

20 in . 2.0 Soundbar **Product**

Trade mark Soundwings Model/Type reference FW1866

Serial Number N/A

EED32O80593301 Report Number **FCC ID** 2AR7X-FW1866SBAR

Date of Issue May 25,2022

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

FREEWINGS DIGITAL TECHNOLOGIES (NINGBO) CO.,LTD 502, WENSHUI ROAD, SHOUNAN SUBDISTRICT, YINZHOU, NINGBO, CHINA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark chen Mark Chen

Reviewed by:

Date:

Tom Chen

May 25, 2022

Aaron Ma

avon M

Check No.: 7507280422

Page 1 of 53

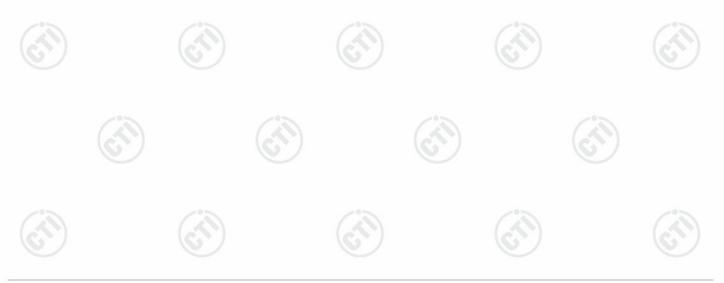
Page 2 of 53

Contents

-		Page
1 CC	ONTENTS	2
2 VE	RSION	3
	ST SUMMARY	
4 GE	ENERAL INFORMATION	5
4. 4. 4. 4.	1 CLIENT INFORMATION	5 5 7
5 TE	ST RESULTS AND MEASUREMENT DATA	12
5. 5. 5. 5. 5. 5. 5.	1 Antenna Requirement	
6 AP	PENDIX A	41
	IOTOGRAPHS OF TEST SETUPIOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Version

Version No.	Date	Date Description		
00	May 25,2022		Original	
	and the same of th			(3)
		(92)	(67.)	(0)


Page 4 of 53

3 Test Summary

/ 231		10.1
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.


4 General Information

4.1 Client Information

	Applicant:	FREEWINGS DIGITAL TECHNOLOGIES (NINGBO) CO.,LTD		
200	Address of Applicant:	502,WENSHUI ROAD, SHOUNAN SUBDISTRICT, YINZHOU,NINGBO,CHINA		
9	Manufacturer:	FREEWINGS DIGITAL TECHNOLOGIES (NINGBO) CO.,LTD		
	Address of Manufacturer:	502,WENSHUI ROAD, SHOUNAN SUBDISTRICT, YINZHOU,NINGBO,CHINA		
Factory:		FREEWINGS DIGITAL TECHNOLOGIES (NINGBO) CO.,LTD		
	Address of Factory:	502,WENSHUI ROAD, SHOUNAN SUBDISTRICT, YINZHOU,NINGBO,CHINA		

4.2 General Description of EUT

Product Name:	20 in . 2.0 Soundbar		
Model No.:	FW1866	(6,7,2)	(67.)
Trade Mark:	Soundwings		
Operation Frequency:	2402 to 2480MHz		
Modulation Type:	GFSK, π/4DQPSK		
Number of Channels:	79	(1)	(25)
Product Type:	Fix Location	/	
Antenna Type:	PIFA Antenna		
Antenna Gain:	0dBi	-0-	
Power Supply:	AC 120V		
Test Voltage:	AC 120V		
Sample Received Date:	Apr. 28, 2022		
Sample tested Date:	Apr. 28, 2022 to May. 09, 2022	2	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz



Test Configuration 4.3

EUT Test Software Settings:							
Software:	FCC_assist_1.0.2.2.exe	FCC_assist_1.0.2.2.exe					
EUT Power Grade:	Class2 (Power level is built-in set para selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)					
Use test software to set the lo transmitting of the EUT.	west frequency, the middle frequency and	the highest frequency keep					
Mode	Channel	Frequency(MHz)					
· ·	CH0	2402					
DH1/DH3/DH5	CH39	2441					
	CH78	2480					
	CH0	2402					
2DH1/2DH3/2DH5	CH39	2441					
	CH78	2480					

Test Environment

	Operating Environment	t:							
	Radiated Spurious Emissions:								
	Temperature:	22~25.0 °C							
\	Humidity:	50~55 % RH		100		(3)			
	Atmospheric Pressure:	1010mbar		(6)		(6)			
	Conducted Emissions:								
	Temperature:	22~25.0 °C							
	Humidity:	50~55 % RH	-05		100				
	Atmospheric Pressure:	1010mbar	(2/1)		(2/2)				
	RF Conducted:								
	Temperature:	22~25.0 °C							
	Humidity:	50~55 % RH		10000-01		10.00			
A	Atmospheric Pressure:	1010mbar							
	100	100		100.0		1.00.0			

Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

4.6 Test Location

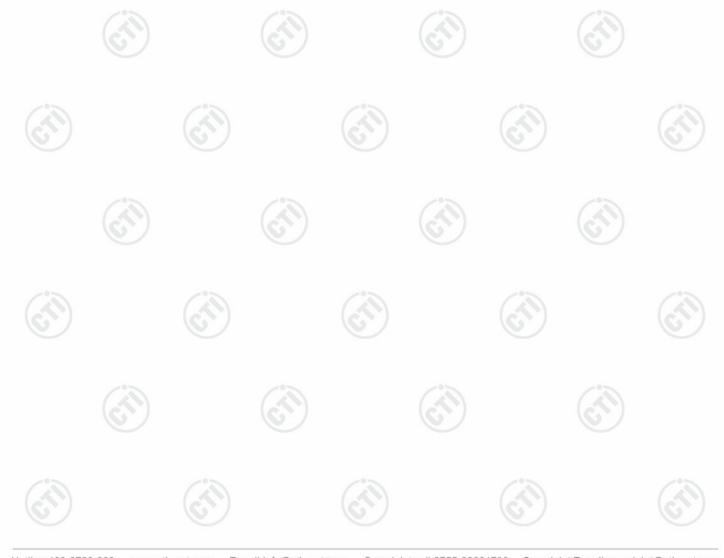
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

ltem	Measurement Uncertainty
Radio Frequency	7.9 x 10 ⁻⁸
DE nower conducted	0.46dB (30MHz-1GHz)
Kr power, conducted	0.55dB (1GHz-40GHz)
	3.3dB (9kHz-30MHz)
Dadiated Churique emission test	4.3dB (30MHz-1GHz)
Radiated Spurious emission test	4.5dB (1GHz-18GHz)
	3.4dB (18GHz-40GHz)
Conduction emission	3.5dB (9kHz to 150kHz)
Conduction emission	3.1dB (150kHz to 30MHz)
Temperature test	0.64°C
Humidity test	3.8%
DC power voltages	0.026%
	Radio Frequency RF power, conducted Radiated Spurious emission test Conduction emission Temperature test Humidity test

