

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

TEST REPORT

For

IEEE 802.11b/g/n/a/ac 2T2R USB WiFi Module Integrated BT 2.1+EDR/4.2/5.0

MODEL NUMBER: SKI.WB638BU.2_668BU

FCC ID: 2AR82-SKIWB668BU2

IC: 24728-SKIWB668BU2

REPORT NUMBER: 4789476783-3

ISSUE DATE: June 2, 2020

Prepared for

Guangzhou Shikun Electronics Co., Ltd NO.6 Liankun Road, Huangpu District, Guangzhou, China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/02/2020	Initial Issue	

Summary of Test Results				
Clause	Test Items	FCC/ISED Rules	Test Results	
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass	
2	Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass	
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass	
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass	
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass	
6	Conducted Emission Test For AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Pass	
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass	

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	ΑΤΤ	ESTATION OF TEST RESULTS	6
2.	TES	T METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAL	IBRATION AND UNCERTAINTY	8
4.	1.	MEASURING INSTRUMENT CALIBRATION	8
4.	2.	MEASUREMENT UNCERTAINTY	8
5.	EQU	JIPMENT UNDER TEST	9
5.	1.	DESCRIPTION OF EUT	9
5.	2.	MAXIMUM OUTPUT POWER	9
5.	3.	CHANNEL LIST	9
5.	4.	TEST CHANNEL CONFIGURATION	10
5.	5.	THE WORSE CASE POWER SETTING PARAMETER	10
5.	6.	THE WORSE CASE CONFIGURATIONS	10
5.	7.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5.	8.	TEST ENVIRONMENT	11
5.	9.	DESCRIPTION OF TEST SETUP	12
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	13
-		ASURING INSTRUMENT AND SOFTWARE USED	-
7.			15
7. 7.	ANT	TENNA PORT TEST RESULTS	15 15
7 . 7. 7.	AN1 1.	ON TIME AND DUTY CYCLE	15 15 16
7. 7. 7. 7.	AN1 1. 2.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH	15 15 16 18
7 . 7. 7. 7. 7.	ANT 1. 2. 3.	ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER	15
7. 7. 7. 7. 7. 7.	ANT 1. 2. 3. 4.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY	15 15 16 18 19 21
7. 7. 7. 7. 7. 7. 7.	ANT 1. 2. 3. 4. 5.	FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS RADIATED TEST RESULTS. RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE	15
7. 7. 7. 7. 7. 7. 7. 7.	ANT 1. 2. 3. 4. 5. 6. 7.7. 7.7. 7.7. 8.	FENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS RADIATED TEST RESULTS. RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1~3GHz)	15 16 16 18 19 21 21 23 29 29 37 53 61
7. 7. 7. 7. 7. 7. 7. 7.	ANT 1. 2. 3. 4. 5. 6. 7.7. 7.7. 7.7. 8. 7.8. 7.8. 7.8.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS RADIATED TEST RESULTS. RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1~3GHz) 1. 802.11b SISO MODE 2. 802.11g SISO MODE	15 15 16 18 19 19 21 23 29 23 29 29 37 53 61 61 61
7. 7. 7. 7. 7. 7. 7. 7.	AN1 1. 2. 3. 4. 5. 6. 7.7. 7.7. 7.7. 8. 7.8. 7	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS RADIATED TEST RESULTS. RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1~3GHz) 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT40 MIMO MODE	15 15 16 18 19 21 23 29 29 29 29 29 29 23 23 23 23 21 23 23 21 23 21 23 21 23 29 29 27 23 29 29 27 23 29 27 23 29 27 23 29 27 23 27 23 29 27 23 27 23 29 27 23 27 23 29 27 23 27 23 27 23 27
7. 7. 7. 7. 7. 7. 7.	ANT 1. 2. 3. 4. 5. 6. 7.7. 7.7. 7.7. 8. 7.8. 7.8. 7.8.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH. CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS RADIATED TEST RESULTS. RESTRICTED BANDEDGE 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT20 MIMO MODE 4. 802.11b SISO MODE 2. 802.11b SISO MODE 3. 802.11n HT40 MIMO MODE SPURIOUS EMISSIONS (1~3GHz) 1. 802.11b SISO MODE 2. 802.11g SISO MODE 3. 802.11n HT40 MIMO MODE	15 16 16 19 21 23 29 29 29 37 45 53 61 61 61 73 79

	<u> </u>	Page 5 01 2 14
	 7.9.1. 802.11b SISO MODE	91 97
	7.11. WORST-CASE CO-LOCATION 7.11.1. BT 8DPSK MODE AND 802.11n HT20 MODE	
	7.12. SPURIOUS EMISSIONS (18~26GHz) 7.12.1. 802.11n HT20 MIMO MODE	<i>117</i> 117
	7.13. SPURIOUS EMISSIONS (0.03 ~ 1 GHz) 7.13.1. 802.11n HT20 MIMO MODE	<i>119</i> 119
	7.14. SPURIOUS EMISSIONS BELOW 30M 7.14.1. 802.11n HT20 MIMO MODE	
8.	AC POWER LINE CONDUCTED EMISSIONS	
	8.1. 802.11n HT20 MIMO MODE	
9.	ANTENNA REQUIREMENTS	
	Appendix A: DTS Bandwidth	
	Test Result	
	Test Graphs	
	Appendix B: Occupied Channel Bandwidth	
	Test Result Test Graphs	
	•	
	Appendix C: Maximum conducted output power Test Result	
	Appendix D: Maximum power spectral density	155
	Test Result	
	Test Graphs	156
	Appendix E: Band edge measurements	
	Test Result: PASS Test Graphs	
	Appendix F: Conducted Spurious Emission Test Result: PASS	
	Test Graphs	
	Appendix G: Duty Cycle	
	Test Result.	
	Test Graphs	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Guangzhou Shikun Electronics Co., Ltd
Address:	NO.6 Liankun Road,Huangpu District,Guangzhou,China

Manufacturer Information

Company Name:	Guangzhou Shikun Electronics Co., Ltd
Address:	NO.6 Liankun Road, Huangpu District, Guangzhou, China

EUT Description

EUT Name	IEEE 802.11b/g/n/a/ac 2T2R USB WiFi Module
LOT Mame	Integrated BT 2.1+EDR/4.2/5.0
Model	SKI.WB638BU.2_668BU
Sample Status	Normal
Sample ID	3047339
Sample Received date	May 7, 2020
Date Tested	May 8 ~ 15, 2020

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	PASS			
ISED RSS-247 Issue 2	PASS			
ISED RSS-GEN Issue 5	PASS			

Prepared By:

kebo. zhong.

Checked By:

Sherry les

Kebo Zhang Project Engineer Shawn Wen Laboratory Leader

Approved By:

Aephenbus

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
	Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	5.78dB (1GHz-18GHz)		
	5.23dB (18GHz-26GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	IEEE 802.11b/g/n/a/ac 2T2R USB WiFi Module		
201110	Integrated BT 2.1+EDR/4.2/5.0		
Model	SKI.WB638BU.2_668BU		
Radio Technology	IEEE802.11b/g/n HT20/n HT40		
	IEEE 802.11b: 2412MHz—2462MHz		
Operation frequency	IEEE 802.11g: 2412MHz—2462MHz		
Operation frequency	IEEE 802.11n HT20: 2412MHz—2462MHz		
	IEEE 802.11n HT40: 2422MHz—2452MHz		
	IEEE 802.11b: DSSS(CCK)		
Modulation	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)		
Modulation	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)		
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)		
Rated Input	DC 3.3V		

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max AV Conducted Power (dBm)
2	IEEE 802.11b	2412-2462	1-11[11]	17.94
2	IEEE 802.11g	2412-2462	1-11[11]	16.34
2	IEEE 802.11nHT20	2412-2462	1-11[11]	18.00
2	IEEE 802.11nHT40	2422-2452	3-9[7]	13.90

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Channel	Frequency (MHz)				
1	2412	4	2427	7	2442	10	2457			
2	2417	5	2432	8	2447	11	2462			
3	2422	6	2437	9	2452	/	/			

	Channel List for 802.11n (40 MHz)									
ChannelFrequency (MHz)ChannelFrequenc y(MHz)Frequency (MHz)Frequency<						Frequency (MHz)				
3	2422	5	2432	7	2442	9	2452			
4	2427	6	2437	8	2447	/	/			

3.4. TEST CHANNEL CONTRONATION								
Test Mode	Test Channel	Frequency						
WiFi TX(802.11b)	CH1,CH6,CH11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz						
WiFi TX(802.11g)	CH1,CH6,CH11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz						
WiFi TX(802.11n HT20)	CH1,CH6,CH11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz						
WiFi TX(802.11n HT40)	CH3,CH6,CH9/ Low, Middle, High	2422MHz, 2437MHz, 2452MHz						

5.4. TEST CHANNEL CONFIGURATION

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	/are			QA	tool			
	Transmit		Test Software setting value					
Modulation Mode	Antenna Number	NCB: 20MHz			NCB: 40MHz			
Wiode		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	2	default	default	default				
802.11g	2	default	default	default] /			
802.11n HT20	2	default	default	default]			
802.11n HT40	2	/ default default defa				default		

5.6. THE WORSE CASE CONFIGURATIONS

For SISO modes, there are two transmission antennas. The antenna used in any given time can be either ANTENNA 1 or ANTENNA 2. The output power measurement for SISO modes on both antennas are reported.

For 2TX MIMO modes, ANTENNA 1 and ANTENNA 2, used at the same time.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Note: Only 802.11n HT20 and 802.11n HT40 support MIMO mode, for 802.11b and 802.11g, all antennas had been tested, but only the worst data for Antenna 1 was recorded. For 802.11n HT20 and 802.11n HT40, all antennas had the same power in MIMO mode and SISO mode, so only the worst data for MIMO mode was recorded.

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna model Frequency (MHz)		Antenna Type	MAX. Antenna Gain (dBi)	
1(WIFI0)	2412-2462	PCB Antenna	3.70	
2(WIFI1)	2412-2462	PCB Antenna	4.94	

Note:

Directional gain= 10 log[(10^{G1/20} + 10^{G2/20})²/NANT]=7.35dBi

G_{ANT} : Average of the Antenna Gain

N_{ANT} : Antenna numbers

Note: The value of the antenna gain was declared by customer.

Test Mode Transmit and Receive Mode		Description				
IEEE 802.11b	⊠2TX, 2RX	ANT 1,2 can be used as transmitting/receiving antenna.				
IEEE 802.11g	⊠2TX, 2RX	ANT 1,2 can be used as transmitting/receiving antenna.				
IEEE 802.11n HT20	⊠2TX, 2RX	ANT 1,2 can be used as transmitting/receiving antenna.				
IEEE 802.11n HT40	⊠2TX, 2RX	ANT 1,2 can be used as transmitting/receiving antenna.				
Note:						

1. Only 802.11n HT20/HT40 support MIMO mode

2. BT&WLAN 2.4G ,BT& WLAN 5G can transmit simultaneously. (declared by client)

5.8. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests				
Relative Humidity	45	5 ~ 70%			
Atmospheric Pressure:	101kPa				
Temperature	TN	22 ~ 28 °C			
	VL	N/A			
Voltage:	VN	DC 3.3V			
	VH	N/A			

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage.

VH= Upper Extreme Test Voltage

TN= Normal Temperature

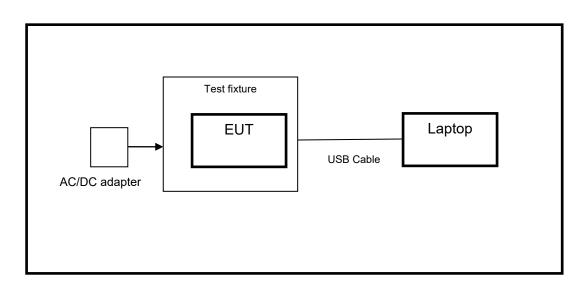
5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	ThinkPad	X230i	/
2	Test fixture	/	1	/
3	AC/DC adapter	HUAWEI	HW-120150E2W	INPUT:100- 240V~50/60Hz, 0.5A OUTPUT:12.0V, 1.5A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	NA	NA	1	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions									
			Ins	trument						
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Last Cal.	Next Cal.		
V	EMI Test Receiver	R&S	ES	SR3	1019	961	Dec.05,2019	Dec.05,2020		
V	Two-Line V- Network	R&S	EN	/216	1019	983	Dec.05,2019	Dec.05,2020		
V	Artificial Mains Networks	Schwarzbeck	NSLK	K 8126	8126	465	Dec.05,2019	Dec.05,2020		
			So	oftware						
Used		Description			Manufa	cturer	Name	Version		
\checkmark	Test Softwar	re for Conduct	ed disturk	bance	Fara	ad	EZ-EMC	Ver. UL-3A1		
			Radiate	d Emissio	ons					
			Ins	strument						
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Last Cal.	Next Cal.		
V	MXE EMI Receiver	KESIGHT	N90)38A	MY5640	00036	Dec.06,2019	Dec.05,2020		
V	Hybrid Log Periodic Antenna	TDK	HLP-3003C		1309	960	Sep.17,2018	Sep.17,2021		
\checkmark	Preamplifier	HP	844	47D	2944A0	9099	Dec.05,2019	Dec.05,2020		
N	EMI Measurement Receiver	R&S	ES	R26	1013	377	Dec.05,2019	Dec.05,2020		
\checkmark	Horn Antenna	TDK	HRN	-0118	1309	939	Sep.17,2018	Sep.17,2021		
V	High Gain Horn Antenna	Schwarzbeck	BBHA	A-9170	69	1	Aug.11,2018	Aug.11,2021		
V	Preamplifier	TDK	PA-02	2-0118	TRS-3		Dec.05,2019	Dec.05,2020		
V	Preamplifier	TDK	PA-	02-2	TRS-3		Dec.05,2019	Dec.05,2020		
\checkmark	Loop antenna	Schwarzbeck	15	19B	80000		Jan.07,2019	Jan.07,2022		
V	Band Reject Filter	Wainwright	WRCJV8-2350- 2400-2483.5- 2533.5-40SS		4		Dec.05,2019	Dec.05,2020		
	High Pass Filter	Wi	WHKX10-2700- 3000- 18000-40SS		23	3	Dec.05,2019	Dec.05,2020		
			So	oftware						
Used	De	escription		Manufac	turer Name		Version			
V	Test Software for Radiated disturbance				ıd	E	Z-EMC	Ver. UL-3A1		

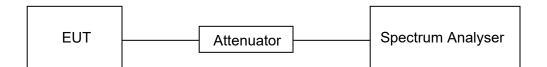
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

REPORT No.: 4789476783-3 Page 14 of 214

	Other instruments									
Used	d Equipment Manufacturer Model No. Last Cal. Next Cal.									
\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.06,2019	Dec.05,2020				
V	Power sensor, Power Meter	R&S	OSP120	100921	Dec.06,2019	Dec.06,2020				

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4°C	Relative Humidity	67.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

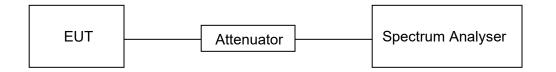
RESULTS

Please refer to Appendix G.

7.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500KHz	2400-2483.5
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
	For 6dB Bandwidth :100kHz For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
IV BWV	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : ≥3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

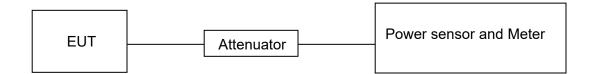
Temperature	25.4°C	Relative Humidity	67.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

RESULTS

Please refer to Appendix A & B.

7.3. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Output Power	1 watt or 30dBm	2400-2483.5

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor. Measure the power of each channel.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4°C	Relative Humidity	67.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

RESULTS

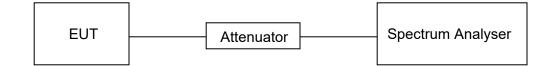
Please refer to Appendix C.

7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4°C	Relative Humidity	67.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Please refer to Appendix D.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

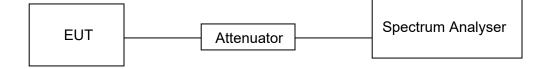
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2		
Section Test Item Limit		
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.4°C	Relative Humidity	67.8%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

RESULTS

Please refer to Appendix E & F.

7.6. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 (Transmitter)

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

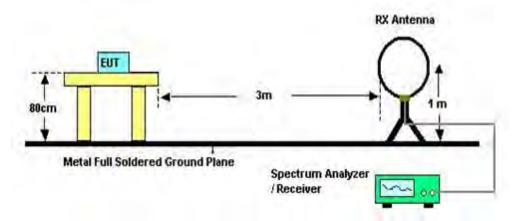
Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)		
Frequency (MHZ)	Peak	Average	
Above 1000	74	54	

IC Restricted bands please refer to ISED RSS-GEN Clause 8.10 FCC Restricted bands of operation:


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-61 <mark>4</mark>	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

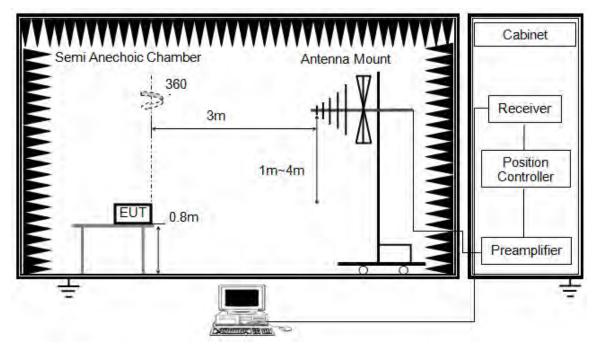
1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

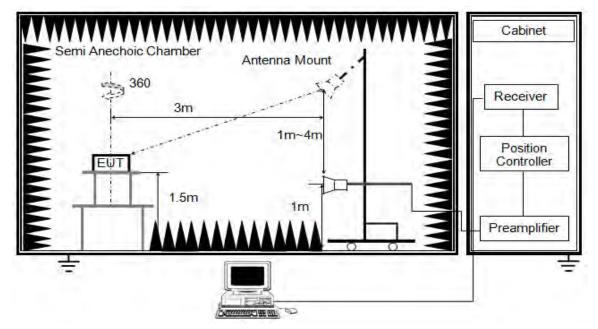
Below 1G

The setting of the spectrum analyser

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

ABOVE 1G

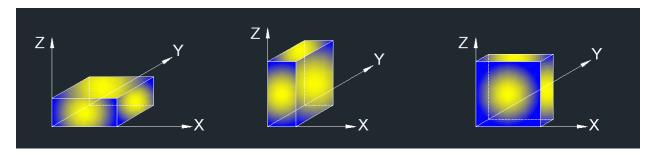
The setting of the spectrum analyser

RBW	1MHz	
IV B W	PEAK: 3MHz AVG: see note 6	
Sweep	Auto	
Detector	Peak	
Trace	Max hold	

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

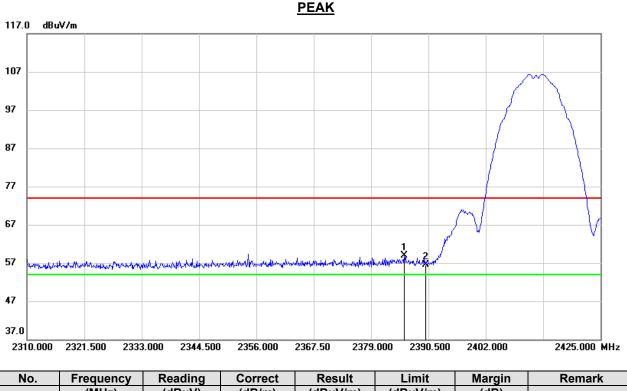
X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: All the EUT's emissions had been evaluated for simultaneous transmission with the other WIFI 2.4GHz, WIFI 5GHz and BT transmitter and there were no any additional or worse emissions found. The worst case data has been recorded in the WIFI test report. (4789476783-3/-4).

