SAR TEST REPORT

For

Find-Me Technologies Pty Ltd

K.I.T.

Test Model: K1000

Additional Model No .:/

Prepared for Address	:	Find-Me Technologies Pty Ltd PO Box 2494,Fortitude valley, Old 4006
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	:	(86)755-82591330
Fax	:	(86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	December 04, 2018
Number of tested samples	:	1

: Prototype

Serial number

Date of Test Date of Report

- : February 27, 2019~ March 06, 2019
- : March 11, 2019

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report FCC ID: 2AR5M-K1000

Report No.: LCS181203048AE

	SAR TEST REPORT				
Report Reference No:	LCS181203048AE				
Date Of Issue:	March 11, 2019				
Testing Laboratory Name:	Shenzhen LCS Compliance Testing Laboratory Ltd.				
Address:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China				
Testing Location/ Procedure:	Full application of Harmonised standards				
	Partial application of Harmonised standards				
	Other standard testing method				
Applicant's Name:	Find-Me Technologies Pty Ltd				
Address:	PO Box 2494, Fortitude valley, Old 4006				
Test Specification:					
Standard:	IEEE 1528:2013/ IEEE Std C95.1, 2005/ FCC Part 2.1093 47CFR §2.1093				
Test Report Form No:	LCSEMC-1.0				
TRF Originator:	Shenzhen LCS Compliance Testing Laboratory Ltd.				
Master TRF:	Dated 2014-09				
its placement and context. Test Item Description:	ing from the reader's interpretation of the reproduced material due t				
Lest Item Description					
•					
Trade Mark:	K.I.T.				
Trade Mark	K.I.T. K1000				
Trade Mark Test Model	K.I.T. K1000 WCDMA Band V/II , WIFI2.4G				
Trade Mark Test Model	K.I.T. K1000				
Trade Mark	K.I.T. K1000 WCDMA Band V/II , WIFI2.4G DC 3.7V by Rechargeable Li-Polymer Battery(280mAh)				
Trade Mark: Test Model: Operation Frequency: Ratings	K.I.T. K1000 WCDMA Band V/II , WIFI2.4G DC 3.7V by Rechargeable Li-Polymer Battery(280mAh) Input: 5V1A,Output: 3.3V/200mA ,1.8V/30mA				
Trade Mark: Test Model: Operation Frequency: Ratings: Result: Compiled by:	K.I.T. K1000 WCDMA Band V/II , WIFI2.4G DC 3.7V by Rechargeable Li-Polymer Battery(280mAh) Input: 5V1A,Output: 3.3V/200mA ,1.8V/30mA				
Trade Mark: Test Model: Operation Frequency: Ratings: Result:	K.I.T. K1000 WCDMA Band V/II, WIFI2.4G DC 3.7V by Rechargeable Li-Polymer Battery(280mAh) Input: 5V1A,Output: 3.3V/200mA, 1.8V/30mA Positive				
Trade Mark: Test Model: Operation Frequency: Ratings: Result: Compiled by:	K.I.T. K1000 WCDMA Band V/II, WIFI2.4G DC 3.7V by Rechargeable Li-Polymer Battery(280mAh) Input: 5V1A,Output: 3.3V/200mA, 1.8V/30mA Positive				
Trade Mark: Test Model: Operation Frequency: Ratings: Result: Compiled by: Ware Dang	K.I.T. K1000 WCDMA Band V/II, WIFI2.4G DC 3.7V by Rechargeable Li-Polymer Battery(280mAh) Input: 5V1A,Output: 3.3V/200mA, 1.8V/30mA Positive Supervised by: Galvin Wang				
Trade Mark: Test Model: Operation Frequency: Ratings: Result: Compiled by: Ware Dang	K.I.T. K1000 WCDMA Band V/II, WIFI2.4G DC 3.7V by Rechargeable Li-Polymer Battery(280mAh) Input: 5V1A,Output: 3.3V/200mA ,1.8V/30mA Positive Supervised by: Galvin Wang				

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

Report No.: LCS181203048AE

SAR -- TEST REPORT

Test Report No. : LCS181203048AE

March 11, 2019 Date of issue

Test Model	: K1000
EUT	: K.I.T.
Applicant	: Find-Me Technologies Pty Ltd
Address	: PO Box 2494, Fortitude valley, Old 4006
Telephone	: /
Fax	: /
Manufacturer	: Shenzhen Raysans Technologies Co.,Ltd.
Address	: Block 1, Runheng Dingfeng High-tech Industrial Park, Yongfuyuan
	First Road, Bao'an District, Shenzhen
Telephone	: /
Fax	: /
Factory	:/
Address	
Telephone	
Fax	: /

Test Result

Positive

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 91

Revison History

Revision	Issue Date	Revisions	Revised By
000	March 11, 2019	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 91

<u>SHENZ</u>	HEN LCS COMPLIANCE TESTING LABORATORY LTD.Report	FCC ID: 2AR5M-K1000	Report No.: LCS181203048AE
	TABLE OF C	ONTENTS	
1. TES	T STANDARDS AND TEST DESCRIPTION		6
1.1.	TEST STANDARDS		6
1.2.	TEST DESCRIPTION		
1.3.			
1.4. 1.5.	PRODUCT DESCRIPTION STATEMENT OF COMPLIANCE		
2. TES	T ENVIRONMENT		
2.1.	Test Facility		
2.2. 2.3.	ENVIRONMENTAL CONDITIONS		
2.3.	EQUIPMENTS USED DURING THE TEST		
3. SAR	MEASUREMENTS SYSTEM CONFIGURATION		
3.1.	SARMEASUREMENT SET-UP		
3.1.	OPENSAR E-FIELD PROBE SYSTEM		
3.3.	PHANTOMS		
3.4.	DEVICE HOLDER		
3.5.	SCANNING PROCEDURE		
3.6. 3.7.	DATA STORAGE AND EVALUATION POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHAN		
3.8.	TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHAN		
3.9.	TISSUE EQUIVALENT LIQUID PROPERTIES		
	SYSTEM CHECK		
	SAR MEASUREMENT PROCEDURE Power Reduction		
	Power Drift		
	T CONDITIONS AND RESULTS		
4.1.	CONDUCTED POWER RESULTS		
4.2.	MANUFACTURING TOLERANCE		
4.3.	TRANSMIT ANTENNA SAR Measurement Results		
4.4. 4.5.			
4.6.			
4.7.			
4.8.			
4.9.	SYSTEM CHECK RESULTS		
	JBRATION CERTIFICATES		
5.1	PROBE-EPGO324 CALIBRATION CERTIFICATE		
5.2	SID835Dipole Calibration Certificate		
5.3	SID1900 DIPOLE CALIBRATION CERITICATE		
5.4	SID2450 DIPOLE CALIBRATION CERITICATE		
6. EUT	TEST PHOTOGRAPHS		
7.EUT	PHOTOGRAPHS		91

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

IEEE Std C95.1, 2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. IEEE Std 1528[™]-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices KDB447498 D01 General RF Exposure Guidance v06 : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies KDB648474 D04, Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 MHz to 6 GHz KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

 KDB941225 D01 3G SAR Procedures v03r01:
 3G SAR MEAUREMENT PROCEDURES

 KDB248227 D01 802.11 Wi-Fi SAR:
 SAR Guidance For Ieee 802.11 (Wi-Fi) Transmitters

 KDB 941225 D06 Hotspot Mode:
 SAR Evaluation Procedures For Portable Devices With Wireless Router

 Capabilities
 SAR Evaluation Procedures For Portable Devices With Wireless Router

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample		December 04, 2018
Testing commenced on	:	February 27, 2019
Testing concluded on	:	March 06, 2019