Report No.: EED32O80593301 Page 10 of 53

4.8 Equipment List

	RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022			
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022			
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022			
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022			
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022			
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022			
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022			
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022			
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518					

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date Cal. Due da (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	04-01-2022	03-31-2023			
Temperature/ Humidity Indicator			/	<u> </u>				
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023			
Barometer	changchun	DYM3	1188					

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3	-(3	05-24-2019	05-23-2022		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022		
Receiver	R&S	ESCI7	100938-003	10-15-2021	10-14-2022		
Multi device Controller	maturo	NCD/070/10711112	\	-(1)			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024		
Microwave Preamplifier	Agilent	8449B	3008A02425	06-23-2021	06-22-2022		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 11 of 53

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		/-
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(CL)	(63
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	/	-
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(5)
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		/:
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(6,2)	(6)

5 Test results and Measurement Data

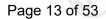
5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

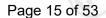
The antenna is PIFA antenna, The best case gain of the antenna is 0dBi.

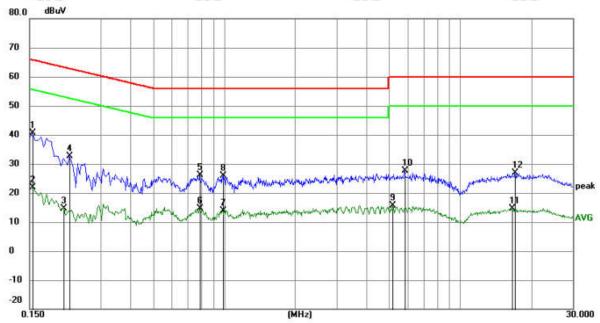
5.2 AC Power Line Conducted Emissions

U.Z	AO I OWEI LINE OOI	iducted Ellissions						
	Test Requirement:	47 CFR Part 15C Section 15.2	207	(67)				
	Test Method:	ANSI C63.10: 2013						
	Test Frequency Range:	150kHz to 30MHz	150kHz to 30MHz					
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
	·	Limit (dB		BuV)				
		Frequency range (MHz)	Quasi-peak	Average				
9		0.15-0.5	66 to 56*	56 to 46*				
	Limit:	0.5-5	56	46				
		5-30	60	50				
		* Decreases with the logarithm						
	Test Setup:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver				
	Test Procedure:	room. 2) The EUT was connected to Impedance Stabilization Not impedance. The power cab connected to a second LIS reference plane in the sam measured. A multiple socke power cables to a single LI exceeded. 3) The tabletop EUT was place ground reference plane. Ar placed on the horizontal ground reference plane. Ar provided in the EUT shall be 0.4 m for vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated ecceptions. 5) In order to find the maximule equipment and all of the interest and all of the interest and SIC C63.10: 2013 on contract and second in the secon	etwork) which provides bles of all other units of N 2, which was bonded e way as the LISN 1 for et outlet strip was used SN provided the rating and for floor-standing arround reference plane, the a vertical ground reference to a ground reference out a ground reference plane. The of the LISN 1 and the Equipment was at least 0 m emission, the relative terface cables must be	a 50Ω/50μH + 5Ω linear the EUT were to the ground the unit being to connect multiple of the LISN was not table 0.8m above the angement, the EUT was the engement, the EUT was the horizontal ground multiple the boundary of the plane for LISNs is distance was EUT. All other units of the positions of				
	Exploratory Test Mode:	Non-hopping transmitting mod data type at the lowest, middle	e with all kind of modul e, high channel.					
	Final Test Mode:	Through Pre-scan, find the D lowest channel is the worst case only the worst case is recorde	se.	GFSK modulation at the				
	Tost Posults:	Page	163	(6.7)				

Measurement Data Live line: dBuV 80.0 70 60 40 30 20 10 AVG 0 -10 -20 30.000 0.150 (MHz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1500	32.67	9.87	42.54	66.00	-23.46	QP		
2		0.1500	15.00	9.87	24.87	56.00	-31.13	AVG		
3		0.3019	25.91	10.07	35.98	60.19	-24.21	QP		
4		0.3067	14.10	10.06	24.16	50.06	-25.90	AVG		
5		0.7669	5.21	9.86	15.07	46.00	-30.93	AVG		
6		0.7835	16.06	9.85	25.91	56.00	-30.09	QP		
7		6.4882	15.64	9.79	25.43	60.00	-34.57	QP		
8		7.1374	3.25	9.79	13.04	50.00	-36.96	AVG		
9		8.5463	2.60	9.78	12.38	50.00	-37.62	AVG		
10		9.0592	14.18	9.78	23.96	60.00	-36.04	QP		
11		18.6221	11.94	9.96	21.90	60.00	-38.10	QP		
12		19.6354	0.72	9.97	10.69	50.00	-39.31	AVG		



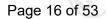


Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1544	30.73	9.87	40.60	65.76	-25.16	QP	
2		0.1545	12.05	9.87	21.92	55.75	-33.83	AVG	
3		0.2094	4.67	9.89	14.56	53.23	-38.67	AVG	
4		0.2220	22.60	9.91	32.51	62.74	-30.23	QP	
5		0.7889	16.37	9.85	26.22	56.00	-29.78	QP	
6		0.7889	4.79	9.85	14.64	46.00	-31.36	AVG	
7		0.9869	3.99	9.83	13.82	46.00	-32.18	AVG	
8		0.9914	16.16	9.83	25.99	56.00	-30.01	QP	
9		5.1495	5.75	9.78	15.53	50.00	-34.47	AVG	
10		5.8155	17.74	9.78	27.52	60.00	-32.48	QP	
11		16.5975	4.81	9.94	14.75	50.00	-35.25	AVG	
12		17.0700	16.93	9.95	26.88	60.00	-33.12	QP	

Remark:

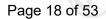
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



5.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control System Power Supply Table RF test System System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Limit:	21dBm
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A
1 - 60 - V 1	