TEST ENVIRONMENT

Temperature	23.2°C	Relative Humidity	55%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V



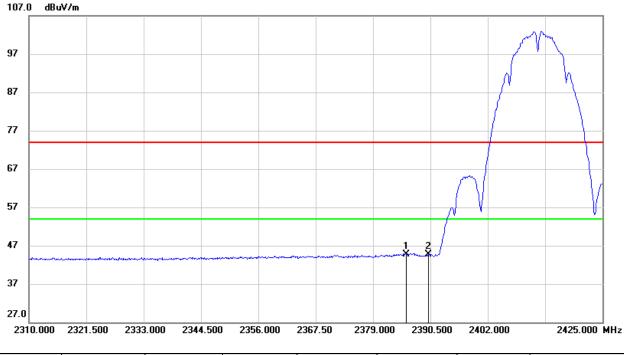
7.7. RESTRICTED BANDEDGE

7.7.1. 802.11b SISO MODE

ANTENNA1

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2385.670	25.92	32.93	58.85	74.00	-15.15	peak
2	2390.000	23.59	32.94	56.53	74.00	-17.47	peak
-		•		•			


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

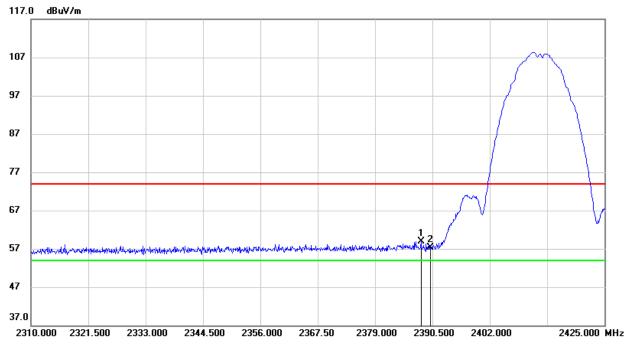
3. Peak: Peak detector.

<u>Avg</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2385.670	11.80	32.93	44.73	54.00	-9.27	AVG
2	2390.000	11.75	32.94	44.69	54.00	-9.31	AVG

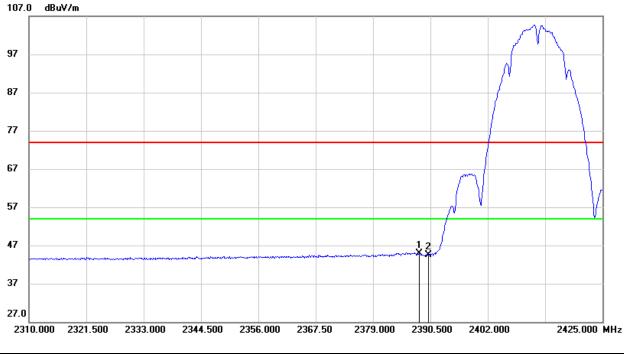
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.200	25.92	32.94	58.86	74.00	-15.14	peak
2	2390.000	24.44	32.94	57.38	74.00	-16.62	peak

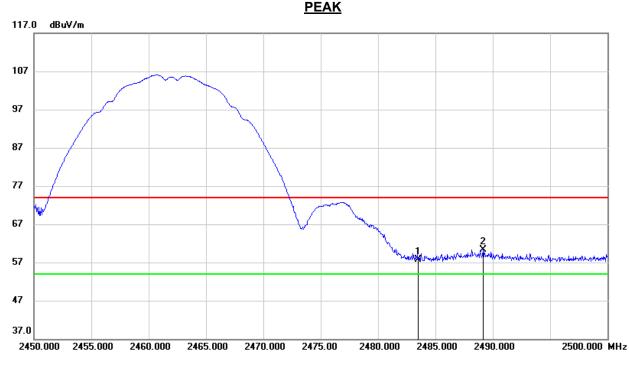
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.200	12.03	32.94	44.97	54.00	-9.03	AVG
2	2390.000	11.55	32.94	44.49	54.00	-9.51	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

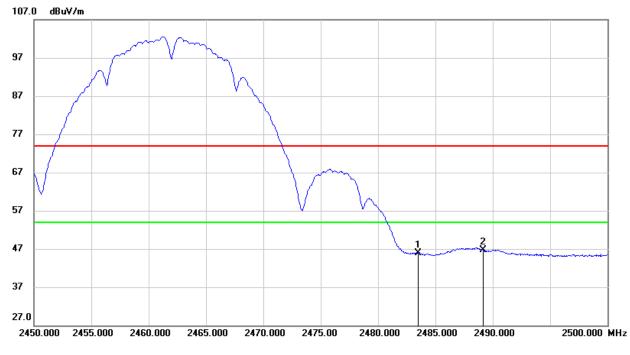

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	24.03	33.58	57.61	74.00	-16.39	peak
2	2489.150	26.62	33.62	60.24	74.00	-13.76	peak


Note: 1. Measurement = Reading Level + Correct Factor.

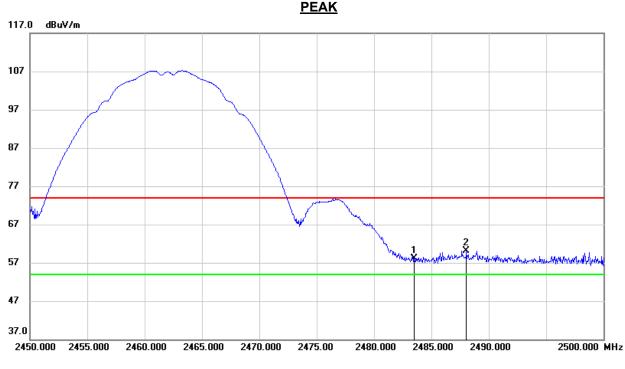
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>Avg</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	12.39	33.58	45.97	54.00	-8.03	AVG
2	2489.150	13.05	33.62	46.67	54.00	-7.33	AVG

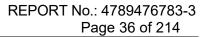
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

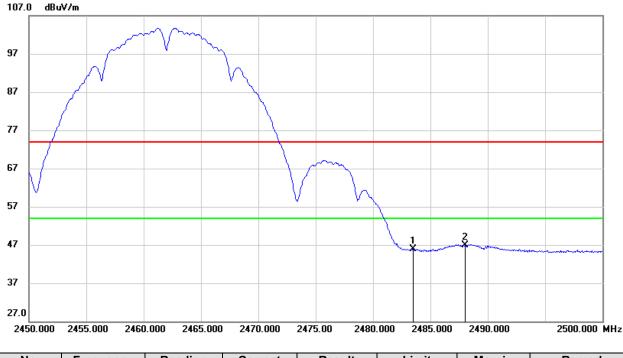
4. For transmit duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	24.53	33.58	58.11	74.00	-15.89	peak
2	2488.050	26.50	33.62	60.12	74.00	-13.88	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>Avg</u>

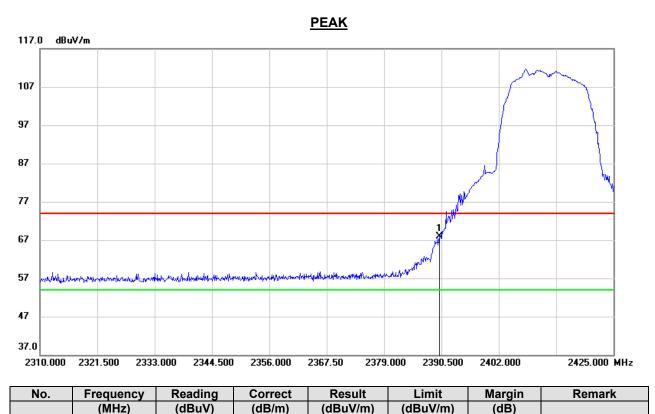
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	12.29	33.58	45.87	54.00	-8.13	AVG
2	2488.050	13.29	33.62	46.91	54.00	-7.09	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.


5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: All antennas have been tested, only the worst data record in the report.

7.7.2. 802.11g SISO MODE

ANTENNA1

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

34.97

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

67.91

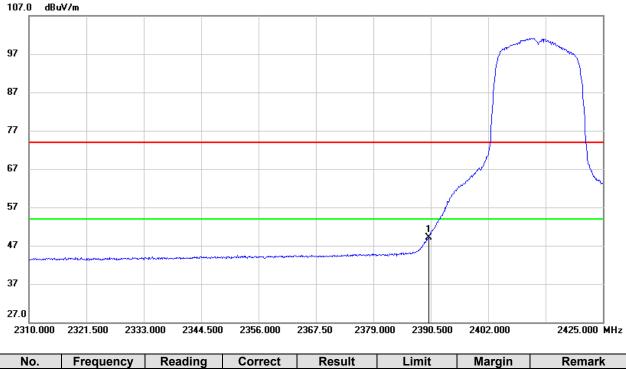
74.00

-6.09

peak

3. Peak: Peak detector.

2390.000


1

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

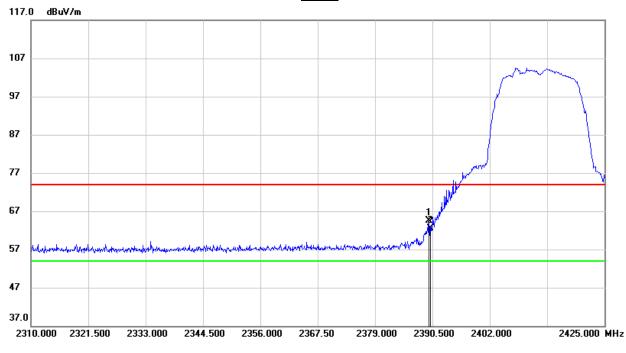
32.94

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	16.22	32.94	49.16	54.00	-4.84	AVG

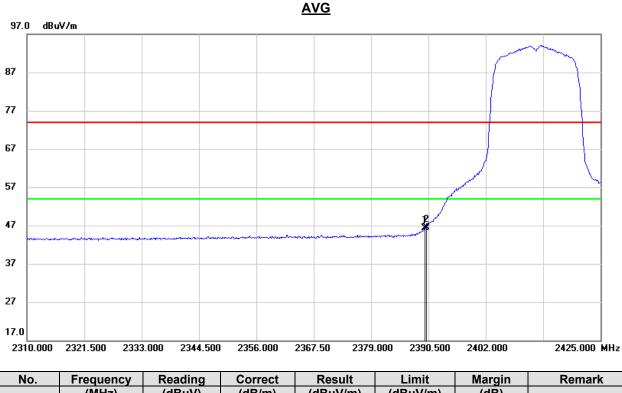
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

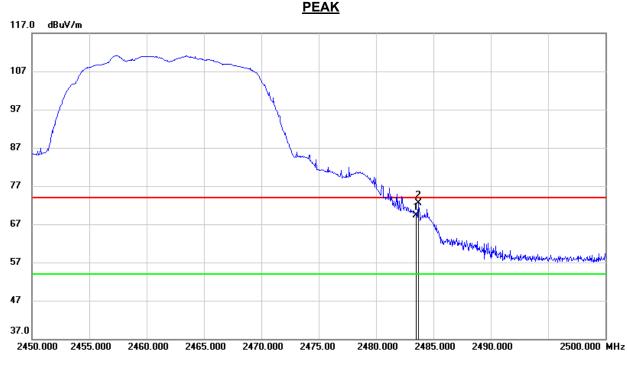

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.810	31.47	32.94	64.41	74.00	-9.59	peak
2	2390.000	29.65	32.94	62.59	74.00	-11.41	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.810	13.40	32.94	46.34	54.00	-7.66	AVG
2	2390.000	13.50	32.94	46.44	54.00	-7.56	AVG

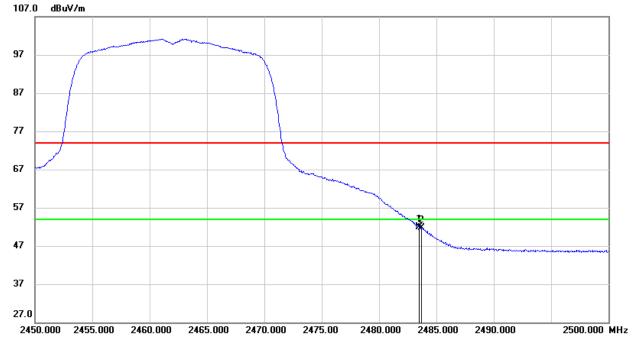

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	35.70	33.58	69.28	74.00	-4.72	peak
2	2483.700	38.94	33.58	72.52	74.00	-1.48	peak


Note: 1. Measurement = Reading Level + Correct Factor.

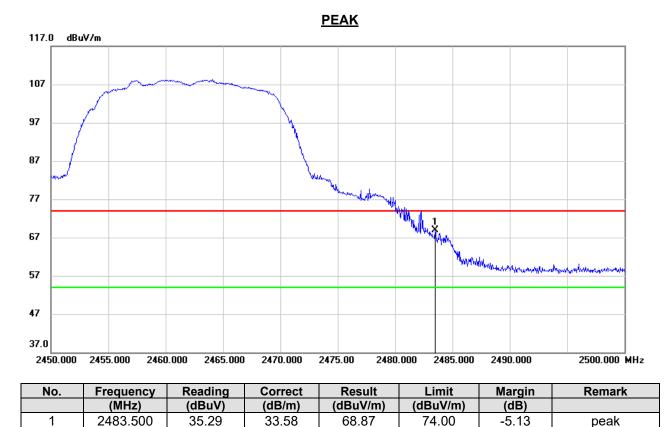
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

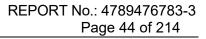
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.29	33.58	51.87	54.00	-2.13	AVG
2	2483.700	18.10	33.58	51.68	54.00	-2.32	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

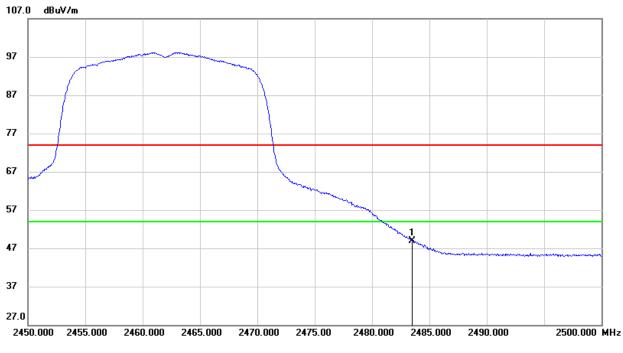

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.


RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

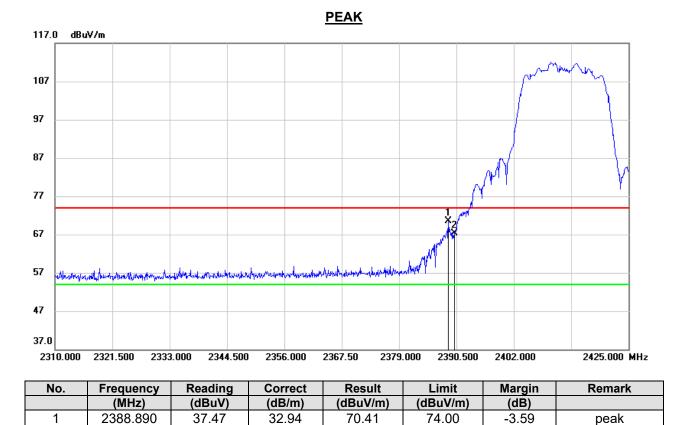
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.39	33.58	48.97	54.00	-5.03	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.


4. For transmit duration, please refer to clause 7.1.

5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: All antennas have been tested, only the worst data record in the report.

