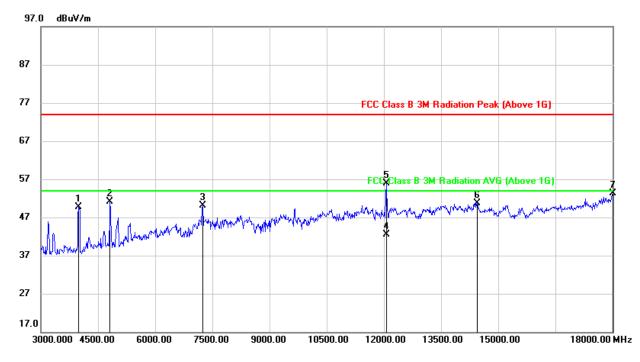
Note: All antennas have been tested, only the worst data record in the report.

9.2.3. 802.11n HT20 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4815.000	51.99	-0.23	51.76	74.00	-22.24	peak
2	7245.000	45.36	7.00	52.36	74.00	-21.64	peak
3	9645.000	42.00	10.03	52.03	74.00	-21.97	peak
4	12075.000	36.21	14.26	50.47	74.00	-23.53	peak
5	14430.000	34.37	16.39	50.76	74.00	-23.24	peak
6	17100.000	30.81	20.78	51.59	74.00	-22.41	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

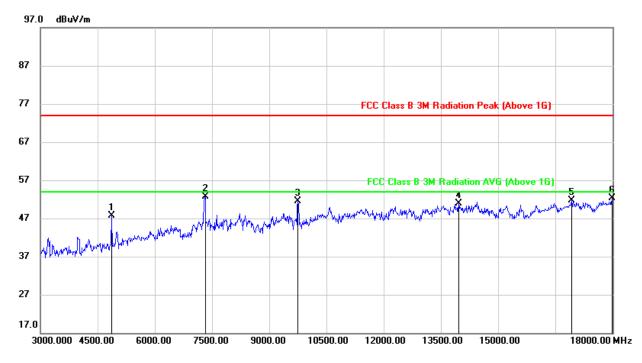
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	3990.000	52.64	-2.95	49.69	74.00	-24.31	peak
2	4815.000	51.33	-0.23	51.10	74.00	-22.90	peak
3	7245.000	43.04	7.00	50.04	74.00	-23.96	peak
4	12060.000	28.17	14.26	42.43	54.00	-11.57	AVG
5	12060.000	41.72	14.26	55.98	74.00	-18.02	peak
6	14445.000	34.28	16.37	50.65	74.00	-23.35	peak
7	18000.000	30.03	23.27	53.30	74.00	-20.70	peak

Note: 1. Measurement = Reading Level + Correct Factor.

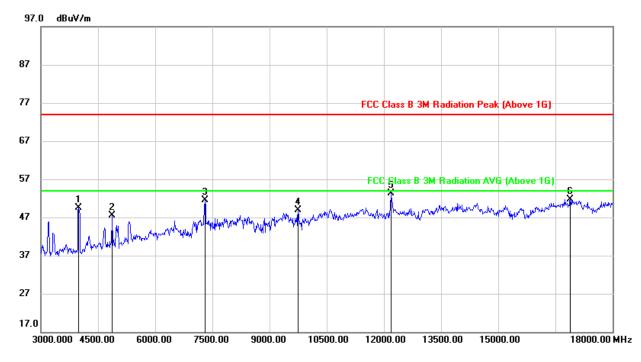

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4860.000	47.81	-0.15	47.66	74.00	-26.34	peak
2	7320.000	45.47	7.20	52.67	74.00	-21.33	peak
3	9750.000	41.46	10.14	51.60	74.00	-22.40	peak
4	13965.000	34.66	16.29	50.95	74.00	-23.05	peak
5	16920.000	31.67	20.01	51.68	74.00	-22.32	peak
6	17985.000	28.98	23.25	52.23	74.00	-21.77	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

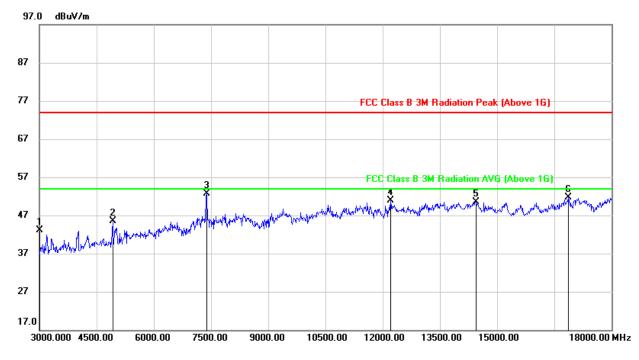
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	3990.000	52.51	-2.95	49.56	74.00	-24.44	peak
2	4875.000	47.66	-0.12	47.54	74.00	-26.46	peak
3	7305.000	44.45	7.15	51.60	74.00	-22.40	peak
4	9750.000	38.71	10.14	48.85	74.00	-25.15	peak
5	12180.000	38.96	14.25	53.21	74.00	-20.79	peak
6	16890.000	31.83	19.93	51.76	74.00	-22.24	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

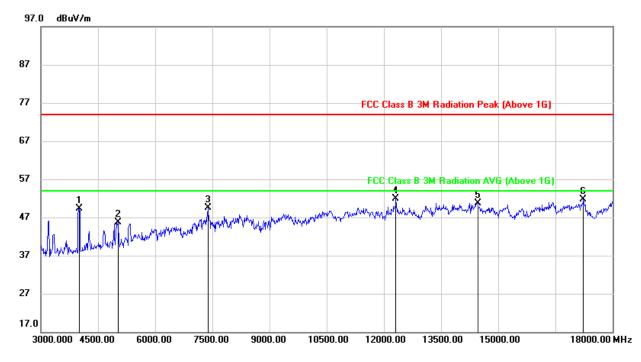
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	3000.000	47.42	-4.26	43.16	74.00	-30.84	peak
2	4920.000	45.40	0.02	45.42	74.00	-28.58	peak
3	7380.000	45.19	7.42	52.61	74.00	-21.39	peak
4	12210.000	36.64	14.25	50.89	74.00	-23.11	peak
5	14445.000	34.15	16.37	50.52	74.00	-23.48	peak
6	16875.000	31.69	19.93	51.62	74.00	-22.38	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