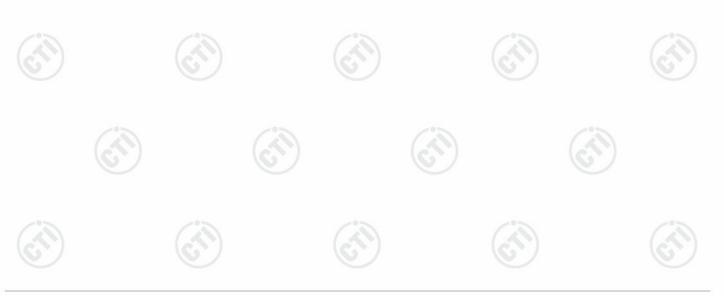

Report No.: EED32O80593301 Page 17 of 53

5.4 20dB Emission Bandwidth

7 - 20, 77 1	[40 4]
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup: Test Procedure:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
	 Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	N/A
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

5.5 Carrier Frequency Separation

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) Test Method: ANSI C63.10:2013 Test Setup: RF test System Found: Supply Power port Supply Attenuator Instrument	(cti)
Test Setup: Control Control Control Parent Parent System Control System Control Contr	
Control Computer Power System	
TEMPERATURE CABNET Table	
Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure: 1. The RF output of EUT was connected to the spectrum analyzer by cable and attenuator. The path loss was compensated to the results in measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; set to approximately 30% of the channel spacing, adjust as necessary best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between peaks of the adjacent channels. Record the value in report.	RBW is
Limit: Frequency hopping systems operating in the 2400-2483.5 MHz bath have hopping channel carrier frequencies that are separated by 25 kl two-thirds of the 20 dB bandwidth of the hopping channel, which greater.	Hz or
Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data ty	ре
Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of modulation type, 2-DH5 of data type is the worst case of π/4 modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.	DQPSK
Test Results: Refer to Appendix A	(67)



5.6 Number of Hopping Channel

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Supply Power John TEMPERATURE CABNET Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Mode:	Hopping transmitting with all kind of modulation
Test Results:	Refer to Appendix A

5.7 Time of Occupancy

7 25 35 1	
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Pool Attenuator Instrument Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A

5.8 Band edge Measurements

/ 4 1 1	
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Supply Power Supply Table RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

5.9 Conducted Spurious Emissions

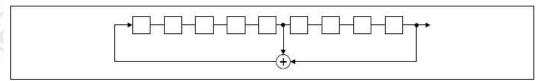
cable and attenuator. The path loss was compensated to the results for ear measurement. 2. Set to the maximum power setting and enable the EUT trans continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. harmonics / spurs must be at least 20 dB down from the highest emiss level within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line the operating frequency band. Limit: In any 100 kHz bandwidth outside the frequency band in which the spre spectrum intentional radiator is operating, the radio frequency power that produced by the intentional radiator shall be at least 20 dB below that in 100 kHz bandwidth within the band that contains the highest level of desired power, based on either an RF conducted or a radial measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type is the worst case of GF modulation type, 2-DH5 of data type is the worst case of π/4DQP		
Test Setup: Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by cable and attenuator. The path loss was compensated to the results for ea measurement. 2. Set to the maximum power setting and enable the EUT trans continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. harmonics / spurs must be at least 20 dB down from the highest emiss level within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line the operating frequency band. Limit: In any 100 kHz bandwidth outside the frequency band in which the spre spectrum intentional radiator is operating, the radio frequency power that produced by the intentional radiator shall be at least 20 dB below that in 100 kHz bandwidth within the band that contains the highest level of desired power, based on either an RF conducted or a radial measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type. Set the worst case of GF modulation type, 2-DH5 of data type is the worst case of midDQP modulation type, 2-DH5 of data type is the worst case of midDQP	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by cable and attenuator. The path loss was compensated to the results for ear measurement. 2. Set to the maximum power setting and enable the EUT trans continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. harmonics / spurs must be at least 20 dB down from the highest emiss level within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line the operating frequency band. Limit: In any 100 kHz bandwidth outside the frequency band in which the spre spectrum intentional radiator is operating, the radio frequency power that produced by the intentional radiator shall be at least 20 dB below that in 100 kHz bandwidth within the band that contains the highest level of desired power, based on either an RF conducted or a radial measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type. Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GF modulation type, 2-DH5 of data type is the worst case of modulation type.	Test Method:	ANSI C63.10:2013
Test Procedure: 1. The RF output of EUT was connected to the spectrum analyzer by cable and attenuator. The path loss was compensated to the results for ear measurement. 2. Set to the maximum power setting and enable the EUT trans continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. harmonics / spurs must be at least 20 dB down from the highest emiss level within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line the operating frequency band. Limit: In any 100 kHz bandwidth outside the frequency band in which the spre spectrum intentional radiator is operating, the radio frequency power that produced by the intentional radiator shall be at least 20 dB below that in 100 kHz bandwidth within the band that contains the highest level of desired power, based on either an RF conducted or a radial measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type is the worst case of GF modulation type, 2-DH5 of data type is the worst case of π/4DQP	Test Setup:	Control Computer Power Supply TEMPERATURE CABRIET RF test System System Attenuator Instrument
cable and attenuator. The path loss was compensated to the results for ear measurement. 2. Set to the maximum power setting and enable the EUT trans continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. harmonics / spurs must be at least 20 dB down from the highest emiss level within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line the operating frequency band. Limit: In any 100 kHz bandwidth outside the frequency band in which the spre spectrum intentional radiator is operating, the radio frequency power that produced by the intentional radiator shall be at least 20 dB below that in 100 kHz bandwidth within the band that contains the highest level of desired power, based on either an RF conducted or a radial measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type. Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GF modulation type, 2-DH5 of data type is the worst case of π/4DQP		Remark: Offset=Cable loss+ attenuation factor.
spectrum intentional radiator is operating, the radio frequency power that produced by the intentional radiator shall be at least 20 dB below that in 100 kHz bandwidth within the band that contains the highest level of desired power, based on either an RF conducted or a radiate measurement. Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type. Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GF modulation type, 2-DH5 of data type is the worst case of π/4DQP.		 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GF modulation type, 2-DH5 of data type is the worst case of π/4DQP	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
modulation type, 2-DH5 of data type is the worst case of π/4DQP	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
type.	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4$ DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results: Refer to Appendix A	Test Results:	Refer to Appendix A

5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

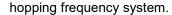
outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

