

Shenzhen CTL Testing Technology Co., Ltd. Tel: +86-755-89486194 E-mail: ctl@ctl-lab.com

TEST REPORT FOR FCC PART 15 SUBPART C 15.249					
Report Reference No	CTL1807131023-WF				
Compiled by: (position+printed name+signature)	Allen Wang (File administrators)	Allen Wang			
Tested by: (position+printed name+signature)	Nice Nong (Test Engineer)	Allen Wang NiCe Nong			
Approved by: (position+printed name+signature)	Ivan Xie (Manager)	tran Die			
Product Name	RF Module				
Model/Type reference:	MAL TIL				
Trade Mark	AFX	0.			
FCC ID	2AR7I-RF8920N-M				
Applicant's name	AFX Inc.				
Address of applicant	2345 N. Ernie Krueger Circle Wau	kegan, IL 60087 USA			
Test Firm	Shenzhen CTL Testing Technolo	ogy Co., Ltd.			
Address of Test Firm	Floor 1-A, Baisha Technology P Nanshan District, Shenzhen, China				
Test specification		Y			
Standard	FCC Part 15.249:Operation with 2400-2483.5 MHz, 5725-5850 MH				
TRF Originator	Shenzhen CTL Testing Technology	۲Co., Ltd.			
Master TRF	Dated 2011-01				
Date of Receipt	Oct. 09, 2018				
Date of Test Date	Oct. 09, 2018–Nov. 05, 2018				
Data of Issue	Nov. 05, 2018				
Result	Pass				
Shenzhen CTL Testing Technolog					
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the					

material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Tast Bapart No. :	CTL1807131023-WF	Nov. 05, 2018	
Test Report No. :		Date of issue	
Equipment under Test	RF Module		
Model /Type	RF8920N-M		
Applicant	AFX Inc.		
Address	2345 N. Ernie Krueger C USA	Circle Waukegan, IL 60087	
Manufacturer	Quicklite Electronics C	co. Ltd.	
Address	Yuxing Industrial Park, Y Zhongshan Torch Develo China	′anjiang East Road, opment Zone, Guangdong,	
Test result		Pass *	

* In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Testing Technolo

**	Modified	History	**
----	----------	---------	----

meanea metery					
Revision	Description	Issued Data	Report No.	Remark	
Version 1.0	Initial Test Report Release	Nov. 5, 2018	CTL1807131023-WF	Tracy Qi	

Table of Contents

Page

1.	SUN	MMARY	5
	1.1.	TEST STANDARDS	5
	1.2.	TEST DESCRIPTION	
	1.3.	TEST FACILITY	6
	1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2.	GEN	NERAL INFORMATION	7
	2.1.	Environmental conditions	7
	2.2.	GENERAL DESCRIPTION OF EUT	
	2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	7
	2.4.	Equipments Used during the Test	
	2.5.	Related Submittal(s) / Grant(s)	
	2.6.	Modifications	8
3.	TES	T CONDITIONS AND RESULTS	9
	3.1.	Conducted Emissions Test	9
	3.2.	RADIATED EMISSIONS AND BAND EDGE	
	3.3.	OCCUPIED BANDWIDTH MEASUREMENT	
	3.4.	ANTENNA REQUIREMENT	
4.		ANTENNA REQUIREMENT	
5.	EXT	FERNAL AND INTERNAL PHOTOS OF THE EUT	

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices

1.2. Test Description

FCC PART 15.249				
FCC Part 15.249(a)	Field Strength of Fundamental	PASS		
FCC Part 15.209	Spurious Emission	PASS		
FCC Part 15.209	Band edge	PASS		
FCC Part 15.215(c)	20dB bandwidth	PASS		
FCC Part 15.207	Conducted Emission	PASS		
FCC Part 15.203	Antenna Requirement	PASS		

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 399832

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

Hereafter the best measurement capability for CTL laboratory is reported:

 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	RF Module
Model/Type reference:	RF8920N-M
Power supply:	DC 3.3V
2.4GHz Wireless	
Modulation:	GFSK
Operation frequency:	2442MHz
Channel number:	1
Channel separation:	1MHz
Antenna type:	PCB antenna
Antenna gain:	0dBi

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing ...