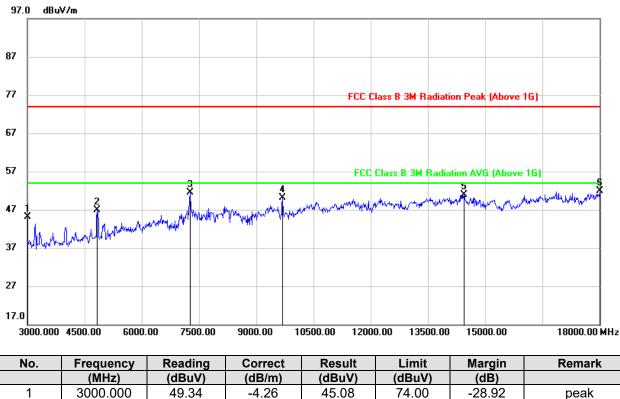
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4005.000	52.25	-2.94	49.31	74.00	-24.69	peak
2	5025.000	45.12	0.55	45.67	74.00	-28.33	peak
3	7380.000	42.15	7.42	49.57	74.00	-24.43	peak
4	12315.000	37.61	14.37	51.98	74.00	-22.02	peak
5	14460.000	34.33	16.35	50.68	74.00	-23.32	peak
6	17235.000	30.41	21.32	51.73	74.00	-22.27	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. The High Pass filter loss factor already add into the correct factor.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

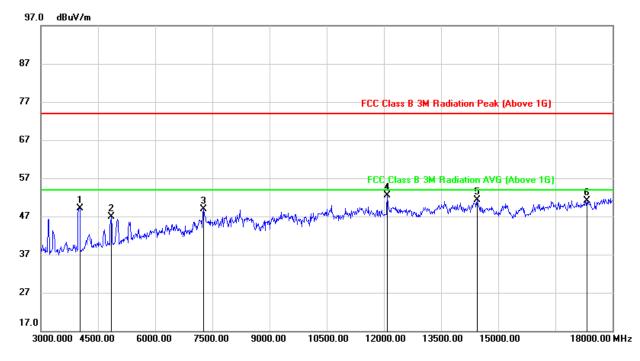
Note: All antennas have been tested, only the worst data record in the report.

9.2.4. 802.11n HT40 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	3000.000	49.34	-4.26	45.08	74.00	-28.92	peak
2	4830.000	47.12	-0.20	46.92	74.00	-27.08	peak
3	7260.000	44.40	7.04	51.44	74.00	-22.56	peak
4	9690.000	40.04	10.09	50.13	74.00	-23.87	peak
5	14445.000	34.57	16.37	50.94	74.00	-23.06	peak
6	18000.000	28.60	23.27	51.87	74.00	-22.13	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

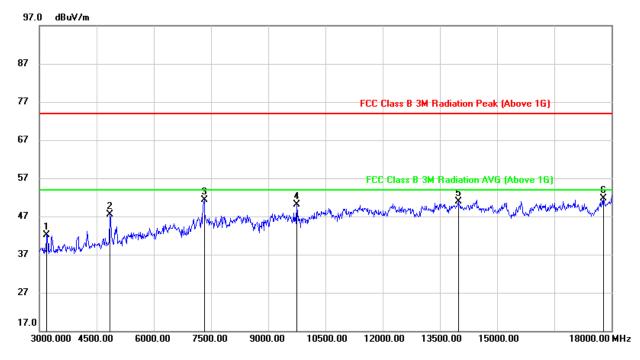
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	4020.000	52.01	-2.93	49.08	74.00	-24.92	peak
2	4845.000	47.13	-0.17	46.96	74.00	-27.04	peak
3	7275.000	41.86	7.07	48.93	74.00	-25.07	peak
4	12090.000	38.31	14.26	52.57	74.00	-21.43	peak
5	14445.000	34.90	16.37	51.27	74.00	-22.73	peak
6	17325.000	29.36	21.80	51.16	74.00	-22.84	peak

Note: 1. Measurement = Reading Level + Correct Factor.

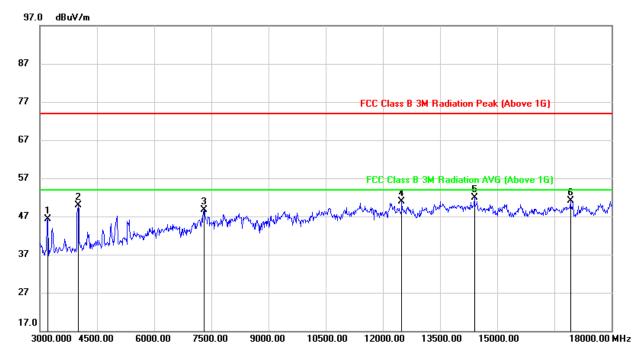

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	3195.000	46.68	-4.51	42.17	74.00	-31.83	peak
2	4845.000	47.58	-0.17	47.41	74.00	-26.59	peak
3	7320.000	44.18	7.20	51.38	74.00	-22.62	peak
4	9750.000	40.01	10.14	50.15	74.00	-23.85	peak
5	13980.000	34.64	16.32	50.96	74.00	-23.04	peak
6	17790.000	28.61	23.12	51.73	74.00	-22.27	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

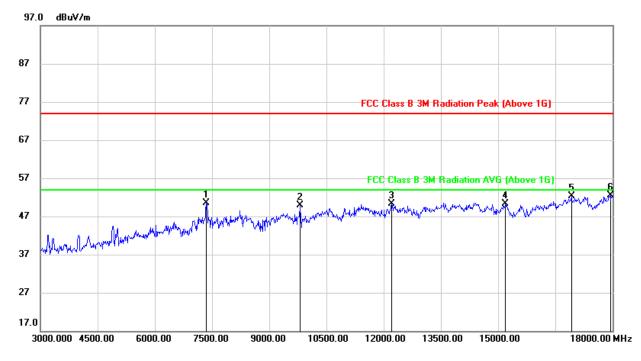
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	3210.000	50.81	-4.51	46.30	74.00	-27.70	peak
2	4005.000	52.92	-2.94	49.98	74.00	-24.02	peak
3	7305.000	41.58	7.15	48.73	74.00	-25.27	peak
4	12495.000	36.05	14.81	50.86	74.00	-23.14	peak
5	14400.000	35.38	16.43	51.81	74.00	-22.19	peak
6	16920.000	31.06	20.01	51.07	74.00	-22.93	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

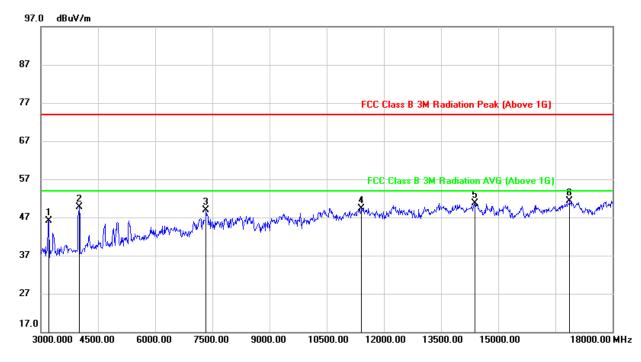
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	7350.000	43.23	7.31	50.54	74.00	-23.46	peak
2	9810.000	39.63	10.22	49.85	74.00	-24.15	peak
3	12210.000	35.97	14.25	50.22	74.00	-23.78	peak
4	15195.000	34.69	15.56	50.25	74.00	-23.75	peak
5	16920.000	32.21	20.01	52.22	74.00	-21.78	peak
6	17940.000	29.38	23.21	52.59	74.00	-21.41	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	3210.000	50.61	-4.51	46.10	74.00	-27.90	peak
2	4005.000	52.67	-2.94	49.73	74.00	-24.27	peak
3	7335.000	41.59	7.26	48.85	74.00	-25.15	peak
4	11415.000	35.89	13.46	49.35	74.00	-24.65	peak
5	14385.000	34.28	16.41	50.69	74.00	-23.31	peak
6	16875.000	31.41	19.93	51.34	74.00	-22.66	peak