7.7.3. 802.11n HT20 MIMO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

34.27

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

67.21

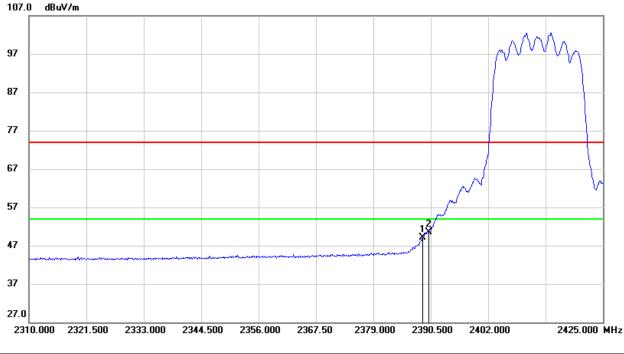
74.00

-6.79

peak

3. Peak: Peak detector.

2390.000


2

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

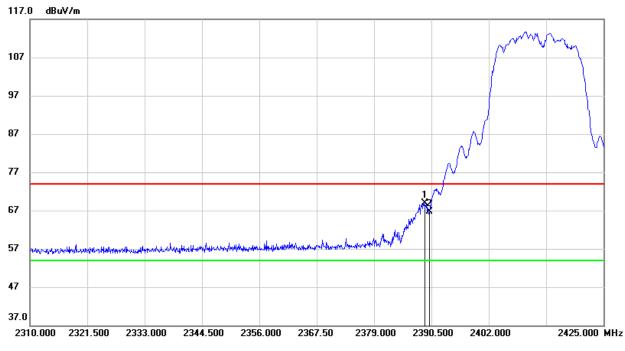
32.94

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.890	16.08	32.94	49.02	54.00	-4.98	AVG
2	2390.000	17.52	32.94	50.46	54.00	-3.54	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

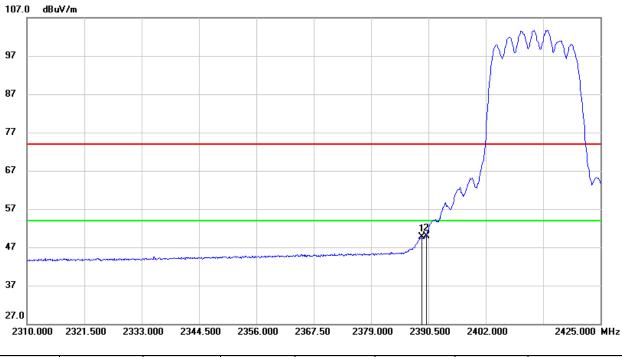
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

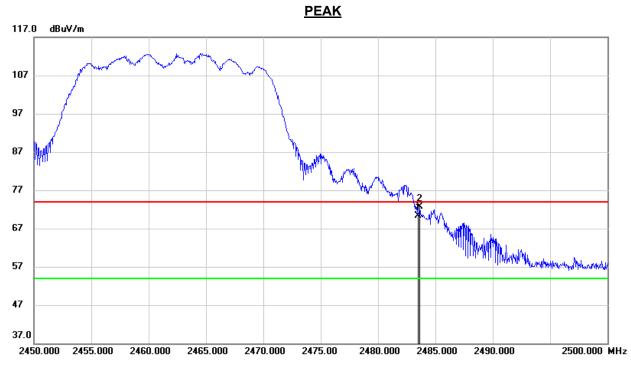
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.120	35.97	32.94	68.91	74.00	-5.09	peak
2	2390.000	33.75	32.94	66.69	74.00	-7.31	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.120	16.74	32.94	49.68	54.00	-4.32	AVG
2	2390.000	16.96	32.94	49.90	54.00	-4.10	AVG


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

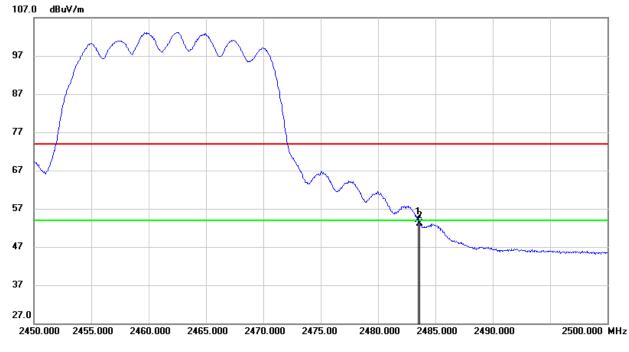
4. For transmit duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	36.69	33.58	70.27	74.00	-3.73	peak
2	2483.650	39.14	33.58	72.72	74.00	-1.28	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

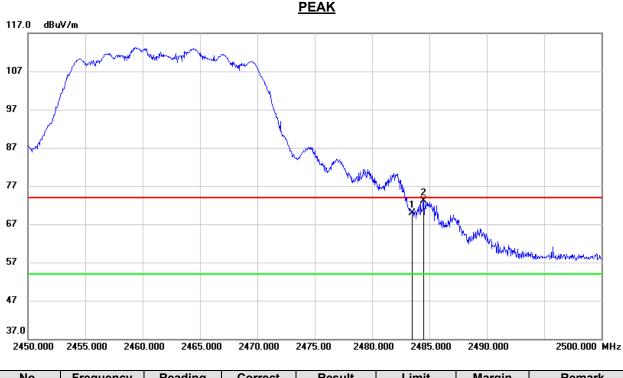
4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.49	33.58	53.09	54.00	-0.91	AVG
2	2483.650	19.53	33.58	53.11	54.00	-0.89	AVG

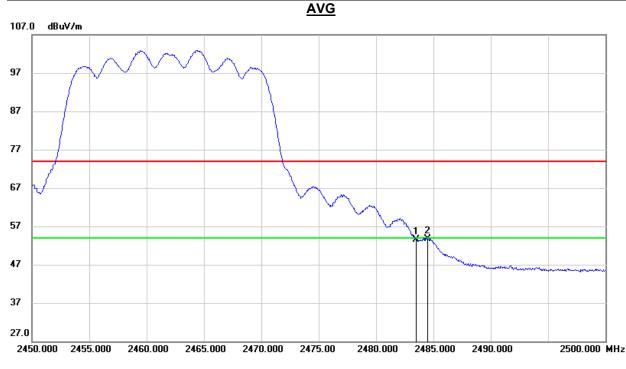
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	36.24	33.58	69.82	74.00	-4.18	peak
2	2484.500	39.48	33.59	73.07	74.00	-0.93	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

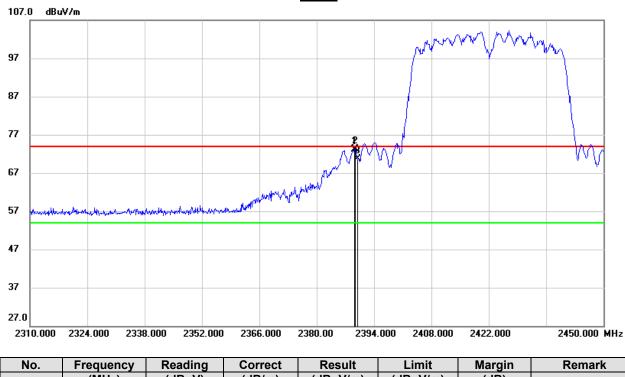
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	19.86	33.58	53.44	54.00	-0.56	AVG
2	2484.500	20.10	33.59	53.69	54.00	-0.31	AVG

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.

5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: All antennas have been tested, only the worst data record in the report.

7.7.4. 802.11n HT40 MIMO MODE

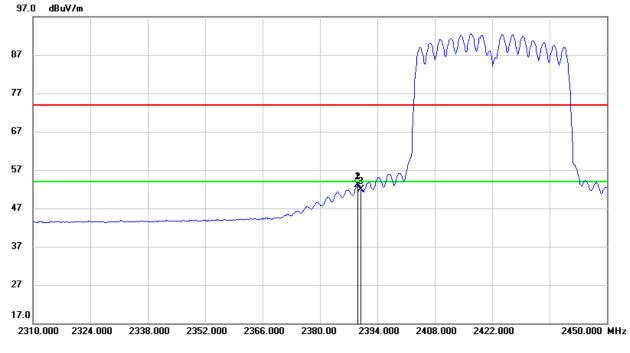
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.240	40.13	32.94	73.07	74.00	-0.93	peak
2	2389.380	40.40	32.94	73.34	74.00	-0.66	peak
3	2390.000	37.71	32.94	70.65	74.00	-3.35	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

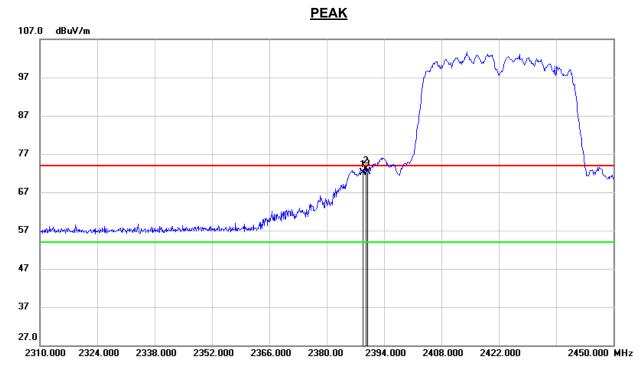
4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.240	20.22	32.94	53.16	54.00	-0.84	AVG
2	2389.380	20.19	32.94	53.13	54.00	-0.87	AVG
3	2390.000	19.05	32.94	51.99	54.00	-2.01	AVG

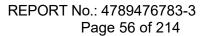
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

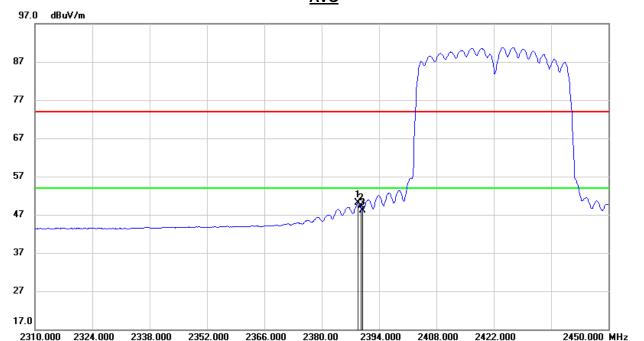
3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.820	39.20	32.94	72.14	74.00	-1.86	peak
2	2389.520	40.11	32.94	73.05	74.00	-0.95	peak
3	2390.000	39.43	32.94	72.37	74.00	-1.63	peak


Note: 1. Measurement = Reading Level + Correct Factor.

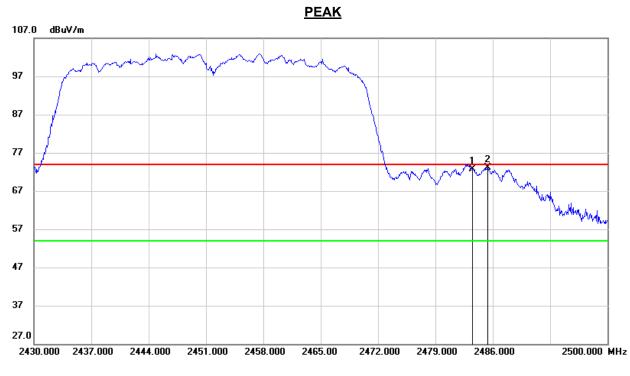
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.820	17.16	32.94	50.10	54.00	-3.90	AVG
2	2389.520	16.37	32.94	49.31	54.00	-4.69	AVG
3	2390.000	15.08	32.94	48.02	54.00	-5.98	AVG

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

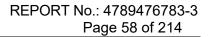
3. AVG: VBW=1/Ton where: ton is transmit duration.


4. For transmit duration, please refer to clause 8.1.

5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>AVG</u>

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



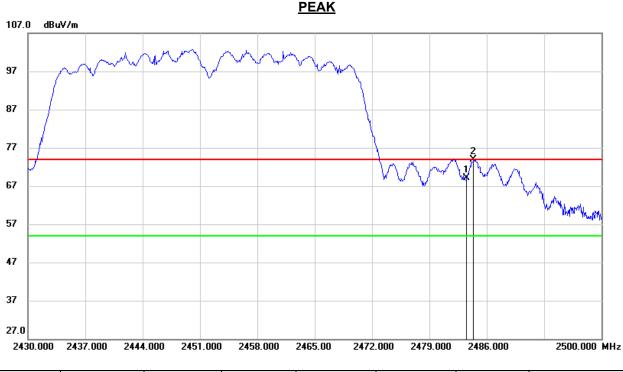

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	39.07	33.58	72.65	74.00	-1.35	peak
2	2485.370	39.50	33.59	73.09	74.00	-0.91	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

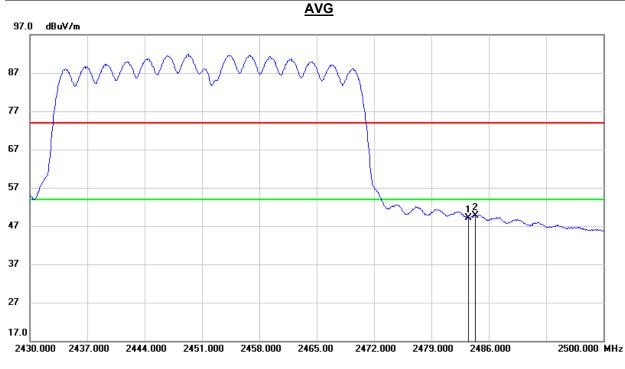
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.37	33.58	48.95	54.00	-5.05	AVG
2	2485.370	15.02	33.59	48.61	54.00	-5.39	AVG


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	35.60	33.58	69.18	74.00	-4.82	peak
2	2484.390	40.39	33.59	73.98	74.00	-0.02	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

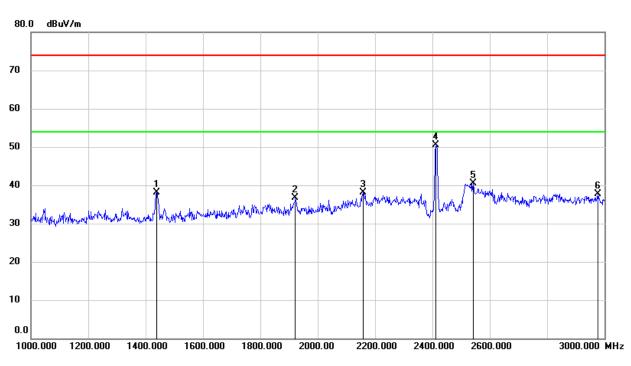
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.47	33.58	49.05	54.00	-4.95	AVG
2	2484.390	16.13	33.59	49.72	54.00	-4.28	AVG

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: All antennas have been tested, only the worst data record in the report.

7.8. SPURIOUS EMISSIONS (1~3GHz)

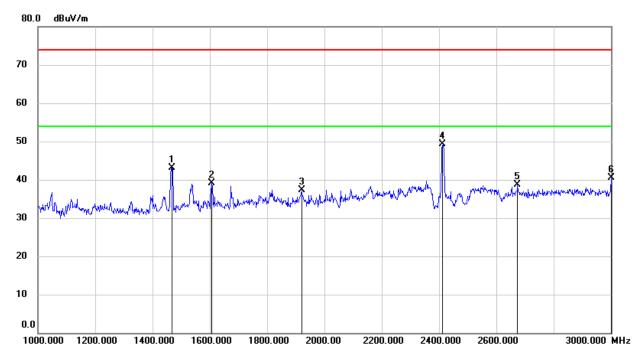
7.8.1. 802.11b SISO MODE

ANTENNA1

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1438.000	50.48	-12.32	38.16	74.00	-35.84	peak
2	1922.000	46.68	-9.93	36.75	74.00	-37.25	peak
3	2158.000	46.97	-8.88	38.09	74.00	-35.91	peak
4	2412.000	58.19	-7.77	50.42	/	/	fundamental
5	2542.000	47.84	-7.39	40.45	74.00	-33.55	peak
6	2976.000	43.15	-5.35	37.80	74.00	-36.20	peak

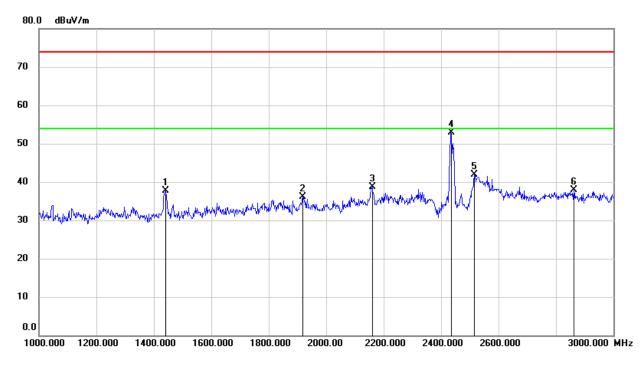
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

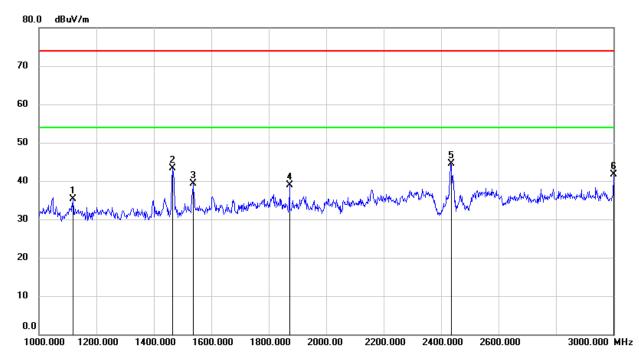
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1468.000	55.46	-12.26	43.20	74.00	-30.80	peak
2	1606.000	50.51	-11.37	39.14	74.00	-34.86	peak
3	1920.000	47.31	-9.93	37.38	74.00	-36.62	peak
4	2412.000	57.12	-7.77	49.35	/	/	fundamental
5	2674.000	45.93	-7.27	38.66	74.00	-35.34	peak
6	3000.000	45.90	-5.30	40.60	74.00	-33.40	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

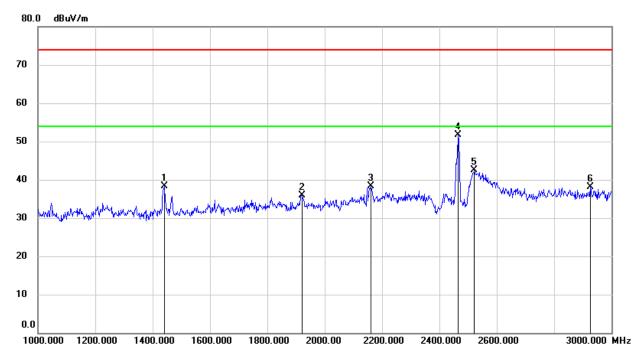
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	50.02	-12.32	37.70	74.00	-36.30	peak
2	1918.000	46.13	-9.93	36.20	74.00	-37.80	peak
3	2160.000	47.52	-8.86	38.66	74.00	-35.34	peak
4	2437.000	60.43	-7.60	52.83	/	/	fundamental
5	2516.000	49.10	-7.25	41.85	74.00	-32.15	peak
6	2862.000	43.62	-5.73	37.89	74.00	-36.11	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

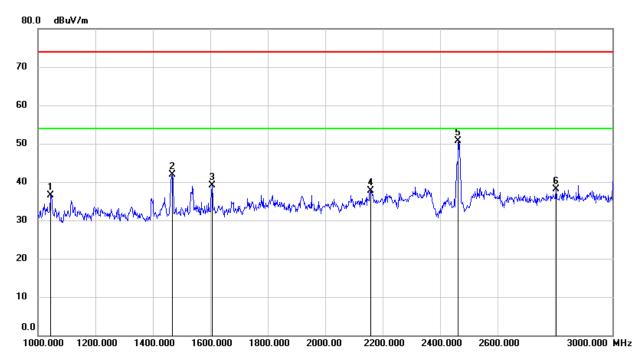
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1118.000	48.65	-13.37	35.28	74.00	-38.72	peak
2	1466.000	55.54	-12.26	43.28	74.00	-30.72	peak
3	1536.000	51.27	-11.92	39.35	74.00	-34.65	peak
4	1872.000	48.89	-9.95	38.94	74.00	-35.06	peak
5	2437.000	52.10	-7.60	44.50	/	/	fundamental
6	3000.000	46.92	-5.30	41.62	74.00	-32.38	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	50.62	-12.32	38.30	74.00	-35.70	peak
2	1920.000	45.87	-9.93	35.94	74.00	-38.06	peak
3	2160.000	47.20	-8.86	38.34	74.00	-35.66	peak
4	2462.000	59.03	-7.40	51.63	/	/	fundamental
5	2522.000	49.74	-7.28	42.46	74.00	-31.54	peak
6	2926.000	43.58	-5.47	38.11	74.00	-35.89	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

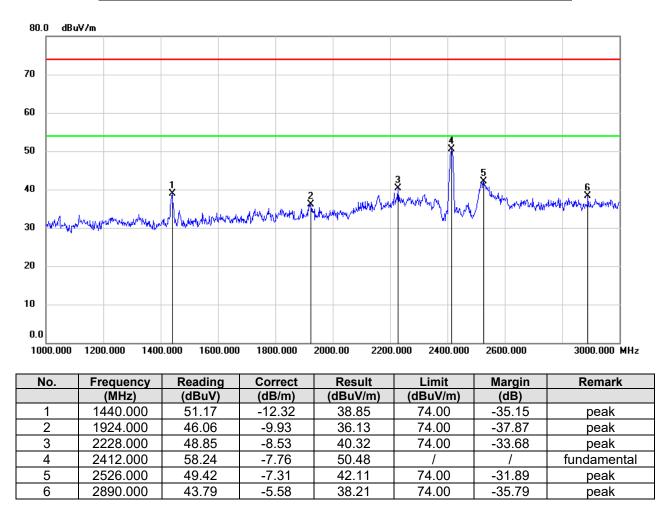
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1044.000	49.97	-13.56	36.41	74.00	-37.59	peak
2	1468.000	54.24	-12.26	41.98	74.00	-32.02	peak
3	1606.000	50.50	-11.37	39.13	74.00	-34.87	peak
4	2158.000	46.58	-8.88	37.70	74.00	-36.30	peak
5	2462.000	58.16	-7.43	50.73	/	/	fundamental
6	2804.000	44.22	-6.04	38.18	74.00	-35.82	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.


5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

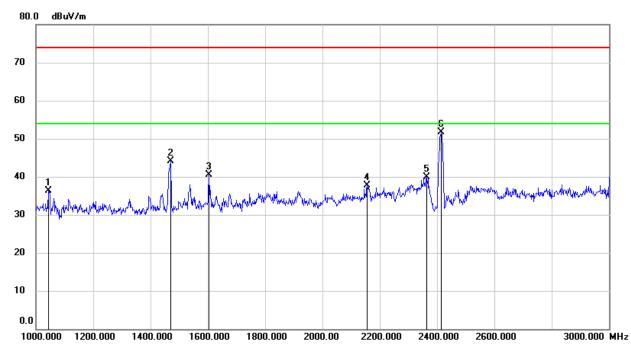
Note: All antennas have been tested, only the worst data record in the report.

7.8.2. 802.11g SISO MODE

ANTENNA1

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

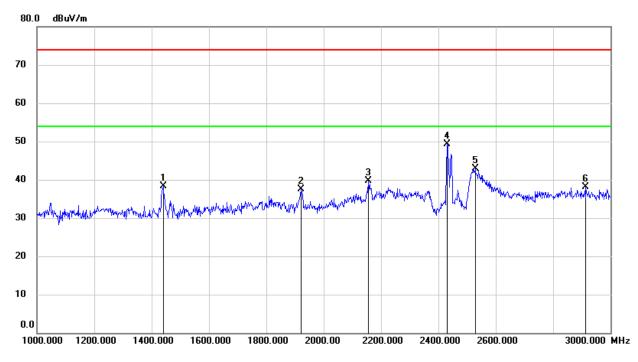
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

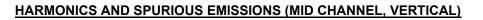
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

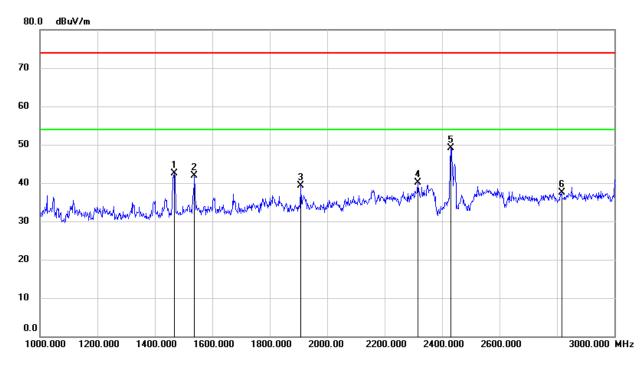
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1044.000	49.92	-13.56	36.36	74.00	-37.64	peak
2	1470.000	56.37	-12.25	44.12	74.00	-29.88	peak
3	1604.000	51.95	-11.37	40.58	74.00	-33.42	peak
4	2156.000	46.66	-8.88	37.78	74.00	-36.22	peak
5	2364.000	47.85	-7.98	39.87	74.00	-34.13	peak
6	2412.000	59.54	-7.76	51.78	/	/	fundamental


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

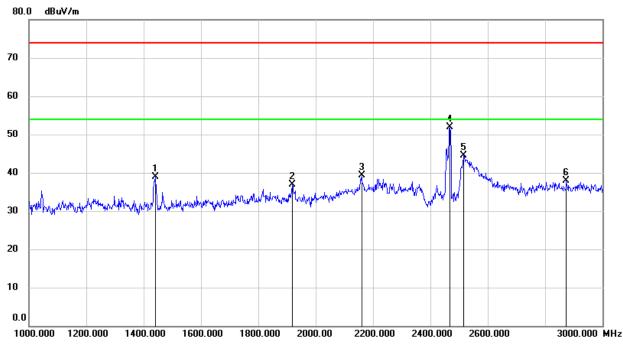
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	50.72	-12.32	38.40	74.00	-35.60	peak
2	1920.000	47.35	-9.93	37.42	74.00	-36.58	peak
3	2156.000	48.65	-8.88	39.77	74.00	-34.23	peak
4	2437.000	56.92	-7.65	49.27	/	/	fundamental
5	2528.000	50.25	-7.32	42.93	74.00	-31.07	peak
6	2914.000	43.58	-5.50	38.08	74.00	-35.92	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1468.000	54.68	-12.26	42.42	74.00	-31.58	peak
2	1538.000	53.80	-11.91	41.89	74.00	-32.11	peak
3	1908.000	49.24	-9.94	39.30	74.00	-34.70	peak
4	2316.000	48.14	-8.13	40.01	74.00	-33.99	peak
5	2437.000	56.74	-7.65	49.09	/	/	fundamental
6	2816.000	43.41	-5.97	37.44	74.00	-36.56	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

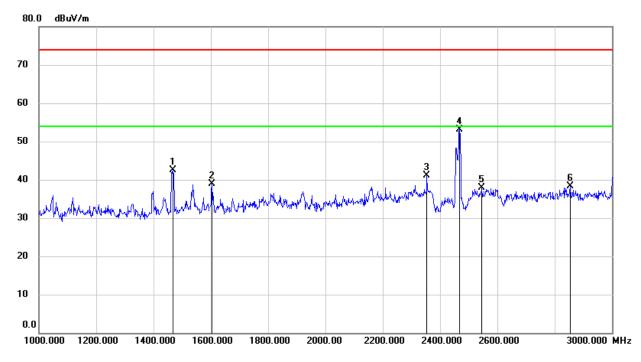
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	51.28	-12.32	38.96	74.00	-35.04	peak
2	1918.000	46.88	-9.93	36.95	74.00	-37.05	peak
3	2160.000	48.10	-8.86	39.24	74.00	-34.76	peak
4	2462.000	59.26	-7.39	51.87	/	/	fundamental
5	2516.000	51.73	-7.25	44.48	74.00	-29.52	peak
6	2874.000	43.63	-5.66	37.97	74.00	-36.03	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1468.000	54.75	-12.26	42.49	74.00	-31.51	peak
2	1604.000	50.31	-11.37	38.94	74.00	-35.06	peak
3	2354.000	49.12	-8.01	41.11	74.00	-32.89	peak
4	2462.000	60.56	-7.39	53.17	/	/	fundamental
5	2546.000	45.29	-7.41	37.88	74.00	-36.12	peak
6	2854.000	44.00	-5.78	38.22	74.00	-35.78	peak

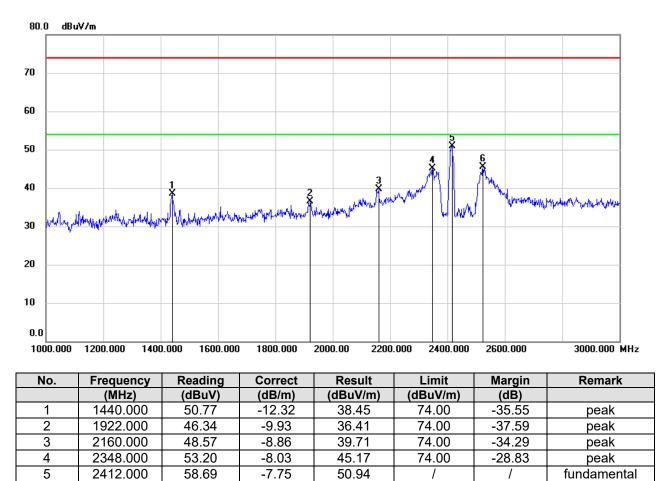
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas have been tested, only the worst data record in the report.



1

-28.42

peak

7.8.3. 802.11n HT20 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

-7.29

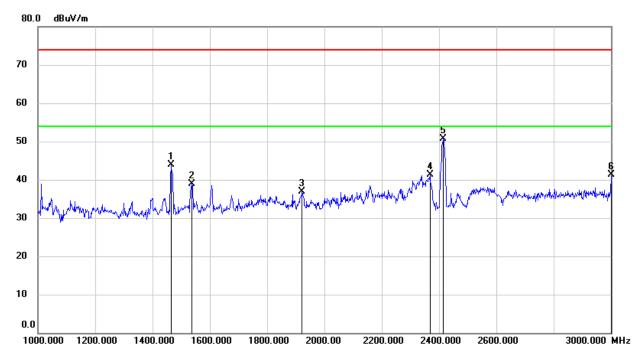
52.87

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

45.58

74.00

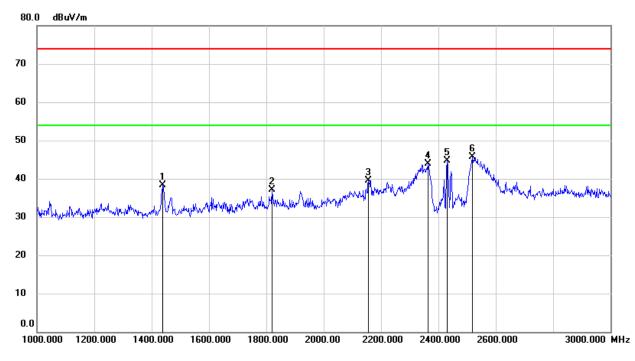
3. Peak: Peak detector.


2524.000

6

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

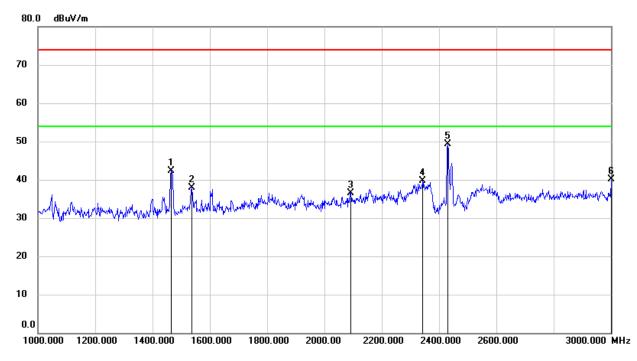
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1464.000	56.19	-12.26	43.93	74.00	-30.07	peak
2	1538.000	50.77	-11.91	38.86	74.00	-35.14	peak
3	1922.000	46.90	-9.93	36.97	74.00	-37.03	peak
4	2368.000	49.25	-7.96	41.29	74.00	-32.71	peak
5	2412.000	58.39	-7.76	50.63	/	/	fundamental
6	3000.000	46.61	-5.30	41.31	74.00	-32.69	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

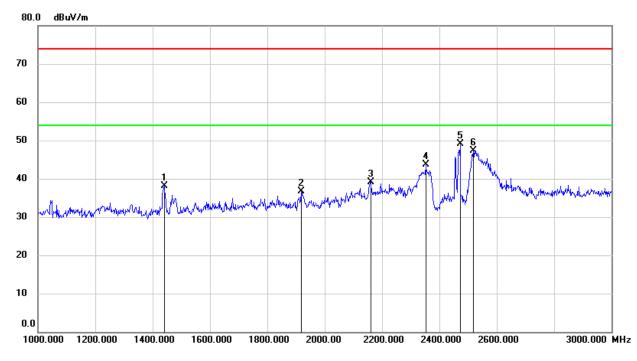
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1438.000	50.67	-12.32	38.35	74.00	-35.65	peak
2	1820.000	46.98	-9.92	37.06	74.00	-36.94	peak
3	2156.000	48.47	-8.88	39.59	74.00	-34.41	peak
4	2364.000	51.92	-7.98	43.94	74.00	-30.06	peak
5	2437.000	52.38	-7.65	44.73	/	/	fundamental
6	2518.000	52.99	-7.27	45.72	74.00	-28.28	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

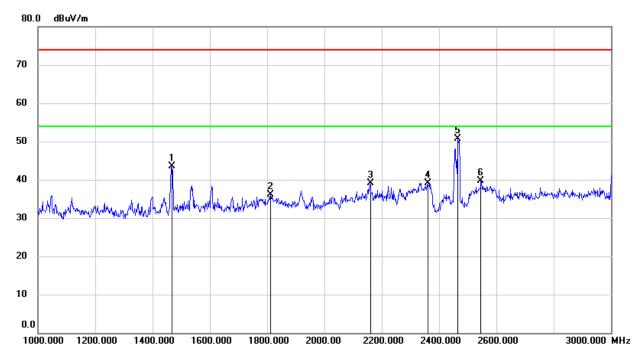
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1466.000	54.66	-12.26	42.40	74.00	-31.60	peak
2	1538.000	49.78	-11.91	37.87	74.00	-36.13	peak
3	2092.000	45.74	-9.20	36.54	74.00	-37.46	peak
4	2342.000	47.70	-8.05	39.65	74.00	-34.35	peak
5	2437.000	56.92	-7.65	49.27	/	/	fundamental
6	3000.000	45.37	-5.30	40.07	74.00	-33.93	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	50.47	-12.32	38.15	74.00	-35.85	peak
2	1918.000	46.59	-9.93	36.66	74.00	-37.34	peak
3	2160.000	47.89	-8.86	39.03	74.00	-34.97	peak
4	2352.000	51.79	-8.02	43.77	74.00	-30.23	peak
5	2462.000	56.49	-7.36	49.13	/	/	fundamental
6	2518.000	54.52	-7.27	47.25	74.00	-26.75	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1468.000	55.71	-12.26	43.45	74.00	-30.55	peak
2	1812.000	46.12	-9.92	36.20	74.00	-37.80	peak
3	2160.000	47.93	-8.86	39.07	74.00	-34.93	peak
4	2360.000	47.11	-7.99	39.12	74.00	-34.88	peak
5	2462.000	58.02	-7.40	50.62	/	/	fundamental
6	2546.000	47.21	-7.41	39.80	74.00	-34.20	peak

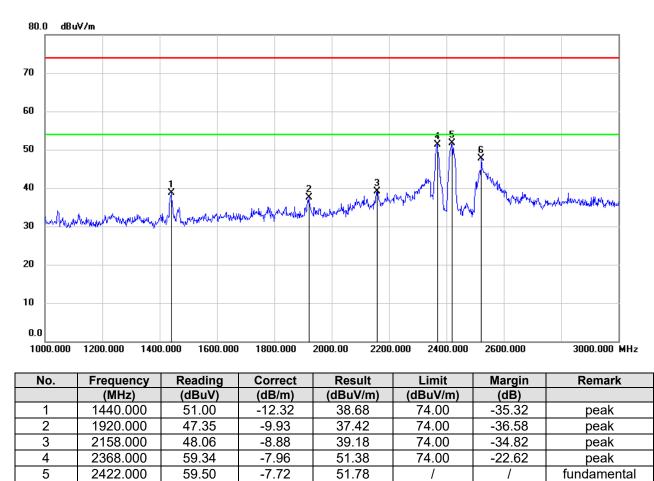
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas have been tested, only the worst data record in the report.


fundamental

peak

/

-26.22

7.8.4. 802.11n HT40 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

59.50

55.06

-7.72

-7.28

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

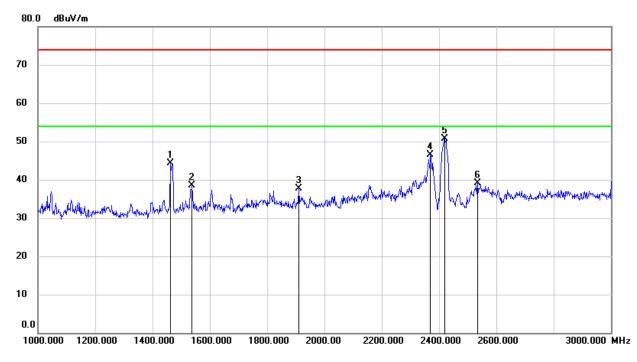
51.78

47.78

74.00

3. Peak: Peak detector.

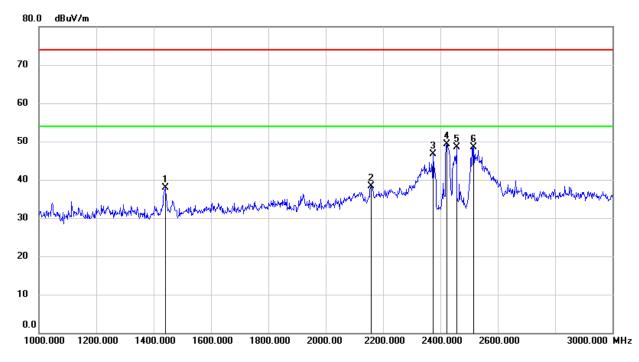
2522.000


5

6

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

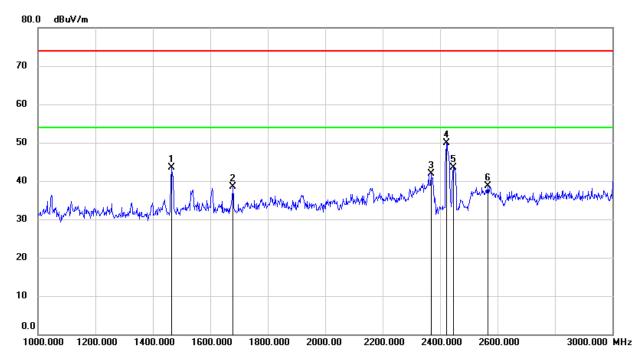
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1462.000	56.61	-12.27	44.34	74.00	-29.66	peak
2	1538.000	50.37	-11.91	38.46	74.00	-35.54	peak
3	1910.000	47.65	-9.93	37.72	74.00	-36.28	peak
4	2370.000	54.51	-7.95	46.56	74.00	-27.44	peak
5	2422.000	58.49	-7.72	50.77	/	/	fundamental
6	2534.000	46.48	-7.35	39.13	74.00	-34.87	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

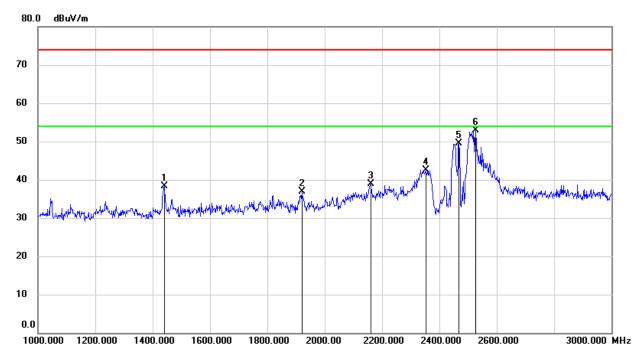
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	50.25	-12.32	37.93	74.00	-36.07	peak
2	2158.000	47.18	-8.88	38.30	74.00	-35.70	peak
3	2374.000	54.66	-7.95	46.71	74.00	-27.29	peak
4	2429.000	56.98	-7.71	49.27	74.00	-24.73	peak
5	2456.000	55.98	-7.47	48.51	74.00	-25.49	peak
6	2516.000	55.82	-7.25	48.57	74.00	-25.43	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

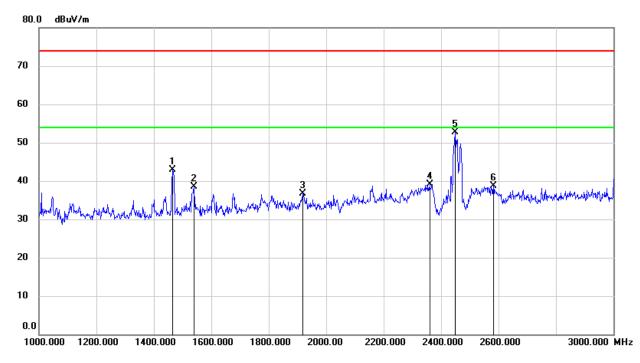
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1466.000	55.72	-12.26	43.46	74.00	-30.54	peak
2	1678.000	49.53	-11.01	38.52	74.00	-35.48	peak
3	2368.000	49.91	-7.96	41.95	74.00	-32.05	peak
4	2429.000	57.63	-7.71	49.92	74.00	-24.08	peak
5	2446.000	50.96	-7.54	43.42	74.00	-30.58	peak
6	2566.000	46.26	-7.52	38.74	74.00	-35.26	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	50.62	-12.32	38.30	74.00	-35.70	peak
2	1920.000	46.76	-9.93	36.83	74.00	-37.17	peak
3	2160.000	47.79	-8.86	38.93	74.00	-35.07	peak
4	2354.000	50.46	-8.01	42.45	74.00	-31.55	peak
5	2462.000	56.87	-7.39	49.48	/	/	fundamental
6	2526.000	60.14	-7.31	52.83	74.00	-21.17	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

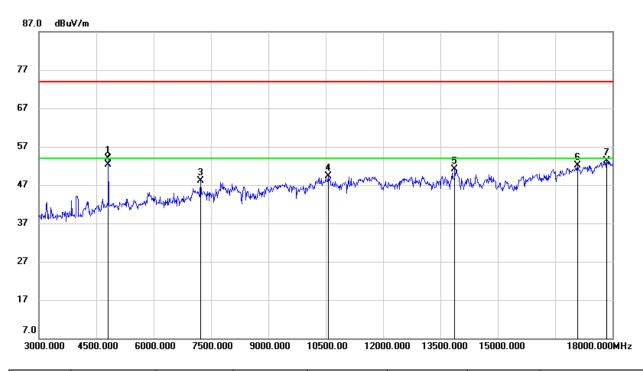
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1466.000	55.13	-12.26	42.87	74.00	-31.13	peak
2	1540.000	50.36	-11.89	38.47	74.00	-35.53	peak
3	1918.000	46.60	-9.93	36.67	74.00	-37.33	peak
4	2360.000	47.09	-7.99	39.10	74.00	-34.90	peak
5	2462.000	60.16	-7.51	52.65	/	/	fundamental
6	2582.000	46.30	-7.60	38.70	74.00	-35.30	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: All antennas have been tested, only the worst data record in the report.

7.9. SPURIOUS EMISSIONS (3~18GHz)

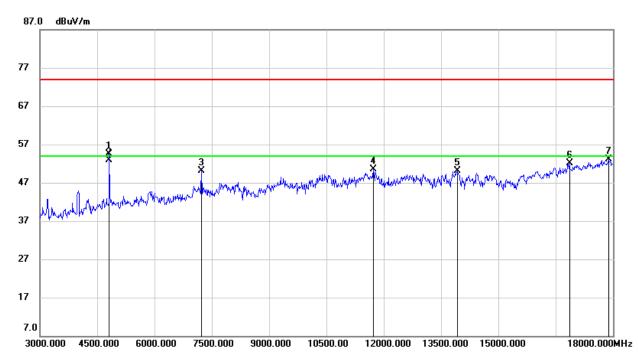
7.9.1. 802.11b SISO MODE

ANTENNA1

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

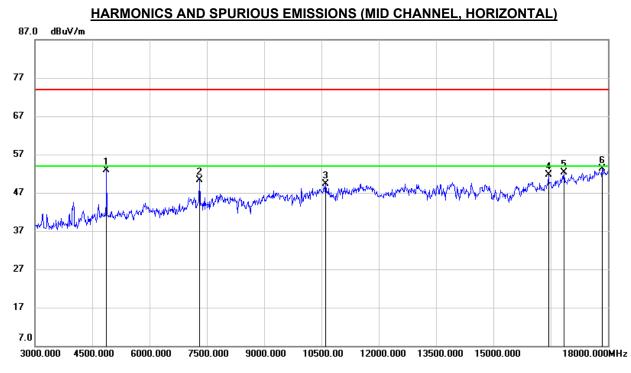
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	53.49	0.51	54.00	74.00	-20.00	peak
2	4815.000	51.84	0.51	52.35	54.00	-1.65	AVG
3	7230.000	42.17	5.89	48.06	74.00	-25.94	peak
4	10560.000	37.61	11.73	49.34	74.00	-24.66	peak
5	13875.000	34.61	16.44	51.05	74.00	-22.95	peak
6	17085.000	31.45	20.60	52.05	74.00	-21.95	peak
7	17850.000	29.91	23.32	53.23	74.00	-20.77	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected High Pass Filter losses.

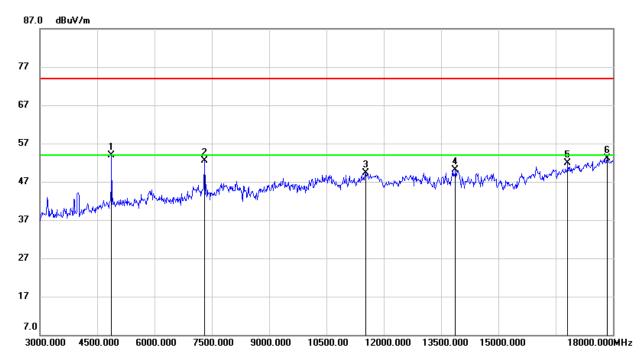

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	53.94	0.51	54.45	74.00	-19.55	peak
2	4815.000	52.39	0.51	52.90	54.00	-1.10	AVG
3	7230.000	44.27	5.89	50.16	74.00	-23.84	peak
4	11730.000	37.44	13.02	50.46	74.00	-23.54	peak
5	13920.000	34.00	16.17	50.17	74.00	-23.83	peak
6	16860.000	32.14	19.95	52.09	74.00	-21.91	peak
7	17880.000	29.78	23.34	53.12	74.00	-20.88	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

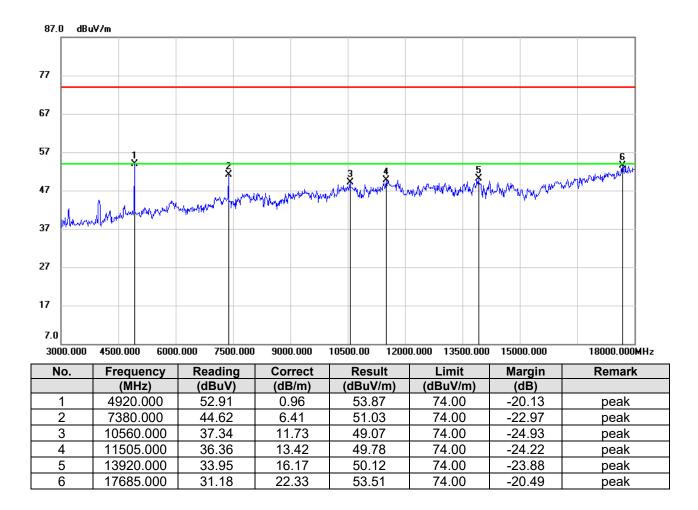
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	52.10	0.76	52.86	74.00	-21.14	peak
2	7305.000	44.23	6.08	50.31	74.00	-23.69	peak
3	10605.000	37.39	11.93	49.32	74.00	-24.68	peak
4	16440.000	32.76	18.94	51.70	74.00	-22.30	peak
5	16845.000	32.28	19.96	52.24	74.00	-21.76	peak
6	17850.000	29.90	23.32	53.22	74.00	-20.78	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	53.10	0.76	53.86	74.00	-20.14	peak
2	7305.000	46.46	6.08	52.54	74.00	-21.46	peak
3	11520.000	35.99	13.38	49.37	74.00	-24.63	peak
4	13875.000	33.65	16.44	50.09	74.00	-23.91	peak
5	16815.000	31.86	19.96	51.82	74.00	-22.18	peak
6	17850.000	29.69	23.32	53.01	74.00	-20.99	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

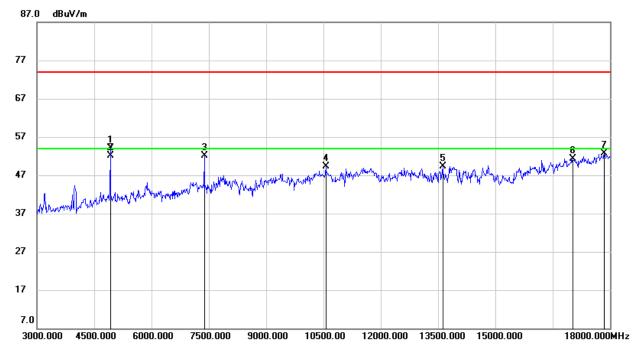
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

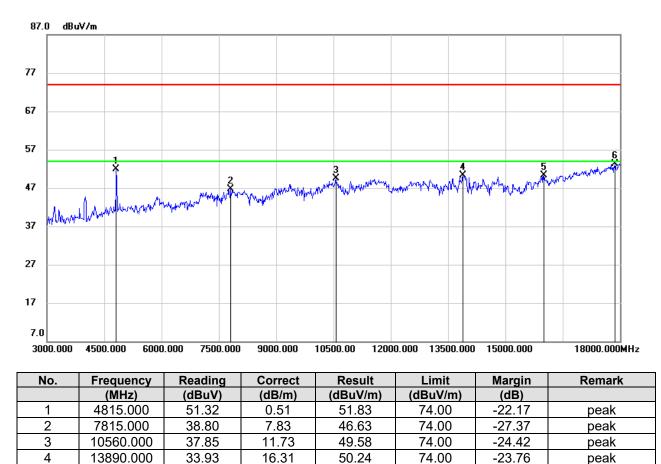
5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	53.17	0.96	54.13	74.00	-19.87	peak
2	4920.000	51.05	0.96	52.01	54.00	-1.99	AVG
3	7380.000	45.68	6.41	52.09	74.00	-21.91	peak
4	10560.000	37.65	11.73	49.38	74.00	-24.62	peak
5	13620.000	33.25	15.99	49.24	74.00	-24.76	peak
6	17025.000	30.89	20.46	51.35	74.00	-22.65	peak
7	17850.000	29.32	23.32	52.64	74.00	-21.36	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas have been tested, only the worst data record in the report.

7.9.2. 802.11g SISO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

32.56

30.06

17.71

23.33

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

50.27

53.39

74.00

74.00

-23.73

-20.61

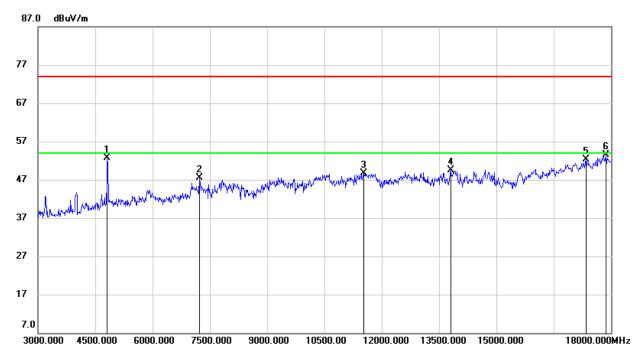
peak

peak

3. Peak: Peak detector.

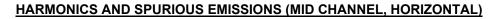
16005.000

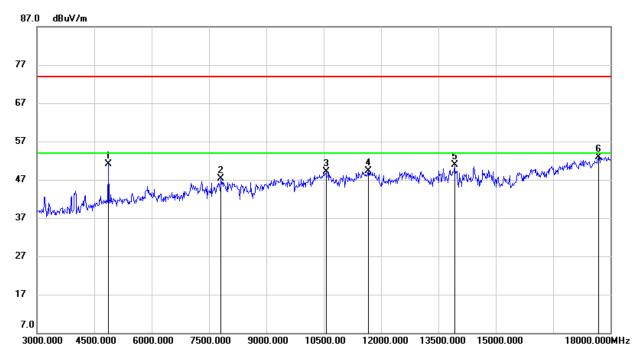
17865.000


5

6

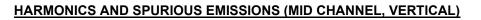
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

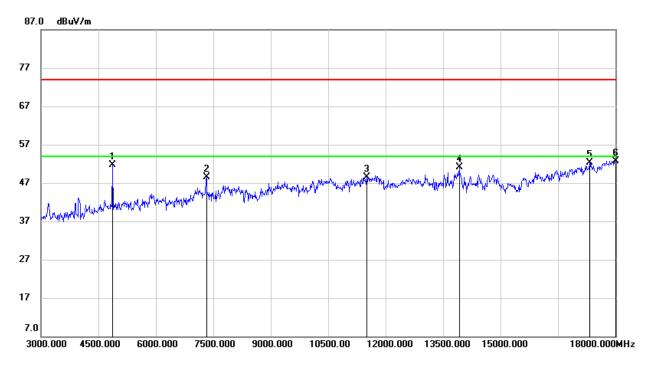

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	52.25	0.51	52.76	74.00	-21.24	peak
2	7230.000	41.62	5.89	47.51	74.00	-26.49	peak
3	11520.000	35.25	13.38	48.63	74.00	-25.37	peak
4	13800.000	32.33	17.10	49.43	74.00	-24.57	peak
5	17340.000	30.64	21.61	52.25	74.00	-21.75	peak
6	17865.000	30.09	23.33	53.42	74.00	-20.58	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

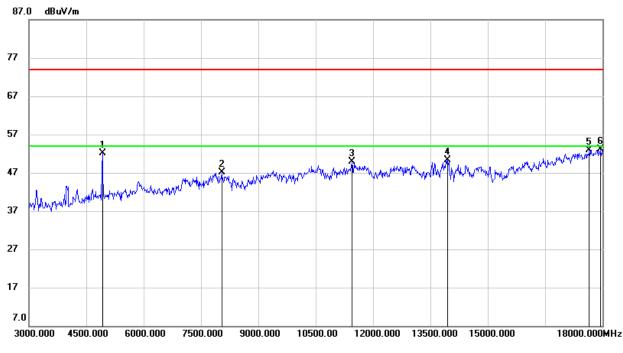

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	50.42	0.76	51.18	74.00	-22.82	peak
2	7815.000	39.47	7.83	47.30	74.00	-26.70	peak
3	10560.000	37.47	11.73	49.20	74.00	-24.80	peak
4	11670.000	36.33	13.01	49.34	74.00	-24.66	peak
5	13920.000	34.70	16.17	50.87	74.00	-23.13	peak
6	17685.000	30.50	22.33	52.83	74.00	-21.17	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

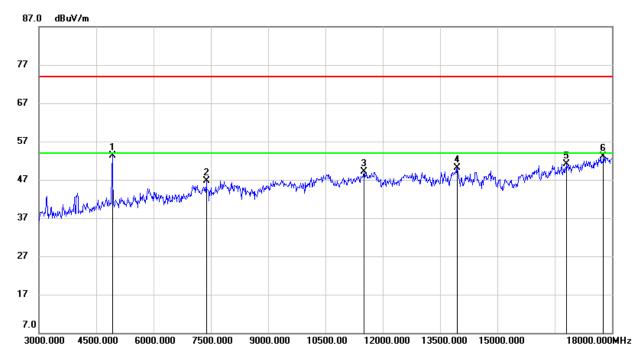
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	50.96	0.76	51.72	74.00	-22.28	peak
2	7320.000	42.30	6.14	48.44	74.00	-25.56	peak
3	11505.000	35.17	13.42	48.59	74.00	-25.41	peak
4	13920.000	34.96	16.17	51.13	74.00	-22.87	peak
5	17325.000	30.59	21.67	52.26	74.00	-21.74	peak
6	18000.000	29.31	23.46	52.77	74.00	-21.23	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	51.16	0.96	52.12	74.00	-21.88	peak
2	8040.000	39.93	7.24	47.17	74.00	-26.83	peak
3	11445.000	36.84	12.99	49.83	74.00	-24.17	peak
4	13950.000	34.13	16.11	50.24	74.00	-23.76	peak
5	17655.000	30.79	22.15	52.94	74.00	-21.06	peak
6	17955.000	29.67	23.41	53.08	74.00	-20.92	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

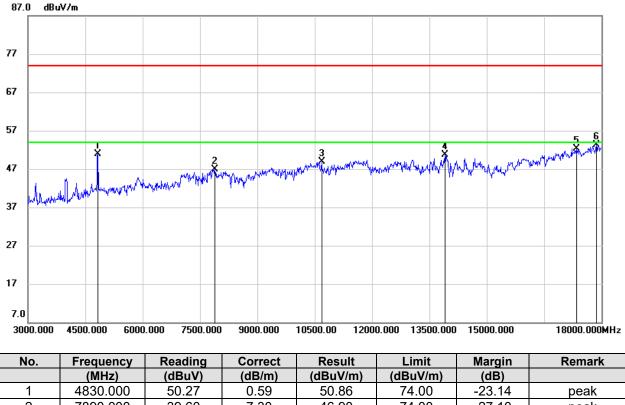
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	52.33	0.96	53.29	74.00	-20.71	peak
2	7380.000	40.32	6.41	46.73	74.00	-27.27	peak
3	11505.000	35.75	13.42	49.17	74.00	-24.83	peak
4	13950.000	33.96	16.11	50.07	74.00	-23.93	peak
5	16800.000	31.17	19.95	51.12	74.00	-22.88	peak
6	17775.000	30.03	23.09	53.12	74.00	-20.88	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

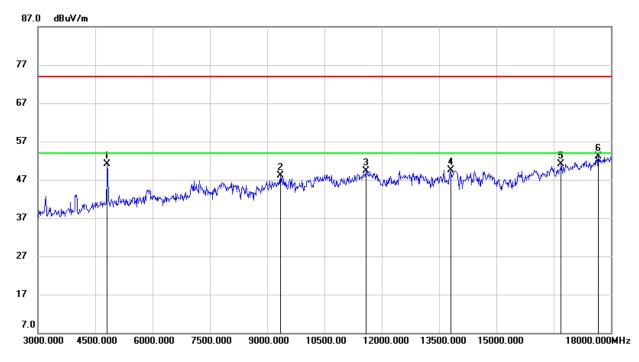
Note: All antennas have been tested, only the worst data record in the report.