Testing Technolo

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.1 2	2018/05/20	2019/05/19
LISN	R&S	ESH2-Z5	860014/010	2018/05/20	2019/05/19
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2018/05/20	2019/05/19
EMI Test Receiver	R&S	ESCI	103710	2018/05/20	2019/05/19
Spectrum Analyzer	Agilent	E4407B	MY41440676	2018/05/20	2019/05/19
Spectrum Analyzer	Agilent	N9020	US46220290	2018/05/20	2019/05/19
Controller	EM Electronics	Controller EM 1000	N/A	2018/05/20	2019/05/19
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2018/05/20	2019/05/19
Active Loop Antenna	SCHWARZBE CK	FMZB1519	1519-037	2018/05/20	2019/05/19
Amplifier	Agilent	8349B	3008A02306	2018/05/20	2019/05/19
Amplifier	Agilent	8447D	2944A10176	2018/05/20	2019/05/19
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2018/05/20	2019/05/19
High-Pass Filter	R&L	9SH10-2700/X1 2750-O/O	N/A	2018/05/20	2019/05/19
High-Pass Filter	K&L	41H10-1375/U1 2750-O/O	N/A	2018/05/20	2019/05/19
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-10M	10m	2018/05/20	2019/05/19
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-3M	GC 3m	2018/05/20	2019/05/19
Coaxial Cables	HUBER+SUHN ER	SUCOFLEX 104PEA-3M	3m	2018/05/20	2019/05/19
RF Cable	Megalon	RF-A303	N/A	2018/05/20	2019/05/19

The calibration interval was one year

2.5. Related Submittal(s) / Grant(s)

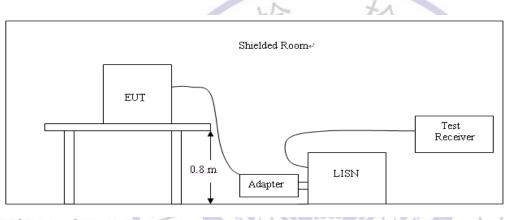
This submittal(s) (test report) is intended to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

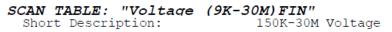

<u>LIMIT</u>

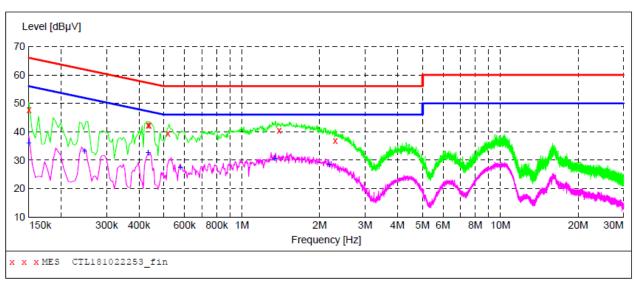
FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

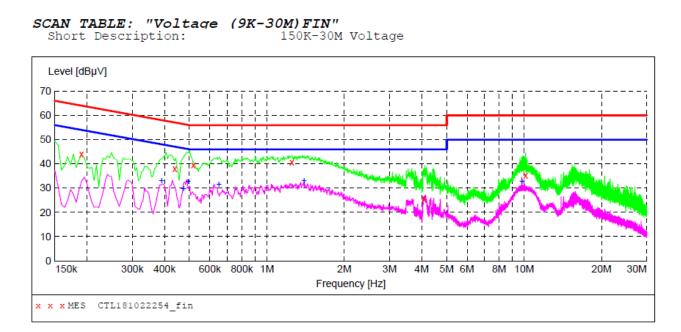



TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Remark: All modes were test at Low, Middle, and High channel; only the worst result of High Channel was reported as below:


MEASUREMENT RESULT: "CTL181022253 fin"

2018-10-22 03 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.434000 0.438000 0.518000 1.394000 2.300000	47.80 42.40 42.40 39.60 40.60 36.80	10.2 10.2 10.2 10.2 10.3 10.4	66 57 57 56 56 56	18.2 14.8 14.7 16.4 15.4 19.2	QP QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "CTL181022253_fin2"

2018-10-22 03:47??