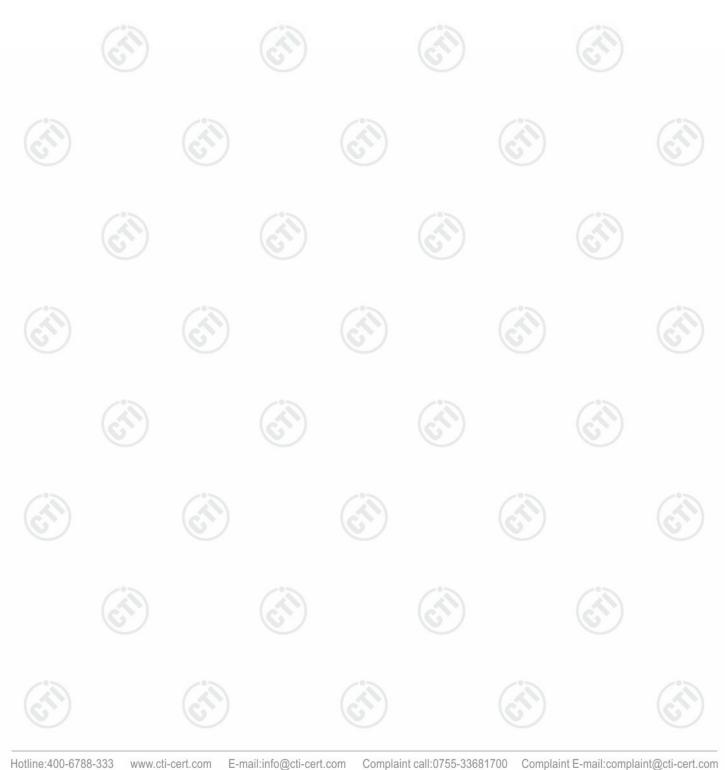
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.


According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

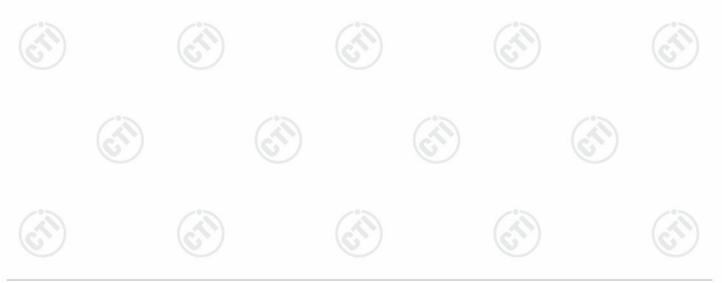
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom

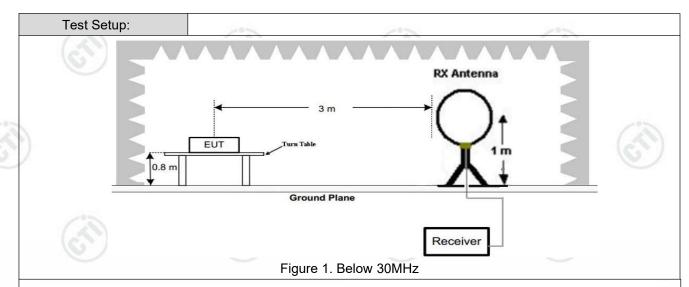


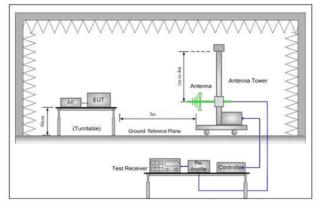
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.




5.11 Radiated Spurious Emission & Restricted bands


Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	(0))
Test Method:	ANSI C63.10: 2013					
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)	
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak
	Above 4CH		Peak	1MHz	3MHz	Peak
	Above 1GHz		Peak	1MHz	10kHz	Average
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer
	0.009MHz-0.490MHz	2400/F(kHz)		-	-	300
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-/3	30
	1.705MHz-30MHz		30	-	(6)	30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz		200	46.0	Quasi-peak	3
	960MHz-1GHz		500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	3 ab equi	ove the maxin	num permitest. This p	tted average	emission limit

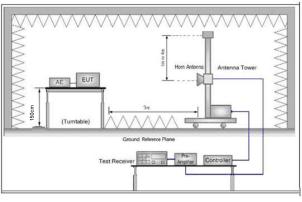


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

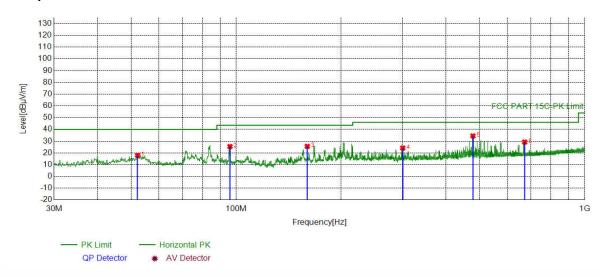
Note: For the radiated emission test above 1GHz:

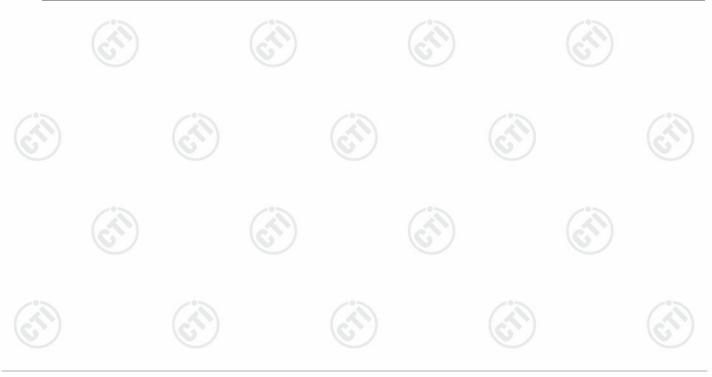
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

	Page 27 of 53

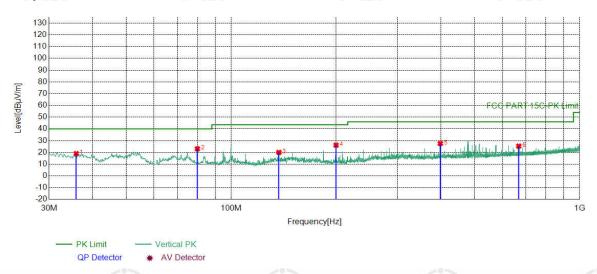
	Only the worst case is recorded in the report.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through prescan, the worst case is the highest channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type.
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.f. If the emission level of the EUT in peak mode was 10dB lower than the
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
_	· •



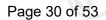

Page 28 of 53

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.



Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	52.1182	-17.46	35.46	18.00	40.00	22.00	PASS	Horizontal	PK
2	95.9666	-19.10	44.58	25.48	43.50	18.02	PASS	Horizontal	PK
3	159.9930	-21.15	46.75	25.60	43.50	17.90	PASS	Horizontal	PK
4	300.5601	-15.42	39.60	24.18	46.00	21.82	PASS	Horizontal	PK
5	477.9908	-11.23	45.70	34.47	46.00	11.53	PASS	Horizontal	PK
6	672.8833	-8.00	37.25	29.25	46.00	16.75	PASS	Horizontal	PK



	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	35.9176	-19.32	38.32	19.00	40.00	21.00	PASS	Vertical	PK
	2	79.9600	-22.56	45.62	23.06	40.00	16.94	PASS	Vertical	PK
	3	137.0987	-21.90	41.94	20.04	43.50	23.46	PASS	Vertical	PK
	4	199.9610	-17.84	44.02	26.18	43.50	17.32	PASS	Vertical	PK
	5	398.2488	-12.98	40.56	27.58	46.00	18.42	PASS	Vertical	PK
1	6	669.0029	-8.05	33.43	25.38	46.00	20.62	PASS	Vertical	PK

Radiated Spurious Emission above 1GHz:

Mode:			GFSK Transmit	ting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1136.4136	0.83	41.50	42.33	74.00	31.67	Pass	Н	PK
2	1752.6753	3.12	40.03	43.15	74.00	30.85	Pass	Н	PK
3	4804.1203	-16.23	59.84	43.61	74.00	30.39	Pass	Н	PK
4	7679.3120	-11.08	52.40	41.32	74.00	32.68	Pass	Н	PK
5	9608.4406	-7.37	53.19	45.82	74.00	28.18	Pass	Н	PK
6	13034.6690	-3.83	51.88	48.05	74.00	25.95	Pass	Н	PK
7	1240.4240	0.91	42.99	43.90	74.00	30.10	Pass	V	PK
8	1995.0995	4.52	41.22	45.74	74.00	28.26	Pass	V	PK
9	4804.1203	-16.23	61.31	45.08	74.00	28.92	Pass	V	PK
10	7746.3164	-11.20	52.62	41.42	74.00	32.58	Pass	V	PK
11	9607.4405	-7.37	52.65	45.28	74.00	28.72	Pass	V	PK
12	13732.7155	-1.72	50.44	48.72	74.00	25.28	Pass	V	PK

Mode:		G	FSK Transmit	ting		Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1146.8147	0.83	41.07	41.90	74.00	32.10	Pass	Н	PK
2	1929.8930	4.19	40.18	44.37	74.00	29.63	Pass	Н	PK
3	4882.1255	-16.21	62.51	46.30	74.00	27.70	Pass	Н	PK
4	7498.2999	-11.10	51.98	40.88	74.00	33.12	Pass	Н	PK
5	9763.4509	-7.50	56.68	49.18	74.00	24.82	Pass	Н	PK
6	14368.7579	0.70	48.94	49.64	74.00	24.36	Pass	Н	PK
7	1266.8267	0.97	40.89	41.86	74.00	32.14	Pass	V	PK
8	1795.8796	3.27	39.85	43.12	74.00	30.88	Pass	V	PK
9	4882.1255	-16.21	62.64	46.43	74.00	27.57	Pass	V	PK
10	9763.4509	-7.50	53.17	45.67	74.00	28.33	Pass	V	PK
11	12527.6352	-4.63	52.41	47.78	74.00	26.22	Pass	V	PK
12	15400.8267	0.52	48.13	48.65	74.00	25.35	Pass	V	PK

Page 31 of 53

	Mode	:		GFSK Transmi	tting		Channel:		2480 MHz	
	NO	Freq. [MHz]	Facto [dB]	D	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1181.4181	0.81	41.24	42.05	74.00	31.95	Pass	Н	PK
60	2	1873.2873	3.83	39.69	43.52	74.00	30.48	Pass	Н	PK
5	3	4959.1306	-15.98	8 61.24	45.26	74.00	28.74	Pass	Н	PK
	4	7106.2738	-11.60	0 52.95	41.35	74.00	32.65	Pass	Н	PK
	5	9919.4613	-7.10	53.49	46.39	74.00	27.61	Pass	Н	PK
	6	13734.7156	-1.72	50.41	48.69	74.00	25.31	Pass	Н	PK
	7	1150.6151	0.82	42.03	42.85	74.00	31.15	Pass	V	PK
	8	1996.4997	4.53	41.82	46.35	74.00	27.65	Pass	V	PK
	9	4960.1307	-15.97	7 61.06	45.09	74.00	28.91	Pass	V	PK
	10	7752.3168	-11.22	2 53.14	41.92	74.00	32.08	Pass	V	PK
	11	9919.4613	-7.10	56.60	49.50	74.00	24.50	Pass	V	PK
ć	12	14211.7475	-0.93	3 49.72	48.79	74.00	25.21	Pass	V	PK

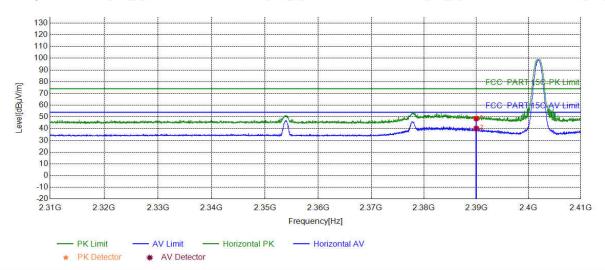
Mode:			π/4DQPSK Tra	nsmitting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1158.2158	0.82	40.91	41.73	74.00	32.27	PASS	Н	PK
2	1744.4744	3.09	41.32	44.41	74.00	29.59	PASS	Н	PK
3	4803.1202	-16.23	58.97	42.74	74.00	31.26	PASS	Н	PK
4	6837.2558	-12.19	52.23	40.04	74.00	33.96	PASS	Н	PK
5	9607.4405	-7.37	53.60	46.23	74.00	27.77	PASS	Н	PK
6	13707.7138	-1.76	49.25	47.49	74.00	26.51	PASS	Н	PK
7	1209.4209	0.82	41.32	42.14	74.00	31.86	Pass	V	PK
8	1838.2838	3.57	39.78	43.35	74.00	30.65	Pass	V	PK
9	4804.1203	-16.23	60.12	43.89	74.00	30.11	Pass	V	PK
10	7494.2996	-11.11	52.14	41.03	74.00	32.97	Pass	V	PK
11	9607.4405	-7.37	52.68	45.31	74.00	28.69	Pass	V	PK
12	15323.8216	-0.36	48.86	48.50	74.00	25.50	Pass	V	PK

Mode):	-	π/4DQPSK Tra	nsmitting		Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1348.2348	1.22	40.36	41.58	74.00	32.42	Pass	Н	PK
2	2036.7037	4.67	39.61	44.28	74.00	29.72	Pass	Н	PK
3	4882.1255	-16.21	60.14	43.93	74.00	30.07	Pass	Н	PK
4	6995.2664	-11.82	51.42	39.60	74.00	34.40	Pass	Н	PK
5	9763.4509	-7.50	53.09	45.59	74.00	28.41	Pass	Н	PK
6	13721.7148	-1.74	50.32	48.58	74.00	25.42	Pass	Н	PK
7	1163.0163	0.82	41.78	42.60	74.00	31.40	Pass	V	PK
8	1738.0738	3.07	40.34	43.41	74.00	30.59	Pass	V	PK
9	4882.1255	-16.21	62.41	46.20	74.00	27.80	Pass	V	PK
10	6730.2487	-12.46	52.84	40.38	74.00	33.62	Pass	V	PK
11	9763.4509	-7.50	54.01	46.51	74.00	27.49	Pass	V	PK
12	13283.6856	-3.40	50.49	47.09	74.00	26.91	Pass	V	PK

Mode	: :		π/4DQPSK Tra	nsmitting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Facto [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1223.2223	0.86	41.31	42.17	74.00	31.83	Pass	Н	PK
2	1763.2763	3.16	40.63	43.79	74.00	30.21	Pass	Н	PK
3	4960.1307	-15.97	60.73	44.76	74.00	29.24	Pass	Н	PK
4	7099.2733	-11.58	52.44	40.86	74.00	33.14	Pass	Н	PK
5	9919.4613	-7.10	54.21	47.11	74.00	26.89	Pass	Н	PK
6	13713.7142	-1.75	50.18	48.43	74.00	25.57	Pass	Н	PK
7	1121.6122	0.84	41.39	42.23	74.00	31.77	Pass	V	PK
8	1939.6940	4.24	40.07	44.31	74.00	29.69	Pass	V	PK
9	4960.1307	-15.97	59.90	43.93	74.00	30.07	Pass	V	PK
10	7839.3226	-11.20	52.61	41.41	74.00	32.59	Pass	V	PK
11	9919.4613	-7.10	51.84	44.74	74.00	29.26	Pass	V	PK
12	14320.7547	-0.10	49.31	49.21	74.00	24.79	Pass	V	PK

Remark:

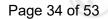
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

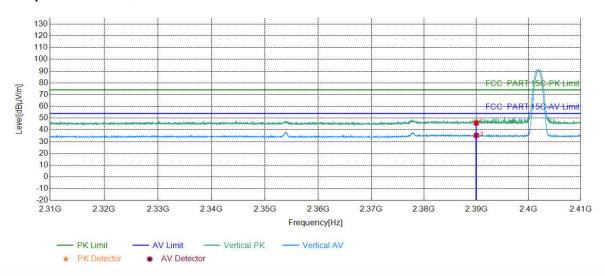


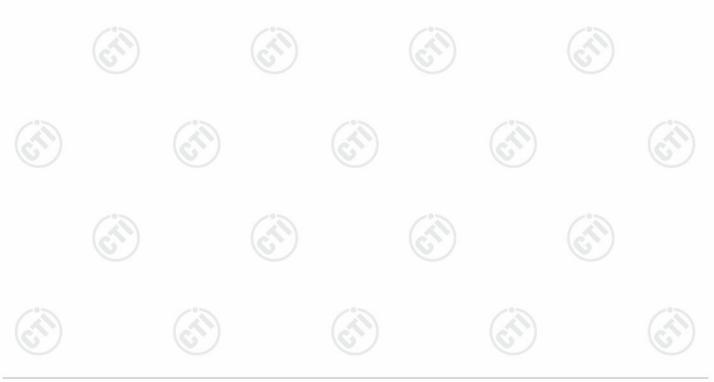
Page 33 of 53

Restricted bands:

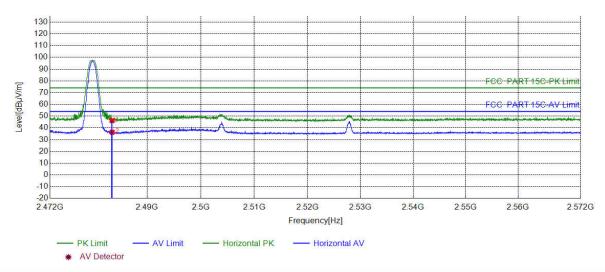
Test plot as follows:


Mode:	GFSK Transmitting	Channel:	2402
Remark:			


	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	42.86	48.63	74.00	25.37	PASS	Horizontal	PK
6	2	2390.0000	5.77	34.39	40.16	54.00	13.84	PASS	Horizontal	AV

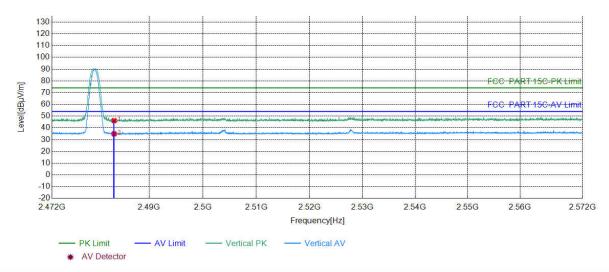


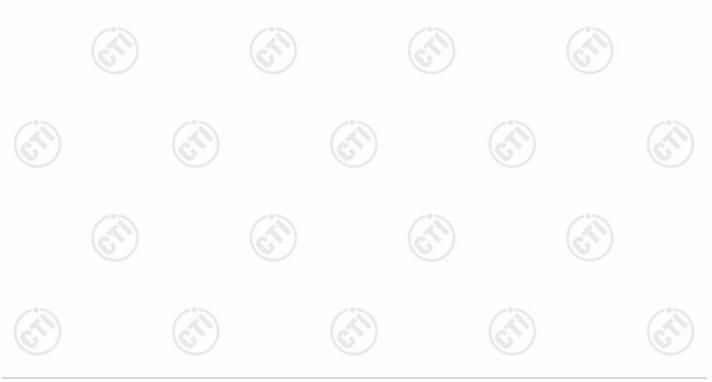
Mode:	GFSK Transmitting	Channel:	2402
Remark:			