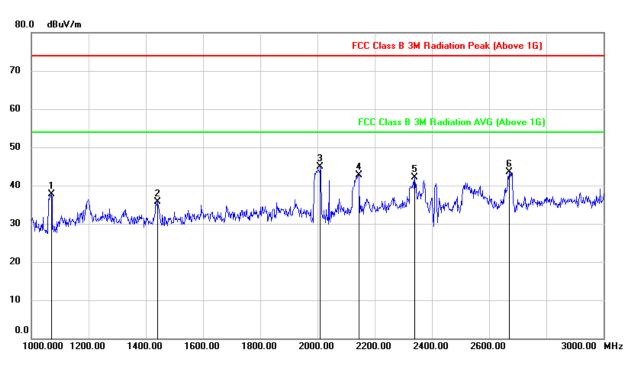
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: All antennas have been tested, only the worst data record in the report.

9.3. SPURIOUS EMISSIONS (1~3GHz)

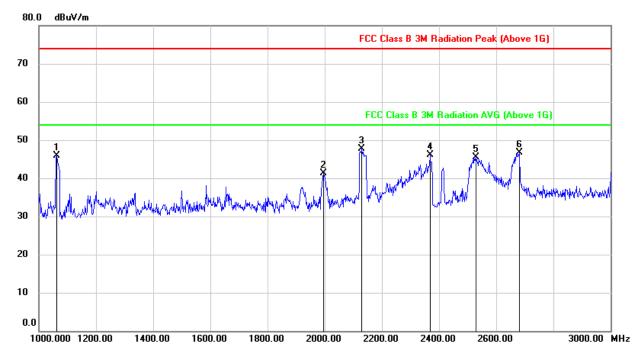
9.3.1. 802.11b SISO MODE

ANTENNA2

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1070.000	50.86	-13.20	37.66	74.00	-36.34	peak
2	1440.000	47.64	-11.85	35.79	74.00	-38.21	peak
3	2010.000	54.29	-9.34	44.95	74.00	-29.05	peak
4	2144.000	51.02	-8.36	42.66	74.00	-31.34	peak
5	2340.000	49.46	-7.29	42.17	74.00	-31.83	peak
6	2670.000	49.58	-6.16	43.42	74.00	-30.58	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

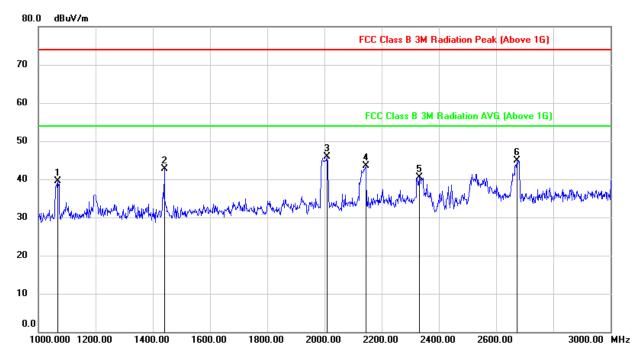
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1062.000	59.04	-13.23	45.81	74.00	-28.19	peak
2	1996.000	50.73	-9.43	41.30	74.00	-32.70	peak
3	2130.000	56.12	-8.45	47.67	74.00	-26.33	peak
4	2368.000	53.22	-7.16	46.06	74.00	-27.94	peak
5	2528.000	51.80	-6.28	45.52	74.00	-28.48	peak
6	2682.000	52.84	-6.08	46.76	74.00	-27.24	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

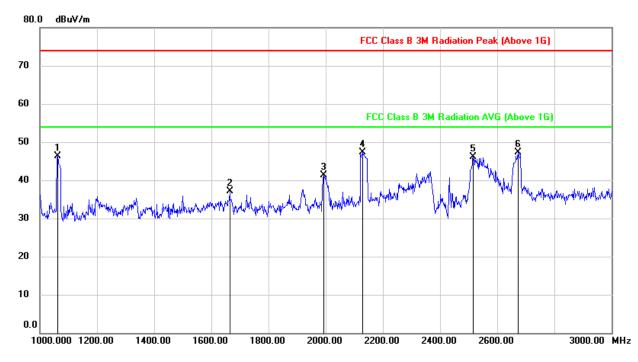
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1068.000	52.72	-13.21	39.51	74.00	-34.49	peak
2	1440.000	54.61	-11.85	42.76	74.00	-31.24	peak
3	2010.000	55.31	-9.34	45.97	74.00	-28.03	peak
4	2144.000	51.80	-8.36	43.44	74.00	-30.56	peak
5	2332.000	47.91	-7.32	40.59	74.00	-33.41	peak
6	2674.000	51.04	-6.13	44.91	74.00	-29.09	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

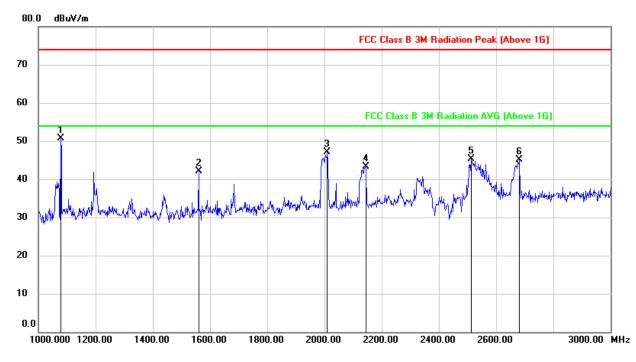
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1062.000	59.60	-13.23	46.37	74.00	-27.63	peak
2	1664.000	47.82	-10.69	37.13	74.00	-36.87	peak
3	1992.000	50.71	-9.42	41.29	74.00	-32.71	peak
4	2130.000	55.69	-8.45	47.24	74.00	-26.76	peak
5	2516.000	52.40	-6.23	46.17	74.00	-27.83	peak
6	2672.000	53.53	-6.15	47.38	74.00	-26.62	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

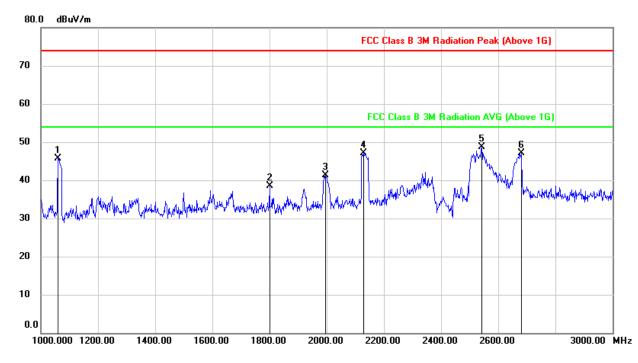
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1078.000	63.99	-13.19	50.80	74.00	-23.20	peak
2	1560.000	53.40	-11.20	42.20	74.00	-31.80	peak
3	2010.000	56.39	-9.34	47.05	74.00	-26.95	peak
4	2144.000	51.65	-8.36	43.29	74.00	-30.71	peak
5	2512.000	51.62	-6.22	45.40	74.00	-28.60	peak
6	2682.000	51.14	-6.08	45.06	74.00	-28.94	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