1.4. Product Description

The Find-Me Technologies Pty Ltd 's Model: K1000 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description		
Product Name: K.I.T.		
Trade Mark:	K.I.T.	
Model/Type reference:	K1000	
Listed Model(s):	1	
Modulation Type:	QPSK for UMTS	
Device category:	Portable Device	
Exposure category:	General population/uncontrolled environment	
EUT Type:	UT Type: Prototype	
Hardware Version DVT2 versio		
Software Version: MP		
DC 3.7V by Rechargeable Li-Polymer Battery(280mAh)		
Power supply:	Input: 5V1A	
	Output: 3.3V/200mA ,1.8V/30mA	
The EUT is WCDMA, 3G smart watches. the K1000 is equipped with WCDMA Band V, Band II and WiFi2.4G functions. For more information see the following datasheet		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 91

FCC ID: 2AR5M-K1000 Report No.: LCS181203048AE

Technical Characteristics		
UMTS		
Support Networks	WCDMA RMC12.2K,HSDPA,HSUPA	
Support Band	WCDMA Band V, Band II	
Frequency Range	WCDMA Band V: 826.4 ~ 846.6MHz	
	WCDMA Band II: 1852.4 ~ 1907.6MHz	
Power Class:	Class 3	
Modulation Type:	QPSK	
WCDMA Release Version:	R7	
HSDPA Release Version:	Release 7	
HSUPA Release Version:	Release 7	
DC-HSUPA Release Version:	Not Supported	
Antenna Description	FPC antenna	
	0.224 dBi(Max.) for WCDMA Band V;	
	0.224dBi(Max.) for WCDMA Band II;	
WIFI 2.4G		
Supported Standards:	IEEE 802.11b/802.11g/802.11n(HT20)	
	IEEE 802.11b:2412-2462MHz	
Operation frequency:	IEEE 802.11g:2412-2462MHz	
	IEEE 802.11n HT20:2412-2462MHz	
Type of Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM	
Channel separation:	n: 5MHz	
Antenna Description	Ceramic Antenna, 1.1dBi(max.)	

1.5. Statement of Compliance

The maximum of results of SAR found during testing for K1000 are follows:

<Highest Reported standalone SAR Summary>

Next - to - Mouth Exposure Conditions - Flat / Front (10mm)

Classment Class			SAR _{1-g} Limit
TNT	WCDMA Band V	0.243	
	WCDMA Band II	0.842	1.6
DTS	WIFI2.4G	0.211	

Extremity Exposure Conditions - Flat / Rear (0mm)

	Classment Class	Frequency Band	Highest Measured SAR _{10-g} (W/Kg)	SAR _{10-g} Limit
TNT		WCDMA Band V	1.257	
		WCDMA Band II	1.540	4.0
	DTS	WIFI2.4G	0.407	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for 1g) for Next – to Mouth Exousre – Flat/Front (10mm) and Extremity Exposure limit (4.0W/Kg for 10g) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013. The EUT battery must be fully charged and checked periodically during the test to ascertain iniform power output

<Highest Reported simultaneous SAR Summary>

Next - to - Mouth Exposure Conditions - Flat / Front (10mm)

Exposure Position	Frequency Band	Reported SAR _{1-g} (W/kg)	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/Kg)
Next – to - Mouth	WCDMA Band II	0.842	TNT	1.053
Next = 10 - MOUTH	WIFI2.4G	0.211	DTS	1.055

Extremity Exposure Conditions - Flat / Rear (0mm)

E	xposure Position	Frequency Band	Reported SAR _{10-g} (W/kg)	Classment Class	Highest Reported Simultaneous Transmission SAR _{10-g} (W/Kg)
		WCDMA Band II	1.540	TNT	1.947
	xtremity Exposure	WIFI2.4G	0.407	DTS	1.347

2. TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations: Site Description

Sile Description		
EMC Lab.	: FCC Registration Number. is 254912.	
	Industry Canada Registration Number. is 9642A-1.	
	ESMD Registration Number. is ARCB0108.	
	UL Registration Number. is 100571-492.	
	TUV SUD Registration Number. is SCN1081.	
	TUV RH Registration Number. is UA 50296516-00)1.
	NVLAP Registration Code is 600167-0.	

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
	40-03 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

FCC Limit (1g Tissue)								
EXPOSURE LIMITS	SAR (W/k (General Population / Uncontrolled Exposure Environment)	9) (Occupational / Controlled Exposure Environment)						
Spatial Average(averaged over the whole body)	0.08	0.4						
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0						
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0						

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

FCC ID: 2AR5M-K1000 Report No.: LCS181203048AE

2.4. Equipments Used during the Test

				Calibr	ation
Test Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Calibration Due
PC	Lenovo	G5005	MY42081102	N/A	N/A
SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
Signal Generator	Angilent	E4438C	MY42081396	06/16/2018	06/15/2019
Multimeter	Keithley	MiltiMeter 2000	4059164	06/16/2018	06/15/2019
S-parameter Network Analyzer	Agilent	8753ES	US38432944	11/15/2018	11/14/2019
Wideband Radia Communication Tester	R&S	CMW500	1201.0002K50	11/15/2018	11/14/2019
E-Field PROBE	SATIMO	SSE2	SN 31/17 EPGO324	10/08/2018	10/07/2019
DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	10/01/2018	09/30/2021
DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	09/24/2018	09/23/2021
DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	10/01/2018	09/30/2021
Power meter	Agilent	E4419B	MY45104493	06/16/2018	06/15/2019
Power meter	Agilent	E4418B	MY45100308	11/28/2018	11/27/2019
Power sensor	Agilent	E9301H	MY41495616	11/28/2018	11/27/2019
Power sensor	Agilent	E9301H	MY41495234	06/16/2018	06/15/2019
Directional Coupler	MCLI/USA	4426-20	0D2L51502	06/16/2018	06/15/2019
Mobile Phone POSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
COMOSAR OPEN Coaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	N/A	N/A
Liquid measurement Kit	HP	85033D	3423A03482	N/A	N/A

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 10 of 91

3. SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SARMeasurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

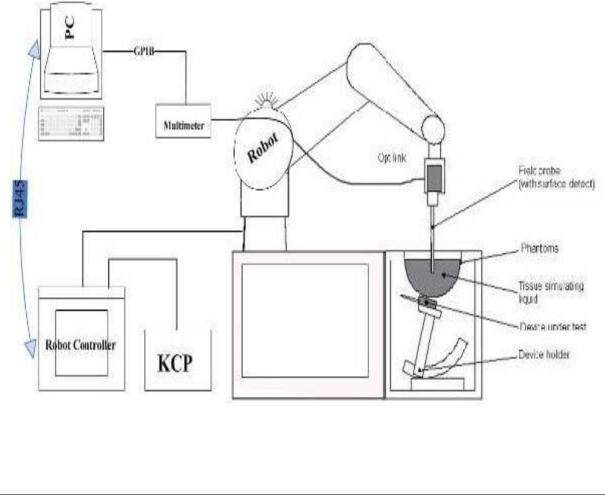
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 91

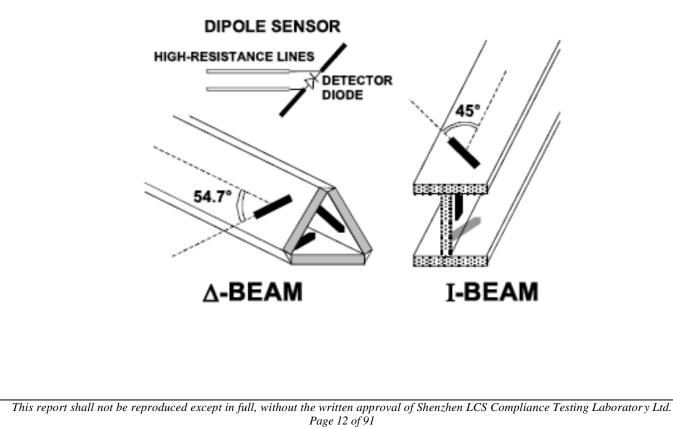
3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

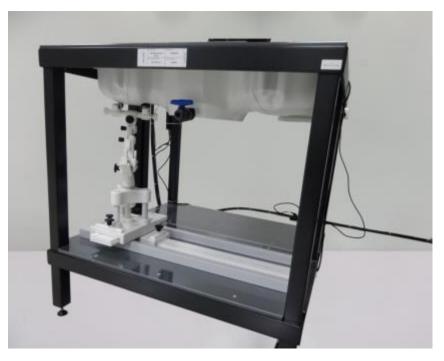
ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.


Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6 GHz)	
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB	
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm	0
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones	1

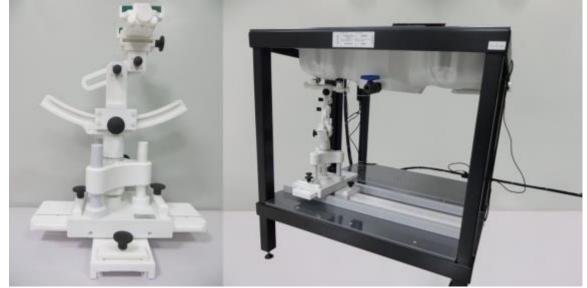
Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo


System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laborator y Ltd. Page 13 of 91

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$
	$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$3 - 4 \text{ GHz}$: $\leq 12 \text{ mm}$ $4 - 6 \text{ GHz}$: $\leq 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be \leq the sion of the test device with

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^{\circ}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 5 \text{ mm}^* \\ 4-6 \text{ GHz:} \leq 4 \text{ mm}^* \end{array}$	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$3-4$ GHz: ≤ 4 mm $4-5$ GHz: ≤ 3 mm $5-6$ GHz: ≤ 2 mm	
	spatial ution, normal to tom surface $graded grid \frac{\Delta z_{Zoom}(1): between}{1^{st} two points closest} to phantom surface} \frac{\Delta z_{Zoom}(n>1):}{between subsequent} mum zoom x, y, z$		\leq 4 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 2.5 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$	
			$\leq 1.5 \cdot \Delta z_{Zoo}$	m(n-1) mm	
Minimum zoom scan volume			\geq 30 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \geq 28 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \geq 25 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \geq 22 \; \mathrm{mm} \end{array}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 91

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report	FCC ID: 2AR5M-K1000	Report No.: LCS181203048AE

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files . The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/q], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	or ConvFi
- Diode compress	ion point Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

 $V \cdot$

 $+ a_{i2}f^2$

With Vi = compensated signal of channel i (i = x, y, z)(i = x, y, z)

Ui = input signal of channel i cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{array}{rcl} \mathrm{E-field probes}: & E_{i} = \sqrt{\frac{1}{Norm_{i} \cdot ConvF}} \\ \mathrm{H-field probes}: & \mathrm{H}_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}}{f} \end{array}$$

$$\begin{array}{rcl} \text{With} & \mathrm{Vi} & = \text{compensated signal of channel i} & (\mathbf{i} = \mathbf{x}, \, \mathbf{y}, \, \mathbf{z}) \\ \mathrm{Normi} & = \text{sensor sensitivity of channel i} & (\mathbf{i} = \mathbf{x}, \, \mathbf{y}, \, \mathbf{z}) \\ & [\mathrm{mV}/(\mathrm{V/m})2] \text{ for E-field Probes} \\ \mathrm{ConvF} & = \text{sensitivity enhancement in solution} \end{array}$$

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 91

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report FCC ID: 2AR5M-K1000 Report No.: LCS181203048AE

- = sensor sensitivity factors for H-field probes aij f
 - = carrier frequency [GHz]
 - = electric field strength of channel i in V/m Ei
 - Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR

= local specific absorption rate in mW/g

= total field strength in V/m Etot σ

= conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Position of the wireless device in relation to the phantom

Per KDB 447498 Section 6.2. Wrist watch and wrist-worn transmitters: Transmitters that are built-in within a wrist watch or similar wrist-worn devices typically operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. Next to the mouth exposure requires 1-g SAR and the wristworn condition requires 10-g extremity SAR.58 The 10-g extremity and 1-g SAR test exclusions may be applied to the wrist and face exposure conditions. When SAR evaluation is required, next to the mouth use is evaluated with the front of the device positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The wrist bands should be strapped together to represent normal use conditions. SAR for wrist exposure is evaluated with the back of the device positioned in direct contact against a flat phantom filled with body tissue-equivalent medium. The wrist bands should be unstrapped and touching the phantom. The space introduced by the watch or wrist bands and the phantom must be representative of actual use conditions; otherwise, if applicable, the neck or a curved head region of the SAM phantom may be used, provided the device positioning and SAR probe access issues have been addressed through a KDB inquiry. When other device positioning and SAR measurement considerations are necessary, a KDB inquiry is also required for the test results to be acceptable; for example, devices with rigid wrist bands or electronic circuitry and/or antenna(s) incorporated in the wrist bands. These test configurations are applicable only to devices that are worn on the wrist and cannot support other use conditions; therefore, the operating restrictions must be fully demonstrated in both the test reports and user manuals.

3.8. Tissue Dielectric Parameters for Head and Body Phantoms

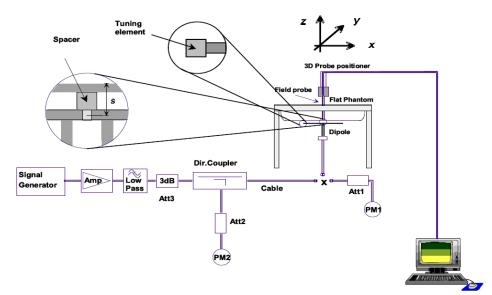
The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid										
Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2- Propan ediol	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	٤r
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
1800	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
1900	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
2000	/	7.99	/	0.16	/	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3

The composition of the tissue simulating liquid

Target Frequency	Не	ad	B	ody
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.9. Tissue equivalent liquid properties


Dielectric Performance of Head and Body Tissue Simulating Liquid

Tissue	Measured	Target	t Tissue		Measure	d Tissue		Liquid	
Туре	Frequency (MHz)	٤r	σ	ε _r	Dev.	σ	Dev.	Temp.	Test Data
835H	835	41.50	0.90	41.21	-0.70%	0.92	2.22%	20.4	02/27/2019
1900H	1900	40.00	1.40	41.23	3.07%	1.43	2.14%	22.5	02/28/2019
2450H	2450	39.20	1.80	39.54	0.87%	1.78	-1.11%	21.9	03/01/2019
835B	835	55.20	0.97	54.87	-0.60%	0.99	2.06%	21.3	03/04/2019
1900B	1900	53.30	1.52	54.24	1.76%	1.49	-1.97%	22.1	03/05/2019
2450B	2450	52.70	1.95	51.33	-2.60%	2.01	3.08%	21.7	03/06/2019

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

	SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations									
	Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)			
ĺ	2018-10-01	-24.49		54.9		2.8				

SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-26.43		50.5		4.7	

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-25.59		44.7		-1.1	

Mixture	Mixture Frequency Type (MHz)	Power SAR _{1g} (W/Kg)	SAR _{10g}	Drift	1W T	arget	Difference percentage		Liquid	Date	
Туре			(W/Kg)	(W/Kg)	(%)	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	Temp	Dale
		100 mW	0.953	0.618		9.60	6.20				
Head	835	Normalize to 1 Watt	9.53	6.18	2.44			-0.73%	0.32%	20.4	02/27/2019
		100 mW	0.985	0.627	-2.31						
Body	835	Normalize to 1 Watt	9.85	6.27		9.90	6.39	-0.51%	1.88%	21.3	03/04/2019
	Head 1900 N	100 mW	4.112	2.076	-0.57	39.84	20.20	3.21%			
Head		Normalize to 1 Watt	41.12	20.76					2.77%	22.5	02/28/2019
		100 mW	4.325	2.149	-2.43						
Body	1900	Normalize to 1 Watt	43.25	21.49		43.33	21.59	-0.18%	0.46%	22.1	03/05/2019
		100 mW	5.276	2.371							
Head	2450	Normalize to 1 Watt	52.76	23.71	-2.15	53.89	24.15	-2.10%	1.82%	21.9	03/01/2019
		100 mW	5.377	2.504							
Body	2450	Normalize to 1 Watt	53.77	25.04	-2.48	54.65	24.58	-1.61%	1.87%	21.7	03/06/2019

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For BT power measurement, use engineering software to configure EUT BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure BT output power.