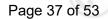

Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.13	45.90	74.00	28.10	PASS	Vertical	PK
2	2390.0000	5.77	29.53	35.30	54.00	18.70	PASS	Vertical	AV

Page 35 of 53

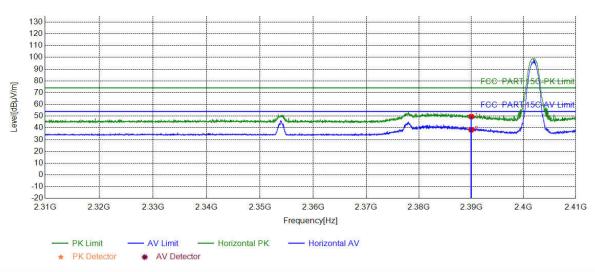
Mode:	GFSK Transmitting	Channel:	2480
Remark:			

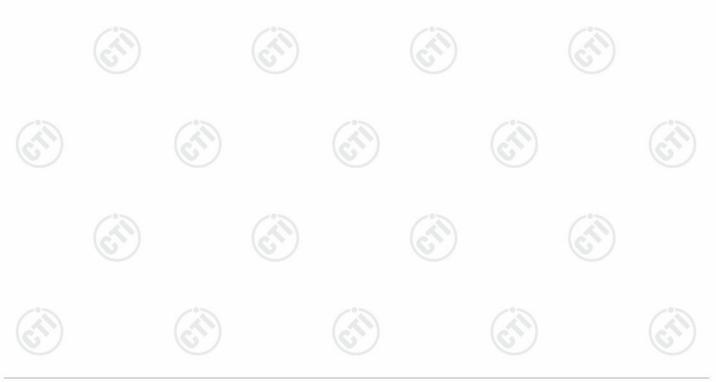

	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	39.64	46.21	74.00	27.79	PASS	Horizontal	PK
1	2	2483.5000	6.57	29.75	36.32	54.00	17.68	PASS	Horizontal	AV



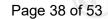

Mode:	GFSK Transmitting	Channel:	2480
Remark:			

Suspec	cted List								
ОО	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.66	46.23	74.00	27.77	PASS	Vertical	PK
2	2483.5000	6.57	28.39	34.96	54.00	19.04	PASS	Vertical	AV

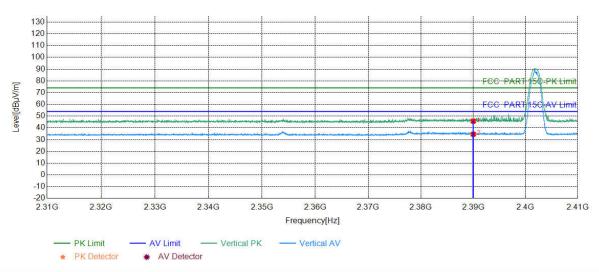


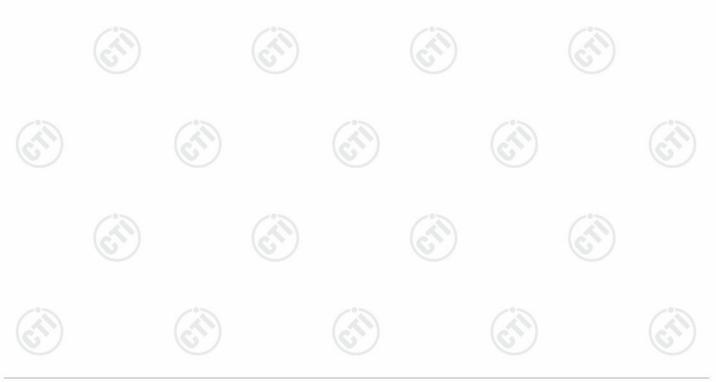


Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:			


Test Graph

Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390.0000	5.77	43.85	49.62	74.00	24.38	PASS	Horizontal	PK	
2	2390.0000	5.77	32.62	38.39	54.00	15.61	PASS	Horizontal	AV	

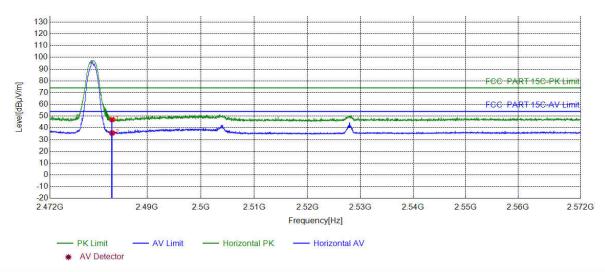




Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:			

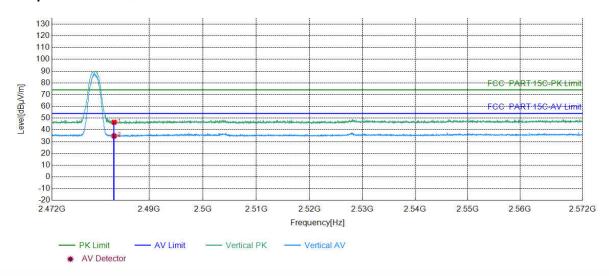
Test Graph

	Suspected List									
	ОО	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ſ	1	2390.0000	5.77	39.98	45.75	74.00	28.25	PASS	Vertical	PK
	2	2390.0000	5.77	28.89	34.66	54.00	19.34	PASS	Vertical	AV



Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:			

Test Graph


	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5000	6.57	40.54	47.11	74.00	26.89	PASS	Horizontal	PK	
1	2	2483.5000	6.57	29.09	35.66	54.00	18.34	PASS	Horizontal	AV	

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:			

Test Graph

	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5000	6.57	39.96	46.53	74.00	27.47	PASS	Vertical	PK	
9	2	2483.5000	6.57	28.29	34.86	54.00	19.14	PASS	Vertical	AV	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

6 Appendix A

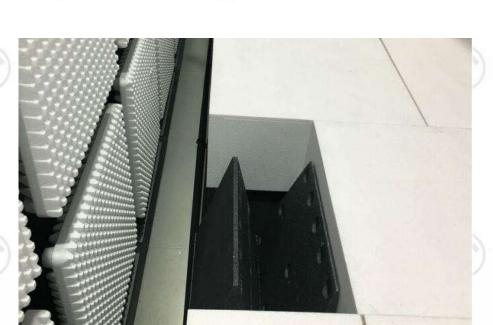
Refer to Appendix: Bluetooth Classic of EED32O80593301.

7 PHOTOGRAPHS OF TEST SETUP

Test Model No.: FW1866

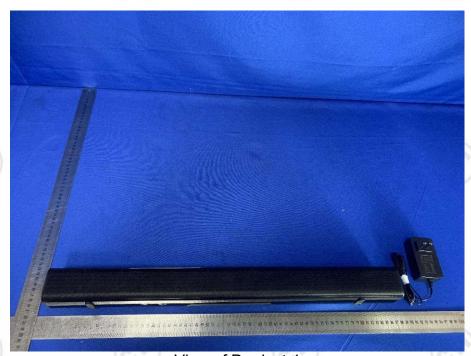
Radiated spurious emission Test Setup-1(Below 1GHz)

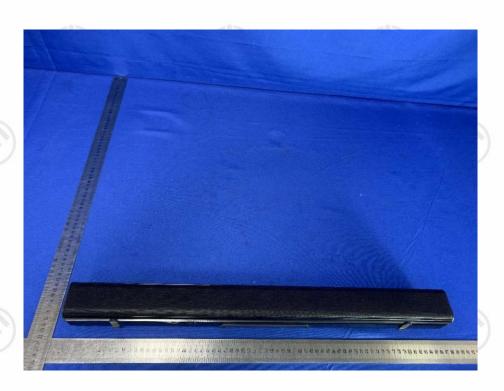
Radiated spurious emission Test Setup-2(Above 1GHz)



Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

AC Power Line Conducted Emission

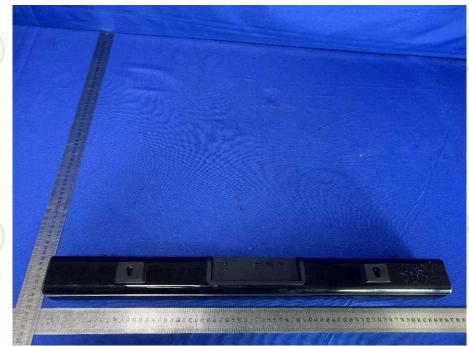

Page 43 of 53


Page 44 of 53

8 PHOTOGRAPHS OF EUT Constructional Details

Test model No.: FW1866

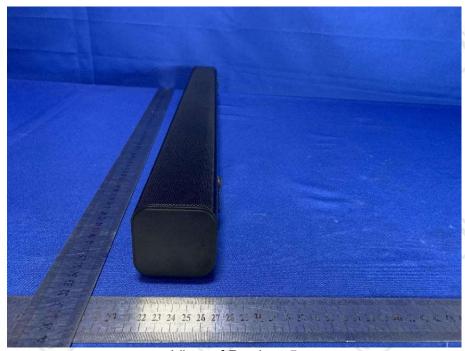
View of Product-1

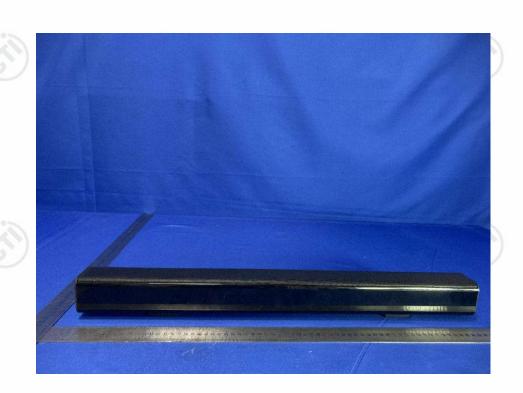


View of Product-2

View of Product-3

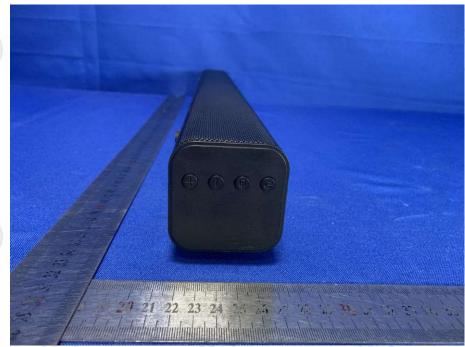
View of Product-4





View of Product-5

View of Product-6

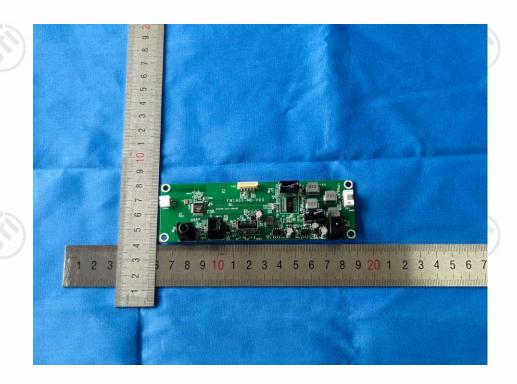


View of Product-7

View of Product-8

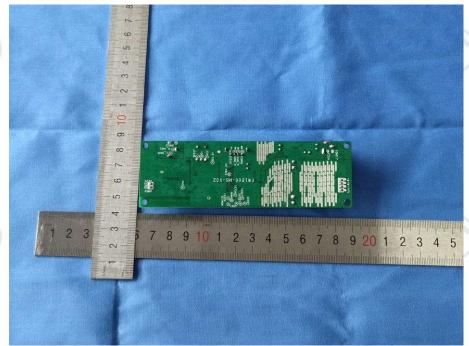
View of Product-9

View of Product-10



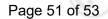
View of Product-11

View of Product-12



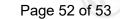
View of Product-13

View of Product-14



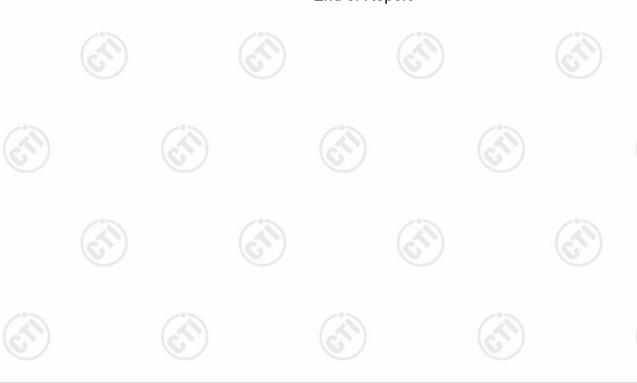
View of Product-15

View of Product-16



View of Product-17

View of Product-18



View of Product-19

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***