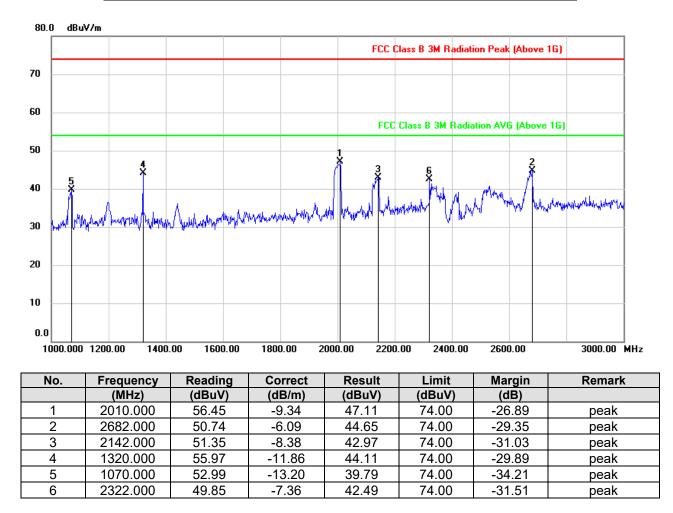
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1060.000	59.01	-13.23	45.78	74.00	-28.22	peak
2	1800.000	48.14	-9.62	38.52	74.00	-35.48	peak
3	1996.000	50.81	-9.43	41.38	74.00	-32.62	peak
4	2128.000	55.59	-8.45	47.14	74.00	-26.86	peak
5	2542.000	54.97	-6.34	48.63	74.00	-25.37	peak
6	2680.000	53.25	-6.09	47.16	74.00	-26.84	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.


5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

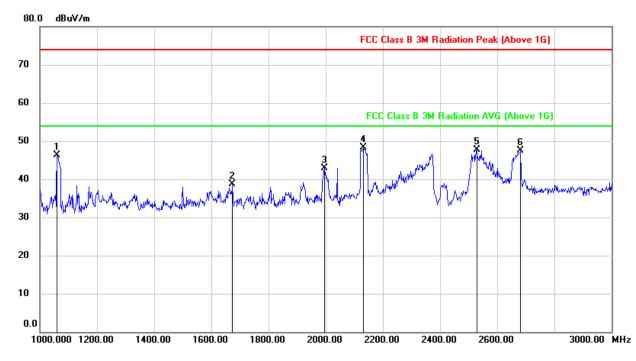
Note: All antennas have been tested, only the worst data record in the report.

9.3.2. 802.11g SISO MODE

ANTENNA2

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

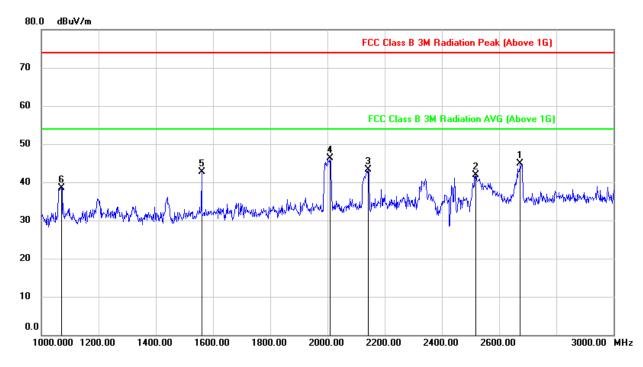
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1060.000	59.61	-13.23	46.38	74.00	-27.62	peak
2	1674.000	49.41	-10.66	38.75	74.00	-35.25	peak
3	1996.000	52.33	-9.43	42.90	74.00	-31.10	peak
4	2132.000	56.70	-8.42	48.28	74.00	-25.72	peak
5	2528.000	53.96	-6.28	47.68	74.00	-26.32	peak
6	2682.000	53.58	-6.08	47.50	74.00	-26.50	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

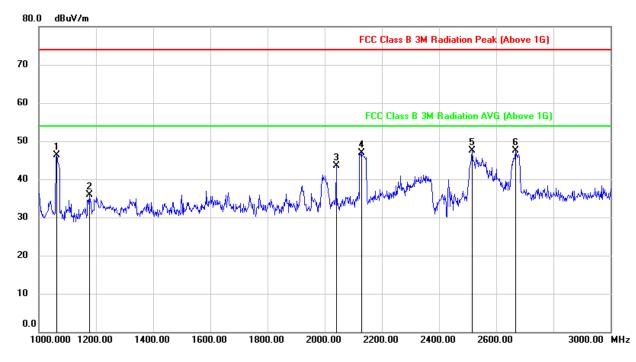
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	2674.000	50.97	-6.13	44.84	74.00	-29.16	peak
2	2518.000	48.06	-6.24	41.82	74.00	-32.18	peak
3	2142.000	51.68	-8.38	43.30	74.00	-30.70	peak
4	2010.000	55.72	-9.34	46.38	74.00	-27.62	peak
5	1560.000	53.87	-11.20	42.67	74.00	-31.33	peak
6	1070.000	51.73	-13.20	38.53	74.00	-35.47	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

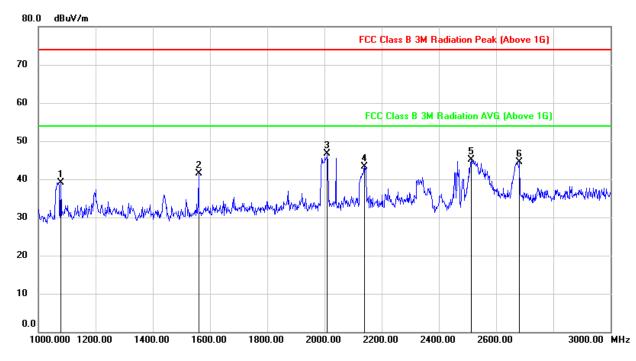
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1062.000	59.46	-13.23	46.23	74.00	-27.77	peak
2	1176.000	48.24	-12.42	35.82	74.00	-38.18	peak
3	2040.000	52.53	-9.09	43.44	74.00	-30.56	peak
4	2128.000	55.31	-8.45	46.86	74.00	-27.14	peak
5	2516.000	53.74	-6.23	47.51	74.00	-26.49	peak
6	2668.000	53.72	-6.17	47.55	74.00	-26.45	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