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.246000 0.434000 0.578000 1.340000	36.20 33.20 32.80 27.60 30.60	10.2 10.2 10.2 10.2 10.2 10.3	56 52 47 46 46	19.8 18.7 14.4 18.4 15.4	AV AV AV AV AV	L1 L1 L1 L1 L1	GND GND GND GND GND
2.174000	28.60	10.3	46	17.4	AV	L1	GND

MEASUREMENT RESULT: "CTL181022254_fin"

2018-10-22 03 Frequency MHz	:50?? Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.190000 0.438000 0.518000	44.20 38.10 39.60	10.2 10.2 10.2	64 57 56	19.8 19.0 16.4	QP QP OP	N N N	GND GND GND
1.250000 4.088000 10.130000	40.60 25.70 35.40	10.2 10.3 10.4 10.6	56 56 60	15.4 30.3 24.6	QP QP QP QP	N N N	GND GND GND

MEASUREMENT RESULT: "CTL181022254_fin2"

2018-	·10-22 03:	50??						
Fr	equency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dBµV	dB	dBµV	dB			
0	.390000	33.10	10.2	48	15.0	AV	N	GND
0	.474000	29.80	10.2	46	16.6	AV	N	GND
0	.494000	32.80	10.2	46	13.3	AV	N	GND
0	.650000	31.60	10.2	46	14.4	AV	N	GND
1	.394000	33.20	10.3	46	12.8	AV	N	GND
q	.812000	33.00	10.6	50	17.0	AV	N	GND
-	.012000	55.00	10.0	00	17.0	110		OND

Note:

```
1. Margin = Limit – level
```

2. Peripheral device during the Testing

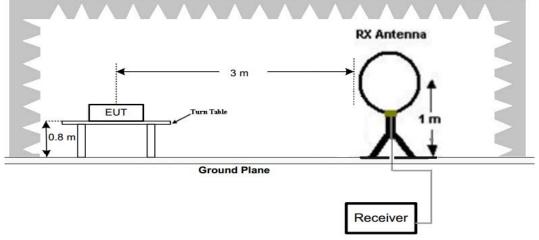
No.	Product	Manufacturer	Model	Length	Certification	Note
1	Notebook	Dell	H57		SDOC	
2	Adapter	Dell	PA-1650-05D		SDOC	
3	USB line			90cm		Not shield

3.2. Radiated Emissions and Band Edge

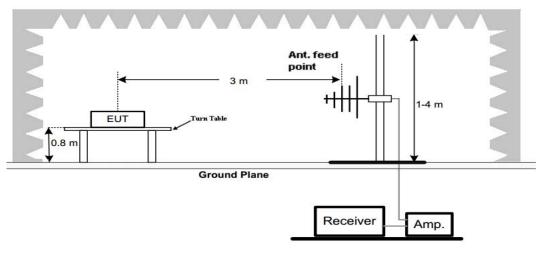
<u>Limit</u>

According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed $94dB\mu V/m$ (50mV/m):

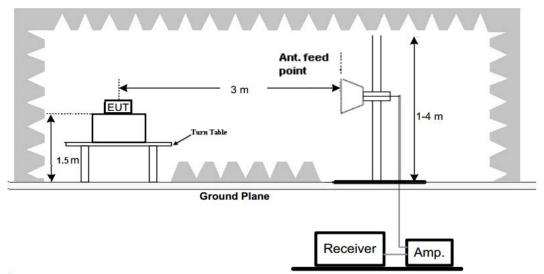
FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

	Rad	lated emission limits			
Frequency (MHz)	Distance (Meters)	Distance (Meters) Radiated (dBµV/m)			
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	1,3	46.0	200		
Above 960	×3	54.0	500		


Radiated emission limits

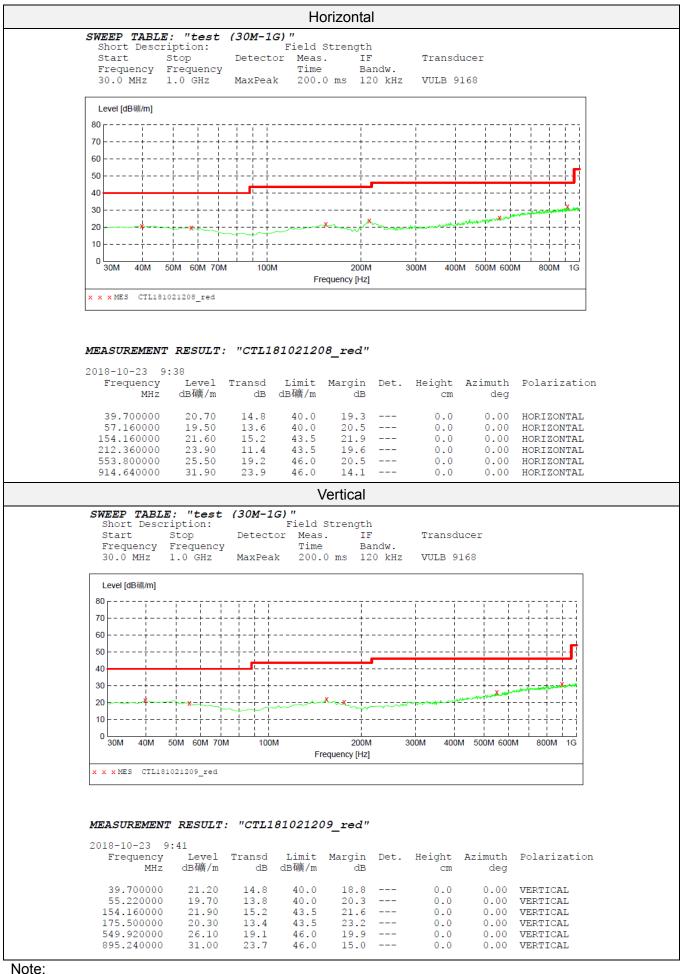
TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure


- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

Remark:

- 1. We measured Radiated Emission at GFSK mode from 9 KHz to 25GHz and recorded worst case.
- 2. For below 1GHz testing recorded worst at GFSK low channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

1. Margin = Limit - level

Free	Frequency(MHz):		24	42		Polarity:		HORIZ	ONTAL
Frequency	Emis	sion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4884.00	48.78	PK	74.00	25.22	42.53	33.60	6.95	34.30	6.25
4884.00		AV	54.00						
5210.75	43.35	PK	74.00	30.65	35.72	34.57	7.16	34.10	7.63
5210.75		AV	54.00		-			-	
7326.00	47.91	PK	74.00	26.09	36.22	37.46	9.23	35.00	11.69
7326.00		AV	54.00						

For 1GHz to 25GHz

Frec	Frequency(MHz):		24	42		Polarity:		VER	TICAL
Frequency	Emis	sion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Lev	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4884.00	49.04	PK	74.00	24.96	42.79	33.60	6.95	34.30	6.25
4884.00		AV	54.00	-117	-711	-			
5210.75	43.78	PK	74.00	30.22	36.14	34.58	7.16	34.10	7.64
5210.75		AV	54.00	NAT -	-				
7326.00	48.03	PK	74.00	25.97	36.34	37.46	9.23	35.00	11.69
7326.00		AV	54.00		-	-1/2	17/2		

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Testing Technolos

Free	quency(MF	lz):	24	2442 Polarity:		HORIZONTAL			
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2442.00	98.07	PK			64.68	28.78	4.61	0.00	33.39
2442.00	91.42	AV			58.03	28.78	4.61	0.00	33.39
2483.50	43.85	PK	74	30.15	10.22	28.93	4.70	0.00	33.63
2483.50		AV	54					-	
2390.00	42.92	PK	74.00	31.08	9.60	28.72	4.60	0.00	33.32
2390.00		AV	54.00						
2400.00	43.14	PK	74.00	30.86	9.75	28.78	4.61	0.00	33.39
2400.00		AV	54.00						

Results of Band Edges Test (Radiated)

Free	Frequency(MHz):		24	42		Polarity:		VER	TICAL
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2442.00	97.68	PK	- 1		64.29	28.78	4.61	0	33.39
2442.00	91.41	AV	- N	- 11	58.02	28.78	4.61	0	33.39
2483.50	43.87	PK	74	30.13	10.24	28.93	4.70	0.00	33.63
2483.50		AV	54		ł				
2390.00	42.65	PK	74	31.35	9.33	28.72	4.60	0	33.32
2390.00		AV	54	-	-	A AVA	1/4		
2400.00	43.79	PK	74	30.21	10.4	28.78	4.61	0	33.39
2400.00		AV	54	14-11	ALT	1 Star			

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

3.3. Occupied Bandwidth Measurement

12,

<u>Limit</u>

N/A

Test Configuration

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Results

Modulation	Frequency(MHz)	99% OBW (MHz)	20dB bandwidth (MHz)	Result
GFSK	2442	1.1740	1.266	PASS

TL

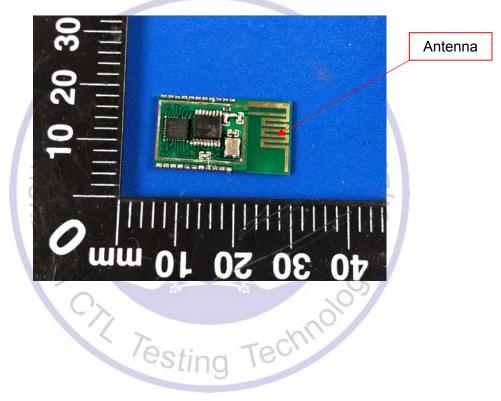
C

100

Test plot as follows:

3.4. Antenna Requirement

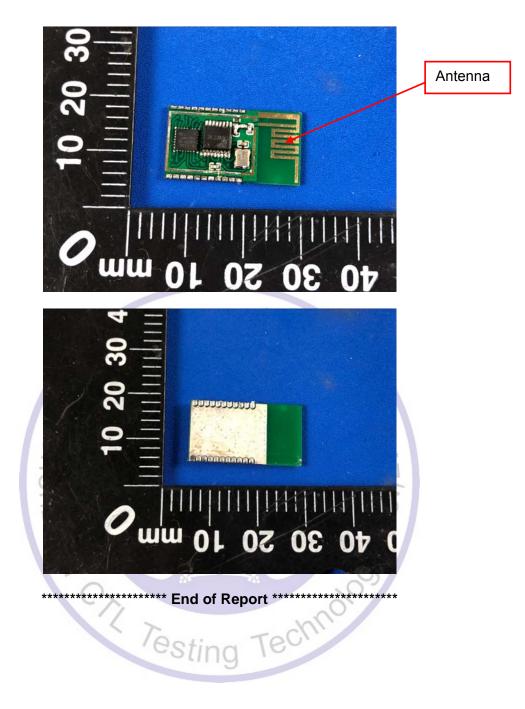
Standard Applicable


For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction


The antenna used in this product is PCB Antenna, The directional gains of antenna used for transmitting is 0dBi.

4. Test Setup Photos of the EUT

5. External and Internal Photos of the EUT