3.11.2 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

1) Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2) Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 91

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report	FCC ID: 2AR5M-K1000	Report No.: LCS181203048AE
--	---	---------------------	----------------------------

used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set

Table 2: Subtests for UMTS Release 5 HSDPA

Sub-set	β _c	β_d	β _d (SF)	β_c/β_d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)			
1	2/15	15/15	64	2/15	4/15	0.0	0.0			
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0			
3	15/15	8/15	64	15/8	30/15	1.5	0.5			
4	15/15	4/15	64	15/4	30/15	1.5	0.5			
NULLA .										

Note1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15*\beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Sub- set	βc	β_{d}	β _d (SF)	βc/βd	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Table 3: Sub-Test 5 Setup for Release 6 HSUPA

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d = 12/15$, $\underline{\beta}_{hs}/\underline{\beta}_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: ßed can not be set directly; it is set by Absolute Grant Value.

3.11.3 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 91 measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands

c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.

4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions .

a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures .

6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 91 transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements.20 In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 91

|--|

- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.

a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

FCC ID: 2AR5M-K1000

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 91

FCC ID: 2AR5M-K1000

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

		WCDMA	A Band II resul	lt (dBm)	WCDMA Band V result (dBm)			
Item	Band	Chanr	nel/Frequency	(MHz)	Chan	nel/Frequency	(MHz)	
		9262/1852.4	9400/1880	9538/1907.6	4132/826.4	4183/836.6	4233/846.6	
	12.2kbps RMC	21.37	20.84	20.94	22.35	21.93	21.89	
RMC	64kbps RMC	20.03	20.21	20.05	21.35	21.24	21.07	
RIVIC	144kbps RMC	20.21	20.15	20.18	21.25	21.12	21.16	
	384kbps RMC	20.32	20.38	20.14	21.08	21.46	21.24	
	Subtest 1	22.35	21.93	22.27	22.09	22.04	22.13	
HSDPA	Subtest 2	21.01	21.45	21.44	21.09	21.35	21.62	
HSDPA	Subtest 3	21.37	21.22	21.38	21.45	21.37	21.43	
	Subtest 4	21.71	21.46	21.62	21.22	21.08	21.30	
	Subtest 1	22.27	21.96	21.80	21.99	22.02	22.04	
	Subtest 2	20.78	20.58	20.44	20.32	20.49	20.49	
HSUPA	Subtest 3	20.46	20.36	20.59	20.73	20.61	20.52	
	Subtest 4	20.59	20.75	20.78	20.61	20.12	20.33	
	Subtest 5	20.68	20.72	20.45	20.59	20.26	20.65	

Conducted Power Measurement Results(WCDMA Band V / II)

Note: When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤1/2dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

<pre><wlan 2.4ghz="" conducted="" power=""></wlan></pre>									
Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)					
			1	15.50					
	1	2412	2	15.01					
		2412	5.5	14.99					
			11	14.87					
			1	14.11					
IEEE 802.11b	G	2427	2	14.02					
	6	2437	5.5	14.06					
			11	13.92					
			1	13.96					
	11	2462	2	13.88					
			5.5	13.67					
			11	13.46					
			6	16.00					
			9	15.67					
			12	15.86					
	1	2412	18	15.47					
IEEE 802.11g	I	2412	24	15.49					
1666 002.1 IY			36	15.77					
			48	15.73					
			54	15.62					
	6	2437	6	15.94					
	U	2437	9	15.28					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 91

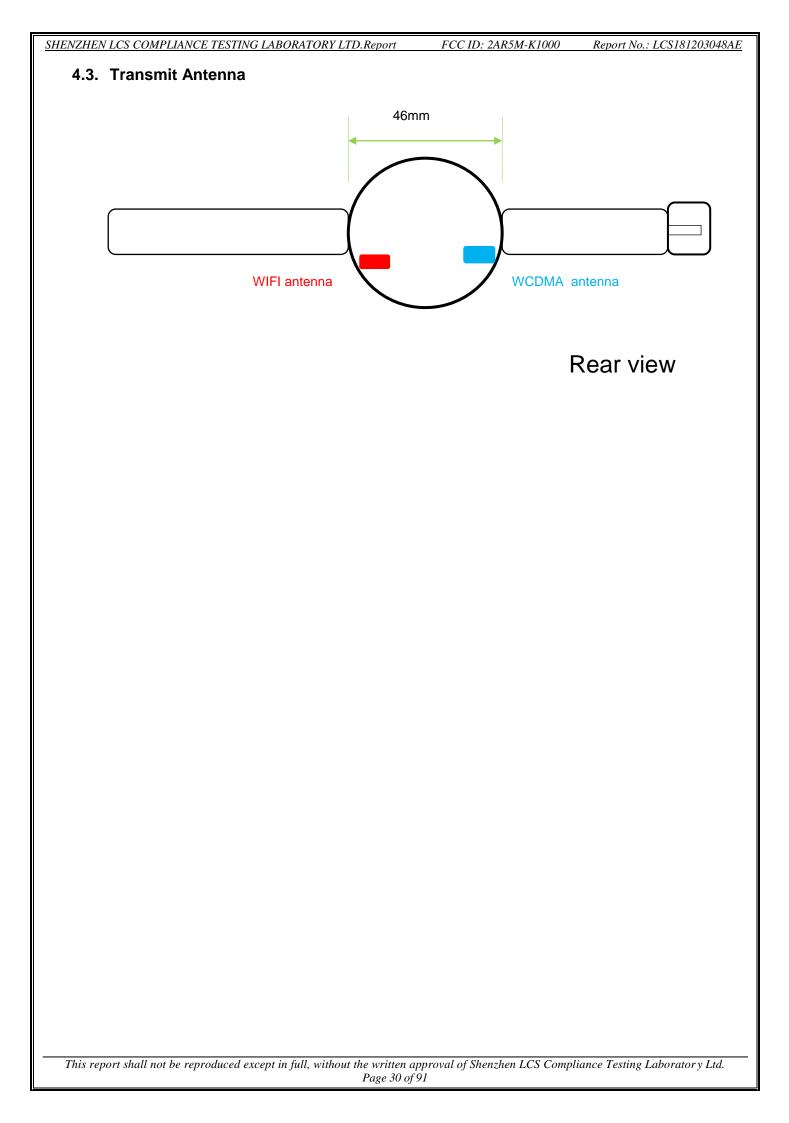
HENZHEN LCS COMPLIAN	FCC ID: 2AR5M-K1000	Report No.: LCS181203048A		
			12	15.44
			18	15.31
			24	15.42
			36	15.24
			48	15.63
			54	15.48
			6	15.10
			9	14.80
			12	14.61
		0.400	18	14.52
	11	2462	24	14.24
			36	15.01
			48	14.85
			54	14.76
			MCS0	16.12
			MCS1	16.03
			MCS2	15.79
			MCS3	15.94
	1	2412	MCS4	15.66
			MCS5	15.78
			MCS6	15.43
		MCS7	15.20	
			MCS0	15.29
			MCS1	15.28
			MCS2	15.09
			MCS3	15.00
IEEE 802.11n	6	2437	MCS4	14.58
HT20			MCS5	14.76
			MCS6	14.69
			MCS7	14.08
			MCS0	15.01
			MCS1	14.99
			MCS2	14.82
			MCS3	14.85
			MCS4	14.77
	11	2462	MCS5	14.22
			MCS6	14.32
			MCS7	14.26
			MCS6	14.53
			MCS7	14.67