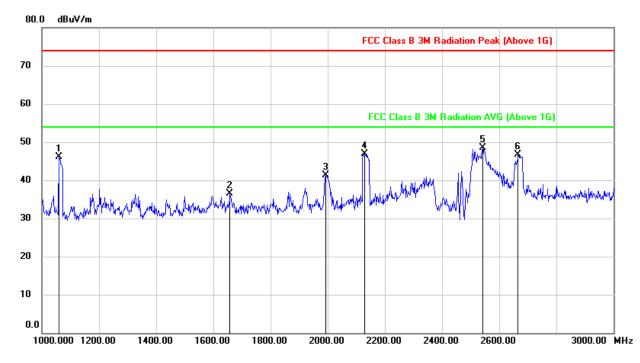
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1078.000	52.31	-13.19	39.12	74.00	-34.88	peak
2	1560.000	52.69	-11.20	41.49	74.00	-32.51	peak
3	2010.000	55.97	-9.34	46.63	74.00	-27.37	peak
4	2140.000	51.73	-8.39	43.34	74.00	-30.66	peak
5	2514.000	51.28	-6.22	45.06	74.00	-28.94	peak
6	2682.000	50.60	-6.08	44.52	74.00	-29.48	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

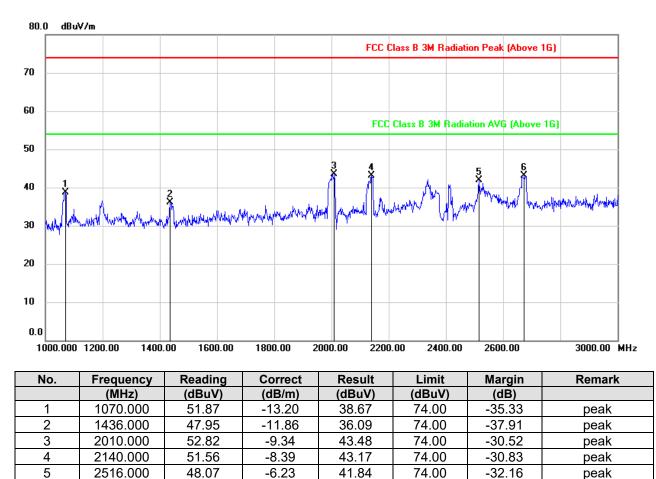
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1060.000	59.35	-13.23	46.12	74.00	-27.88	peak
2	1658.000	47.15	-10.70	36.45	74.00	-37.55	peak
3	1994.000	50.82	-9.42	41.40	74.00	-32.60	peak
4	2128.000	55.34	-8.45	46.89	74.00	-27.11	peak
5	2542.000	54.80	-6.34	48.46	74.00	-25.54	peak
6	2666.000	52.83	-6.18	46.65	74.00	-27.35	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas have been tested, only the worst data record in the report.

9.3.3. 802.11n HT20 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

49.19

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

43.06

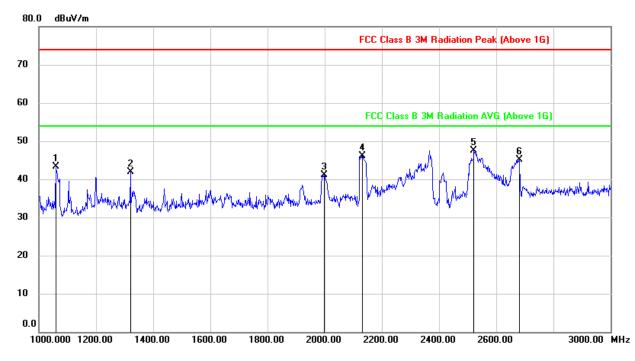
74.00

-30.94

peak

3. Peak: Peak detector.

2674.000


6

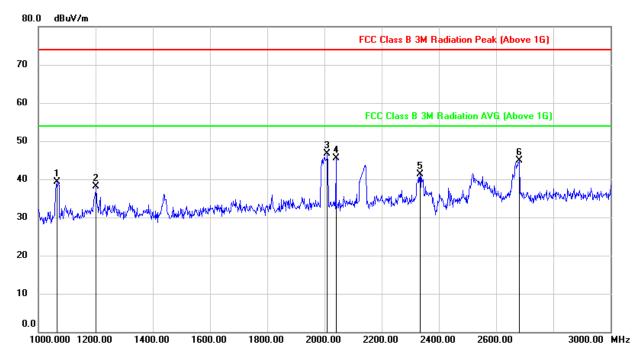
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

-6.13

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1060.000	56.44	-13.23	43.21	74.00	-30.79	peak
2	1320.000	53.82	-11.86	41.96	74.00	-32.04	peak
3	1998.000	50.62	-9.43	41.19	74.00	-32.81	peak
4	2132.000	54.56	-8.42	46.14	74.00	-27.86	peak
5	2522.000	53.81	-6.26	47.55	74.00	-26.45	peak
6	2682.000	51.21	-6.08	45.13	74.00	-28.87	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

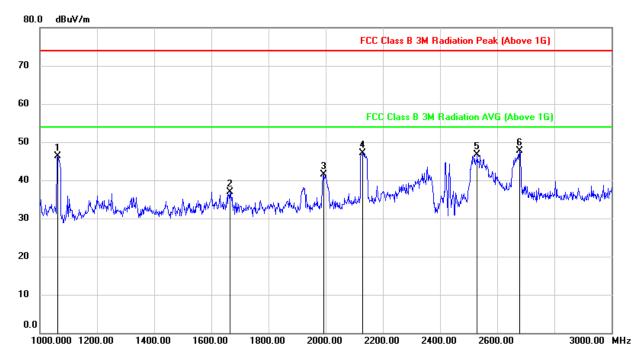
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1064.000	52.58	-13.21	39.37	74.00	-34.63	peak
2	1202.000	50.28	-12.20	38.08	74.00	-35.92	peak
3	2010.000	56.14	-9.34	46.80	74.00	-27.20	peak
4	2040.000	54.64	-9.09	45.55	74.00	-28.45	peak
5	2334.000	48.66	-7.32	41.34	74.00	-32.66	peak
6	2682.000	50.95	-6.08	44.87	74.00	-29.13	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

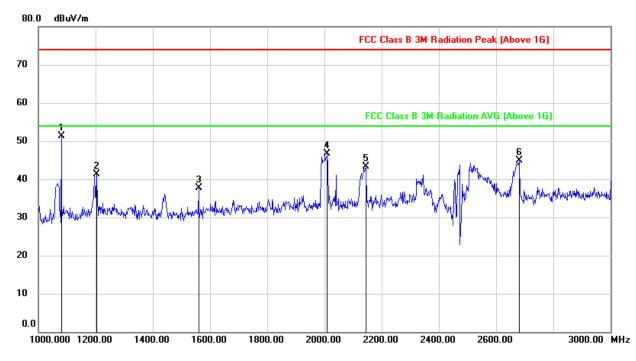
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1062.000	59.48	-13.23	46.25	74.00	-27.75	peak
2	1664.000	47.65	-10.69	36.96	74.00	-37.04	peak
3	1992.000	50.89	-9.42	41.47	74.00	-32.53	peak
4	2128.000	55.61	-8.45	47.16	74.00	-26.84	peak
5	2530.000	52.95	-6.29	46.66	74.00	-27.34	peak
6	2678.000	53.84	-6.11	47.73	74.00	-26.27	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1080.000	64.49	-13.19	51.30	74.00	-22.70	peak
2	1204.000	53.45	-12.18	41.27	74.00	-32.73	peak
3	1560.000	48.91	-11.20	37.71	74.00	-36.29	peak
4	2010.000	55.95	-9.34	46.61	74.00	-27.39	peak
5	2144.000	51.68	-8.36	43.32	74.00	-30.68	peak
6	2680.000	50.97	-6.09	44.88	74.00	-29.12	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