7.9.3. 802.11n HT20 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4830.000	50.27	0.59	50.86	74.00	-23.14	peak
2	7890.000	39.60	7.30	46.90	74.00	-27.10	peak
3	10680.000	37.10	11.71	48.81	74.00	-25.19	peak
4	13905.000	34.53	16.20	50.73	74.00	-23.27	peak
5	17340.000	30.62	21.61	52.23	74.00	-21.77	peak
6	17865.000	29.92	23.33	53.25	74.00	-20.75	peak

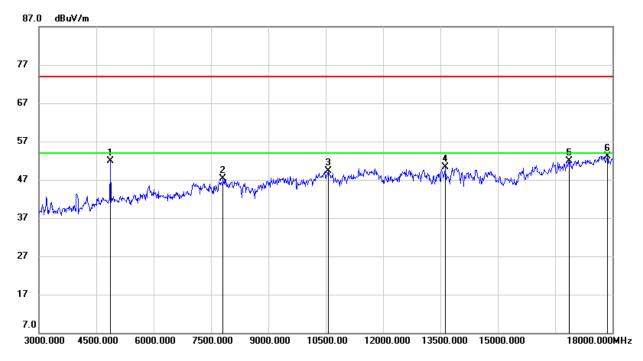
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected High Pass Filter losses.

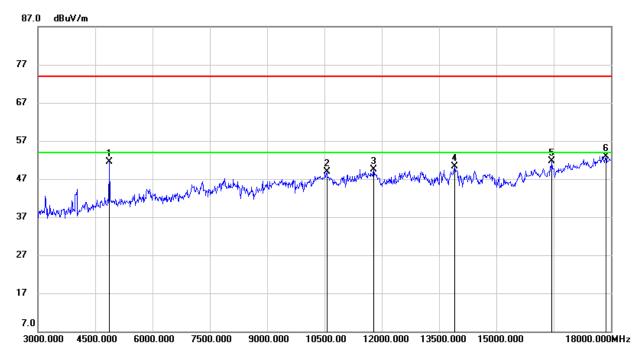
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	50.53	0.51	51.04	74.00	-22.96	peak
2	9345.000	38.86	9.26	48.12	74.00	-25.88	peak
3	11580.000	36.16	13.23	49.39	74.00	-24.61	peak
4	13800.000	32.49	17.10	49.59	74.00	-24.41	peak
5	16695.000	31.16	19.92	51.08	74.00	-22.92	peak
6	17670.000	30.79	22.24	53.03	74.00	-20.97	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

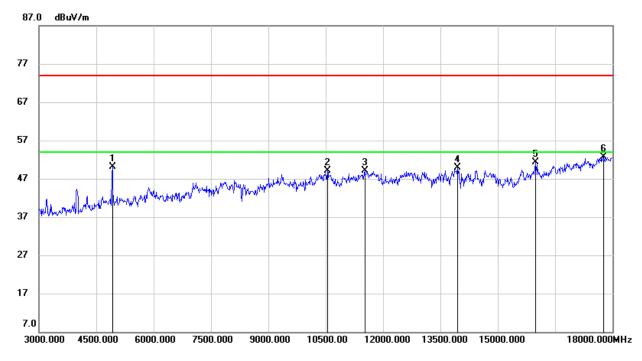
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	51.24	0.76	52.00	74.00	-22.00	peak
2	7815.000	39.42	7.83	47.25	74.00	-26.75	peak
3	10560.000	37.51	11.73	49.24	74.00	-24.76	peak
4	13635.000	34.26	15.97	50.23	74.00	-23.77	peak
5	16860.000	31.86	19.95	51.81	74.00	-22.19	peak
6	17865.000	29.81	23.33	53.14	74.00	-20.86	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	50.79	0.76	51.55	74.00	-22.45	peak
2	10560.000	37.19	11.73	48.92	74.00	-25.08	peak
3	11790.000	36.38	13.17	49.55	74.00	-24.45	peak
4	13905.000	34.08	16.20	50.28	74.00	-23.72	peak
5	16455.000	32.76	19.00	51.76	74.00	-22.24	peak
6	17865.000	29.62	23.33	52.95	74.00	-21.05	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

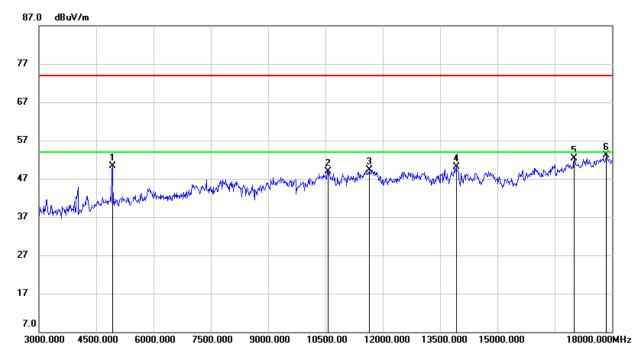
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	49.06	0.96	50.02	74.00	-23.98	peak
2	10545.000	37.51	11.64	49.15	74.00	-24.85	peak
3	11520.000	35.68	13.38	49.06	74.00	-24.94	peak
4	13950.000	33.71	16.11	49.82	74.00	-24.18	peak
5	15990.000	33.58	17.68	51.26	74.00	-22.74	peak
6	17775.000	29.63	23.09	52.72	74.00	-21.28	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

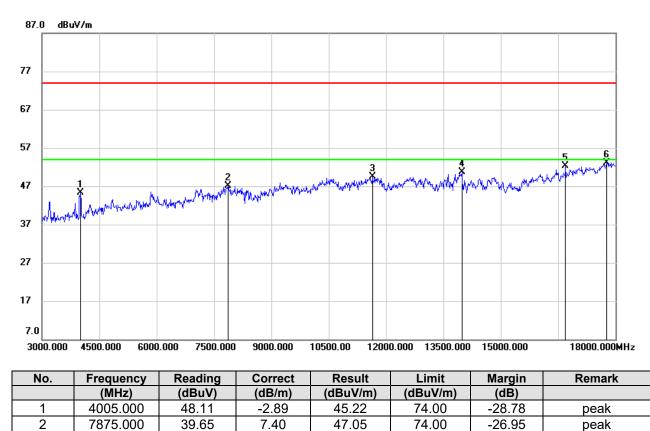
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	49.36	0.96	50.32	74.00	-23.68	peak
2	10560.000	37.27	11.73	49.00	74.00	-25.00	peak
3	11640.000	36.18	13.09	49.27	74.00	-24.73	peak
4	13920.000	33.92	16.17	50.09	74.00	-23.91	peak
5	17010.000	31.85	20.43	52.28	74.00	-21.72	peak
6	17850.000	29.79	23.32	53.11	74.00	-20.89	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 7.1.


6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas have been tested, only the worst data record in the report.

7.9.4. 802.11n HT40 MIMO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

36.41

34.59

32.33

30.00

13.09

16.07

19.92

23.09

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

49.50

50.66

52.25

53.09

74.00

74.00

74.00

74.00

-24.50

-23.34

-21.75

-20.91

peak

peak

peak

peak

3. Peak: Peak detector.

11640.000

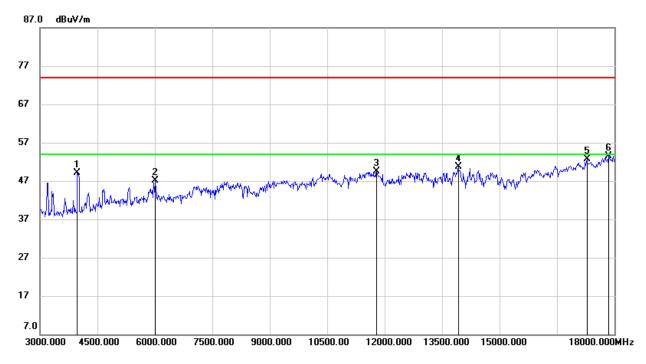
13980.000

16695.000

17775.000

3

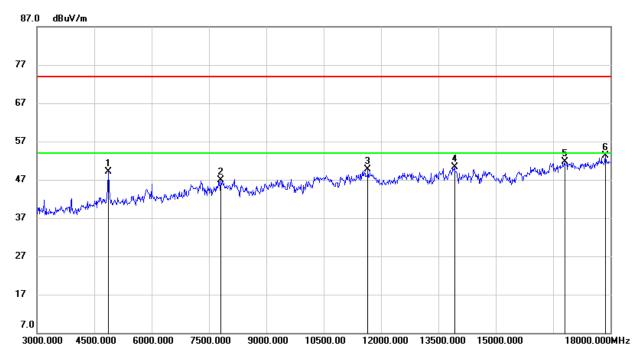
4


5

6

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

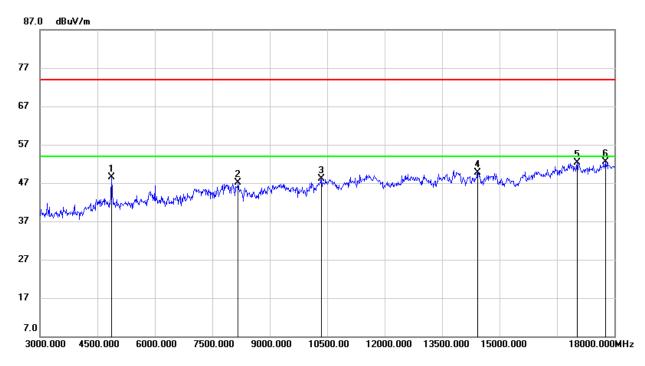
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	51.92	-2.90	49.02	74.00	-24.98	peak
2	6000.000	43.82	3.29	47.11	74.00	-26.89	peak
3	11790.000	36.31	13.17	49.48	74.00	-24.52	peak
4	13920.000	34.45	16.17	50.62	74.00	-23.38	peak
5	17280.000	31.08	21.59	52.67	74.00	-21.33	peak
6	17850.000	30.25	23.32	53.57	74.00	-20.43	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

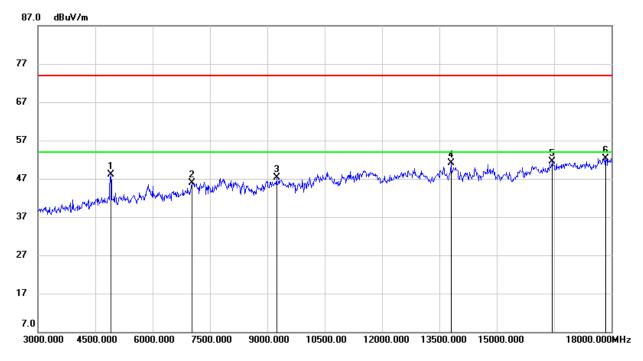
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	48.36	0.76	49.12	74.00	-24.88	peak
2	7800.000	38.96	7.93	46.89	74.00	-27.11	peak
3	11655.000	36.62	13.06	49.68	74.00	-24.32	peak
4	13920.000	34.22	16.17	50.39	74.00	-23.61	peak
5	16800.000	31.80	19.95	51.75	74.00	-22.25	peak
6	17865.000	30.05	23.33	53.38	74.00	-20.62	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

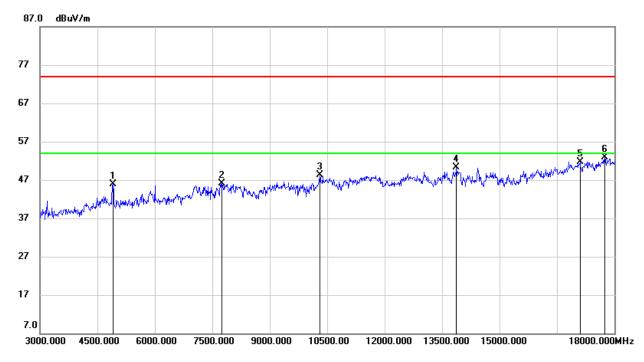
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	47.68	0.76	48.44	74.00	-25.56	peak
2	8175.000	38.80	8.27	47.07	74.00	-26.93	peak
3	10350.000	36.99	11.02	48.01	74.00	-25.99	peak
4	14430.000	33.43	16.35	49.78	74.00	-24.22	peak
5	17025.000	31.75	20.46	52.21	74.00	-21.79	peak
6	17760.000	29.49	22.95	52.44	74.00	-21.56	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4905.000	47.23	0.88	48.11	74.00	-25.89	peak
2	7035.000	40.11	5.81	45.92	74.00	-28.08	peak
3	9240.000	38.57	8.79	47.36	74.00	-26.64	peak
4	13800.000	34.00	17.10	51.10	74.00	-22.90	peak
5	16455.000	32.47	19.00	51.47	74.00	-22.53	peak
6	17850.000	29.05	23.32	52.37	74.00	-21.63	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

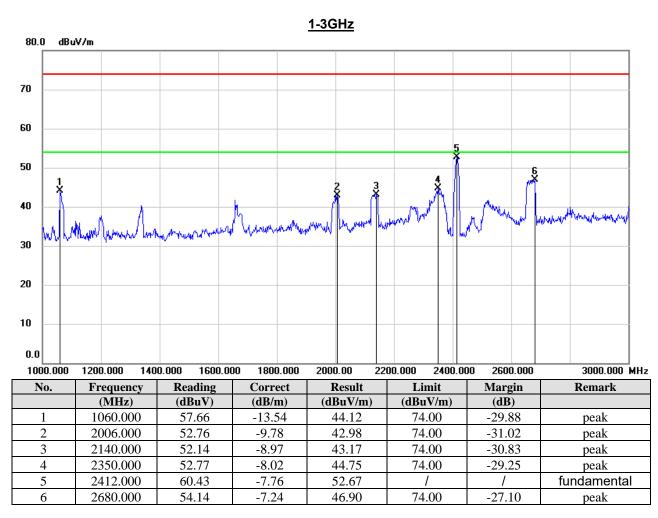
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4905.000	44.99	0.88	45.87	74.00	-28.13	peak
2	7755.000	38.80	7.29	46.09	74.00	-27.91	peak
3	10305.000	37.20	11.07	48.27	74.00	-25.73	peak
4	13875.000	33.87	16.44	50.31	74.00	-23.69	peak
5	17100.000	31.08	20.64	51.72	74.00	-22.28	peak
6	17745.000	30.15	22.82	52.97	74.00	-21.03	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.


5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All antennas have been tested, only the worst data record in the report.

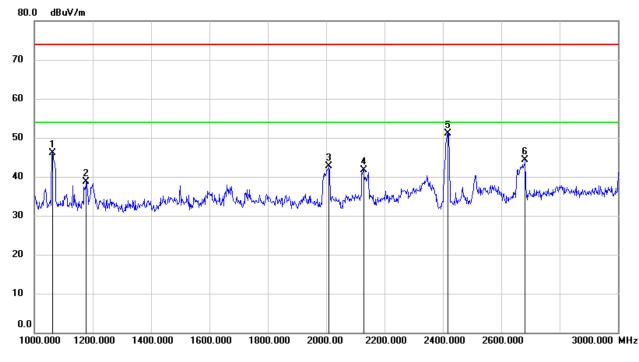
7.11. WORST-CASE CO-LOCATION

7.11.1. BT 8DPSK MODE AND 802.11n HT20 MODE (TRANSMIT SIMULTANEOUSLY)

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

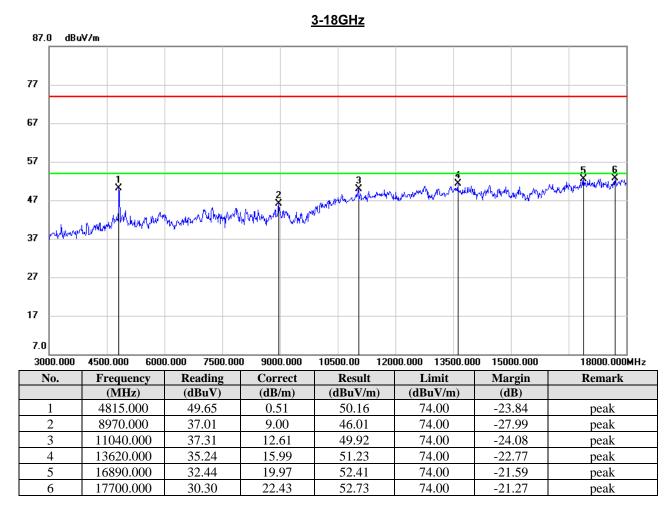
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

<u>1-3GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	59.66	-13.55	46.11	74.00	-27.89	peak
2	1178.000	51.59	-12.86	38.73	74.00	-35.27	peak
3	2010.000	52.40	-9.75	42.65	74.00	-31.35	peak
4	2128.000	50.82	-9.02	41.80	74.00	-32.20	peak
5	2412.000	58.77	-7.75	51.02	/	/	fundamental
6	2682.000	51.58	-7.23	44.35	74.00	-29.65	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

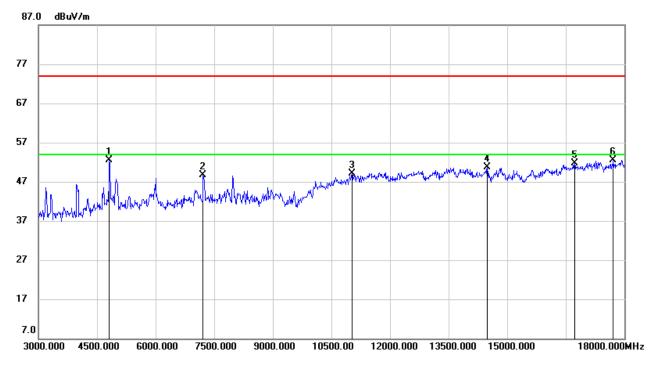
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

<u>3-18GHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	52.05	0.51	52.56	74.00	-21.44	peak
2	7215.000	42.77	5.85	48.62	74.00	-25.38	peak
3	11025.000	36.54	12.61	49.15	74.00	-24.85	peak
4	14490.000	34.39	16.37	50.76	74.00	-23.24	peak
5	16725.000	31.83	19.93	51.76	74.00	-22.24	peak
6	17715.000	29.96	22.56	52.52	74.00	-21.48	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

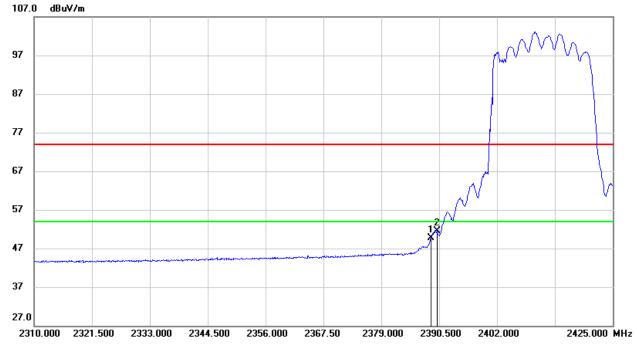
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.

RESTRICTED BANDEDGE (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.890	37.32	32.94	70.26	74.00	-3.74	peak
2	2390.000	34.68	32.94	67.62	74.00	-6.38	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

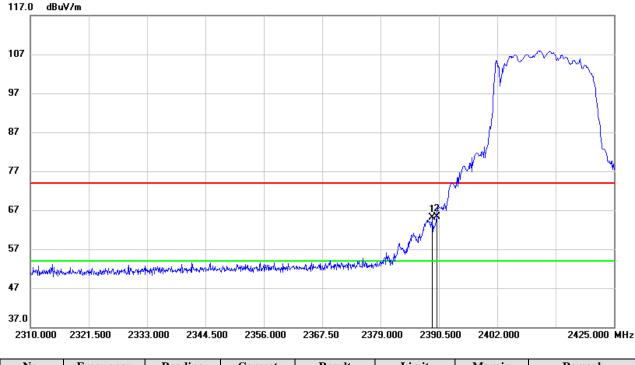
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.890	16.86	32.94	49.80	54.00	-4.20	AVG
2	2390.000	18.66	32.94	51.60	54.00	-2.40	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.


4. For transmit duration, please refer to clause 7.1.

5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.235	32.20	32.94	65.14	74.00	-8.86	peak
2	2390.000	32.41	32.94	65.35	74.00	-8.65	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.235	12.31	32.94	45.25	54.00	-8.75	AVG
2	2390.000	15.89	32.94	48.83	54.00	-5.17	AVG

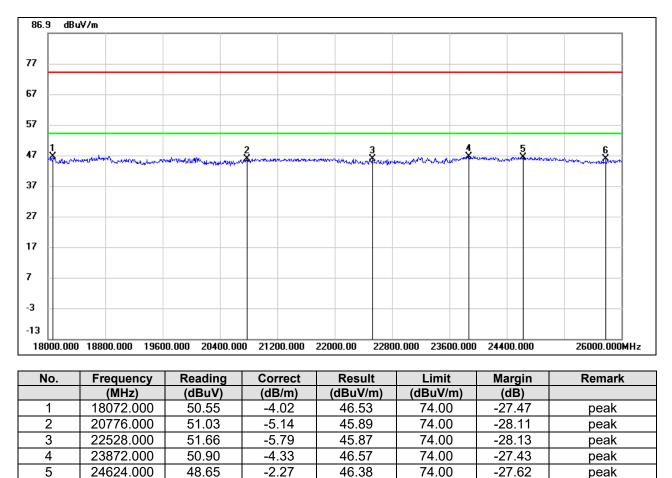
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 7.1.

5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: All the test modes and combination have been considered. Only the worst data record in the report.

7.12. SPURIOUS EMISSIONS (18~26GHz)

7.12.1. 802.11n HT20 MIMO MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Peak Result = Reading Level + Correct Factor.

47.23

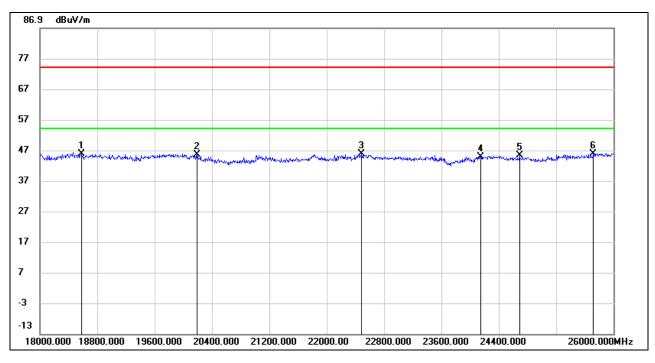
-1.49

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

45.74

74.00

-28.26


peak

3. Peak: Peak detector.

25784.000

6

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18584.000	50.19	-4.53	45.66	74.00	-28.34	peak
2	20192.000	50.37	-4.76	45.61	74.00	-28.39	peak
3	22488.000	51.60	-5.81	45.79	74.00	-28.21	peak
4	24144.000	48.67	-3.77	44.90	74.00	-29.10	peak
5	24688.000	47.39	-2.11	45.28	74.00	-28.72	peak
6	25720.000	47.28	-1.39	45.89	74.00	-28.11	peak

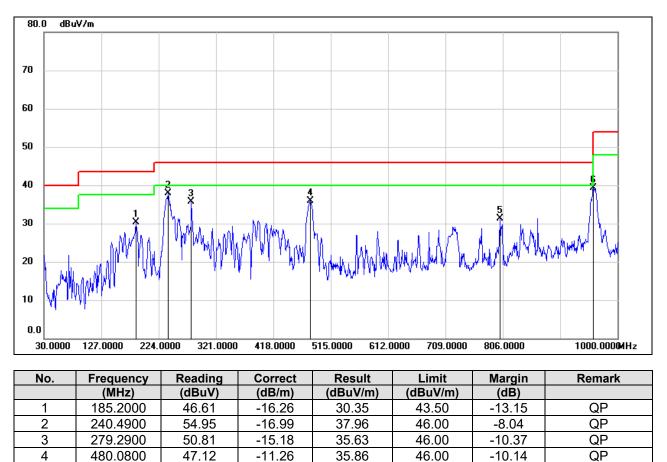
Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector.

Note: All the test modes have been tested, only the worst data record in the report.

5

6


801.1500

959.2600

7.13. SPURIOUS EMISSIONS (0.03 ~ 1 GHz)

7.13.1. 802.11n HT20 MIMO MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Result Level = Read Level + Correct Factor.

36.89

42.88

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

31.37

39.37

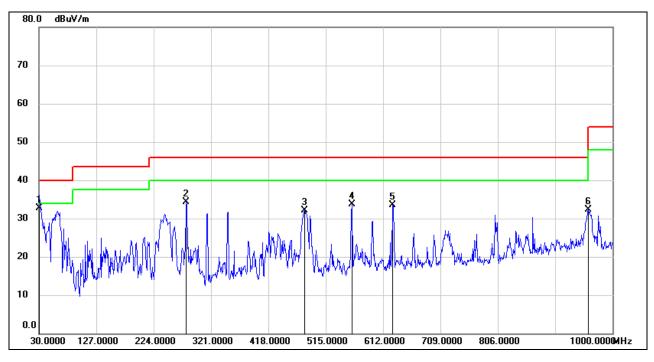
46.00

46.00

-14.63

-6.63

<u>QP</u> QP


3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

-5.52

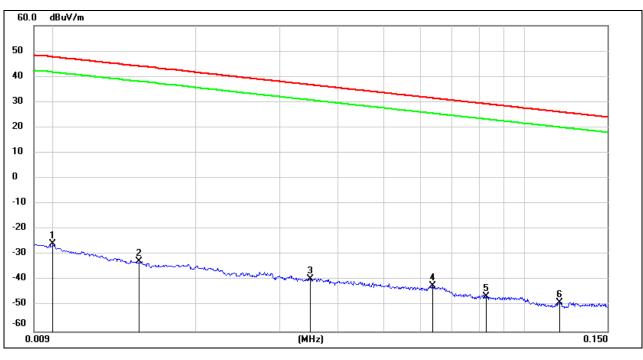
-3.51

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	49.85	-17.13	32.72	40.00	-7.28	QP
2	279.2900	49.44	-15.18	34.26	46.00	-11.74	QP
3	479.1100	43.31	-11.28	32.03	46.00	-13.97	QP
4	559.6200	43.44	-9.78	33.66	46.00	-12.34	QP
5	627.5200	41.88	-8.43	33.45	46.00	-12.55	QP
6	959.2600	35.72	-3.51	32.21	46.00	-13.79	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.


3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

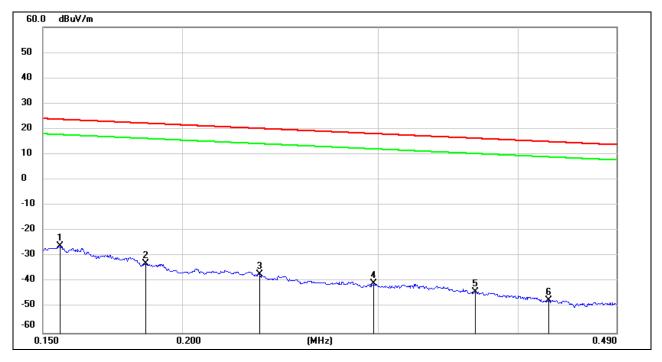
Note: All the test modes have been tested, only the worst data record in the report.

7.14. SPURIOUS EMISSIONS BELOW 30M

7.14.1. 802.11n HT20 MIMO MODE

SPURIOUS EMISSIONS (LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9kHz~ 150kHz</u>


No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	75.72	-101.40	-25.68	47.60	-77.18	-3.90	-73.28	peak
2	0.0151	68.71	-101.37	-32.66	44.02	-84.16	-7.48	-76.68	peak
3	0.0349	62.03	-101.41	-39.38	36.75	-90.88	-14.75	-76.13	peak
4	0.0636	59.31	-101.54	-42.23	31.53	-93.73	-19.97	-73.76	peak
5	0.0826	55.32	-101.65	-46.33	29.26	-97.83	-22.24	-75.59	peak
6	0.1188	53.06	-101.74	-48.68	26.11	-100.18	-25.39	-74.79	peak

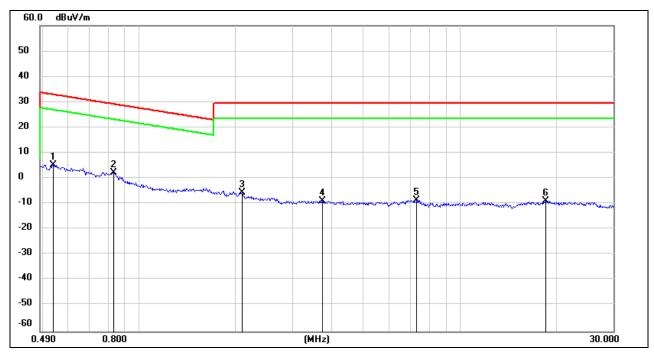
Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150kHz ~ 490kHz</u>

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	75.77	-101.65	-25.88	23.77	-77.38	-27.73	-49.65	peak
2	0.1853	68.90	-101.70	-32.80	22.25	-84.30	-29.25	-55.05	peak
3	0.2346	64.85	-101.77	-36.92	20.19	-88.42	-31.31	-57.11	peak
4	0.2972	61.16	-101.85	-40.69	18.14	-92.19	-33.36	-58.83	peak
5	0.3662	58.08	-101.93	-43.85	16.33	-95.35	-35.17	-60.18	peak
6	0.4259	54.88	-101.99	-47.11	15.02	-98.61	-36.48	-62.13	peak


Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

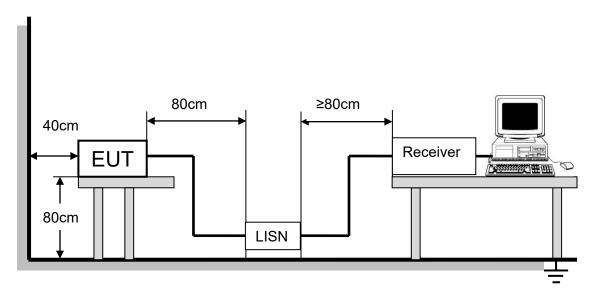
No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Result (dBuA/m)	Limit (dBuA/m)	(dB)	
		(ubuv)	(ub/III)	(ubuv/iii)	(ubuv/iii)	(ubuA/III)	(ubuA/III)	(UD)	
1	0.5383	67.44	-62.08	5.36	32.98	-46.14	-18.52	-27.62	peak
2	0.8296	64.44	-62.17	2.27	29.23	-49.23	-22.27	-26.96	peak
3	2.0939	56.39	-61.79	-5.40	29.54	-56.90	-21.96	-34.94	peak
4	3.7100	52.70	-61.41	-8.71	29.54	-60.21	-21.96	-38.25	peak
5	7.3361	52.58	-61.17	-8.59	29.54	-60.09	-21.96	-38.13	peak
6	18.4908	52.05	-60.89	-8.84	29.54	-60.34	-21.96	-38.38	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the test modes have been tested, only the worst data record in the report.


8. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

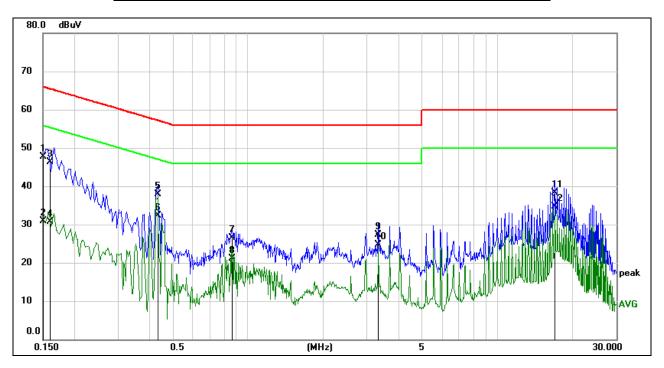
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

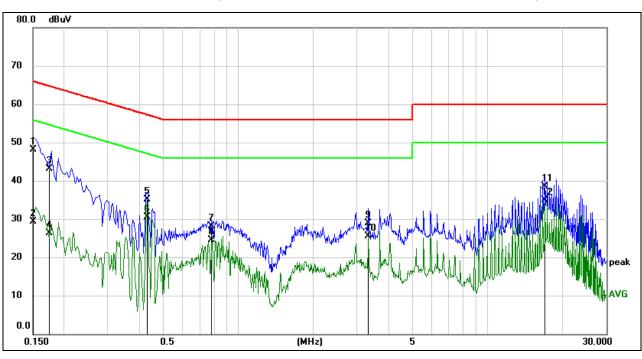
TEST ENVIRONMENT


Temperature	23°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

8.1. 802.11n HT20 MIMO MODE


LINE N RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1505	38.18	9.60	47.78	65.97	-18.19	QP
2	0.1505	21.23	9.60	30.83	55.97	-25.14	AVG
3	0.1615	36.73	9.60	46.33	65.39	-19.06	QP
4	0.1615	21.20	9.60	30.80	55.39	-24.59	AVG
5	0.4341	28.27	9.60	37.87	57.17	-19.30	QP
6	0.4341	22.61	9.60	32.21	47.17	-14.96	AVG
7	0.8584	16.86	9.60	26.46	56.00	-29.54	QP
8	0.8584	11.45	9.60	21.05	46.00	-24.95	AVG
9	3.3359	17.73	9.65	27.38	56.00	-28.62	QP
10	3.3359	14.98	9.65	24.63	46.00	-21.37	AVG
11	17.0386	28.17	10.04	38.21	60.00	-21.79	QP
12	17.0386	24.63	10.04	34.67	50.00	-15.33	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

LINE L RESULTS	LOW CHANNEL	WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1513	38.55	9.61	48.16	65.93	-17.77	QP
2	0.1513	19.77	9.61	29.38	55.93	-26.55	AVG
3	0.1741	33.43	9.61	43.04	64.76	-21.72	QP
4	0.1741	16.60	9.61	26.21	54.76	-28.55	AVG
5	0.4334	25.54	9.60	35.14	57.19	-22.05	QP
6	0.4334	20.87	9.60	30.47	47.19	-16.72	AVG
7	0.7835	18.46	9.61	28.07	56.00	-27.93	QP
8	0.7835	14.82	9.61	24.43	46.00	-21.57	AVG
9	3.3359	19.24	9.65	28.89	56.00	-27.11	QP
10	3.3359	15.95	9.65	25.60	46.00	-20.40	AVG
11	17.0387	28.46	9.97	38.43	60.00	-21.57	QP
12	17.0387	24.89	9.97	34.86	50.00	-15.14	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All test modes have been tested, only the worst data record in the report.

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

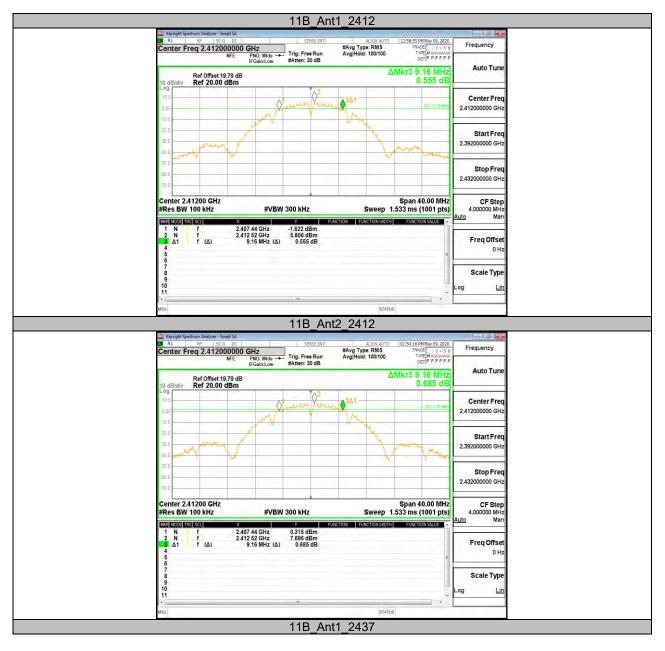
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

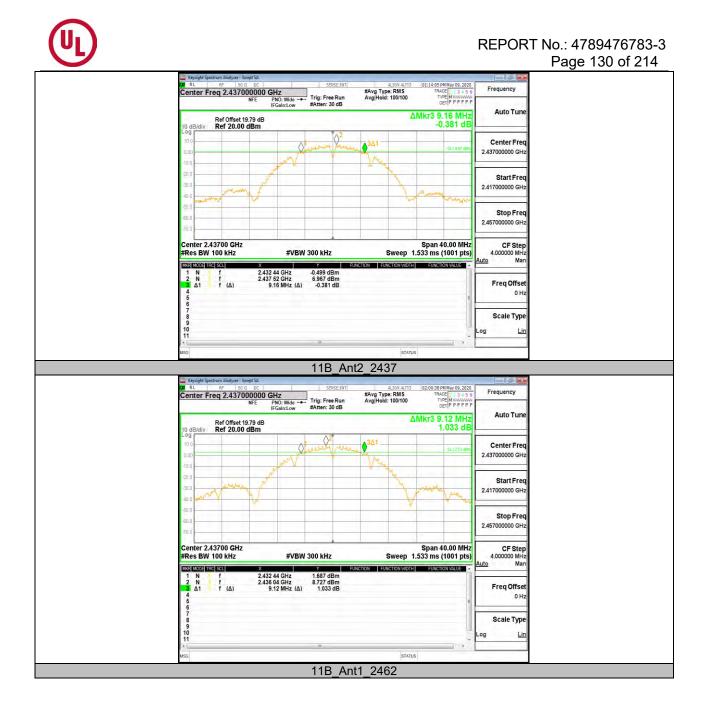
Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

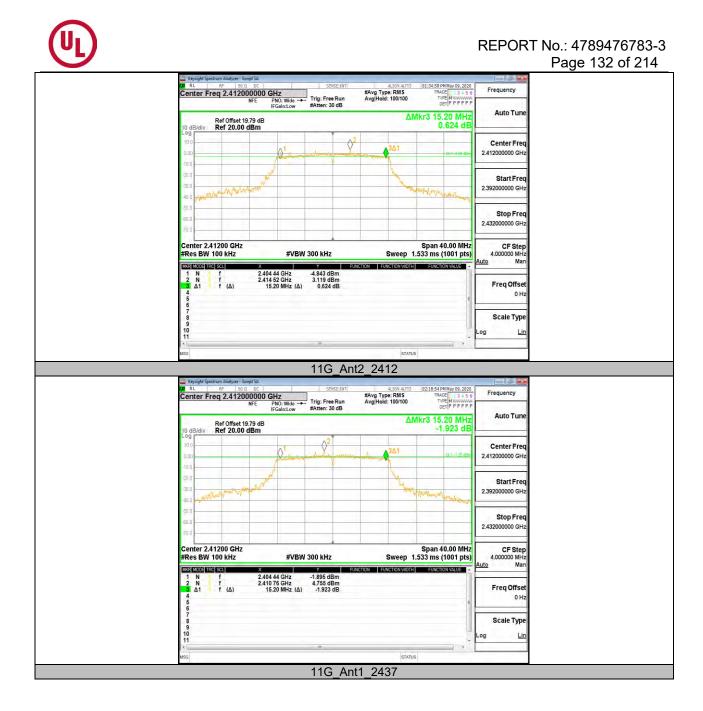
RESULTS

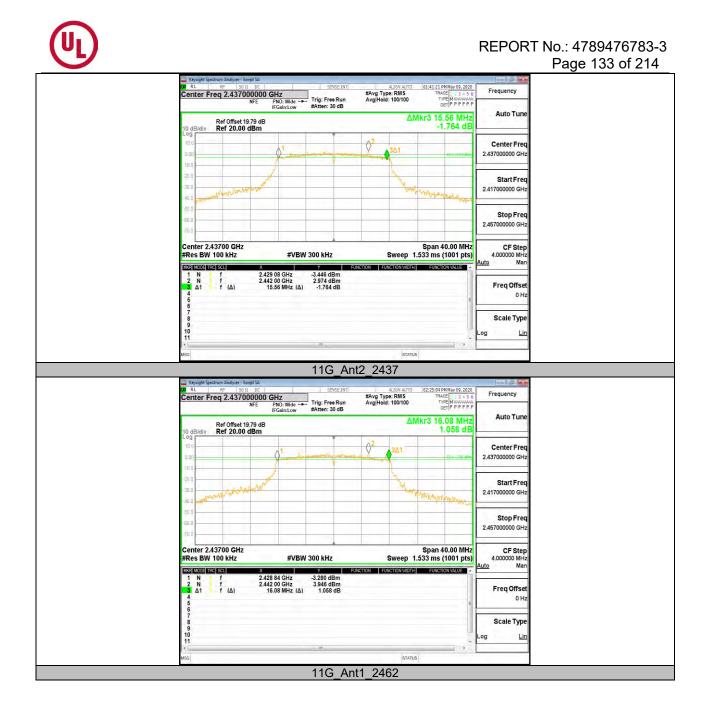
Complies

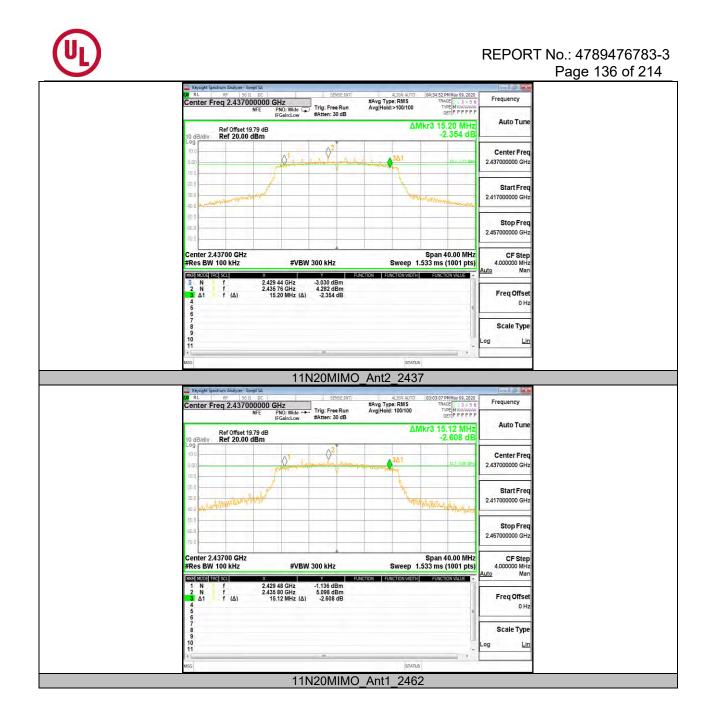

Appendix A: DTS Bandwidth


Test Result

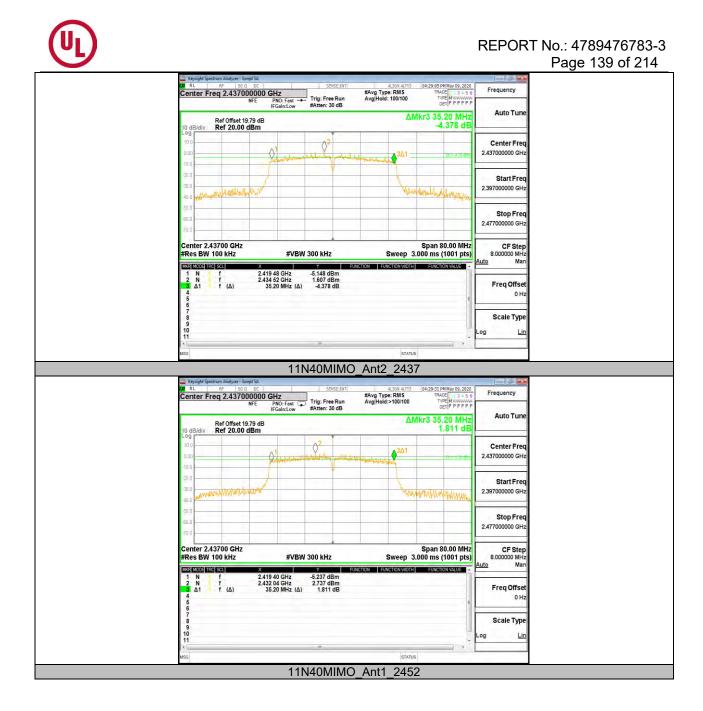
TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2412	9.160	2407.440	2416.600	0.5	PASS
	Ant2	2412	9.160	2407.440	2416.600	0.5	PASS
11B	Ant1	2437	9.160	2432.440	2441.600	0.5	PASS
IID	Ant2	2437	9.120	2432.440	2441.560	0.5	PASS
	Ant1	2462	8.640	2457.960	2466.600	0.5	PASS
	Ant2	2462	9.600	2457.480	2467.080	0.5	PASS
	Ant1	2412	15.200	2404.440	2419.640	0.5	PASS
	Ant2	2412	15.200	2404.440	2419.640	0.5	PASS
110	Ant1	2437	15.560	2429.080	2444.640	0.5	PASS
11G	Ant2	2437	16.080	2428.840	2444.920	0.5	PASS
	Ant1	2462	15.200	2454.440	2469.640	0.5	PASS
	Ant2	2462	15.160	2454.440	2469.600	0.5	PASS
	Ant1	2412	15.560	2404.400	2419.960	0.5	PASS
	Ant2	2412	16.360	2403.600	2419.960	0.5	PASS
11N20MIMO	Ant1	2437	15.200	2429.440	2444.640	0.5	PASS
	Ant2	2437	15.120	2429.480	2444.600	0.5	PASS
	Ant1	2462	15.520	2454.440	2469.960	0.5	PASS
	Ant2	2462	16.440	2454.400	2470.840	0.5	PASS
	Ant1	2422	35.280	2404.400	2439.680	0.5	PASS
44140141140	Ant2	2422	35.280	2404.400	2439.680	0.5	PASS
	Ant1	2437	35.200	2419.480	2454.680	0.5	PASS
11N40MIMO	Ant2	2437	35.200	2419.400	2454.600	0.5	PASS
	Ant1	2452	35.280	2434.400	2469.680	0.5	PASS
	Ant2	2452	36.400	2433.840	2470.240	0.5	PASS

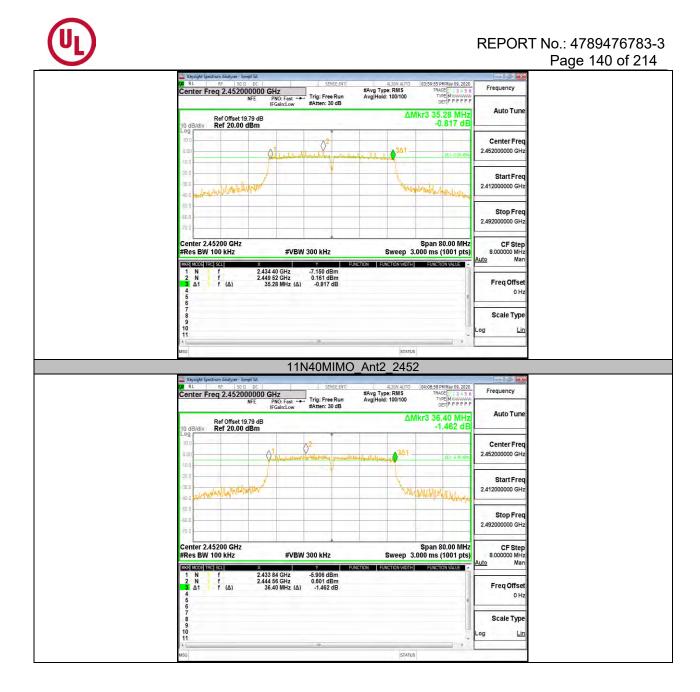



Test Graphs

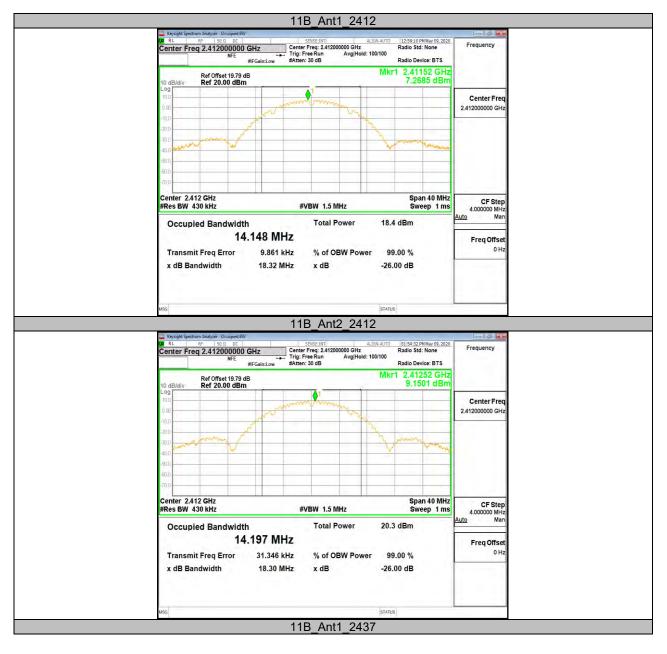





REPORT No.: 4789476783-3 Page 134 of 214 RESIGNT SECTION NEW STATE STAT 3 PM May 09, 2020 Frequency #Avg Type: RMS Avg[Hold:>100/100 TYPE MYWWW DET P P P P P Auto Tun ΔMkr3 15.20 MHz 0.678 dB Ref Offset 19.79 dB Ref 20.00 dBm \Diamond^2 Center Fred 2.462000000 GH Start Fred 2.442000000 GH Stop Freq 2.482000000 GH Center 2.46200 GHz #Res BW 100 kHz Span 40.00 MHz Sweep 1.533 ms (1001 pts) CF Step 4.000000 MHz #VBW 300 kHz Ma 2.454 44 GHz 2.463 28 GHz 15.20 MHz (Δ) -3.220 dBm 4.443 dBm 0.678 dB N N A1 2 f f (Δ) Freq Offse 0 Hz Scale Type 10 Li STATUS 11G_Ant2_2462 RRL RF 50.02 DC Center Freq 2.462000000 GHz NFE PNO: Wide ↔ IFGainclow #Atten: 30 dB 49 PM May 09, 2020 #Avg Type: RMS Avg[Hold: 100/100 Frequency DET P P P P P Auto Tun ΔMkr3 15.16 MHz -0.487 dB Ref Offset 19.79 dB Ref 20.00 dBm O^2 Center Free 2.462000000 GH Start Free 2.442000000 GH Stop Fred 2.482000000 GH Span 40.00 MHz Sweep 1.533 ms (1001 pts) Center 2.46200 GHz CF Step 4.000000 MHz Mar Res BW 100 kHz #VBW 300 kHz KR MODE TRC SCI 2.454 44 GHz 2.464 52 GHz 15.16 MHz (Δ) -2.815 dBm 5.024 dBm -0.487 dB Ν Ν Δ1 f f (Δ) Freq Offse 0 Hz Scale Type 9 10 11 Lin STATUS 11N20MIMO_Ant1_2412


REPORT No.: 4789476783-3 Page 135 of 214 Keiger getation RL SF 50.0 DC enter Freq 2.412000000 GHz FRO: Wide →+ Trig: Free Run IFGainLow Trig: Free Run 14 PM May 09, 2020 Frequency #Avg Type: RMS Avg[Hold: 100/100 DET P P P P P Auto Tun ΔMkr3 15.56 MHz 1.299 dB Ref Offset 19.79 dB Ref 20.00 dBm Center Free 02 2.412000000 GH Start Fred 2.392000000 GH the h Stop Freq 2.432000000 GH Center 2.41200 GHz #Res BW 100 kHz Span 40.00 MHz Sweep 1.533 ms (1001 pts) CF Step 4.000000 MHz #VBW 300 kHz Ma 2.404 40 GHz 2.410 80 GHz 15.56 MHz (Δ) -6.639 dBm 1.844 dBm 1.299 dB Ν Ν Δ1 1 2 3 f f (Δ) Freq Offse 0 Hz Scale Type 9 Li STATUS 11N20MIMO_Ant2_2412 Rbase RF 50 f2 DC RL RF 50 f2 DC Center Freq 2.4120000000 GHz PNO: Wide PNO: Wide NFE PNO: Wide IFGain:Low 01 PM May 09, 2020 #Avg Type: RMS Avg[Hold: 100/100 Frequency Trig: Free Run #Atten: 30 dB DET P P P P P Auto Tun ΔMkr3 16.36 MHz -0.707 dB Ref Offset 19.79 dB Ref 20.00 dBm 02 Center Free 2.412000000 GH Start Free 2.392000000 GH Stop Fred 2.432000000 GH Center 2.41200 GHz #Res BW 100 kHz Span 40.00 MHz Sweep 1.533 ms (1001 pts) CF Step 4.000000 MHz Mar #VBW 300 kHz KR MODE TRC SCI 2.403 60 GHz 2.410 80 GHz 16.36 MHz (Δ) -3.928 dBm 2.887 dBm -0.707 dB Ν Ν Δ1 f f (Δ) Freq Offse 0 Hz Scale Type 9 10 11 Lin STATUS 11N20MIMO_Ant1_2437

REPORT No.: 4789476783-3 Page 137 of 214 Regenerated Rt 8F 50.0 DC enter Freq 2.462000000 GHz NFE FR0; Wide ++ IFGainLow #Atten: 30 dB 46 PM May 09, 2020 Frequency #Avg Type: RMS Avg[Hold: 100/100 DET P P P P Auto Tun ΔMkr3 15.52 MHz 0.446 dB Ref Offset 19.79 dB Ref 20.00 dBm Q2 Center Free 2.462000000 GH Start Fred 2.442000000 GH Stop Freq 2.482000000 GH Center 2.46200 GHz #Res BW 100 kHz Span 40.00 MHz Sweep 1.533 ms (1001 pts) CF Step 4.000000 MHz #VBW 300 kHz Ma 2.454 44 GHz 2.460 76 GHz 15.52 MHz (Δ) -4.760 dBm 2.387 dBm 0.446 dB Ν Ν Δ1 1 2 3 f f (Δ) Freq Offse 0 Hz Scale Type 9 Li STATUS 11N20MIMO_Ant2_2462 Rbase RF 50 f2 DC RL RF 50 f2 DC Center Freq 2.462000000 GHz PNO: Wide PNO: Wide NFE PNO: Wide IFGain:Low :25 PM May 09, 2020 #Avg Type: RMS Avg[Hold: 100/100 Frequency Trig: Free Run #Atten: 30 dB DET P P P P P Auto Tun ΔMkr3 16.44 MHz 1.943 dB Ref Offset 19.79 dB Ref 20.00 dBm O^2 3∆1 Center Free 2.462000000 GH Start Free 2.442000000 GH Stop Fred 2.482000000 GH Span 40.00 MHz Sweep 1.533 ms (1001 pts) Center 2.46200 GHz CF Step 4.000000 MHz Mar Res BW 100 kHz #VBW 300 kHz KR MODE TRC SCI 2.454 40 GHz 2.459 52 GHz 16.44 MHz (Δ) -5.542 dBm 2.986 dBm 1.943 dB Ν Ν Δ1 f f (Δ) Freq Offse 0 Hz Scale Type 9 10 11 Lin STATUS 11N40MIMO_Ant1_2422



Appendix B: Occupied Channel Bandwidth Test Result

TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2412	14.148	2404.936	2419.084		PASS
	Ant2	2412	14.197	2404.933	2419.130		PASS
110	Ant1	2437	13.825	2430.038	2443.863		PASS
11B	Ant2	2437	14.127	2429.866	2443.993		PASS
	Ant1	2462	13.961	2455.115	2469.076		PASS
	Ant2	2462	14.189	2455.020	2469.209		PASS
	Ant1	2412	16.783	2403.624	2420.407		PASS
	Ant2	2412	16.946	2403.524	2420.470		PASS
11G	Ant1	2437	16.686	2428.629	2445.315		PASS
ПG	Ant2	2437	16.736	2428.554	2445.290		PASS
	Ant1	2462	16.857	2453.599	2470.456		PASS
	Ant2	2462	16.844	2453.623	2470.467		PASS
	Ant1	2412	17.875	2403.118	2420.993		PASS
	Ant2	2412	17.630	2403.239	2420.869		PASS
11N20MIMO	Ant1	2437	17.775	2428.087	2445.862		PASS
	Ant2	2437	17.567	2428.211	2445.778		PASS
	Ant1	2462	17.796	2453.180	2470.976		PASS
	Ant2	2462	17.582	2453.292	2470.874		PASS
	Ant1	2422	36.161	2404.022	2440.183		PASS
11N40MIMO	Ant2	2422	36.300	2403.886	2440.186		PASS
	Ant1	2437	36.028	2419.018	2455.046		PASS
	Ant2	2437	36.231	2418.938	2455.169		PASS
	Ant1	2452	36.492	2433.812	2470.304		PASS
	Ant2	2452	36.574	2433.775	2470.349		PASS

Test Graphs