4.2. Manufacturing tolerance

		UMTS							
UMTS Band V									
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	22.0	21.0	21.0						
Tolerance ±(dB)	1.0	1.0	1.0						
UMTS Band V HSDPA(sub-test 1)									
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	22.0	22.0	22.0						
Tolerance ±(dB)	1.0	1.0	1.0						
	UMTS Band V H	ISDPA(sub-test 2)							
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	21.0	21.0	21.0						
Tolerance ±(dB)	1.0	1.0	1.0						
	UMTS Band V I	ISDPA(sub-test 3)							
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	21.0	21.0	21.0						
Tolerance ±(dB)	1.0	1.0	1.0						
UMTS Band V HSDPA(sub-test 4)									
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	21.0	21.0	21.0						
Tolerance ±(dB)	1.0	1.0	1.0						
	UMTS Band V H	ISUPA(sub-test 1)							
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	21.0	22.0	22.0						
Tolerance ±(dB)	1.0	1.0	1.0						
	UMTS Band V H	ISUPA(sub-test 2)							
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	20.0	20.0	20.0						
Tolerance ±(dB)	1.0	1.0	1.0						
i	UMTS Band V H	ISUPA(sub-test 3)							
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	20.0	20.0	20.0						
Tolerance ±(dB)	1.0	1.0	1.0						
		ISUPA(sub-test 4)							
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	20.0	20.0	20.0						
Tolerance ±(dB)	1.0	1.0	1.0						
		ISUPA(sub-test 5)							
Channel	Channel 4132	Channel 4183	Channel 4233						
Target (dBm)	20.0	20.0	20.0						
Tolerance ±(dB)	1.0	1.0	1.0						

	UMT	S Band II	
Channel	Channel 9262	Channel 9400	Channel 9538
Target (dBm)	21.0	20.0	20.0
Tolerance ±(dB)	1.0	1.0	1.0
	UMTS Band II	HSDPA(sub-test 1)	
Channel	Channel 9262	Channel 9400	Channel 9538
Target (dBm)	22.0	21.0	22.0
Tolerance ±(dB)	1.0	1.0	1.0
	UMTS Band II	HSDPA(sub-test 2)	
Channel	Channel 9262	Channel 9400	Channel 9538
Target (dBm)	21.0	21.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0
	UMTS Band II	HSDPA(sub-test 3)	
Channel	Channel 9262	Channel 9400	Channel 9538

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 91


SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report FCC ID: 2AR5M-K1000 Report No.: LCS181203048AE

Target (dBm)	21.0	21.0	21.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II	HSDPA(sub-test 4)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	21.0	21.0	21.0					
Tolerance ±(dB)	1.0	1.0	1.0					
UMTS Band II HSUPA(sub-test 1)								
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	22.0	21.0	21.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II HSUPA(sub-test 2)							
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	20.0	20.0	20.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II	HSUPA(sub-test 3)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	20.0	20.0	20.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II	HSUPA(sub-test 4)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	20.0	20.0	20.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II	HSUPA(sub-test 5)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	20.0	20.0	20.0					
Tolerance ±(dB)	1.0	1.0	1.0					

WiFi 2.4G

W (1 2 . 40								
	IEEE 802.11b	o (Average)						
Channel	Channel 1	Channel 6	Channel 11					
Target (dBm)	15.0	14.0	13.0					
Tolerance ±(dB)	1.0	1.0	1.0					
IEEE 802.11g (Average)								
Channel	Channel 1	Channel 6	Channel 11					
Target (dBm)	16.0	15.0	15.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	IEEE 802.11n H	T20 (Average)						
Channel	Channel 1	Channel 6	Channel 11					
Target (dBm)	16.0	15.0	15.0					
Tolerance ±(dB)	1.0	1.0	1.0					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 91

FCC ID: 2AR5M-K1000

Report No.: LCS181203048AE

4.4. SAR Measurement Results

The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10} Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
UMTS	1:1
WLAN2450	1:1

4.4.1 SAR Results

Next - to - Mouth <Flat / Front (10mm)>

Ch.	Freq. (MHz)	Time slots	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
4132	826.4	RMC	Front	22.35	23.00	0.17	1.161	0.209	0.243	Plot 1
9262	1852.4	RMC	Front	21.34	22.00	1.59	1.164	0.723	0.842	Plot 2
9400	1800.0	RMC	Front	21.93	22.00	2.23	1.016	0.625	0.635	
9538	1907.6	RMC	Front	21.89	22.00	-1.52	1.026	0.661	0.678	
6	2437	DSSS	Front	15.50	16.00	0.44	1.122	0.188	0.211	Plot 3

Extremity <Flat / Rear (0mm)>

					Maximu	_		SAR _{10-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	time slots	Test Position	Conducted Power (dBm)	m Allowed Power (dBm)	Power Drift (%)	Scaling Factor	Measured	Reported	Graph Results
4132	826.4	RMC	Back	22.35	23.00	0.43	1.161	1.082	1.257	Plot 4
4183	836.6	RMC	Back	21.93	22.00	-4.17	1.016	0.904	0.919	
4233	846.6	RMC	Back	21.89	22.00	3.02	1.026	0.975	1.000	
9262	1852.4	RMC	Back	21.34	22.00	0.19	1.164	1.323	1.540	Plot 5
9400	1880.0	RMC	Back	20.84	21.00	-0.38	1.038	1.215	1.261	
9538	1907.6	RMC	Back	20.94	21.00	1.15	1.014	1.117	1.133	
6	2437	DSSS	Back	15.50	16.00	0.16	1.122	0.363	0.407	Plot 6

Note:

1. The value with black color is the maximum Reported SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

4.5. Simultaneous TX SAR Considerations

4.5.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT,,WCDMA and WLAN share difference modular and diffence antenna, need consider simultaneous transmitter.

Application Simultaneous Transmission information:

Air-Interface	Band (MHz)	Туре	Simultaneous Transmissions	Voice over Digital Transport(Data)
WCDMA	Band II /Band V	DT	Yes,WLAN	N/A
WLAN	2450	DT	Yes,UMTS	Yes

Note:

WLAN can be active at the same time, but only with interleaving of packages switched on board level.

4.5.2 Evaluation of Simultaneous SAR

Next – to – Mouth Exposure Conditions

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR _{1-a} (W/Kg)	UMTS Band II Reported SAR _{1-q} (W/Kg)	WiFi2.4G Reported SAR _{1-q} (W/kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-q} Limit (W/Kg)	Peak location separation ratio	Simut Meas. Required
Front	0.243	0.842	0.211	1.053	1.6	no	no

Extremity Exposure Conditions

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR _{10-g} (W/Kg)	UMTS Band II Reported SAR _{10-g} (W/Kg)	WiFi2.4G Reported SAR10-g (W/kg)	MAX. ΣSAR _{10-g} (W/Kg)	SAR _{10-g} Limit (W/Kg)	Peak location separation ratio	Simut Meas. Required
Rear	1.257	1.540	0.407	1.947	4.0	no	no

Note:

2. The value with block color is the maximum values of standalone

3. The value with blue color is the maximum values of $\sum SAR_{1-q}$

4.6. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.42 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 91 must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 3) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 4) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.42 W/kg (~ 10% from the 1-g SAR limit).
- 5) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 6) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.2

Next -	to –	Mouth	Exposure	Conditions
MENI-	10 -	mouur	LAPOSUIE	contantions

E	Frequency		RF		Repeated	Highest	First Repeated	
	Band (MHz)	Air Interface	Exposure Configuration	Test Position	SAR (yes/no)	Measured SAR _{1-g} (W/Kg)	Measued SAR _{1-q} (W/Kg)	Largest to Smallest SAR Ratio
	850	WCDMA Band V	Standalone	Front	no	0.209	n/a	n/a
	1900	WCDMA Band II	Standalone	Front	no	0.723	n/a	n/a
	2450	2.4GWLAN	Standalone	Front	no	0.188	n/a	n/a

Extremity Exposure Conditions

Frequency		RF Exposure Configuration		Popoatod	Highest	First Repeated	
Frequency Band (MHz)	Air Interface		SAR	Measured SAR _{10-g}	Measued SAR _{10-q}	Largest to Smallest	
(11112)			(903/110)	(W/Kg)	(W/Kg)	SAR Ratio	
850	WCDMA Band V	Standalone	Rear	no	1.082	1.042	1.038
1900	WCDMA Band II	Standalone	Rear	no	1.323	1.304	1.015
2450	2.4GWLAN	Standalone	Rear	no	0.363	n/a	n/a

Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

4.7. General description of test procedures

- 1. The DUT is tested using CMW 500 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
 - \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 5. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.