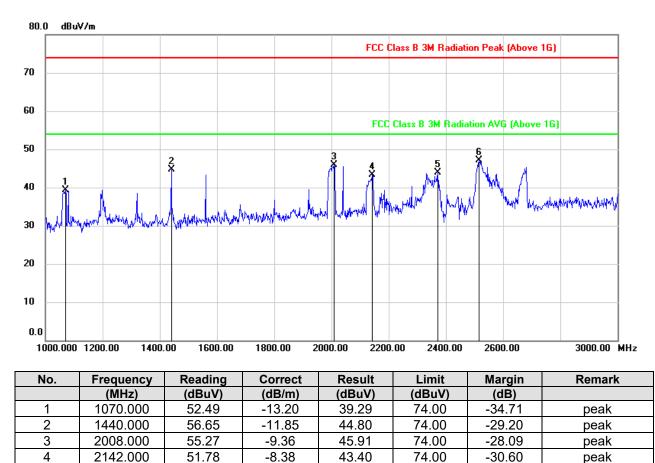
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1060.000	59.18	-13.23	45.95	74.00	-28.05	peak
2	1668.000	47.06	-10.68	36.38	74.00	-37.62	peak
3	1996.000	50.55	-9.43	41.12	74.00	-32.88	peak
4	2126.000	55.54	-8.46	47.08	74.00	-26.92	peak
5	2542.000	55.28	-6.34	48.94	74.00	-25.06	peak
6	2668.000	53.31	-6.17	47.14	74.00	-26.86	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas have been tested, only the worst data record in the report.

9.3.4. 802.11n HT40 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

51.08

53.40

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

43.94

47.17

74.00

74.00

-30.06

-26.83

peak

peak

3. Peak: Peak detector.

2372.000

2516.000

5

6


4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

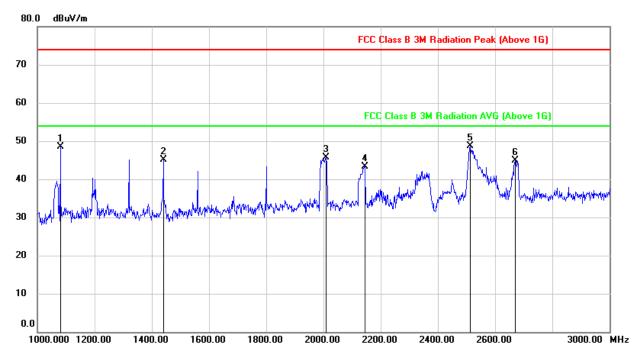
-7.14

-6.23

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1060.000	59.34	-13.23	46.11	74.00	-27.89	peak
2	2040.000	56.61	-9.09	47.52	74.00	-26.48	peak
3	2132.000	56.92	-8.42	48.50	74.00	-25.50	peak
4	2372.000	59.42	-7.14	52.28	74.00	-21.72	peak
5	2528.000	56.28	-6.28	50.00	74.00	-24.00	peak
6	2668.000	53.30	-6.17	47.13	74.00	-26.87	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

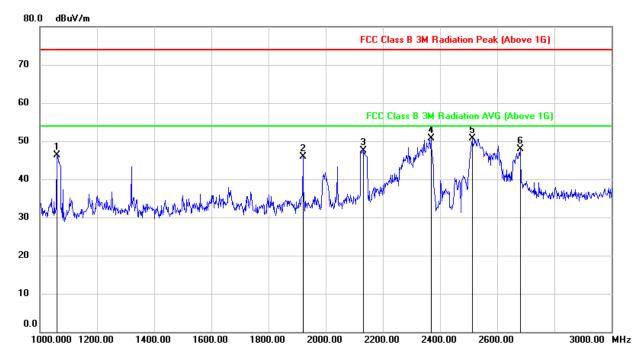
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1080.000	61.72	-13.19	48.53	74.00	-25.47	peak
2	1440.000	57.01	-11.85	45.16	74.00	-28.84	peak
3	2008.000	55.13	-9.36	45.77	74.00	-28.23	peak
4	2144.000	51.66	-8.36	43.30	74.00	-30.70	peak
5	2514.000	54.86	-6.22	48.64	74.00	-25.36	peak
6	2670.000	50.97	-6.16	44.81	74.00	-29.19	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

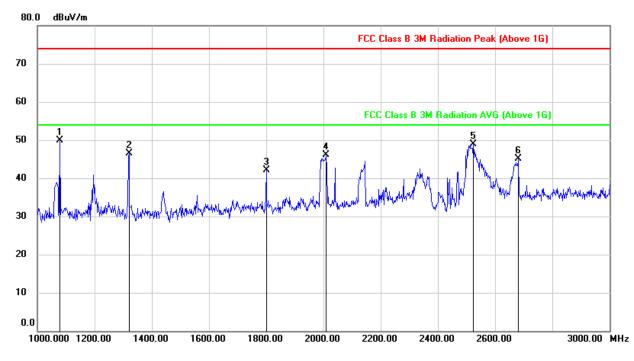
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1060.000	59.59	-13.23	46.36	74.00	-27.64	peak
2	1920.000	55.26	-9.36	45.90	74.00	-28.10	peak
3	2132.000	55.94	-8.42	47.52	74.00	-26.48	peak
4	2368.000	57.81	-7.16	50.65	74.00	-23.35	peak
5	2512.000	56.90	-6.22	50.68	74.00	-23.32	peak
6	2680.000	54.06	-6.09	47.97	74.00	-26.03	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

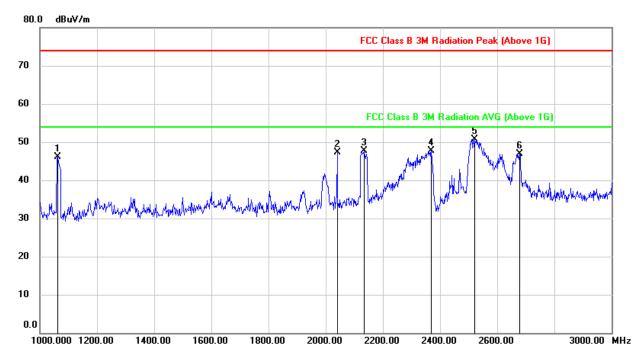
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1078.000	63.13	-13.19	49.94	74.00	-24.06	peak
2	1320.000	58.29	-11.86	46.43	74.00	-27.57	peak
3	1800.000	51.63	-9.62	42.01	74.00	-31.99	peak
4	2010.000	55.43	-9.34	46.09	74.00	-27.91	peak
5	2524.000	55.17	-6.26	48.91	74.00	-25.09	peak
6	2682.000	51.11	-6.08	45.03	74.00	-28.97	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