4.8. Measurement Uncertainty (300MHz-6GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR according to KDB865664D01.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 91

FCC ID: 2AR5M-K1000

Report No.: LCS181203048AE

4.9. System Check Results

Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE2(SN31/17 EPGO324) Test Date: February 27, 2019

M_{-1} (1' 1)	
Medium(liquid type)	HSL_850 835.000000
Frequency (MHz)	
Relative permittivity (real part)	41.21
Conductivity (S/m)	0.92
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.78
Variation (%)	2.440000
SAR 10g (W/Kg)	0.618254
SAR 1g (W/Kg)	0.952572
SURFACE SAR	VOLUME SAR
SAE Virtualization Graphical Interface Surface Radiated Intensity Zoom In/Out	SAR Visualization Graphical Interface Tolume Relisted Intensity Zoon In/Out
0 0 <td>$SATZ \qquad (ane A) SATZ \qquad (ane A) (b) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$</td>	$SATZ \qquad (ane A) SATZ \qquad (ane A) (b) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 91

Report No.: LCS181203048AE

Test mode:835MHz(Body) Product Description: Validation Model:Dipole SID835 E-Field Probe:SSE2(SN31/17 EPGO324) Test Date: March 04, 2019

Medium(liquid type)	MSL_850
Frequency (MHz)	835.0000
Relative permittivity (real part)	54.87
Conductivity (S/m)	0.99
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.85
Variation (%)	-2.310000
SAR 10g (W/Kg)	0.627258
SAR 1g (W/Kg)	0.985054
SURFACE SAR	VOLUME SAR
Image: Constraint of the second of the se	Image: state register buffer Image: state reg Image: stat
This report shall not be reproduced except in full, without the written	approval of Shenzhen LCS Compliance Testing Laboratory Ltd.
Page 35 of 91	

FCC ID: 2AR5M-K1000

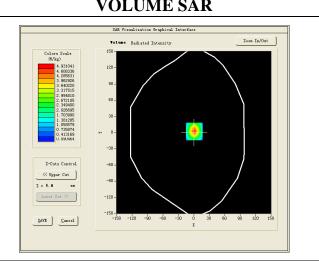
Report No.: LCS181203048AE

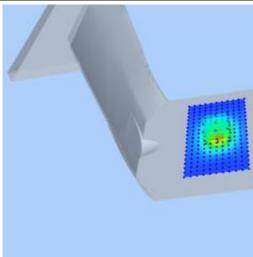
Test mode:1900MHz(Head) Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE2(SN31/17 EPGO324) Test Date: February 28, 2019

Medium(liquid type)	HSL_1900
Frequency (MHz)	1900.0000
Relative permittivity (real part)	41.23
Conductivity (S/m)	1.43
Input power	100mW
Crest Factor	1.0
Conversion Factor	2.10
Variation (%)	-0.570000
SAR 10g (W/Kg)	2.076234
SAR 1g (W/Kg)	4.112574
SURFACE SAR	VOLUME SAR
$\begin{bmatrix} 0/10^{-1} \\ 0.00000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.00000\\ 0.0000\\ $	0/1/kg) 120- 1 558710 3 558645 3 558645 1 100- 2 31300 1 100- 2 31300 1 100- 2 300- 2 300- 0- 30- 0- -00- -00- -00- -00- -00- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- 100- 100- <

Test mode:1900MHz(Body)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 91


FCC ID: 2AR5M-K1000 Report


Report No.: LCS181203048AE

Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE2(SN31/17 EPGO324) Test Date: March 05, 2019

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	4.325358
SAR 10g (W/Kg)	2.148524
Variation (%)	-2.430000
Conversion Factor	2.16
Crest Factor	1.0
Input power	100mW
Conductivity (S/m)	1.49
Relative permittivity (real part)	54.24
Frequency (MHz)	1900.0000
Medium(liquid type)	MSL_1900

SAE Visualization Graphical Interface Serface Redisted Intensity Zerm In/Out Colors Scale (0/kg) Color Scale (0/kg)

Test mode:2450MHz(Head)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 91

FCC ID: 2AR5M-K1000 Report No

Report No.: LCS181203048AE

Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE2(SN31/17 EPGO324) Test Date: March 01, 2019

Medium(liquid type)	HSL_2450
Frequency (MHz)	2450.000000
Relative permittivity (real part)	39.54
Conductivity (S/m)	1.78
Input power	100mW
Crest Factor	1.0
Conversion Factor	2.21
Variation (%)	-2.150000
SAR 10g (W/Kg)	2.371575
SAR 1g (W/Kg)	5.276387
SURFACE SAR	VOLUME SAR
0°/kc) 120- 1 100- 1 100- 1	$(V_{LQ}) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$

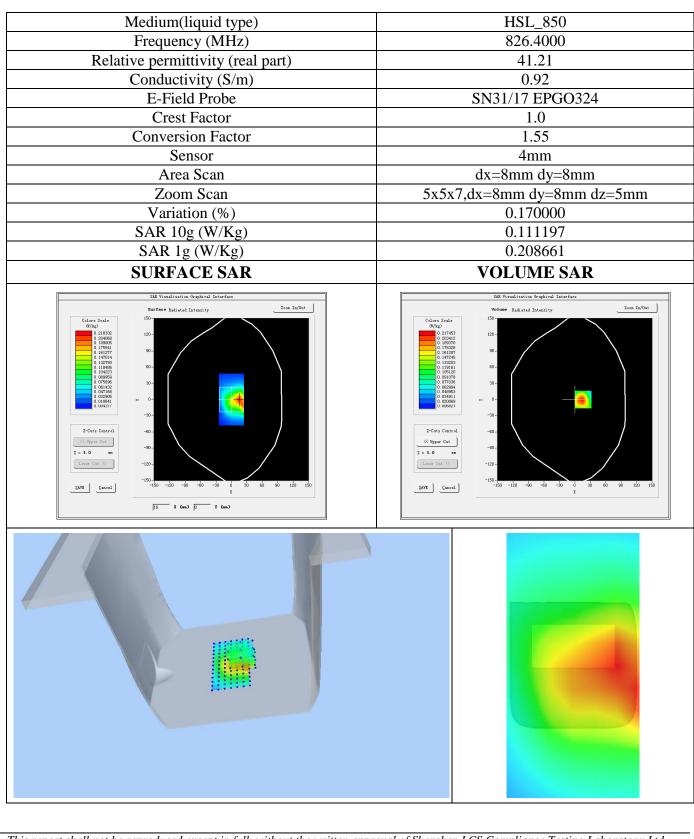
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 91

FCC ID: 2AR5M-K1000

Report No.: LCS181203048AE

Test mode:2450MHz(Body) Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE2(SN31/17 EPGO324) Test Date: March 06, 2019

Madium (liquid torna)	NCL 2450
Medium(liquid type)	MSL_2450 2450.000000
Frequency (MHz) Relative permittivity (real part)	51.33
	2.01
Conductivity (S/m)	2.01 100mW
Input power Crest Factor	1.0
Conversion Factor	2.28
Variation (%)	-2.550000
SAR 10g (W/Kg)	2.504387
SAR 1g (W/Kg)	5.376879
SURFACE SAR	VOLUME SAR
2-Cats Central 2-Cats Central Cover Cet 2-Fise Cover Cet 2-Fise Cover Cet 2-Fise Cover Cet 2-Fise Cover Cet 2-Fise Cover Cet 2-Fise Cover Cet 2-Fise Cover Cet 2-Fise Cover Cet Cover Cet Cov	S. 274230 S. 274230 S. 274230 S. 54148 S.


Page 39 of 91

4.10. SAR Test Graph Results

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02 **#1**

Test Mode:WCDMA 850MHz,Low channel < Extremity Exposure (Front 10mm)> Product Description: K.I.T. Model: K1000

Test Date: February 27, 2019

#2 Test Mode:WCDMA 1900MHz,Low channel < Extremity Exposure (Front 10mm)> Product Description: K.I.T. Model: K1000 Test Date: February 28, 2019 Medium(liquid type) HSL 1900 Frequency (MHz) 1852.4.000 Relative permittivity (real part) 41.23 Conductivity (S/m) 1.43 **E-Field Probe** SN31/17 EPGO324 **Crest Factor** 1.0 **Conversion Factor** 1.86 Sensor 4mm dx=8mm dy=8mm Area Scan Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) 1.590000 SAR 10g (W/Kg) 0.367867 SAR 1g (W/Kg) 0.723367 **SURFACE SAR VOLUME SAR** SAR Visualisation Graphical Interface SAR Visualisation Graphical Interface Zoom In/Out Zoon In/Out Colors Scale 120 31427 1503 6542 1580 6618 Z-Cuts Control Z-Cuts Control << Upper Cut z = 1.0 2 = 1.0 SAVE Cancel SAVE Cancel |8 X (nn) |8 Y (nn) This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 91

#3 Test Mode: 802.11b(WiFi2.4G),Low channel < Extremity Exposure (Front 10mm)> Product Description: K.I.T. Model: K1000 Test Date: March 01, 2019 Medium(liquid type) HSL 2450 Frequency (MHz) 2412.000000 Relative permittivity (real part) 39.54 Conductivity (S/m) 1.78 **E-Field Probe** SN31/17 EPGO324 Crest Factor 1.0 **Conversion Factor** 1.91 Sensor 4mm Area Scan dx=8mm dy=8mm Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) 0.440000 SAR 10g (W/Kg) 0.092950 SAR 1g (W/Kg) 0.188007 **SURFACE SAR VOLUME SAR** SAR Visualization Graphical Interface SAR Visualisation Graphical Interface Zoom In/Out Zoom In/Out Colors Sc (W/kg) 120 19027 17683 16339 123375 110152 096929 083706 070482 057259 044036 030813 017589 Z-Cuts Control Z-Cuts Control << Upper Cut z = 1.0 z = 1.0 SAVE Cancel SAVE Cancel 8 X (nn) 8 Y (nn)

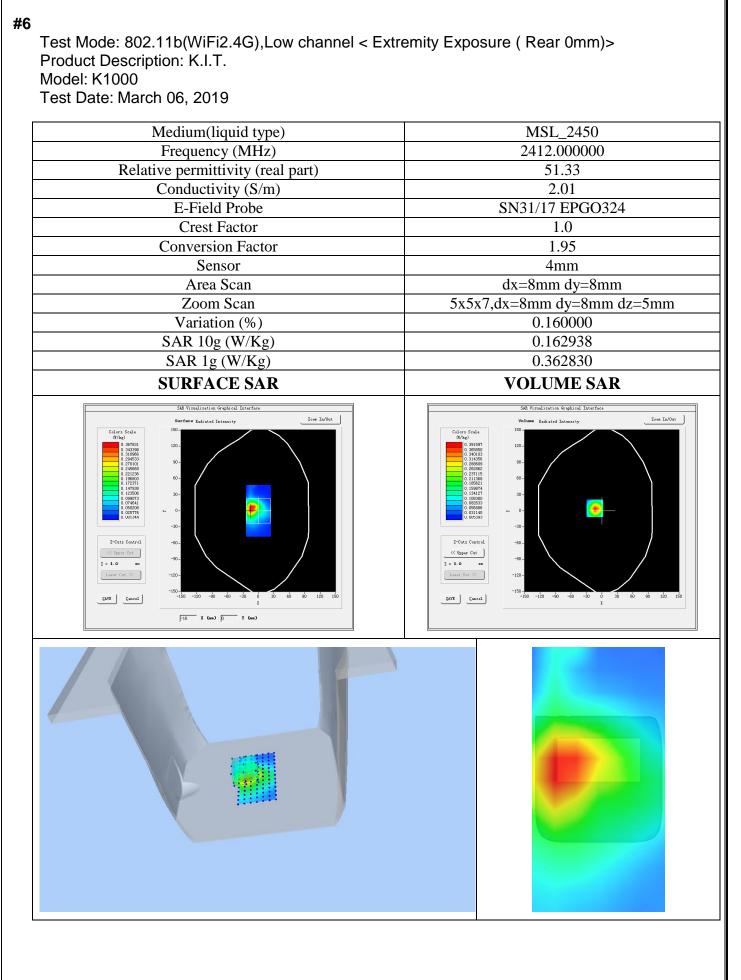
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 91

Test Mode:WCDMA 850MHz,Low channel < Extremity Exposure (Rear 0mm)> Product Description: K.I.T. Model: K1000 Test Date: March 04, 2019

Medium(liquid type)	MSL_850	
Frequency (MHz)	826.4000	
Relative permittivity (real part)	54.87	
Conductivity (S/m) 0.99		
E-Field Probe	SN31/17 EPGO324	
Crest Factor	1.0	
Conversion Factor	1.59	
Sensor	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	0.430000	
SAR 10g (W/Kg)	0.508641	
SAR 1g (W/Kg)	1.082127	
SURFACE SAR	VOLUME SAR	
SME Vizualization Oraphical Interface	SAR Visualisation Graphical Interface	
$ \begin{array}{c} \text{Furface Related Intensity} \\ \hline \\ \text{Colors Scale} \\ \hline \\ \text{(} \end{tabular} \\ \hline \\ \end{tabular} \\ \hline \end{tabular} \\ \hline \\ \end{tabular} \\ \hline \end{tabular} \\ \hline \\ \end{tabular} \\ \hline tabul$	$\begin{array}{c} \text{Volume Exclusted Intensity} \\ \hline \\ $	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 91

FCC ID: 2AR5M-K1000 Report No.: LO


Report No.: LCS181203048AE

Test Mode:WCDMA1900MHz,Low channel < Extremity Exposure (Rear 0mm)> Product Description: K.I.T. Model: K1000 Test Date: March 05, 2019

Madium(liquid typa)	MSL 1000
Medium(liquid type)	MSL_1900 1852.4000
Frequency (MHz)	
Relative permittivity (real part)	52.24
Conductivity (S/m)	1.49
E-Field Probe	SN31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.93
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.190000
SAR 10g (W/Kg)	0.620954
SAR 1g (W/Kg)	1.323329
SURFACE SAR	VOLUME SAR
SAR Visualisation Graphical Interface	S40 Visualization Graphical Interface Wolfman Educat Formation Zoom In/Out
$ \begin{array}{c} \text{Surface Exist vid Intensity} \\ \hline \\ \text{Colars Sele} \\ \hline \\ \text{O'Fe}^{(1)} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{O'Fe}^{(1)} \\ \hline \\ $	$\begin{array}{c} Volume \ had attend latenarity \\ \hline Control Schler(1) 1996(1) 1998$

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 91

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 91

Report No.: LCS181203048AE

5. CALIBRATION CERTIFICATES

5.1 Probe-EPGO324 Calibration Certificate

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 91

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/8/2018	JES
Checked by :	Jérôme LUC	Product Manager	10/8/2018	Jez
Approved by :	Kim RUTKOWSKI	Quality Manager	10/8/2018	thim putthowski

Shenzhen LCS
ompliance Testing Laboratory Ltd.