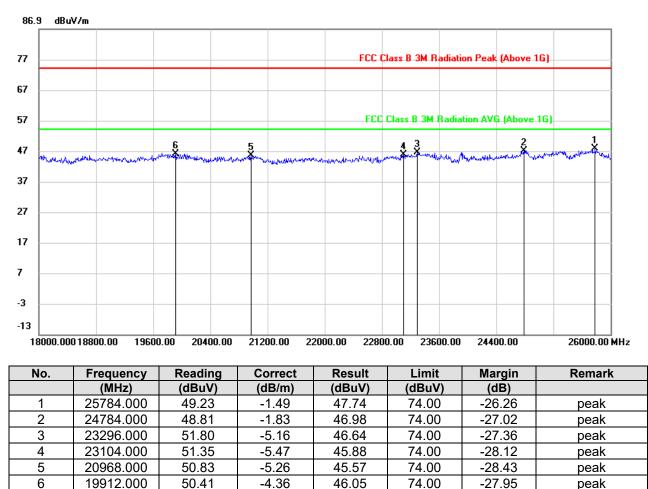
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	1062.000	59.24	-13.23	46.01	74.00	-27.99	peak
2	2040.000	56.35	-9.09	47.26	74.00	-26.74	peak
3	2134.000	56.04	-8.42	47.62	74.00	-26.38	peak
4	2370.000	54.86	-7.14	47.72	74.00	-26.28	peak
5	2520.000	56.98	-6.25	50.73	74.00	-23.27	peak
6	2678.000	53.03	-6.11	46.92	74.00	-27.08	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

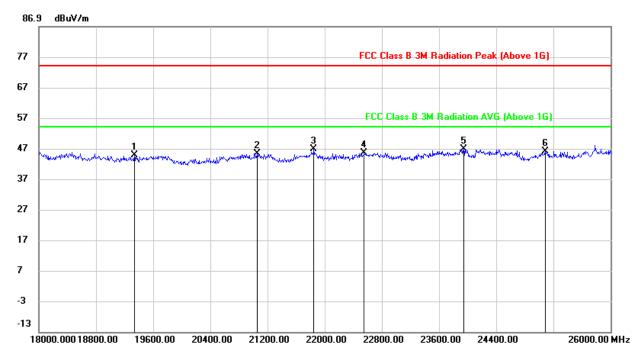
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.


5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas have been tested, only the worst data record in the report.

9.4. SPURIOUS EMISSIONS (18~26GHz)

9.4.1. 802.11n HT20 MIMO MODE


SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

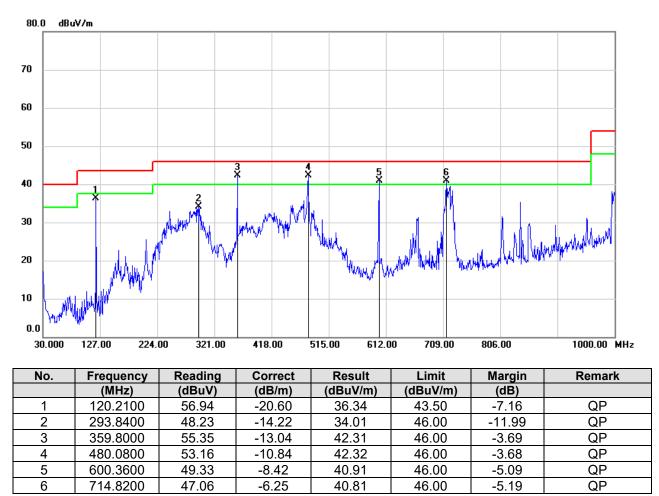
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	19336.000	49.70	-4.97	44.73	74.00	-29.27	peak
2	21056.000	50.51	-5.33	45.18	74.00	-28.82	peak
3	21848.000	52.76	-5.95	46.81	74.00	-27.19	peak
4	22552.000	51.39	-5.78	45.61	74.00	-28.39	peak
5	23944.000	50.95	-4.14	46.81	74.00	-27.19	peak
6	25088.000	47.13	-1.12	46.01	74.00	-27.99	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

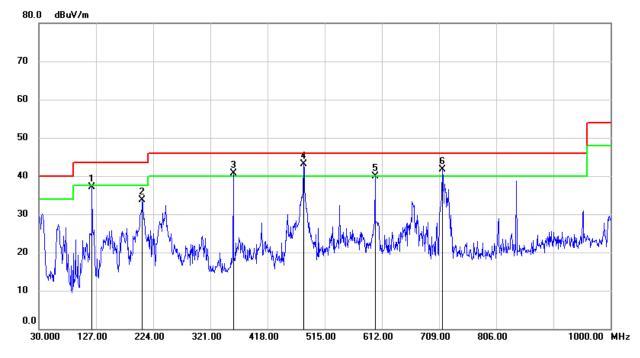
3. Peak: Peak detector.


4. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas and test modes have been tested, only the worst data record in the report.

9.5. SPURIOUS EMISSIONS (0.03 ~ 1 GHz)

9.5.1. 802.11n HT20 MIMO MODE


SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Result Level = Read Level + Correct Factor.

If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
 Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	120.2100	57.79	-20.60	37.19	43.50	-6.31	QP
2	205.5700	49.67	-15.95	33.72	43.50	-9.78	QP
3	359.8000	53.72	-13.04	40.68	46.00	-5.32	QP
4	479.1100	54.06	-10.86	43.20	46.00	-2.80	QP
5	600.3600	48.26	-8.42	39.84	46.00	-6.16	QP
6	714.8200	48.01	-6.25	41.76	46.00	-4.24	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

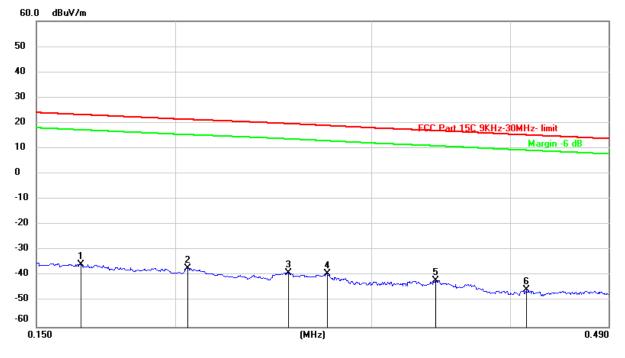
Note: All antennas and test modes have been tested, only the worst data record in the report.