Issue	Date	Modifications
А	10/8/2018	Initial release

Page: 2/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 91

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AR5M-K1000 Report N

Report No.: LCS181203048AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

TABLE OF CONTENTS

1	Devi	ce Under Test	
2	Prod	uct Description	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Calil	oration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	
	5.4	Isotropy	8
6	List	of Equipment10	

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 91

FCC ID: 2AR5M-K1000 Report No.: L

Report No.: LCS181203048AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

1 DEVICE UNDER TEST

Device Under Test				
Device Type COMOSAR DOSIMETRIC E FIELD PRO				
Manufacturer	MVG			
Model	SSE2			
Serial Number	SN 31/17 EPGO324			
Product Condition (new / used)	New			
Frequency Range of Probe	0.15 GHz-6GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.189 MΩ			
	Dipole 2: R2=0.203 MΩ			
	Dipole 3: R3=0.218 MΩ			

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – *MVG COMOSAR Dosimetric E field Dipole*

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 91

FCC ID: 2AR5M-K1000 Rep

Report No.: LCS181203048AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 <u>ISOTROPY</u>

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 91

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	


5.1 <u>SENSITIVITY IN AIR</u>

	Normy dipole $2 (\mu V/(V/m)^2)$	
0.80	0.83	0.68

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	90	93

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

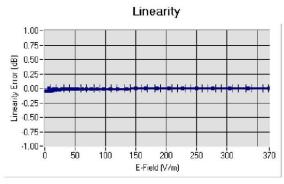
$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 91

FCC ID: 2AR5M-K1000 Report No.


Report No.: LCS181203048AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

5.2 <u>LINEARITY</u>

Linearity: I+/-1.13% (+/-0.05dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	42.17	0.86	1.56
BL450	450	57.65	0.95	1.60
HL750	750	40.03	0.93	1.45
BL750	750	56.83	1.00	1.50
HL850	835	42.19	0.90	1.55
BL850	835	54.67	1.01	1.59
HL900	900	42.08	1.01	1.54
BL900	900	55.25	1.08	1.60
HL1800	1800	41.68	1.46	1.65
BL1800	1800	53.86	1.46	1.68
HL1900	1900	38.45	1.45	1.86
BL1900	1900	53.32	1.56	1.93
HL2000	2000	38.26	1.38	1.83
BL2000	2000	52.70	1.51	1.89
HL2300	2300	39.44	1.62	1.95
BL2300	2300	54.52	1.77	2.01
HL2450	2450	37.50	1.80	1.91
BL2450	2450	53.22	1.89	1.95
HL2600	2600	39.80	1.99	1.89
BL2600	2600	52.52	2.23	1.94
HL5200	5200	35.64	4.67	1.50
BL5200	5200	48.64	5.51	1.56
HL5400	5400	36.44	4.87	1.44
BL5400	5400	46.52	5.77	1.47
HL5600	5600	36.66	5.17	1.48
BL5600	5600	46.79	5.77	1.53
HL5800	5800	35.31	5.31	1.50
BL5800	5800	47.04	6.10	1.55

LOWER DETECTION LIMIT: 9mW/kg

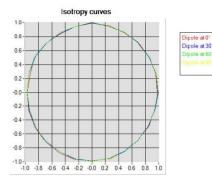
Page: 7/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 91

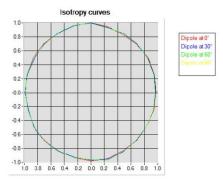
FCC ID: 2AR5M-K1000 Report

Report No.: LCS181203048AE


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy:	0.05 dB
- Hemispherical isotropy:	$0.07 \mathrm{dB}$

HL1800 MHz

- Axial isotropy:	0.06 dB
- Hemispherical isotropy:	0.07 dB

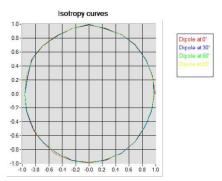
Page: 8/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 91

FCC ID: 2AR5M-K1000 Report

Report No.: LCS181203048AE


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

HL5600 MHz

- Axial isotropy:
- Hemispherical isotropy:

0.06 dB 0.10 dB

Page: 9/10

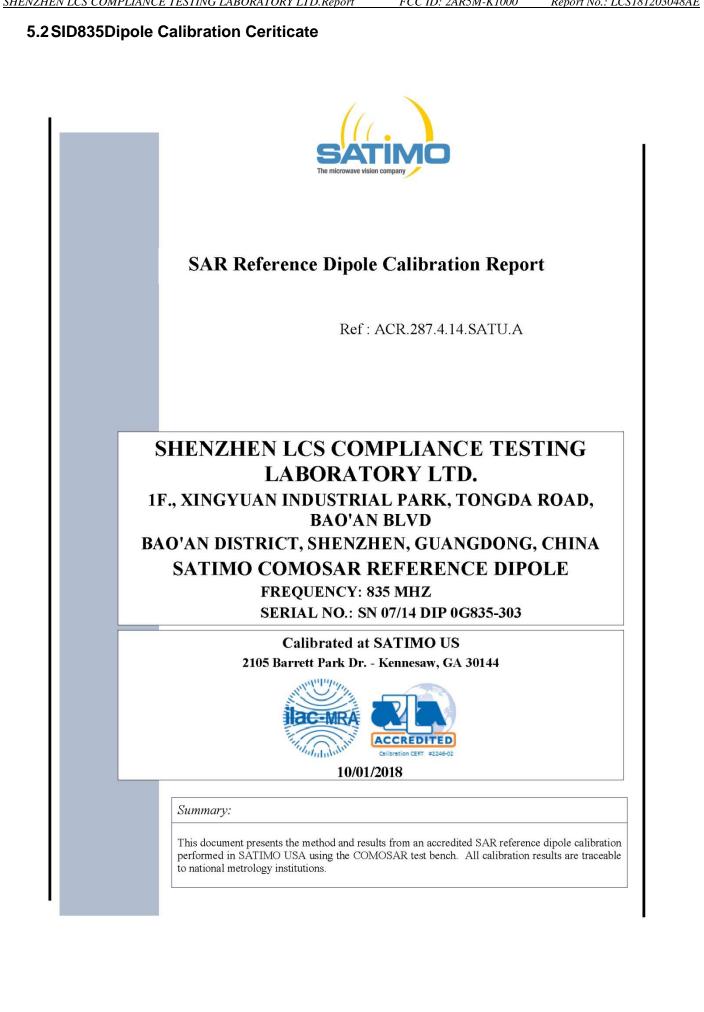
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 91

FCC ID: 2AR5M-K1000 Report No.: LC

Report No.: LCS181203048AE

COMOSAR E-FIELD PROBE CALIBRATION REPORT


6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Reference Probe	MVG	EP 94 SN 37/08	10/2017	10/2019	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

Page: 10/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 91

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 91

FCC ID: 2AR5M-K1000 Report No.

Report No.: LCS181203048AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2018	Jez
Checked by :	Jérôme LUC	Product Manager	10/14/2018	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2018	thim nuthowski

	Customer Name
	Shenzhen LCS
Distribution :	Compliance Testing
	Laboratory Ltd.

Issue	Date	Modifications
A	10/14/2018	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 91 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.Report

FCC ID: 2AR5M-K1000

Report No.: LCS181203048AE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test4	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	9
8	List	of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 91