9.6. SPURIOUS EMISSIONS BELOW 30M

9.6.1. 802.11n HT20 MIMO MODE

SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

60.0 dBu¥/m 50 40 30 FCC Part 15C 9KHz t<mark>ain -</mark>6 dB 20 10 0 -10 -20 -30 3 -40 2 6 -50 -60 0.009 (MHz) 0.150

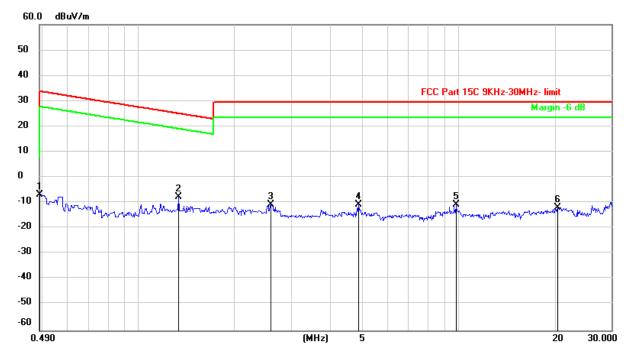

0.09~ 150kHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.0117	67.98	-101.39	-33.41	46.58	-79.99	peak
2	0.0223	65.79	-101.35	-35.56	40.77	-76.33	peak
3	0.0279	63.67	-101.38	-37.71	38.80	-76.51	peak
4	0.0364	60.69	-101.42	-40.73	36.46	-77.19	peak
5	0.0666	57.93	-101.55	-43.62	31.16	-74.78	peak
6	0.1000	55.17	-101.80	-46.63	27.60	-74.23	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

<u> 150kHz ~ 490kHz</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.1645	66.25	-101.66	-35.41	23.29	-58.70	peak
2	0.2051	64.81	-101.73	-36.92	21.40	-58.32	peak
3	0.2530	63.09	-101.80	-38.71	19.71	-58.42	peak
4	0.2736	62.58	-101.83	-39.25	18.99	-58.24	peak
5	0.3427	60.08	-101.90	-41.82	16.99	-58.81	peak
6	0.4132	56.55	-101.98	-45.43	15.30	-60.73	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

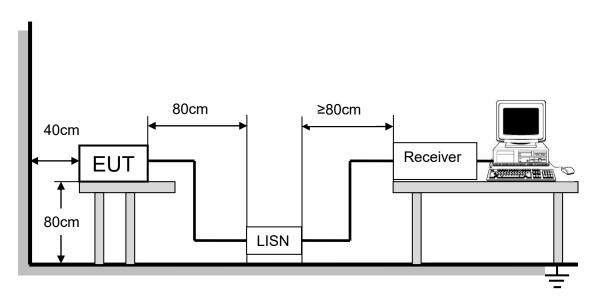
<u>490kHz ~ 30MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.4900	55.22	-62.06	-6.84	13.80	-20.64	peak
2	1.3317	54.38	-62.11	-7.73	25.12	-32.85	peak
3	2.5935	51.11	-61.68	-10.57	29.54	-40.11	peak
4	4.8868	50.73	-61.48	-10.75	29.54	-40.29	peak
5	9.8152	50.08	-60.82	-10.74	29.54	-40.28	peak
6	20.4388	49.02	-60.80	-11.78	29.54	-41.32	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

Note: All constructions and test modes have been tested, only the worst data record in the report.


10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

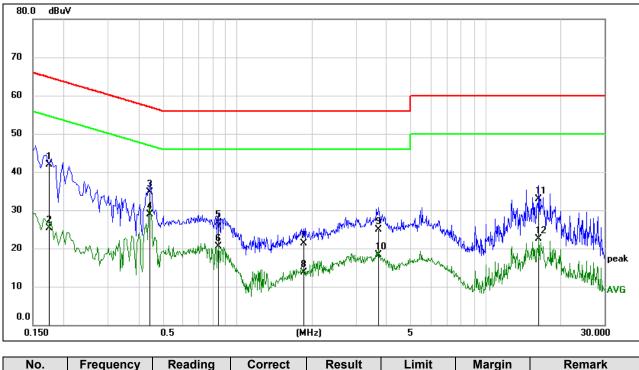
Please refer to CFR 47 FCC §15.207 (a).

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 7 and 13 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

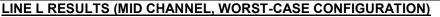
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

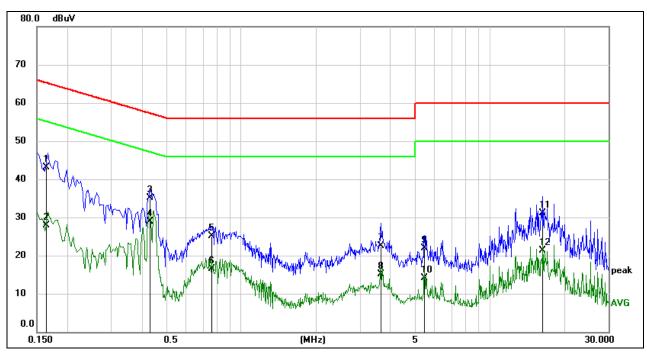

TEST ENVIRONMENT

Temperature	23°C	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

10.1. 802.11n HT20 MIMO MODE


LINE N RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1744	32.26	9.60	41.86	64.75	-22.89	QP
2	0.1744	15.80	9.60	25.40	54.75	-29.35	AVG
3	0.4424	25.03	9.60	34.63	57.02	-22.39	QP
4	0.4424	19.24	9.60	28.84	47.02	-18.18	AVG
5	0.8381	17.07	9.60	26.67	56.00	-29.33	QP
6	0.8381	10.94	9.60	20.54	46.00	-25.46	AVG
7	1.8456	11.62	9.63	21.25	56.00	-34.75	QP
8	1.8456	4.11	9.63	13.74	46.00	-32.26	AVG
9	3.7043	15.33	9.66	24.99	56.00	-31.01	QP
10	3.7043	8.61	9.66	18.27	46.00	-27.73	AVG
11	16.3666	22.82	9.99	32.81	60.00	-27.19	QP
12	16.3666	12.50	9.99	22.49	50.00	-27.51	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1636	33.43	9.61	43.04	65.28	-22.24	QP
2	0.1636	18.30	9.61	27.91	55.28	-27.37	AVG
3	0.4284	25.60	9.60	35.20	57.28	-22.08	QP
4	0.4284	19.24	9.60	28.84	47.28	-18.44	AVG
5	0.7635	15.52	9.61	25.13	56.00	-30.87	QP
6	0.7635	6.94	9.61	16.55	46.00	-29.45	AVG
7	3.6390	12.94	9.65	22.59	56.00	-33.41	QP
8	3.6390	5.46	9.65	15.11	46.00	-30.89	AVG
9	5.4560	12.30	9.69	21.99	60.00	-38.01	QP
10	5.4560	4.35	9.69	14.04	50.00	-35.96	AVG
11	16.3670	21.20	9.92	31.12	60.00	-28.88	QP
12	16.3670	11.48	9.92	21.40	50.00	-28.60	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All antennas and test modes have been tested, only the worst data record in the report.

11. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT