

No. 1 Workshop, M-10, Middle section, Science & Report No.: SZEM171201274102

Technology Park, Nanshan District, Shenzhen, Page: 1 of 157

Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Email: ee.shenzhen@sgs.com

FCC TEST REPORT

Application No: SZEM1712012741RG **Applicant:**

Address of Applicant 10 Norden Place, Norwalk, CT 06855

Ventus Technologies

Manufacturer: Ventus Technologies

Address of Manufacturer 10 Norden Place, Norwalk, CT 06855

Factory: Ventus Technologies

Address of Factory 10 Norden Place, Norwalk, CT 06855

Router **EUT Description:** Model No.: LC100 **Trade Mark:** Ventus

FCC ID: 2AR44-LC100

47 CFR FCC Part 2, Subpart J Standards: 47 CFR Part 15, Subpart C

KDB558074 D01 15.247 Meas Guidance v05

Test Method ANSI C63.4(2014)

ANSI C63.10 (2013)

Date of Receipt: 2018/12/1

Date of Test: 2018/12/2to 2018/12/24

Date of Issue: 2019/1/22

Test Result: PASS *

Authorized Signature:

Derole yang

Derek Yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{. *} In the configuration tested, the EUT complied with the standards specified above.

Page: 2 of 157

1 Version

	Revision Record				
Version	Chapter	Date	Modifier	Remark	
00		2018/12/24		Original	

Authorized for issue by:		
Tested By	(Mike Hu) /Project Engineer	2018/12/24 Date
Checked By	Dand Chen (David Chen) /Reviewer	2018/12/24 Date

Page: 3 of 157

2 Test Summary

Test Item	Test Requirement	Test method	Test Result	Result
AC Power Line Conducted Emission	15.207	ANSI C63.10 2013	Clause 4.2	PASS
Duty Cycle	1	1	Clause 4.3	PASS
Conducted Output Power	15.247 (b)(3)	ANSI C63.10 2013	Clause 4.4	PASS
DTS (6 dB) Bandwidth	15.247 (a)(2)	ANSI C63.10 2013	Clause 4.5	PASS
Power Spectral Density	15.247 (e)	ANSI C63.10 2013	Clause 4.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 2013	Clause 4.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 2013	Clause 4.8	PASS
Radiated Spurious Emissions	15.247(d) ;15.205/15.209	ANSI C63.10 2013	Clause 4.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d) ;15.205/15.209	ANSI C63.10 2013	Clause 4.10	PASS

Page: 4 of 157

Contents

1	VERSION	2
2	TEST SUMMARY	
3	GENERAL INFORMATION	5
	3.1 CLIENT INFORMATION	5
	3.2 TEST LOCATION	5
	3.3 TEST FACILITY	
	3.4 GENERAL DESCRIPTION OF EUT	6
	3.5 TEST ENVIRONMENT AND MODE	
	3.6 DESCRIPTION OF SUPPORT UNITS	7
4	TEST RESULTS AND MEASUREMENT DATA	8
	4.1 ANTENNA REQUIREMENT	
	4.2 AC POWER LINE CONDUCTED EMISSIONS	
	4.3 DUTY CYCLE	
	4.3.1 Test Results	
	4.3.1 Test Plots	
	4.4 CONDUCTED OUTPUT POWER	
	4.4.1 Test Results	
	4.5 DTS (6 DB) BANDWIDTH	
	4.5.1 Test Results 4.5.2 Test plots 4.5.2 Test plots	
	4.6 Power Spectral Density	
	4.6.1 Test Results	
	4.6.2 Test plots	
	4.7 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	4.7.1 Test plots	
	4.8 RF CONDUCTED SPURIOUS EMISSIONS	64
	4.8.1 Test plots	65
	4.9 RADIATED SPURIOUS EMISSIONS	
	4.9.1 Radiated emission below 1GHz	
	4.9.2 Transmitter emission above 1GHz	
	4.10 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
	4.10.1 ANT1	
	4.10.2 ANT2	
	4.10.3 MIMO	
5	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	155
6	EQUIPMENT LIST	156
7	PHOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	157

Page: 5 of 157

3 General Information

3.1 Client Information

Applicant:	Ventus Technologies
Address of Applicant: 10 Norden Place, Norwalk, CT 06855	
Manufacturer:	Ventus Technologies
Address of Manufacturer: 10 Norden Place, Norwalk, CT 06855	
Factory:	Ventus Technologies
Address of Factory:	10 Norden Place, Norwalk, CT 06855

3.2 Test Location

Company:	SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch
Address:	No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China
Post code:	518057
Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
E-mail:	ee.shenzhen@sgs.com

3.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Page: 6 of 157

3.4 General Description of EUT

EUT Description::	Router		
Model No.:	LC100		
Trade Mark:	Ventus		
Hardware Version:	В		
Software Version:	1		
IEEE 802.11 WLAN Mode Supported	 ⋈ 802.11B (20 MHz channel bandwidth), ⋈ 802.11G (20 MHz channel bandwidth) ⋈ 802.11N (20 MHz channel bandwidth), ⋈ 802.11N (40 MHz channel bandwidth) 		
Operation Frequency:	2400 MHz -2483.5MHz fc = 2407 MHz + N * 5 MHz, where: -fc = "Operating Frequency" in MHz, -N = "Channel Number" with the range from 1 to 11 for the 20 MHz channel bandwidth, or 3 to 9 for the 40 MHz channel bandwidth.		
Type of Modulation:	IEEE for 802.11B: DSSS IEEE for 802.11G : OFDM IEEE for 802.11N(HT20) : OFDM		
Sample Type:	☐ Portable Device, ☑Module		
Antenna Type:	☐ External, ☑ Integrated		
Antenna Ports	⊠ Ant 1, ⊠ Ant 2, □ Ant 3		
Smart System	 SISO (for 802.11B/G/N), MIMO (for 802.11N): 2 Tx & 2 Rx, Diversity (for 802.11B/G): Tx & Rx 		
Antenna Gain:	ANT1:3.2dBi; ANT2:2.5dBi		
Power Supply	⊠ AC/DC Adapter; ☐ Battery ☐ PoE:; ☐ Other:		

	Operation Frequency of each channel (802.11B/G/N HT20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Page: 7 of 157

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency for 802.11B/G/N (HT20)
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

3.5 Test Environment and Mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	50 % RH
Atmospheric Pressure:	101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

3.6 Description of Support Units

The EUT has been tested independent unit.

Page: 8 of 157

4 Test results and Measurement Data

4.1 Antenna Requirement

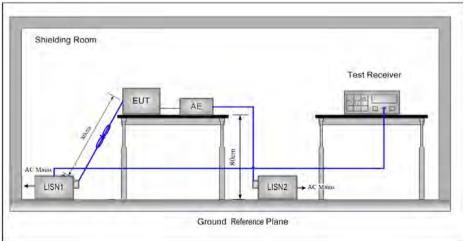
Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is ANT1:3.2dBi; ANT2:2.5dBi.

Page: 9 of 157

4.2 AC Power Line Conducted Emissions

47 CFR Part 15C Section 15	5.207		
ANSI C63.10: 2013			
150kHz to 30MHz			
- (111)	Limit (dBuV)		
rrequency range (MHZ)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarith	nm of the frequency.		
room.	•		
Impedance Stabilization impedance. The power of to a second LISN 2, which plane in the same way as multiple socket outlet strissingle LISN provided the 3) The tabletop EUT was placed on the horizontal 4) The test was performed of the EUT shall be 0.4 in vertical ground reference reference plane. The LIST unit under test and bond mounted on top of the graph between the closest point the EUT and associated 5) In order to find the maxing equipment and all of the	 The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of 		
	ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarith 1) The mains terminal disturoom. 2) The EUT was connected Impedance Stabilization impedance. The power of to a second LISN 2, which plane in the same way as multiple socket outlet strisingle LISN provided the 3) The tabletop EUT was plane ground reference plane. placed on the horizontal 4) The test was performed work of the EUT shall be 0.4 in vertical ground reference reference plane. The LIS unit under test and bondomounted on top of the ground between the closest point the EUT and associated 5) In order to find the maxing equipment and all of the	Frequency range (MHz) Cuasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was corroom. 2) The EUT was connected to AC power source through Impedance Stabilization Network) which provides a impedance. The power cables of all other units of the to a second LISN 2, which was bonded to the ground plane in the same way as the LISN 1 for the unit being multiple socket outlet strip was used to connect multisingle LISN provided the rating of the LISN was not 3) The tabletop EUT was placed upon a non-metallic targound reference plane. And for floor-standing arrangelaced on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference of the EUT shall be 0.4 m from the vertical ground reference plane. The LISN 1 was placed 0.8 m from unit under test and bonded to a ground reference plane. This between the closest points of the LISN 1 and the EUT and associated equipment was at least 0.8	

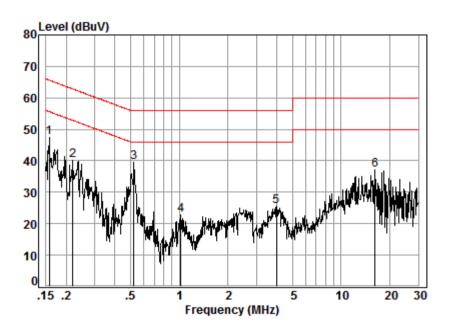
Test Setup:

Report No.: SZEM171201274102

Page: 10 of 157

Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
	Charge + Transmitting mode.
First Tool Made	Through Pre-scan, find the 1Mbps of rate of 802.11B at lowest channel is the worst case.
Final Test Mode:	Charge + Transmitting mode.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM171201274102


Page: 11 of 157

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

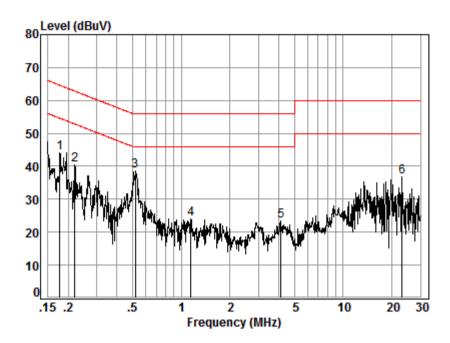
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

Site : Shielding Room

Condition: Line

Job No. : 12741RG LC 100


Test mode: b

	Freq	Cable Loss	LISN Factor	Read Level			Over Limit	Remark	
	MHz	dB	dB	dBuV	dBuV	dBuV	dB		
1	0.16	0.01	9.66	37.74	47.41	55.60	-8.19	Peak	
2	0.22	0.03	9.66	30.46	40.15	52.83	-12.68	Peak	
3	0.52	0.06	9.67	29.72	39.45	46.00	-6.55	Peak	
4	1.02	0.09	9.74	13.05	22.88	46.00	-23.12	Peak	
5	3.99	0.16	9.72	15.62	25.50	46.00	-20.50	Peak	
6	16.23	0.22	10.27	26.65	37.14	50.00	-12.86	Peak	

Report No.: SZEM171201274102

Page: 12 of 157

Neutral Line:

Site : Shielding Room

Condition: Neutral

Job No. : 12741RG LC 100

Test mode: b

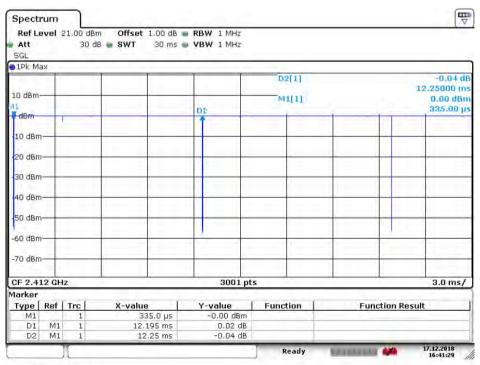
		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18	0.02	9.64	34.37	44.03	54.59	-10.56	Peak
2	0.22	0.03	9.64	30.76	40.43	52.83	-12.40	Peak
3	0.52	0.06	9.64	28.97	38.67	46.00	-7.33	Peak
4	1.15	0.10	9.70	14.09	23.89	46.00	-22.11	Peak
5	4.14	0.16	9.69	13.52	23.37	46.00	-22.63	Peak
6	23.14	0.25	10.23	26.18	36.66	50.00	-13.34	Peak

Remarks:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Page: 13 of 157

4.3 Duty Cycle

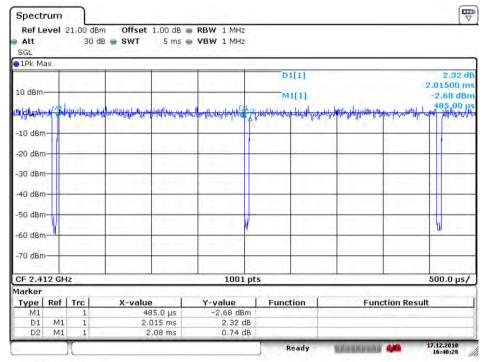

4.3.1 Test Results

Test Mode	TX Freq. [MHz]	Duty cycle [%]
11B	Ant 1: CH1	99.55
11G	Ant 1: CH1	96.88
11N20	Ant 1: CH1	96.65
11G_CDD	Ant 1: CH1	97.34
11N20_MIMO	Ant 1: CH1	94.12
11B	Ant 2: CH1	99.59
11G	Ant 2: CH1	97.11
11N20	Ant 2: CH1	97.16
11G_CDD	Ant 2: CH1	97.11
11N20_MIMO	Ant 2: CH1	94.12

4.3.1 Test Plots

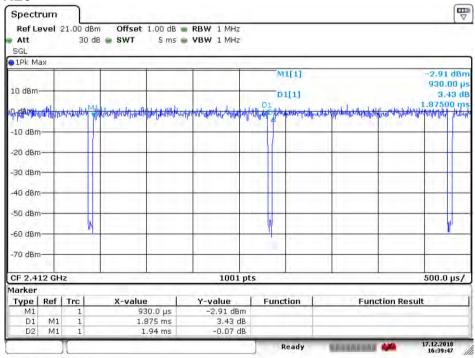
4.3.1.1 ANT1

4.3.1.1.1 11B



Date: 17 DEC 2018 16:41:30

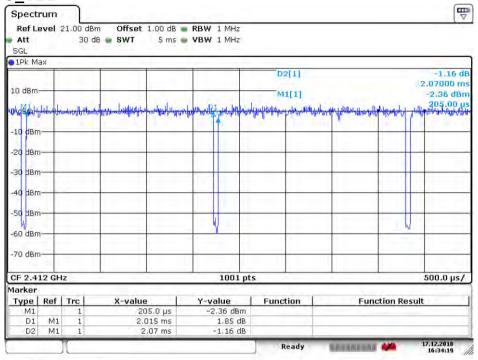
Report No.: SZEM171201274102


Page: 14 of 157

4.3.1.1.2 11G

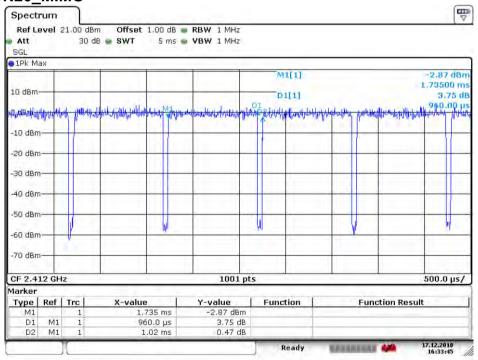
Date: 17 DEC.2018 16:40:29

4.3.1.1.3 11N20



Date: 17 DEC.2018 16:39:47

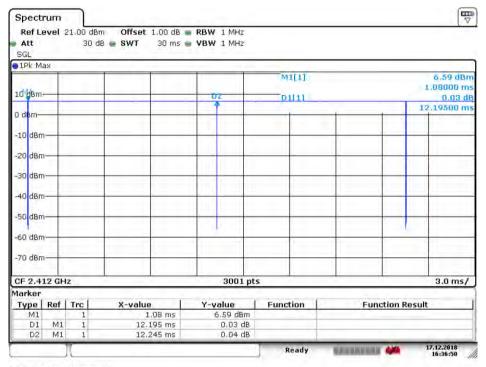
Report No.: SZEM171201274102


Page: 15 of 157

4.3.1.1.4 11G CDD

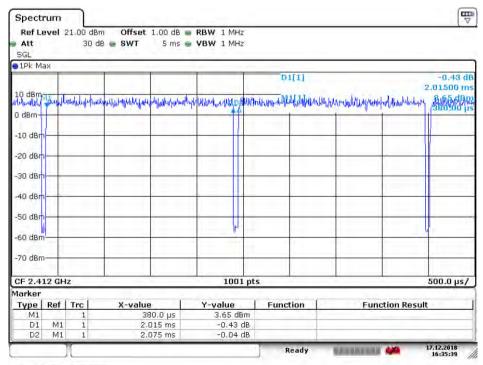
Date: 17 DEC.2018 16:34:19

4.3.1.1.5 11N20 MIMO


Date: 17.DEC.2018 16:33:46

Report No.: SZEM171201274102

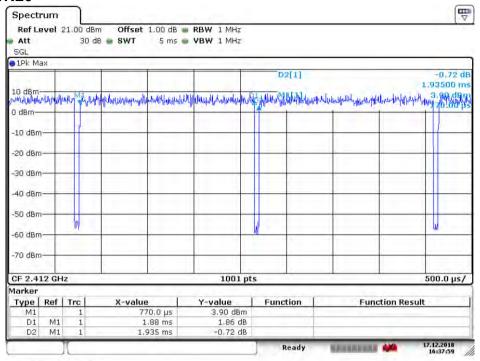
Page: 16 of 157


4.3.1.2 ANT2

4.3.1.2.1 11B

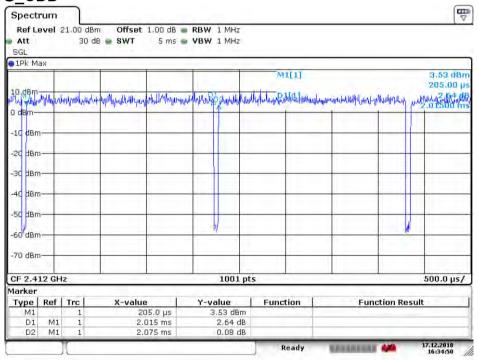
Date: 17 DEC 2018 16:36:50

4.3.1.2.2 11G



Date: 17 DEC.2018 16:35:40

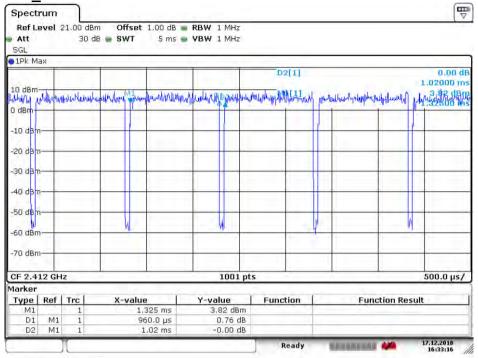
Report No.: SZEM171201274102


Page: 17 of 157

4.3.1.2.3 11N20

Date: 17 DEC.2018 16:37:59

4.3.1.2.4 11G CDD



Date: 17 DEC.2018 16:34:51

Report No.: SZEM171201274102

Page: 18 of 157

4.3.1.2.5 11N20 MIMO

Date: 17.DEC.2018 16:33:16

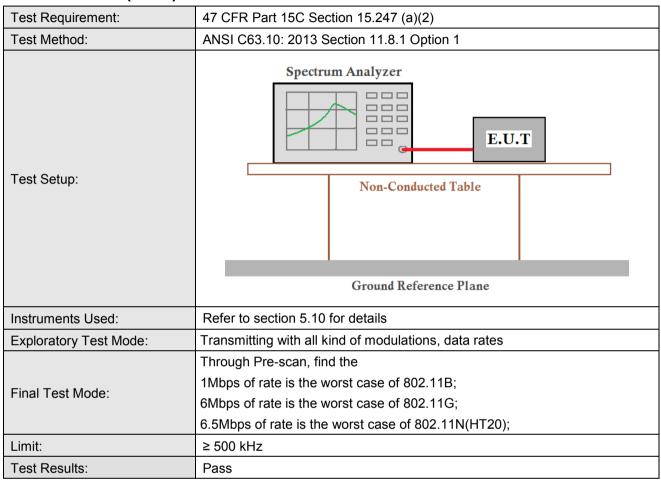
Page: 19 of 157

4.4 Conducted Output Power

Page: 20 of 157

4.4.1 Test Results

Measurement Data of Average Power:


Mode	Test Channel	Ave	Result		
		ANT 1	ANT 2	SUM	
	Lowest	7.02	13.90		Report purpose only
802.11B	Middle	7.31	14.25		Report purpose only
0022	Highest	7.30	14.07		Report purpose only
	Lowest	7.27	14.05		Report purpose only
802.11G	Middle	7.30	14.41		Report purpose only
5525	Highest	7.54	14.25		Report purpose only
	Lowest	6.97	13.79		Report purpose only
802.11N20	Middle	7.20	14.11		Report purpose only
00=	Highest	7.22	13.98		Report purpose only
	Lowest	7.80	14.07	14.99	Report purpose only
802.11G CDD	Middle	7.68	14.38	15.22	Report purpose only
0020_022	Highest	8.01	14.22	15.15	Report purpose only
	Lowest	7.53	13.82	14.74	Report purpose only
802.11N20_MIMO	Middle	7.41	14.20	15.03	Report purpose only
	Highest	7.76	14.05	14.97	Report purpose only

Measurement Data of Peak Power:

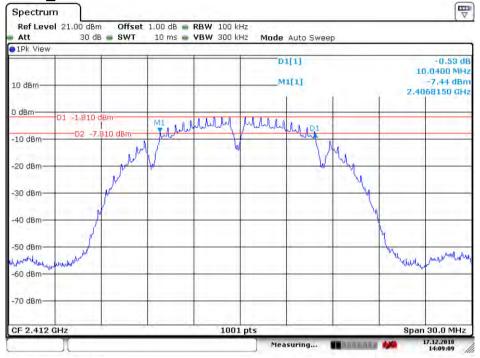
Mode	Test Channel	Pe	Limit	Result		
		ANT 1	ANT 2	SUM	(dBm)	
	Lowest	11.06	17.47		30.00	Pass
802.11B	Middle	11.00	17.95		30.00	Pass
	Highest	11.39	17.80		30.00	Pass
	Lowest	14.31	20.88		30.00	Pass
802.11G	Middle	14.58	21.41		30.00	Pass
0020	Highest	14.68	21.29		30.00	Pass
	Lowest	14.23	20.70		30.00	Pass
802.11N20	Middle	14.38	21.15		30.00	Pass
	Highest	14.34	21.04		30.00	Pass
	Lowest	14.79	21.28	22.16	30.00	Pass
802.11G CDD	Middle	14.67	21.60	22.40	30.00	Pass
0020_022	Highest	14.96	21.45	22.33	30.00	Pass
	Lowest	14.52	21.09	21.95	30.00	Pass
802.11N20_MIMO	Middle	14.41	21.47	22.25	30.00	Pass
	Highest	14.81	21.30	22.18	30.00	Pass

Page: 21 of 157

4.5 DTS (6 dB) Bandwidth

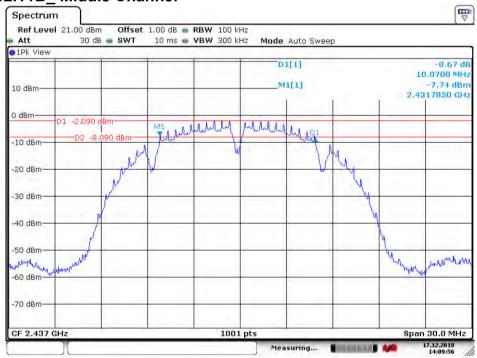
4.5.1 Test Results

Mode	Test Channel	6dB Emission E	Bandwidth (MHz)	Limit (kHz)	Result	
Wiode	rest Channel	ANT 1	ANT 2	Limit (KHZ)		
	Lowest	10.04	9.59	≥500	Pass	
802.11B	Middle	10.07	9.56	≥500	Pass	
3022	Highest	10.01	10.07	≥500	Pass	
	Lowest	15.14	15.11	≥500	Pass	
802.11G	Middle	15.14	15.14	≥500	Pass	
3323	Highest	15.11	15.11	≥500	Pass	
	Lowest	15.14	15.14	≥500	Pass	
802.11N20	Middle	15.14	15.14	≥500	Pass	
00=	Highest	15.14	15.17	≥500	Pass	
	Lowest	15.14	15.14	≥500	Pass	
802.11G CDD	Middle	15.14	15.11	≥500	Pass	
0020_022	Highest	15.14	15.14	≥500	Pass	
	Lowest	15.14	15.14	≥500	Pass	
802.11N20 MIMO	Middle	15.14	15.14	≥500	Pass	
	Highest	15.14	15.14	≥500	Pass	


Report No.: SZEM171201274102

Page: 22 of 157

4.5.2 Test plots

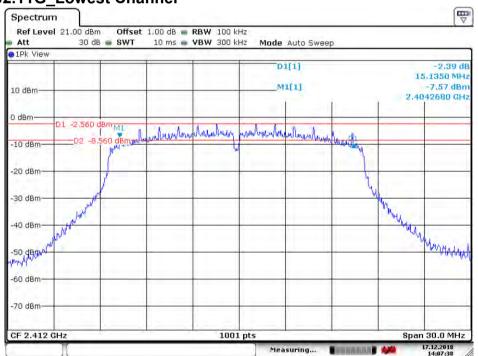

4.5.2.1 ANT1

4.5.2.1.1 802.11B Lowest Channel

Date: 17.DEC.2018 14:09:09

4.5.2.1.2 802.11B Middle Channel

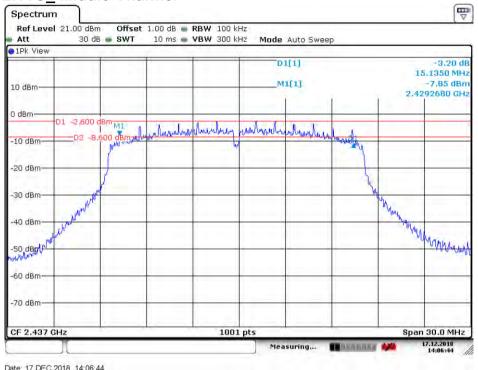
Date: 17.DEC.2018 14:09:57


Report No.: SZEM171201274102

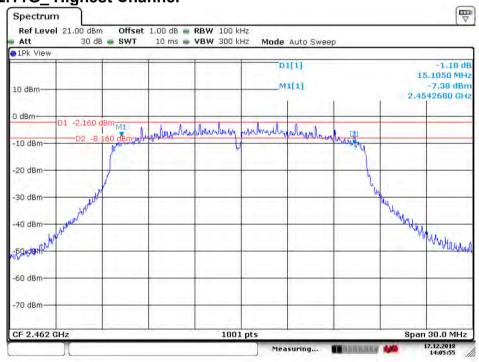
Page: 23 of 157

4.5.2.1.3 802.11B Highest Channel

4.5.2.1.4 802.11G Lowest Channel



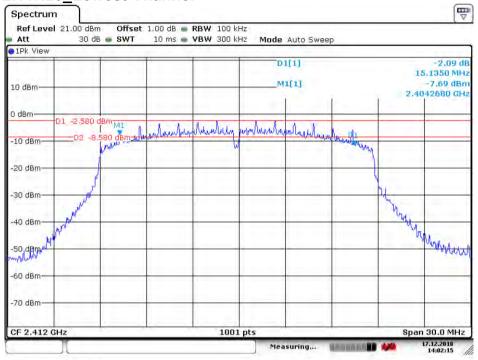
Date: 17.DEC.2018 14:07:38


Report No.: SZEM171201274102

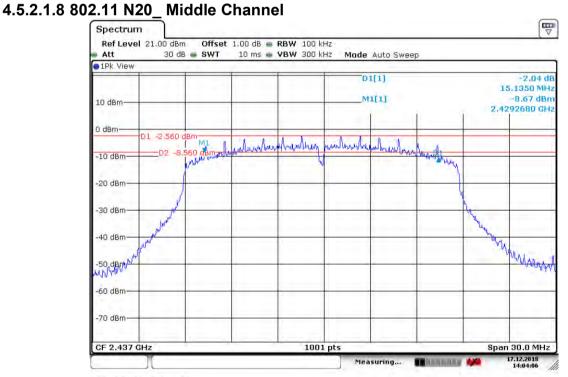
Page: 24 of 157

4.5.2.1.5 802.11G Middle Channel

4.5.2.1.6 802.11G Highest Channel



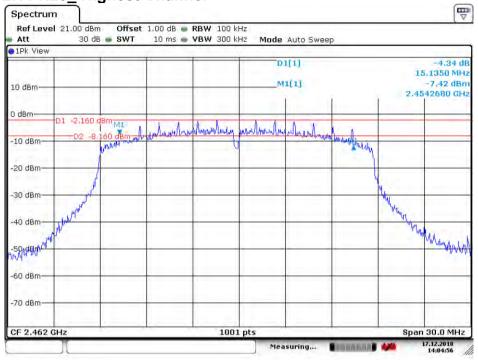
Date: 17.DEC.2018 14:05:55


Report No.: SZEM171201274102

Page: 25 of 157

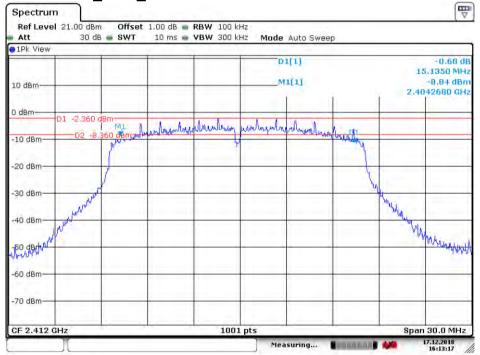
4.5.2.1.7 802.11N20 Lowest Channel

Date: 17 DEC 2018 14:02:15



Date: 17.DEC.2018 14:04:06

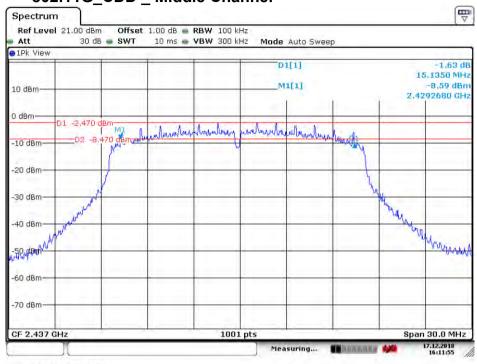
Report No.: SZEM171201274102


Page: 26 of 157

4.5.2.1.9 802.11 N20 Highest Channel

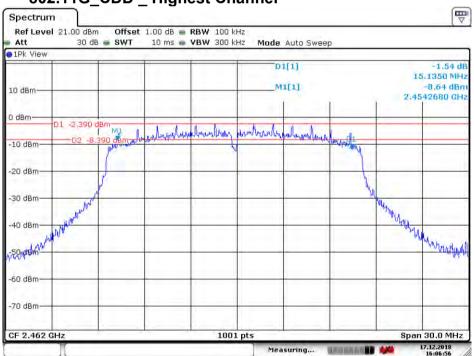
Date: 17.DEC.2018 14:04:56

4.5.2.1.10 802.11G CDD Lowest Channel



Date: 17.DEC.2018 16:13:18

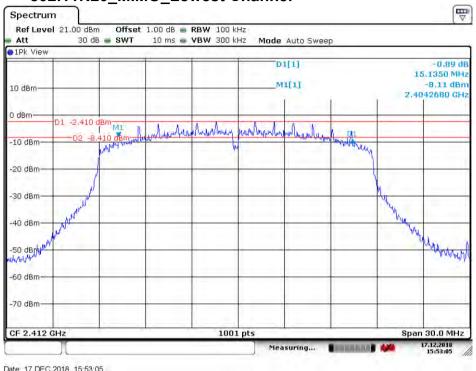
Report No.: SZEM171201274102


Page: 27 of 157

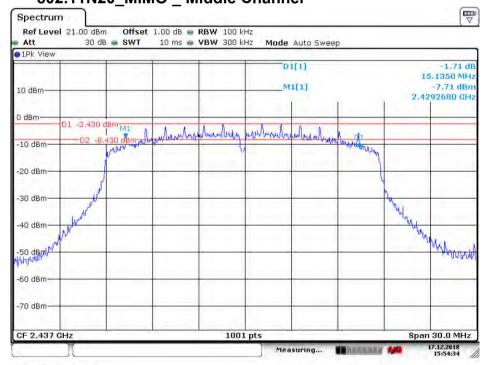
4.5.2.1.11 802.11G CDD Middle Channel

Date: 17.DEC.2018 16:11:55

4.5.2.1.12 802.11G_CDD _ Highest Channel



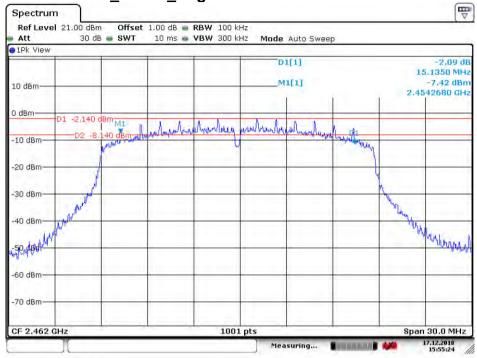
Date: 17.DEC.2018 16:06:57


Report No.: SZEM171201274102

Page: 28 of 157

4.5.2.1.13 802.11N20 MIMO Lowest Channel

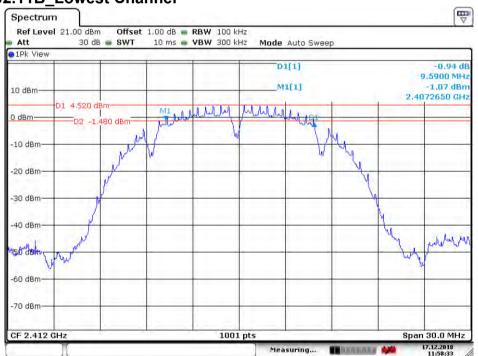
4.5.2.1.14 802.11N20_MIMO _ Middle Channel



Date: 17.DEC.2018 15:54:34

Report No.: SZEM171201274102

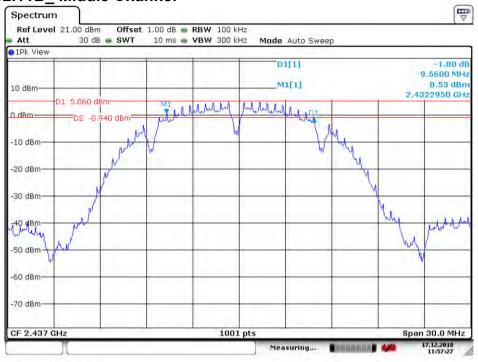
Page: 29 of 157


4.5.2.1.15 802.11N20 MIMO Highest Channel

Date: 17.DEC.2018 15:55:25

4.5.2.2 ANT2

4.5.2.2.1 802.11B Lowest Channel



Date: 17.DEC.2018 11:58:33

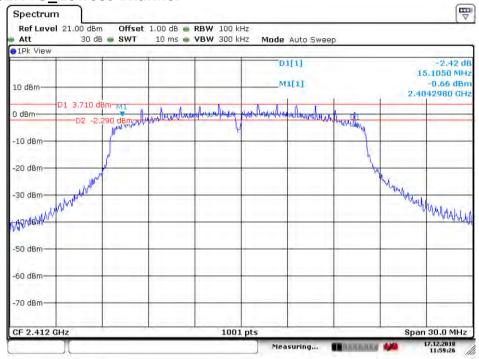
Report No.: SZEM171201274102


Page: 30 of 157

4.5.2.2.2 802.11B Middle Channel

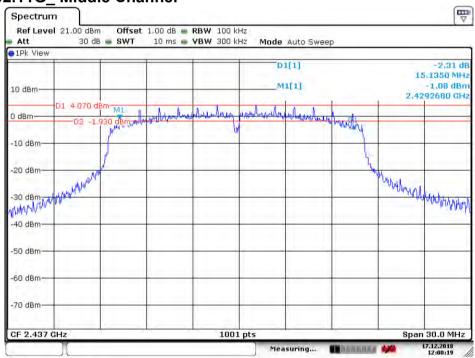
Date: 17.DEC.2018 11:57:27

4.5.2.2.3 802.11B_ Highest Channel



Date: 17.DEC.2018 11:56:27

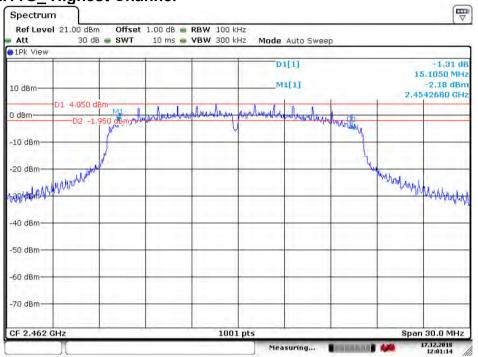
Report No.: SZEM171201274102


Page: 31 of 157

4.5.2.2.4 802.11G Lowest Channel

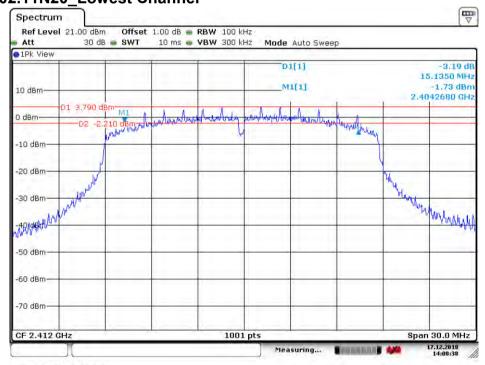
Date: 17.DEC.2018 11:59:26

4.5.2.2.5 802.11G Middle Channel



Date: 17.DEC:2018 12:00:19

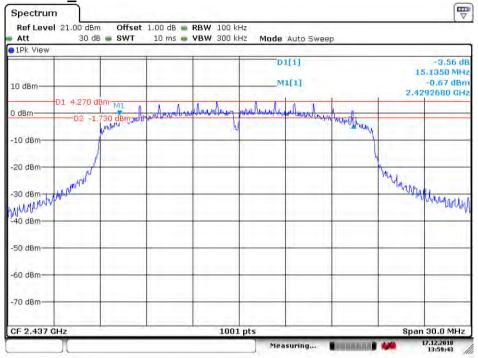
Report No.: SZEM171201274102


Page: 32 of 157

4.5.2.2.6 802.11G Highest Channel

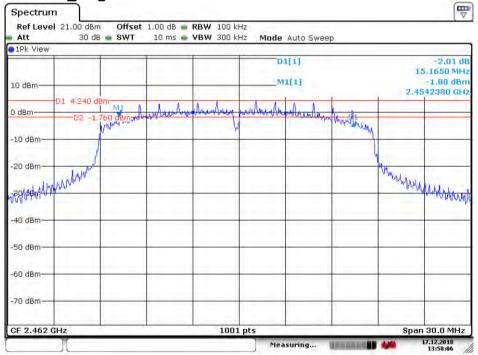
Date: 17.DEC.2018 12:01:14

4.5.2.2.7 802.11N20 Lowest Channel



Date: 17.DEC.2018 14:00:38

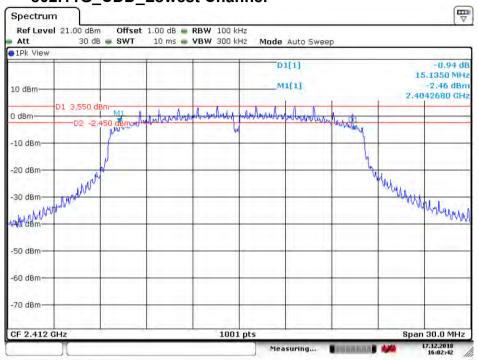
Report No.: SZEM171201274102


Page: 33 of 157

4.5.2.2.8 802.11 N20 Middle Channel

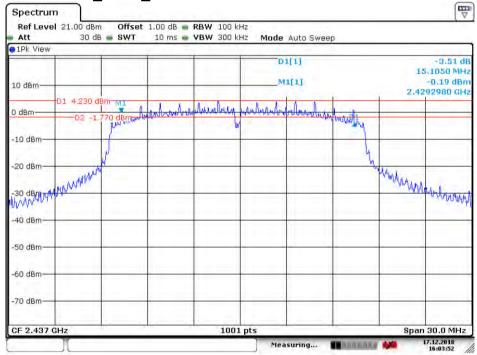
Date: 17.DEC.2018 13:59:44

4.5.2.2.9 802.11 N20 Highest Channel



Date: 17.DEC.2018 13:58:07

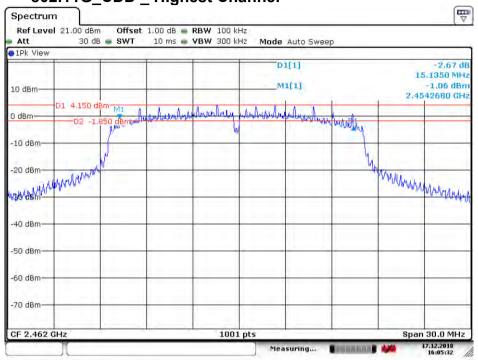
Report No.: SZEM171201274102


Page: 34 of 157

4.5.2.2.10 802.11G CDD Lowest Channel

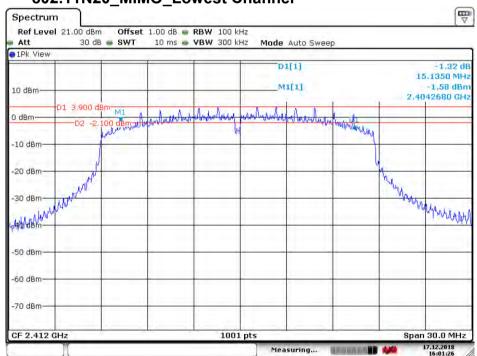
Date: 17.DEC.2018 16:02:42

4.5.2.2.11 802.11G_CDD _ Middle Channel



Date: 17.DEC.2018 16:03:52

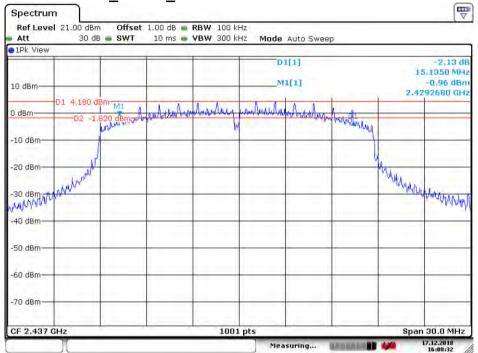
Report No.: SZEM171201274102


Page: 35 of 157

4.5.2.2.12 802.11G_CDD _ Highest Channel

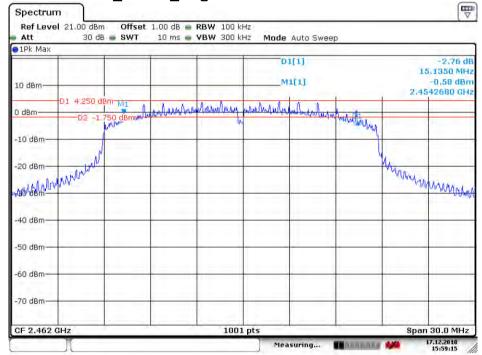
Date: 17.DEC.2018 16:05:33

4.5.2.2.13 802.11N20 MIMO Lowest Channel



Date: 17.DEC.2018 16:01:26

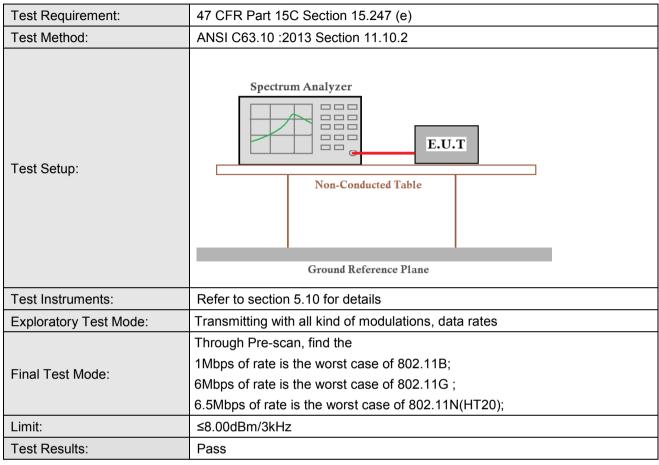
Report No.: SZEM171201274102


Page: 36 of 157

4.5.2.2.14 802.11N20_MIMO _ Middle Channel

Date: 17.DEC.2018 16:00:33

4.5.2.2.15 802.11N20_MIMO _ Highest Channel



Date: 17.DEC.2018 15:59:15

Report No.: SZEM171201274102

Page: 37 of 157

4.6 Power Spectral Density

4.6.1 Test Results

Mode	Test Channel	Power Spectral Density (dBm/3kHz)		Limit	Descrit
		ANT 1	ANT 2	(dBm/3kHz)	Result
	Lowest	-15.93	-9.65	≤8.00	Pass
802.11B	Middle	-16.00	-8.76	≤8.00	Pass
	Highest	-15.70	-9.22	≤8.00	Pass
802.11G	Lowest	-15.83	-9.71	≤8.00	Pass
	Middle	-16.26	-9.40	≤8.00	Pass
	Highest	-16.05	-9.08	≤8.00	Pass
802.11N20	Lowest	-16.77	-9.71	≤8.00	Pass
	Middle	-16.54	-9.96	≤8.00	Pass
	Highest	-16.29	-9.84	≤8.00	Pass
802.11G_CDD	Lowest	-15.78	-9.33	≤8.00	Pass
	Middle	-16.06	-8.93	≤8.00	Pass
	Highest	-15.77	-9.05	≤8.00	Pass
802.11N20_MIMO	Lowest	-15.83	-9.19	≤8.00	Pass
	Middle	-15.91	-9.06	≤8.00	Pass
	Highest	-15.59	-8.59	≤8.00	Pass

Report No.: SZEM171201274102

Page: 38 of 157

4.6.2 Test plots

4.6.2.1 ANT1

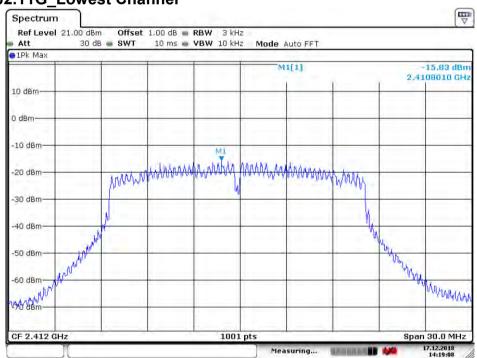
4.6.2.1.1 802.11B Lowest Channel

Date: 17.DEC.2018 14:18:44

4.6.2.1.2 802.11B Middle Channel

Date: 17.DEC.2018 14:18:21

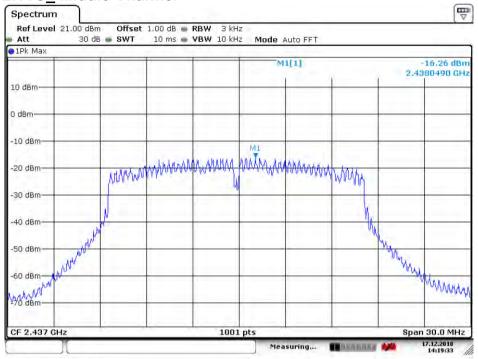
Report No.: SZEM171201274102


Page: 39 of 157

4.6.2.1.3 802.11B Highest Channel

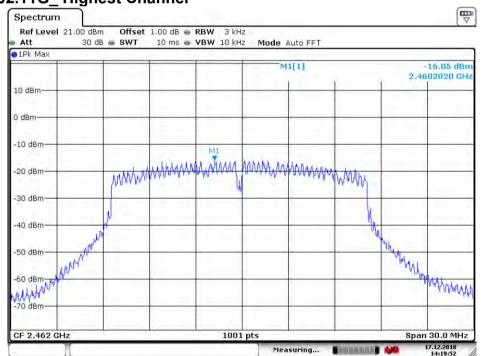
Date: 17.DEC.2018 14:11:43

4.6.2.1.4 802.11G Lowest Channel



Date: 17.DEC.2018 14:19:09

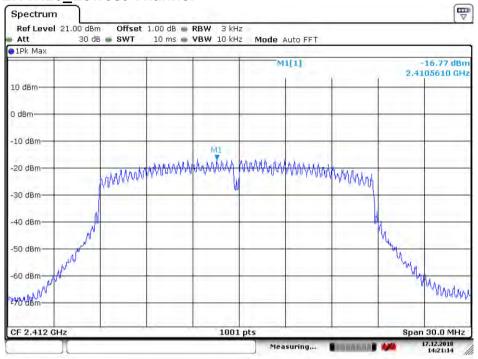
Report No.: SZEM171201274102


Page: 40 of 157

4.6.2.1.5 802.11G Middle Channel

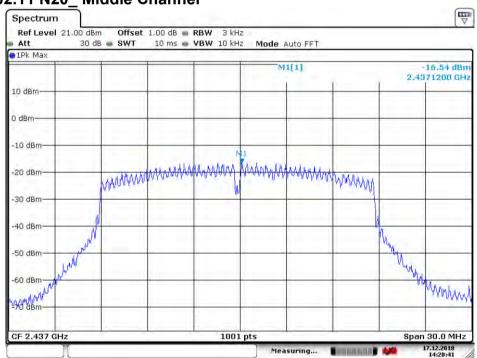
Date: 17.DEC.2018 14:19:33

4.6.2.1.6 802.11G Highest Channel



Date: 17.DEC.2018 14:19:52

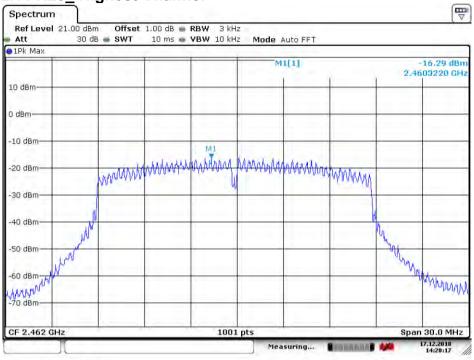
Report No.: SZEM171201274102


Page: 41 of 157

4.6.2.1.7 802.11N20 Lowest Channel

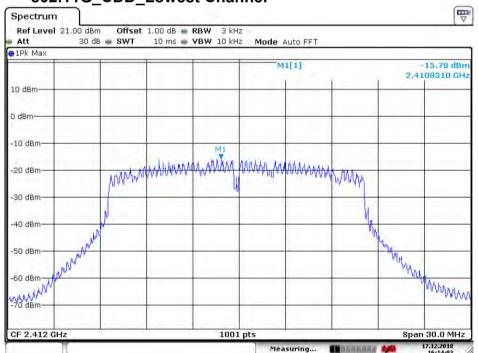
Date: 17.DEC.2018 14:21:14

4.6.2.1.8 802.11 N20 Middle Channel



Date: 17.DEC.2018 14:20:41

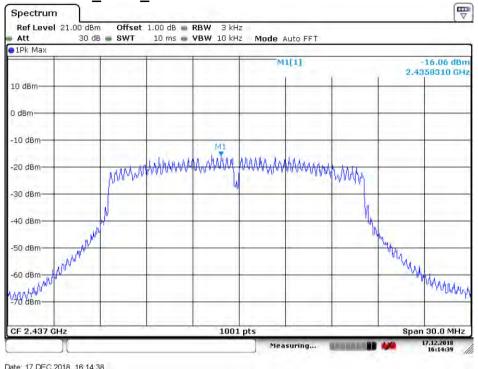
Report No.: SZEM171201274102


Page: 42 of 157

4.6.2.1.9 802.11 N20 Highest Channel

Date: 17 DEC.2018 14:20:17

4.6.2.1.10 802.11G_CDD_Lowest Channel



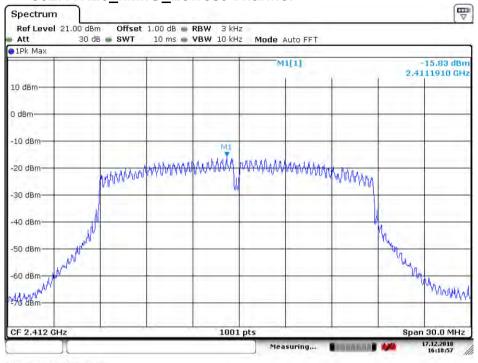
Date: 17.DEC.2018 16:14:04

Report No.: SZEM171201274102

Page: 43 of 157

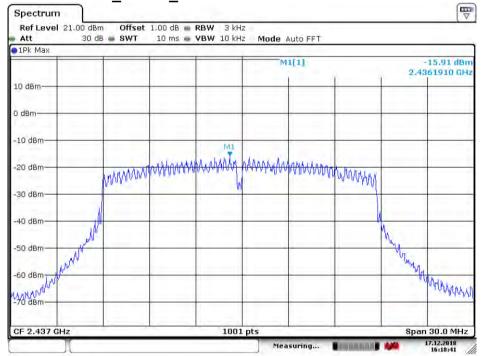
4.6.2.1.11 802.11G_CDD _ Middle Channel

4.6.2.1.12 802.11G_CDD _ Highest Channel



Date: 17.DEC.2018 16:14:55

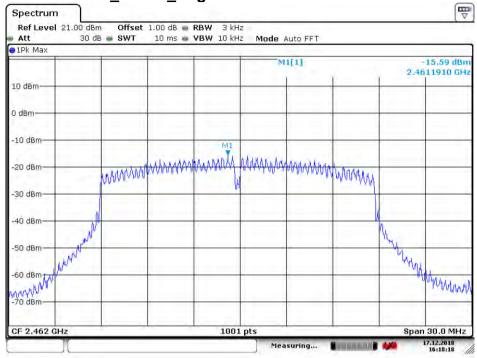
Report No.: SZEM171201274102


Page: 44 of 157

4.6.2.1.13 802.11N20 MIMO Lowest Channel

Date: 17.DEC.2018 16:18:57

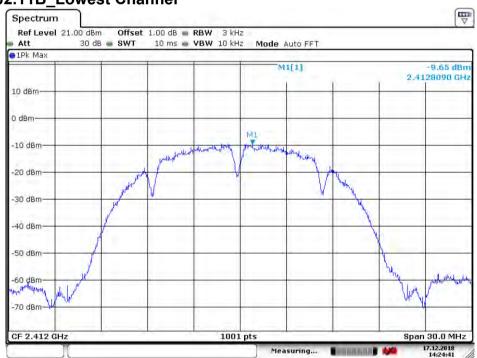
4.6.2.1.14 802.11N20_MIMO _ Middle Channel



Date: 17.DEC.2018 16;18:42

Report No.: SZEM171201274102

Page: 45 of 157


4.6.2.1.15 802.11N20 MIMO Highest Channel

Date: 17.DEC.2018 16:18:18

4.6.2.2 ANT2

4.6.2.2.1 802.11B Lowest Channel

Date: 17.DEC.2018 14:24:41

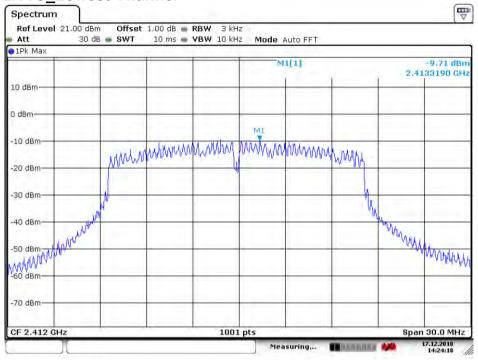
Report No.: SZEM171201274102

Page: 46 of 157

4.6.2.2.2 802.11B Middle Channel

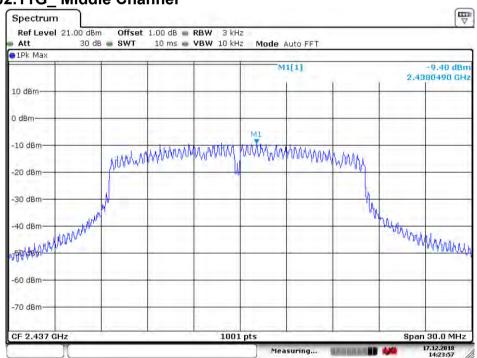
Date: 17.DEC.2018 14:25:12

4.6.2.2.3 802.11B Highest Channel



Date: 17.DEC.2018 14:25:35

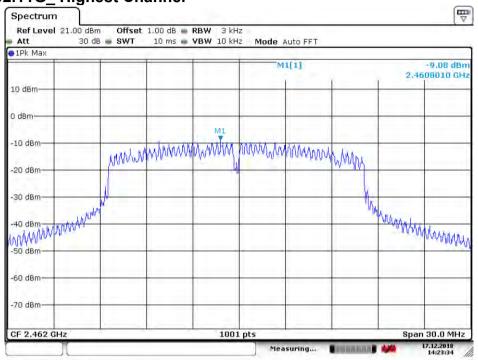
Report No.: SZEM171201274102


Page: 47 of 157

4.6.2.2.4 802.11G Lowest Channel

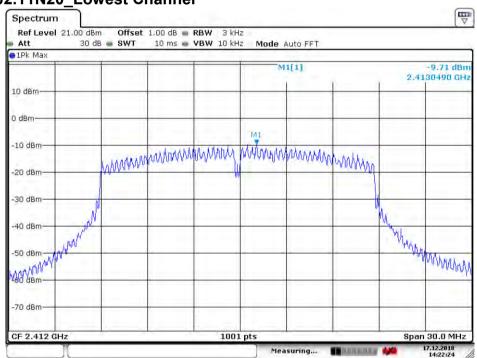
Date: 17.DEC.2018 14:24:19

4.6.2.2.5 802.11G Middle Channel



Date: 17.DEC.2018 14;23;57

Report No.: SZEM171201274102


Page: 48 of 157

4.6.2.2.6 802.11G_ Highest Channel

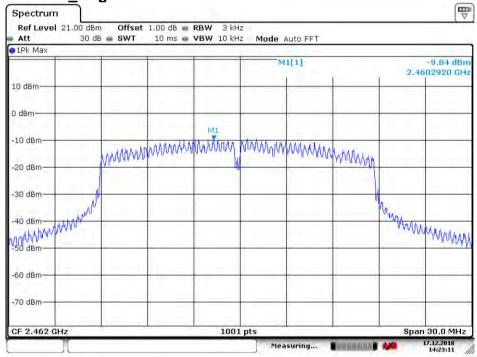
Date: 17.DEC.2018 14:23:34

4.6.2.2.7 802.11N20 Lowest Channel



Date: 17.DEC.2018 14;22:24

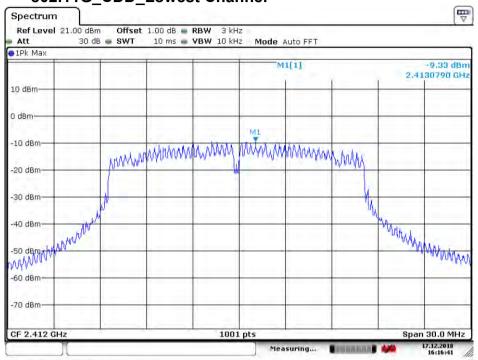
Report No.: SZEM171201274102


Page: 49 of 157

4.6.2.2.8 802.11 N20 Middle Channel

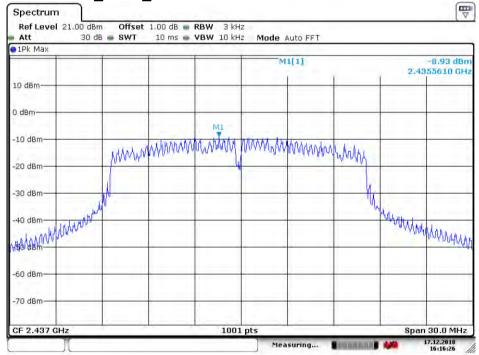
Date: 17.DEC.2018 14;22:49

4.6.2.2.9 802.11 N20 Highest Channel



Date: 17.DEC.2018 14;23:12

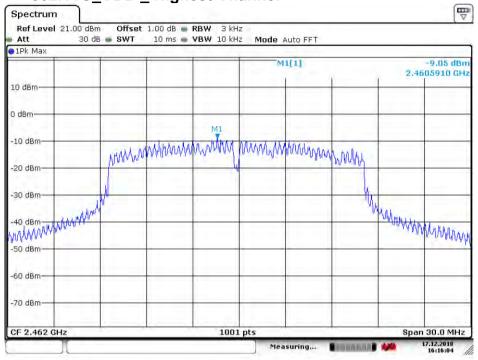
Report No.: SZEM171201274102


Page: 50 of 157

4.6.2.2.10 802.11G CDD Lowest Channel

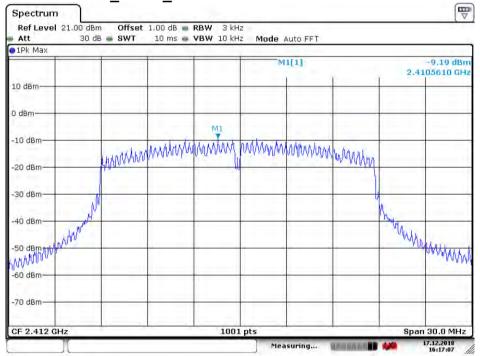
Date: 17.DEC.2018 16:16:42

4.6.2.2.11 802.11G_CDD _ Middle Channel



Date: 17.DEC.2018 16:16:26

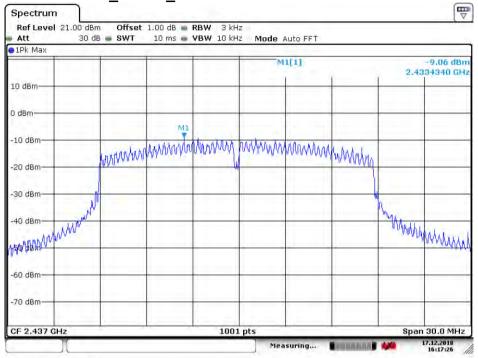
Report No.: SZEM171201274102


Page: 51 of 157

4.6.2.2.12 802.11G_CDD _ Highest Channel

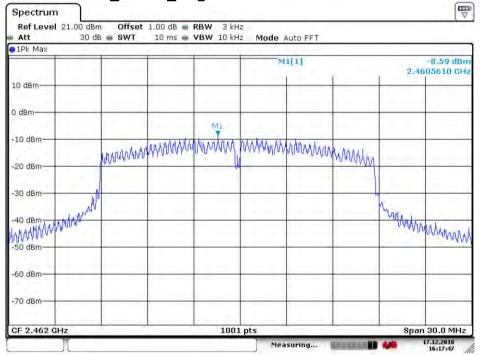
Date: 17.DEC.2018 16:16:04

4.6.2.2.13 802.11N20 MIMO Lowest Channel



Date: 17.DEC.2018 16:17:07

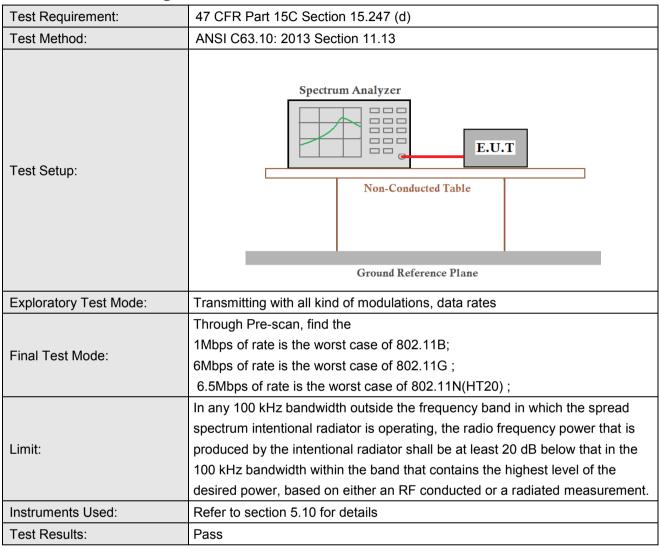
Report No.: SZEM171201274102


Page: 52 of 157

4.6.2.2.14 802.11N20_MIMO _ Middle Channel

Date: 17.DEC.2018 16:17:26

4.6.2.2.15 802.11N20_MIMO _ Highest Channel

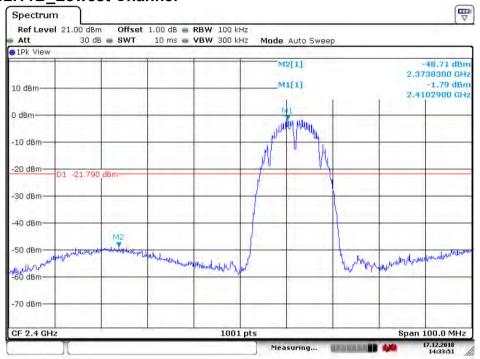


Date: 17.DEC.2018 16;17:48

Report No.: SZEM171201274102

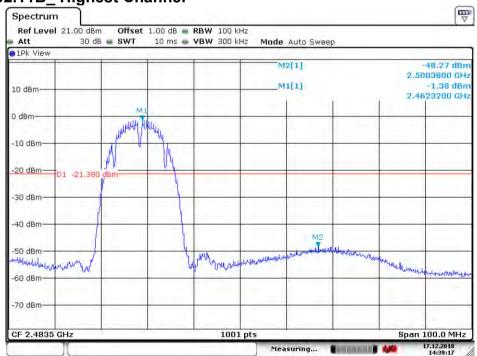
Page: 53 of 157

4.7 Band-edge for RF Conducted Emissions


Report No.: SZEM171201274102

Page: 54 of 157

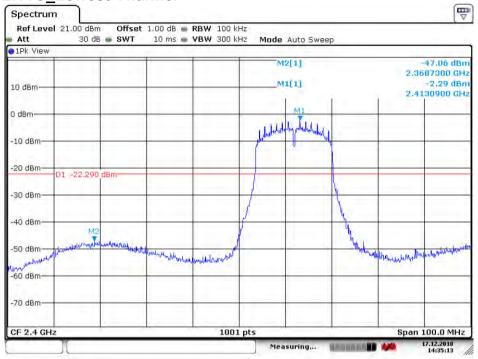
4.7.1 Test plots


4.7.1.1 ANT1

4.7.1.1.1 802.11B Lowest Channel

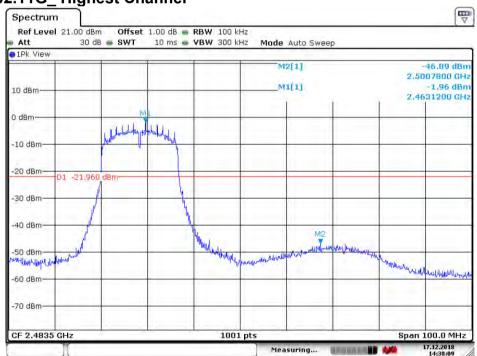
Date: 17.DEC.2018 14:33:52

4.7.1.1.2 802.11B_ Highest Channel



Date: 17.DEC.2018 14:39:17

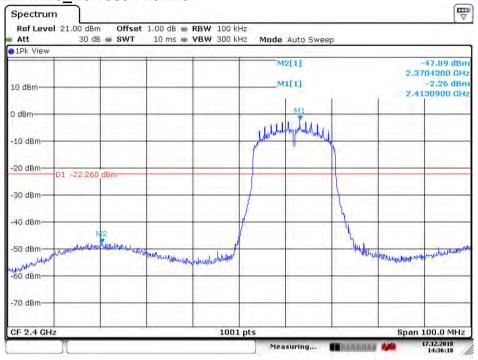
Report No.: SZEM171201274102


Page: 55 of 157

4.7.1.1.3 802.11G Lowest Channel

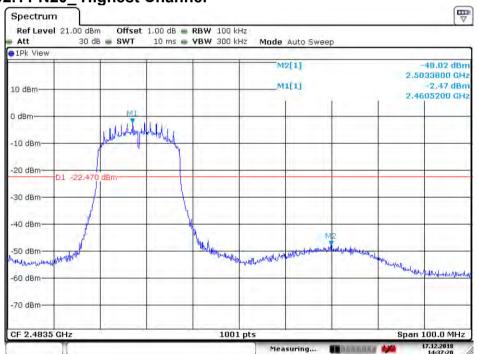
Date: 17.DEC.2018 14:35:14

4.7.1.1.4 802.11G Highest Channel



Date: 17.DEC.2018 14:38:09

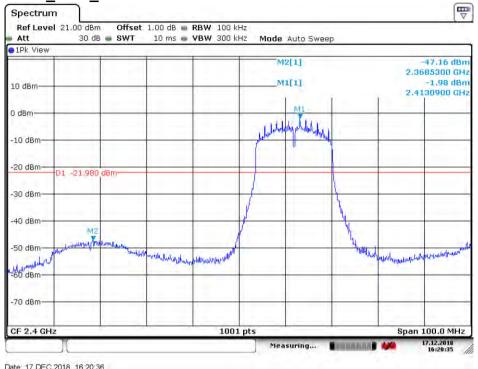
Report No.: SZEM171201274102


Page: 56 of 157

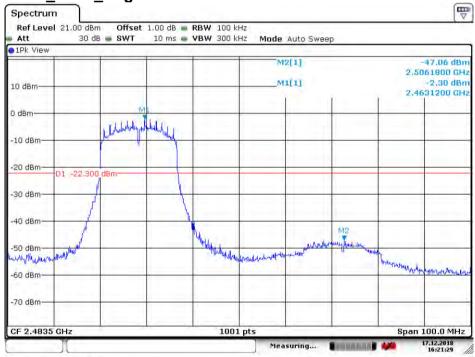
4.7.1.1.5 802.11N20 Lowest Channel

Date: 17.DEC.2018 14:36:18

4.7.1.1.6 802.11 N20 Highest Channel



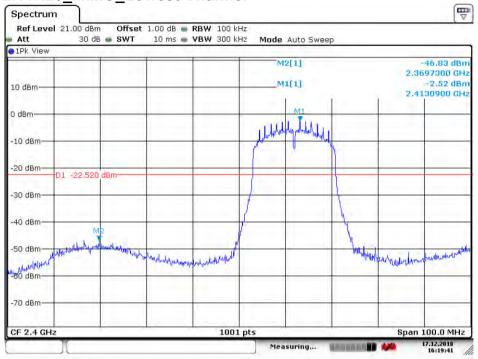
Date: 17.DEC.2018 14:37:21


Report No.: SZEM171201274102

Page: 57 of 157

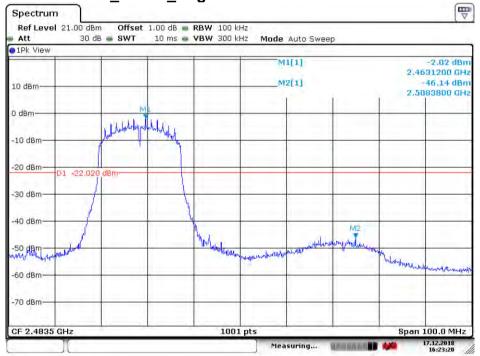
4.7.1.1.7 802.11G CDD Lowest Channel

4.7.1.1.8 802.11G_CDD _ Highest Channel



Date: 17.DEC.2018 16:21:30

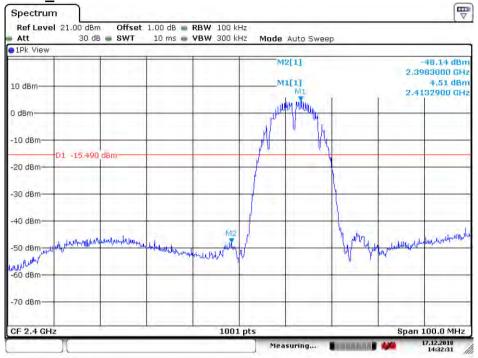
Report No.: SZEM171201274102


Page: 58 of 157

4.7.1.1.9 802.11N20 MIMO Lowest Channel

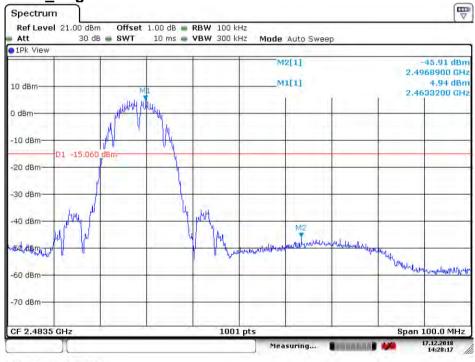
Date: 17.DEC.2018 16;19:41

4.7.1.1.10 802.11N20_MIMO _ Highest Channel


Date: 17.DEC.2018 16:23:20

Report No.: SZEM171201274102

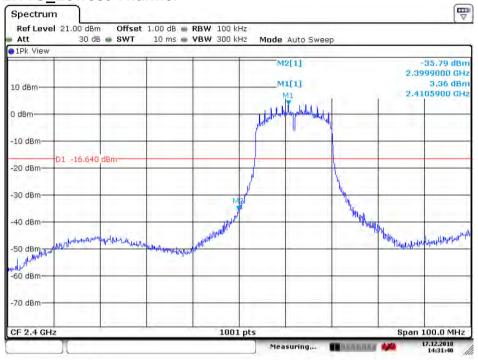
Page: 59 of 157


4.7.1.2 ANT2

4.7.1.2.1 802.11B Lowest Channel

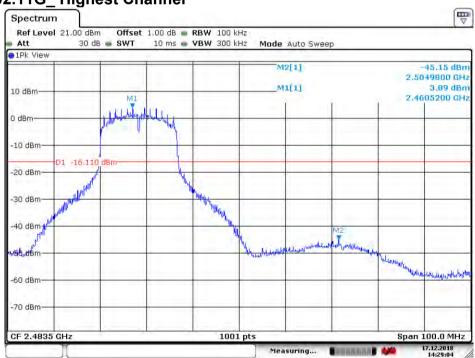
Date: 17.DEC.2018 14:32:31

4.7.1.2.2 802.11B_ Highest Channel



Date: 17.DEC.2018 14:28:17

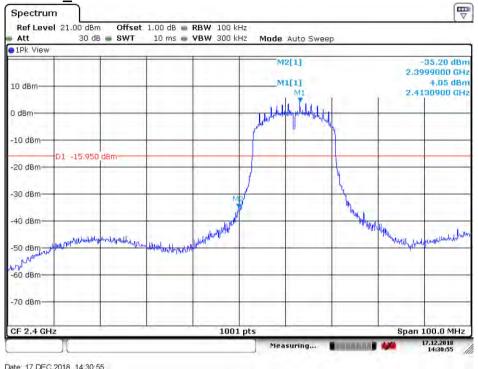
Report No.: SZEM171201274102


Page: 60 of 157

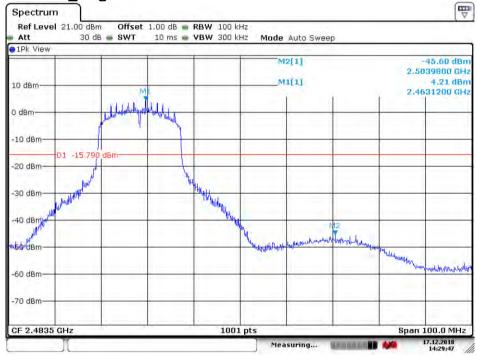
4.7.1.2.3 802.11G Lowest Channel

Date: 17.DEC.2018 14:31:41

4.7.1.2.4 802.11G Highest Channel



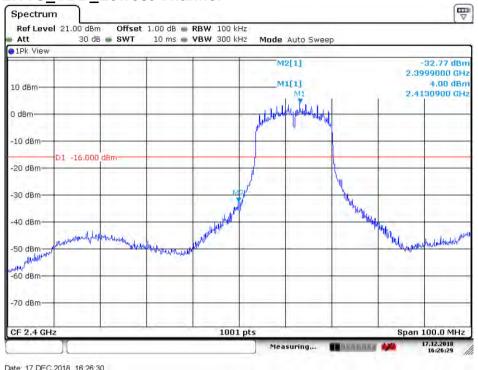
Date: 17.DEC.2018 14:29:05


Report No.: SZEM171201274102

Page: 61 of 157

4.7.1.2.5 802.11N20 Lowest Channel

4.7.1.2.6 802.11 N20 Highest Channel



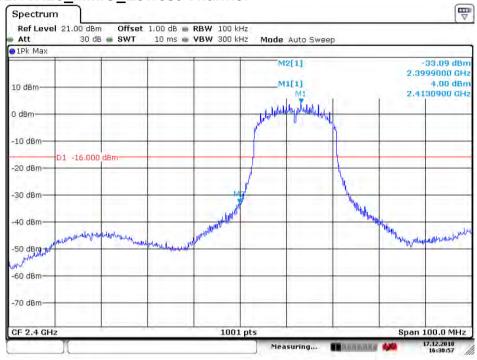
Date: 17.DEC.2018 14;29;47

Report No.: SZEM171201274102

Page: 62 of 157

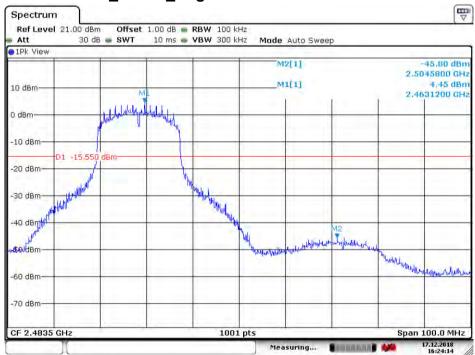
4.7.1.2.7 802.11G CDD Lowest Channel

4.7.1.2.8 802.11G_CDD _ Highest Channel



Date: 17.DEC.2018 16;25;50

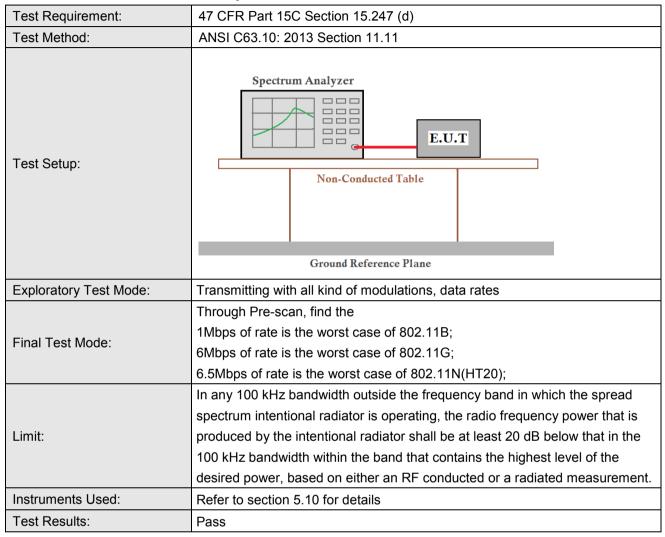
Report No.: SZEM171201274102


Page: 63 of 157

4.7.1.2.9 802.11N20 MIMO Lowest Channel

Date: 17.DEC.2018 16:30:57

4.7.1.2.10 802.11N20_MIMO _ Highest Channel

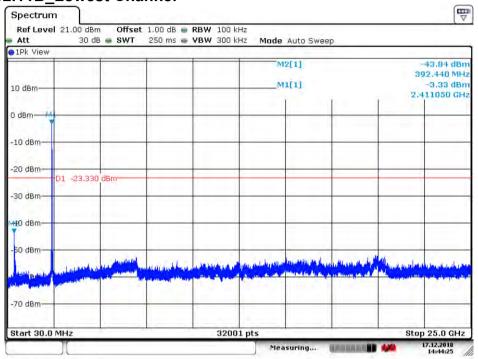


Date: 17.DEC.2018 16:24:14

Report No.: SZEM171201274102

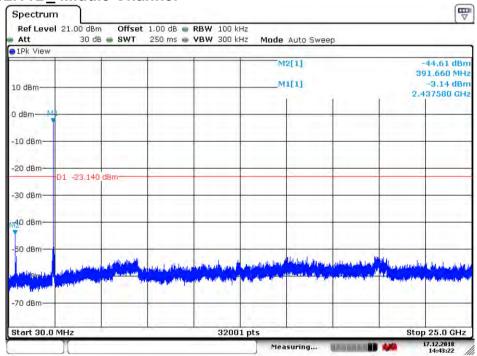
Page: 64 of 157

4.8 RF Conducted Spurious Emissions


Report No.: SZEM171201274102

Page: 65 of 157

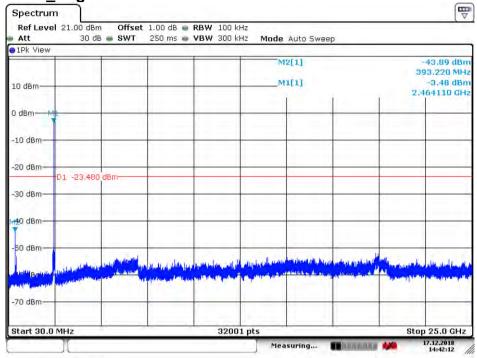
4.8.1 Test plots


4.8.1.1 ANT1

4.8.1.1.1 802.11B Lowest Channel

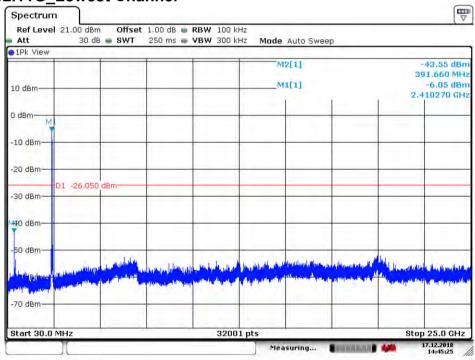
Date: 17.DEC.2018 14:44:25

4.8.1.1.2 802.11B Middle Channel



Date: 17.DEC.2018 14:43:23

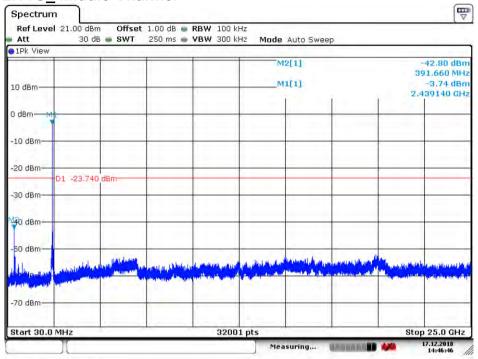
Report No.: SZEM171201274102


Page: 66 of 157

4.8.1.1.3 802.11B_ Highest Channel

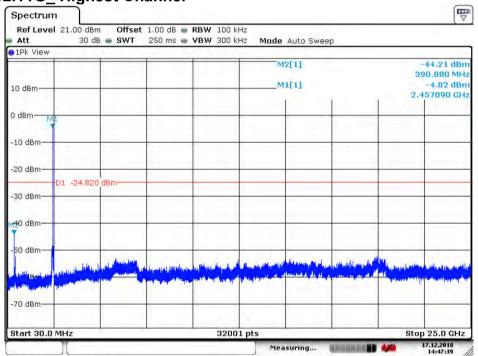
Date: 17.DEC.2018 14:42:12

4.8.1.1.4 802.11G Lowest Channel



Date: 17.DEC.2018 14;45:25

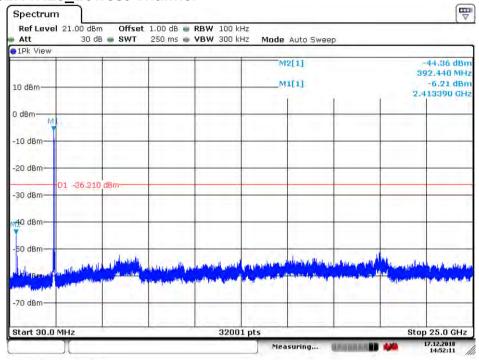
Report No.: SZEM171201274102


Page: 67 of 157

4.8.1.1.5 802.11G Middle Channel

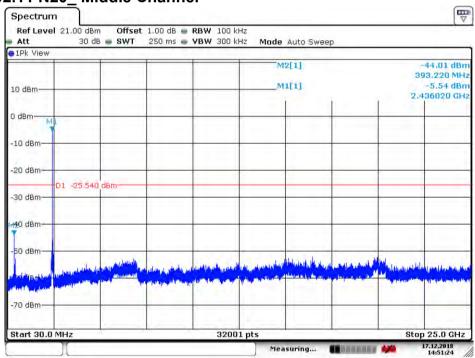
Date: 17.DEC.2018 14:46:46

4.8.1.1.6 802.11G_ Highest Channel



Date: 17.DEC.2018 14:47:40

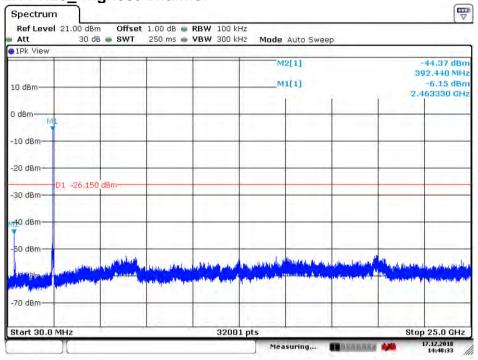
Report No.: SZEM171201274102


Page: 68 of 157

4.8.1.1.7 802.11N20 Lowest Channel

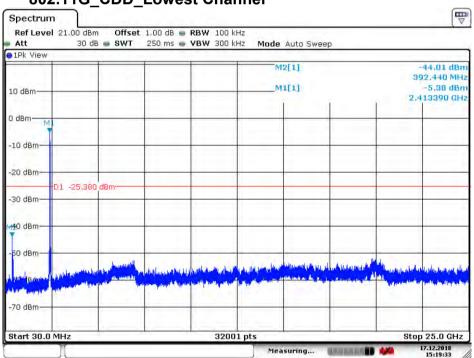
Date: 17.DEC.2018 14:52:12

4.8.1.1.8 802.11 N20 Middle Channel



Date: 17.DEC.2018 14:51:24

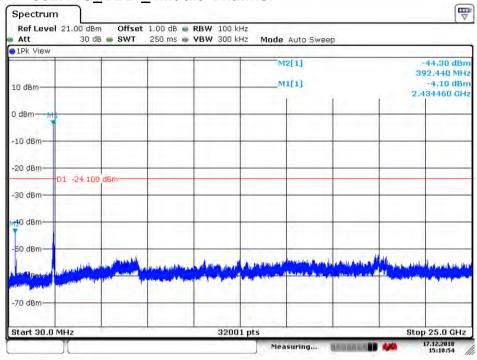
Report No.: SZEM171201274102


Page: 69 of 157

4.8.1.1.9 802.11 N20 Highest Channel

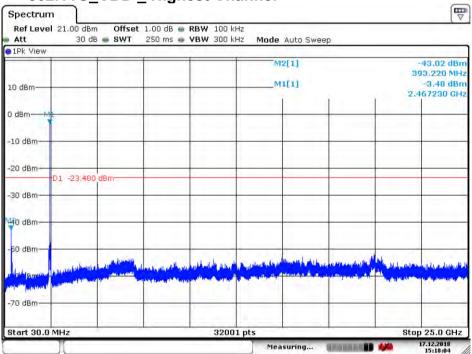
Date: 17.DEC.2018 14:48:34

4.8.1.1.10 802.11G_CDD_Lowest Channel



Date: 17.DEC.2018 15:19:34

Report No.: SZEM171201274102


Page: 70 of 157

4.8.1.1.11 802.11G CDD Middle Channel

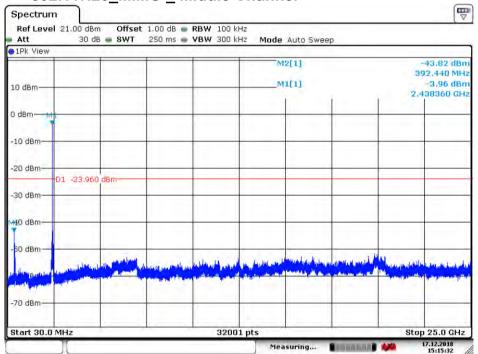
Date: 17.DEC.2018 15:18:54

4.8.1.1.12 802.11G_CDD _ Highest Channel



Date: 17.DEC.2018 15:18:04

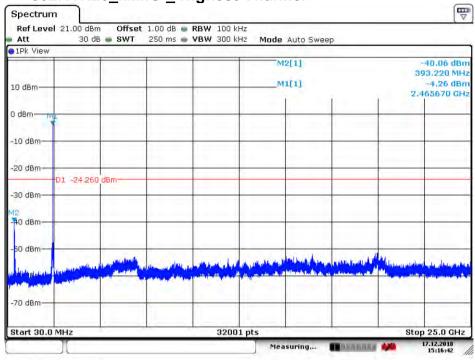
Report No.: SZEM171201274102


Page: 71 of 157

4.8.1.1.13 802.11N20 MIMO Lowest Channel

Date: 17.DEC.2018 15;14:23

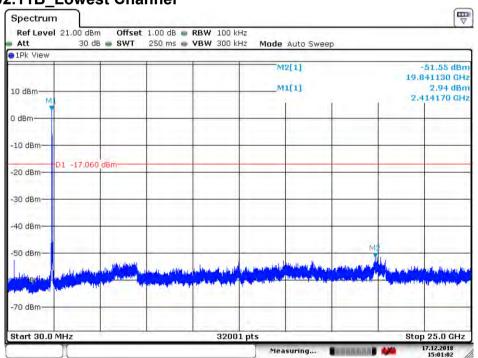
4.8.1.1.14 802.11N20_MIMO _ Middle Channel



Date: 17.DEC.2018 15:15:33

Report No.: SZEM171201274102

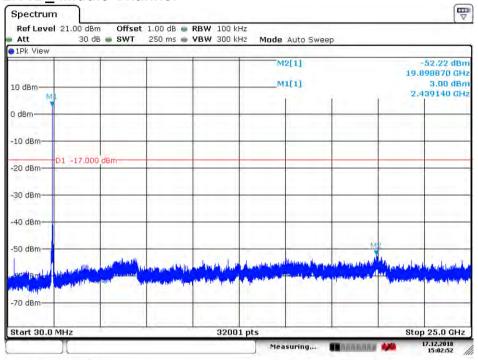
Page: 72 of 157


4.8.1.1.15 802.11N20 MIMO Highest Channel

Date: 17.DEC.2018 15:16:42

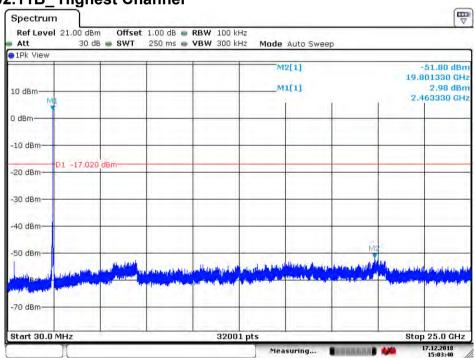
4.8.1.2 ANT2

4.8.1.2.1 802.11B Lowest Channel


Date: 17.DEC.2018 15:01:03

SGS-CSTC Standards Technical Services Co., Ltd.Shenzhen Branch

Report No.: SZEM171201274102


Page: 73 of 157

4.8.1.2.2 802.11B Middle Channel

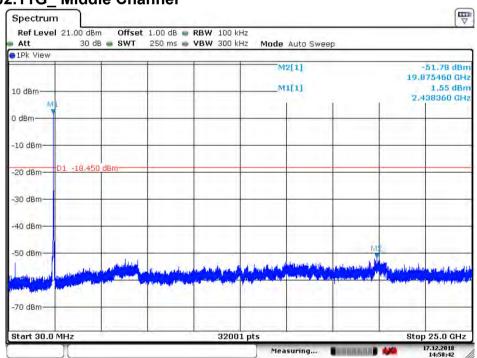
Date: 17.DEC.2018 15:02:52

4.8.1.2.3 802.11B Highest Channel


Date: 17.DEC.2018 15:03:40

SGS-CSTC Standards Technical Services Co., Ltd.Shenzhen Branch

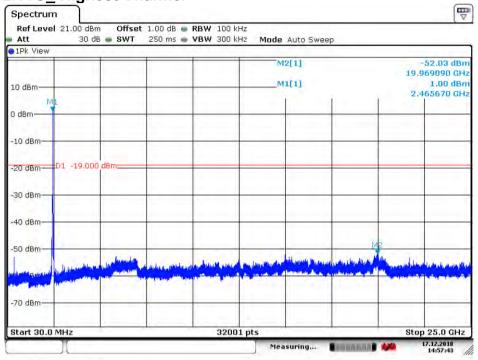
Report No.: SZEM171201274102


Page: 74 of 157

4.8.1.2.4 802.11G Lowest Channel

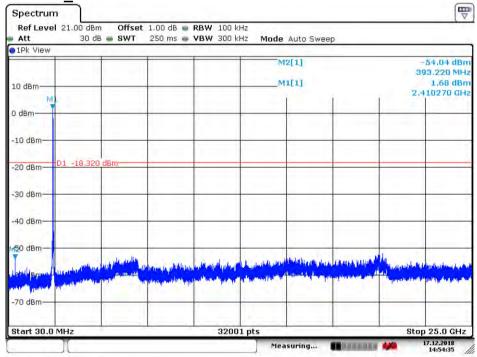
Date: 17.DEC.2018 14:59:37

4.8.1.2.5 802.11G Middle Channel


Date: 17.DEC.2018 14:58:42

SGS-CSTC Standards Technical Services Co., Ltd.Shenzhen Branch

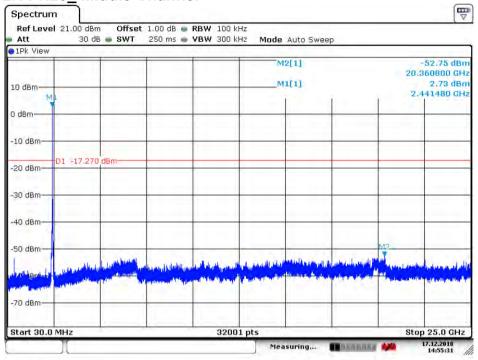
Report No.: SZEM171201274102


Page: 75 of 157

4.8.1.2.6 802.11G_ Highest Channel

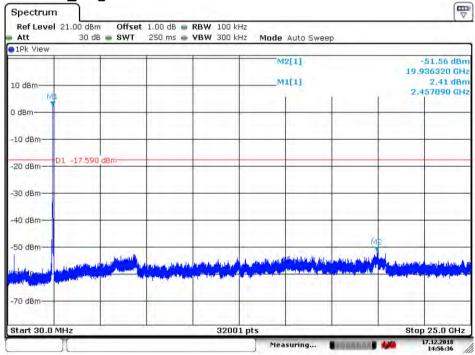
Date: 17.DEC.2018 14:57:43

4.8.1.2.7 802.11N20 Lowest Channel


Date: 17.DEC.2018 14:54:35

SGS-CSTC Standards Technical Services Co., Ltd.Shenzhen Branch

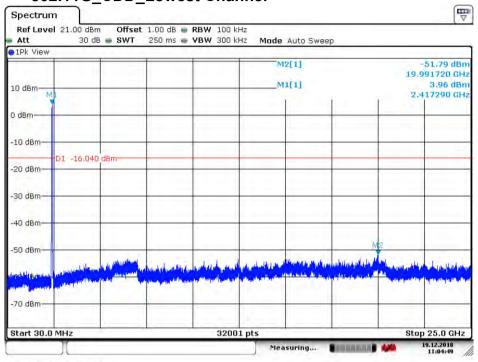
Report No.: SZEM171201274102


Page: 76 of 157

4.8.1.2.8 802.11 N20 Middle Channel

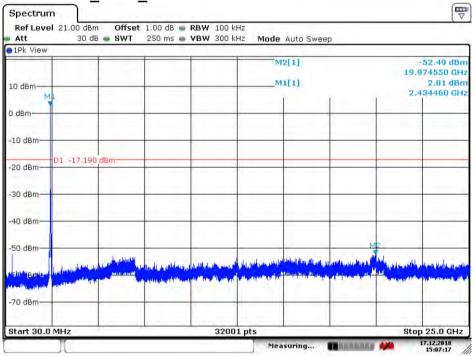
Date: 17.DEC.2018 14:55:31

4.8.1.2.9 802.11 N20 Highest Channel


Date: 17.DEC.2018 14:56:36

SGS-CSTC Standards Technical Services Co., Ltd.Shenzhen Branch

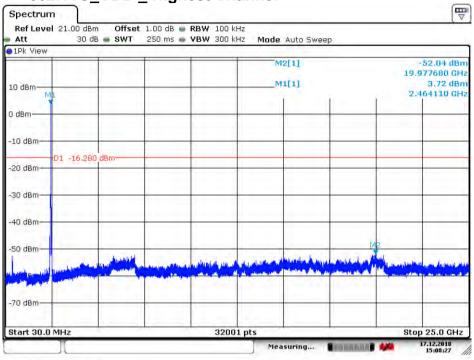
Report No.: SZEM171201274102


Page: 77 of 157

4.8.1.2.10 802.11G CDD Lowest Channel

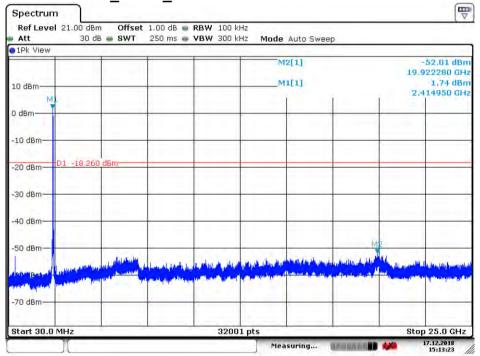
Date: 19.DEC.2018 11:04:49

4.8.1.2.11 802.11G_CDD _ Middle Channel


Date: 17.DEC.2018 15:07:17

SGS-CSTC Standards Technical Services Co., Ltd.Shenzhen Branch

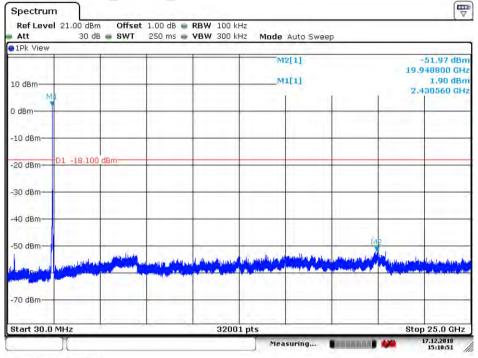
Report No.: SZEM171201274102


Page: 78 of 157

4.8.1.2.12 802.11G_CDD _ Highest Channel

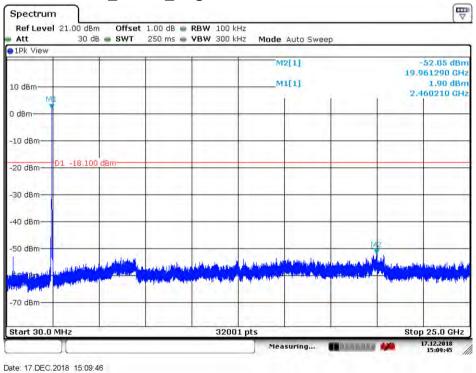
Date: 17.DEC.2018 15:08:27

4.8.1.2.13 802.11N20_MIMO_Lowest Channel


Date: 17.DEC.2018 15:13:24

SGS-CSTC Standards Technical Services Co., Ltd.Shenzhen Branch

Report No.: SZEM171201274102

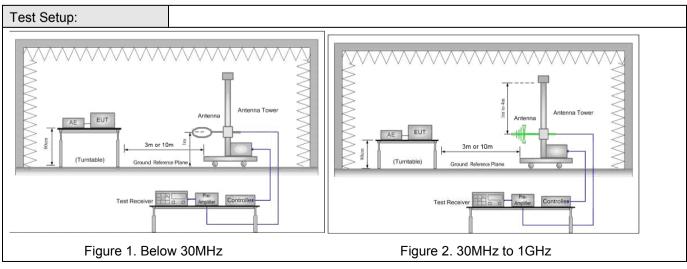

Page: 79 of 157

4.8.1.2.14 802.11N20_MIMO _ Middle Channel

Date: 17.DEC,2018 15;10:52

4.8.1.2.15 802.11N20_MIMO _ Highest Channel

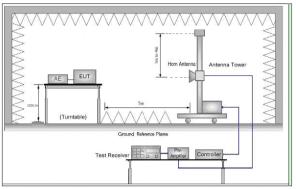
Remark:


Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms

Page: 80 of 157

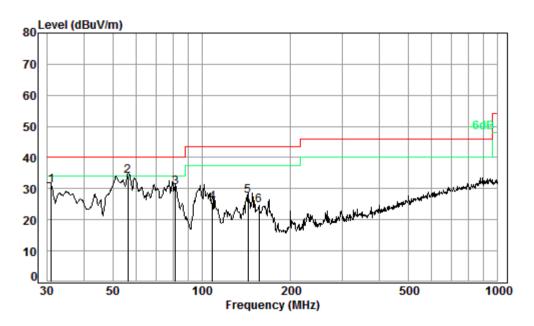
4.9 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 :2013 Sec	ction 11.12							
Test Site:	Measurement Distance	: 3m or 10m (Semi	-Anechoic Cham	ber)					
	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
Desciver Cetury	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
Receiver Setup:	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
	Above 4CH=	Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10Hz	Average				
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement				
	0.0000411= 0.4000411=	,			distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Remark: 15.35(b), Unle	ess otherwise speci	fied, the limit on	peak radio free	quency				
	emissions is 20dB abov	ve the maximum pe	ermitted average	emission limit					
	applicable to the equ emission level radiated		. This peak lim	it applies to	the total peak				

SGS-CSTC Standards Technical Services Co., Ltd.Shenzhen Branch

Report No.: SZEM171201274102

Page: 81 of 157

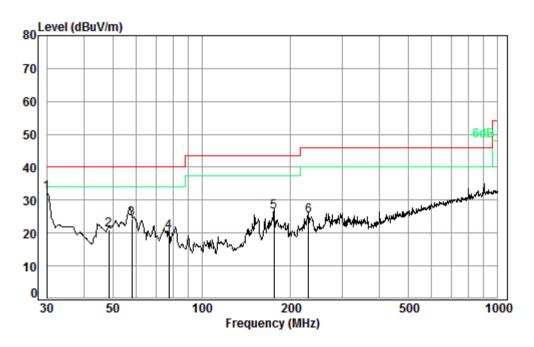

	Test Receiver Pru- Controller Controller
	Figure 3. Above 1 GHz
Test Procedure:	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	h. Test the EUT in the lowest channel, the middle channel ,the Highest channel
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.
	Through Pre-scan, find the
	1Mbps of rate is the worst case of 802.11B;
	6Mbps of rate is the worst case of 802.11G;
	6.5Mbps of rate is the worst case of 802.11N(HT20);
	For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11B at lowest channel is the worst case. Only the worst case is recorded in the report.
	chamile is the worst case. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions for Electronic Format documents, subject to Terms and Conditions for Electronic Format documents, subject to Terms and Conditions for Electronic Format documents at http://www.sgs.com/en/Terms-and-Conditions. Attention is a drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Page: 82 of 157

4.9.1 Radiated emission below 1GHz

4.9.1.1 Charge + Transmitting, Vertical


Condition: 3m VERTICAL Job No. : 12741RG

Test mode: b

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.96	0.60	21.95	27.67	36.20	31.08	40.00	-8.92
2 pp	56.20	0.80	13.56	27.58	47.39	34.17	40.00	-5.83
3	81.50	1.10	12.17	27.50	44.65	30.42	40.00	-9.58
4	108.65	1.22	13.59	27.51	38.35	25.65	43.50	-17.85
5	143.33	1.30	14.02	27.52	39.73	27.53	43.50	-15.97
6	155.91	1.33	15.15	27.52	35.56	24.52	43.50	-18.98

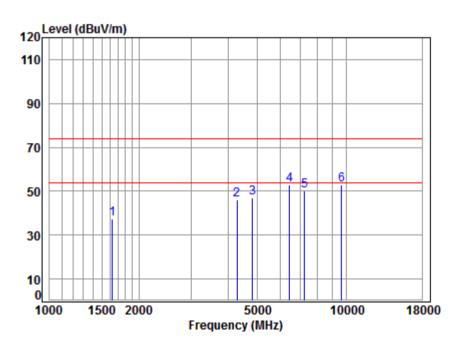
Page: 83 of 157

4.9.1.2 Charge + Transmitting, Horizontal

Condition: 3m HORIZONTAL

Job No. : 12741RG

Test mode: b

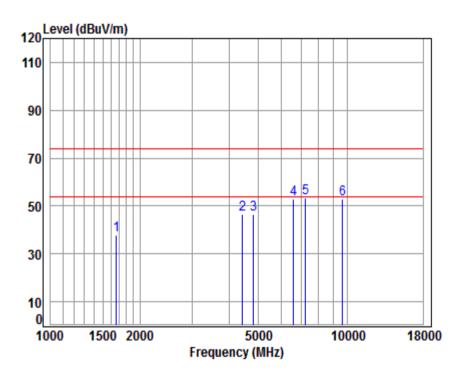

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
_								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	30.00	0.60	22.50	27.67	36.75	32.18	40.00	-7.82
2	48.50	0.77	14.65	27.60	33.26	21.08	40.00	-18.92
3	58.00	0.80	13.39	27.57	37.74	24.36	40.00	-15.64
4	77.59	1.03	12.18	27.51	34.54	20.24	40.00	-19.76
5	175.65	1.36	15.82	27.53	36.93	26.58	43.50	-16.92
6	230.10	1.57	18.03	27.53	33.27	25.34	46.00	-20.66

Page: 84 of 157

4.9.2 Transmitter emission above 1GHz

4.9.2.1 ANT1

4.9.2.1.1 802.11B_Lowest Channel_ Peak_ Vertical


Site : chamber Condition: 3m VERTICAL Job No : 12741RG

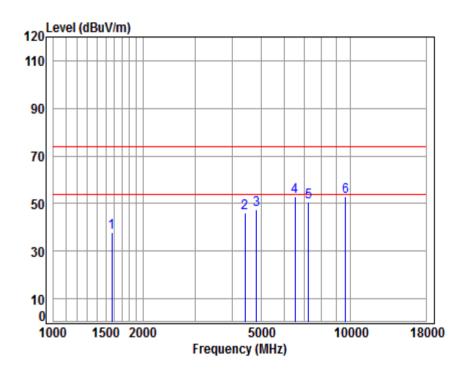
Mode : 2412 TX SE Note : 2.4G WIFI 11B

		-							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1629.825	5.31	26.38	40.79	46.66	37.56	74.00	-36.44	peak
2	4291.977	7.33	33.24	43.08	48.37	45.86	74.00	-28.14	peak
3	4824.000	7.91	34.00	43.63	48.90	47.18	74.00	-26.82	peak
4	6451.353	11.45	35.55	42.44	48.59	53.15	74.00	-20.85	peak
5	7236.000	10.07	36.09	41.83	45.76	50.09	74.00	-23.91	peak
6	9648.000	10.77	37.69	38.36	42.82	52.92	74.00	-21.08	peak

Page: 85 of 157

4.9.2.1.2 802.11B_Lowest Channel_ Peak_ Horizontal

Site : chamber

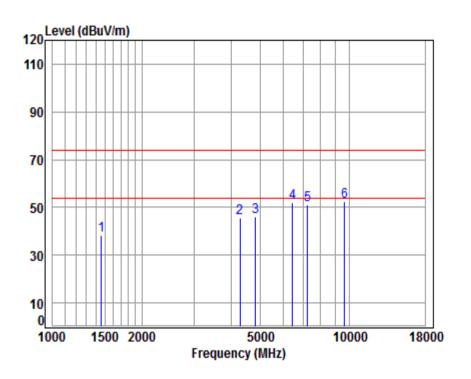

Condition: 3m HORIZONTAL

Job No : 12741RG Mode : 2412 TX SE Note : 2.4G WIFI 11B

		-							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1667.951	5.27	26.54	40.81	46.67	37.67	74.00	-36.33	peak
2	4443.453	7.50	33.50	43.25	48.97	46.72	74.00	-27.28	peak
3	4824.000	7.91	34.00	43.63	48.41	46.69	74.00	-27.31	peak
4	6602.265	11.24	35.66	42.32	48.32	52.90	74.00	-21.10	peak
5	7236.000	10.07	36.09	41.83	48.99	53.32	74.00	-20.68	peak
6	9648.000	10.77	37.69	38.36	42.89	52.99	74.00	-21.01	peak

Page: 86 of 157

4.9.2.1.3 802.11G_Lowest Channel_ Peak_ Vertical


Site : chamber Condition: 3m VERTICAL

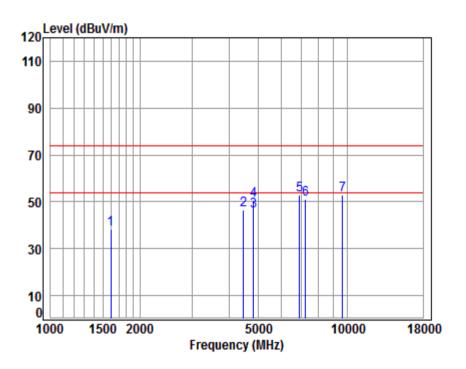
Job No : 12741RG Mode : 2412 TX SE Note : 2.4G WIFI 11G

	. Alv	1 1							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1574.265	5.38	26.14	40.75	46.95	37.72	74.00	-36.28	peak
2	4417.841	7.47	33.46	43.22	48.29	46.00	74.00	-28.00	peak
3	4824.000	7.91	34.00	43.63	49.10	47.38	74.00	-26.62	peak
4	6507.536	11.52	35.60	42.40	48.23	52.95	74.00	-21.05	peak
5	7236.000	10.07	36.09	41.83	46.29	50.62	74.00	-23.38	peak
6	9648.000	10.77	37.69	38.36	42.97	53.07	74.00	-20.93	peak

Page: 87 of 157

4.9.2.1.4 802.11G_Lowest Channel_ Peak_ Horizontal

Site : chamber

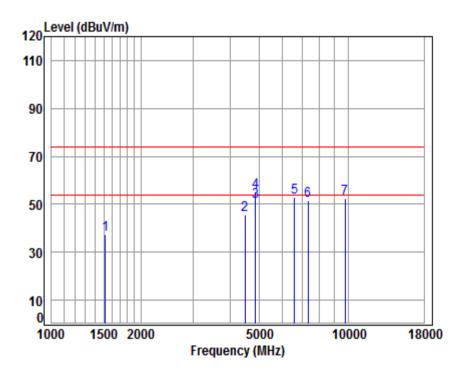

Condition: 3m HORIZONTAL

Job No : 12741RG Mode : 2412 TX SE Note : 2.4G WIFI 11G

	_							
	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1460.295	5.35	25.65	40.68	48.20	38.52	74.00	-35.48	peak
4291.977	7.33	33.24	43.08	48.07	45.56	74.00	-28.44	peak
4824.000	7.91	34.00	43.63	47.88	46.16	74.00	-27.84	peak
6432.732	11.41	35.54	42.46	47.51	52.00	74.00	-22.00	peak
7236.000	10.07	36.09	41.83	46.63	50.96	74.00	-23.04	peak
9648.000	10.77	37.69	38.36	42.49	52.59	74.00	-21.41	peak
	MHz 1460.295 4291.977 4824.000 6432.732 7236.000	Freq Loss MHz dB 1460.295 5.35 4291.977 7.33 4824.000 7.91 6432.732 11.41 7236.000 10.07	Freq Loss Factor MHz dB dB/m 1460.295 5.35 25.65 4291.977 7.33 33.24 4824.000 7.91 34.00 6432.732 11.41 35.54 7236.000 10.07 36.09	Freq Loss Factor Factor MHz dB dB/m dB 1460.295 5.35 25.65 40.68 4291.977 7.33 33.24 43.08 4824.000 7.91 34.00 43.63 6432.732 11.41 35.54 42.46 7236.000 10.07 36.09 41.83	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1460.295 5.35 25.65 40.68 48.20 4291.977 7.33 33.24 43.08 48.07 4824.000 7.91 34.00 43.63 47.88 6432.732 11.41 35.54 42.46 47.51 7236.000 10.07 36.09 41.83 46.63	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1460.295 5.35 25.65 40.68 48.20 38.52 4291.977 7.33 33.24 43.08 48.07 45.56 4824.000 7.91 34.00 43.63 47.88 46.16 6432.732 11.41 35.54 42.46 47.51 52.00 7236.000 10.07 36.09 41.83 46.63 50.96	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1460.295 5.35 25.65 40.68 48.20 38.52 74.00 4291.977 7.33 33.24 43.08 48.07 45.56 74.00 4824.000 7.91 34.00 43.63 47.88 46.16 74.00 6432.732 11.41 35.54 42.46 47.51 52.00 74.00 7236.000 10.07 36.09 41.83 46.63 50.96 74.00	Cable Loss Factor Factor Read Level Level Limit Limit Over Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dBuV/m dB 1460.295 5.35 25.65 40.68 48.20 38.52 74.00 -35.48 4291.977 7.33 33.24 43.08 48.07 45.56 74.00 -28.44 4824.000 7.91 34.00 43.63 47.88 46.16 74.00 -27.84 6432.732 11.41 35.54 42.46 47.51 52.00 74.00 -22.00 7236.000 10.07 36.09 41.83 46.63 50.96 74.00 -23.04 9648.000 10.77 37.69 38.36 42.49 52.59 74.00 -21.41

Page: 88 of 157

4.9.2.2 ANT2 4.9.2.2.1 802.11B_Lowest Channel_ Peak_ Vertical


Site : chamber Condition: 3m VERTICAL

Job No : 12741RG Mode : 2412 TX SE Note : 2.4G WIFI 11B

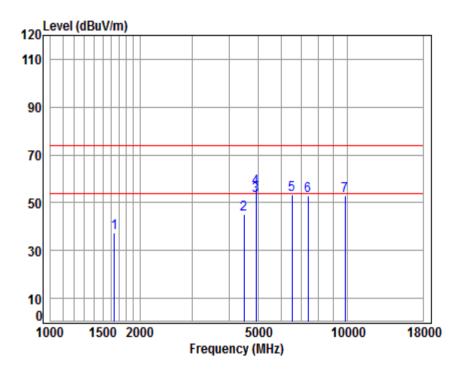
		-							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1597.181	5.35	26.24	40.77	47.32	38.14	74.00	-35.86	peak
2	4469.214	7.53	33.55	43.27	48.71	46.52	74.00	-27.48	peak
3	4824.000	7.90	33.99	43.63	47.63	45.89	54.00	-8.11	Average
4	4824.000	7.91	34.00	43.63	52.25	50.53	74.00	-23.47	peak
5	6894.806	10.42	35.84	42.09	48.80	52.97	74.00	-21.03	peak
6	7236.000	10.07	36.09	41.83	46.80	51.13	74.00	-22.87	peak
7	9648.000	10.77	37.69	38.36	42.89	52.99	74.00	-21.01	peak

Page: 89 of 157

4.9.2.2.2 802.11B Middle Channel Peak Vertical

Site : chamber

Condition: 3m VERTICAL


Job No : 12741RG Mode : 2437 TX SE

Note : 2.4G WIFI 11B

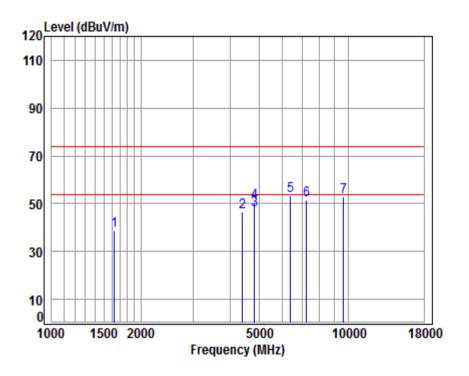
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1516.210	5.46	25.87	40.72	46.92	37.53	74.00	-36.47	peak
2	4482.150	7.54	33.57	43.29	48.03	45.85	74.00	-28.15	peak
3	4874.000	7.96	34.05	43.68	52.93	51.26	54.00	-2.74	Average
4	4874.000	7.96	34.05	43.68	56.74	55.07	74.00	-18.93	peak
5	6583.209	11.30	35.65	42.34	48.19	52.80	74.00	-21.20	peak
6	7311.000	10.05	36.15	41.78	47.03	51.45	74.00	-22.55	peak
7	9748.000	10.82	37.75	38.20	41.99	52.36	74.00	-21.64	peak

Page: 90 of 157

4.9.2.2.3 802.11B Highest Channel Peak Vertical

Site : chamber

Condition: 3m VERTICAL


Job No : 12741RG Mode : 2462 TX SE

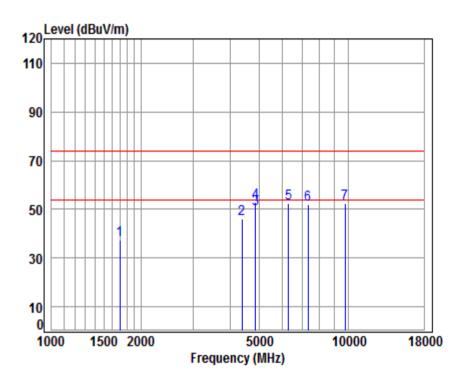
Note : 2.4G WIFI 11B

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1644.019	5.30	26.44	40.80	46.66	37.60	74.00	-36.40	peak
2	4495.125	7.55	33.59	43.30	47.52	45.36	74.00	-28.64	peak
3	4924.000	8.01	34.10	43.72	54.67	53.06	54.00	-0.94	Average
4	4924.000	8.01	34.10	43.72	57.95	56.34	74.00	-17.66	Peak
5	6507.536	11.52	35.60	42.40	48.49	53.21	74.00	-20.79	peak
6	7386.000	10.03	36.21	41.72	48.48	53.00	74.00	-21.00	peak
7	9848.000	10.87	37.81	38.04	42.20	52.84	74.00	-21.16	peak

Page: 91 of 157

4.9.2.2.4 802.11B_Lowest Channel_ Peak_ Horizontal

Site : chamber


Condition: 3m HORIZONTAL

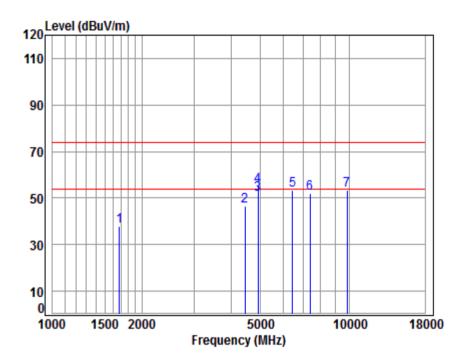
Job No : 12741RG Mode : 2412 TX SE Note : 2.4G WIFI 11B

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1629.825	5.31	26.38	40.79	47.77	38.67	74.00	-35.33	peak
2	4405.090	7.46	33.44	43.20	49.01	46.71	74.00	-27.29	peak
3	4824.000	7.92	34.01	43.64	49.19	47.48	54.00	-6.52	Average
4	4824.000	7.91	34.00	43.63	52.23	50.51	74.00	-23.49	peak
5	6395.654	11.34	35.50	42.49	48.96	53.31	74.00	-20.69	peak
6	7236.000	10.07	36.09	41.83	47.35	51.68	74.00	-22.32	peak
7	9648.000	10.77	37.69	38.36	42.67	52.77	74.00	-21.23	peak

Page: 92 of 157

4.9.2.2.5 802.11B_ Middle Channel_ Peak_ Horizontal

Site : chamber


Condition: 3m HORIZONTAL

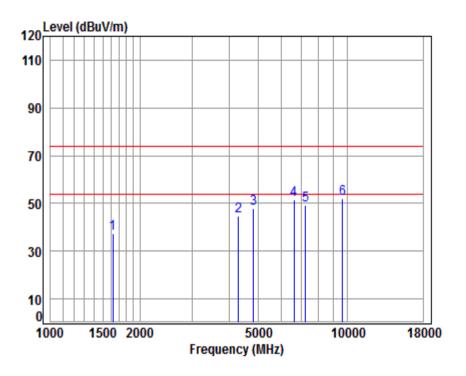
Job No : 12741RG Mode : 2437 TX SE Note : 2.4G WIFI 11B

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1697.129	5.23	26.66	40.83	46.54	37.60	74.00	-36.40	peak
2	4379.699	7.43	33.39	43.18	48.30	45.94	74.00	-28.06	peak
3	4874.000	7.96	34.05	43.68	51.66	49.99	54.00	-4.01	Average
4	4874.000	7.96	34.05	43.68	54.43	52.76	74.00	-21.24	peak
5	6303.890	11.17	35.41	42.57	48.67	52.68	74.00	-21.32	peak
6	7311.000	10.05	36.15	41.78	47.40	51.82	74.00	-22.18	peak
7	9748.000	10.82	37.75	38.20	42.14	52.51	74.00	-21.49	peak

Page: 93 of 157

4.9.2.2.6 802.11B Highest Channel Peak Horizontal

Site : chamber


Condition: 3m HORIZONTAL

Job No : 12741RG Mode : 2462 TX SE Note : 2.4G WIFI 11B

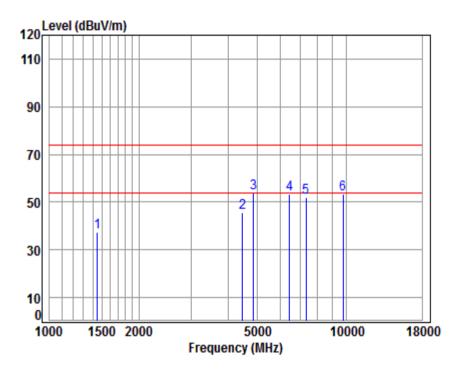
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1682.477	5.25	26.60	40.82	46.61	37.64	74.00	-36.36	peak
2	4456.315	7.51	33.53	43.26	48.57	46.35	74.00	-27.65	peak
3	4924.000	8.01	34.10	43.72	53.14	51.53	54.00	-2.47	Average
4	4924.000	8.01	34.10	43.72	56.84	55.23	74.00	-18.77	Peak
5	6451.353	11.45	35.55	42.44	48.82	53.38	74.00	-20.62	peak
6	7386.000	10.03	36.21	41.72	47.55	52.07	74.00	-21.93	peak
7	9848.000	10.87	37.81	38.04	42.91	53.55	74.00	-20.45	peak

Page: 94 of 157

4.9.2.2.7 802.11G_Lowest Channel_ Peak_ Vertical

Site : chamber

Condition: 3m VERTICAL


Job No : 12741RG Mode : 2412 TX SE

Note : 2.4G WIFI 11G

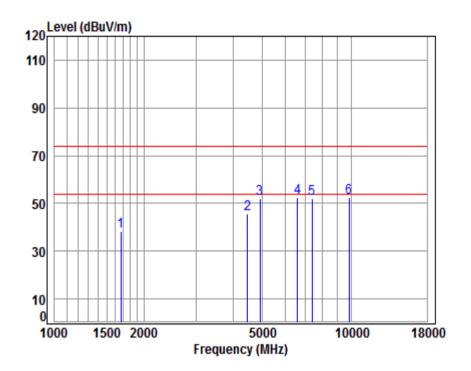
	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1620.431	5.32	26.34	40.78	46.60	37.48	74.00	-36.52	peak
4304.400	7.34	33.26	43.10	47.24	44.74	74.00	-29.26	peak
4824.000	7.91	34.00	43.63	49.41	47.69	74.00	-26.31	peak
6621.375	11.19	35.67	42.31	47.20	51.75	74.00	-22.25	peak
7236.000	10.07	36.09	41.83	45.09	49.42	74.00	-24.58	peak
9648.000	10.77	37.69	38.36	41.71	51.81	74.00	-22.19	peak
	MHz 1620.431 4304.400 4824.000 6621.375 7236.000	Freq Loss MHz dB 1620.431 5.32 4304.400 7.34 4824.000 7.91 6621.375 11.19 7236.000 10.07	Freq Loss Factor MHz dB dB/m 1620.431 5.32 26.34 4304.400 7.34 33.26 4824.000 7.91 34.00 6621.375 11.19 35.67 7236.000 10.07 36.09	Freq Loss Factor Factor MHz dB dB/m dB 1620.431 5.32 26.34 40.78 4304.400 7.34 33.26 43.10 4824.000 7.91 34.00 43.63 6621.375 11.19 35.67 42.31 7236.000 10.07 36.09 41.83	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1620.431 5.32 26.34 40.78 46.60 4304.400 7.34 33.26 43.10 47.24 4824.000 7.91 34.00 43.63 49.41 6621.375 11.19 35.67 42.31 47.20 7236.000 10.07 36.09 41.83 45.09	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1620.431 5.32 26.34 40.78 46.60 37.48 4304.400 7.34 33.26 43.10 47.24 44.74 4824.000 7.91 34.00 43.63 49.41 47.69 6621.375 11.19 35.67 42.31 47.20 51.75 7236.000 10.07 36.09 41.83 45.09 49.42	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1620.431 5.32 26.34 40.78 46.60 37.48 74.00 4304.400 7.34 33.26 43.10 47.24 44.74 74.00 4824.000 7.91 34.00 43.63 49.41 47.69 74.00 6621.375 11.19 35.67 42.31 47.20 51.75 74.00 7236.000 10.07 36.09 41.83 45.09 49.42 74.00	Cable Loss Factor Factor Read Level Level Limit Limit Over Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dBuV/m dB 1620.431 5.32 26.34 40.78 46.60 37.48 74.00 -36.52 4304.400 7.34 33.26 43.10 47.24 44.74 74.00 -29.26 4824.000 7.91 34.00 43.63 49.41 47.69 74.00 -26.31 6621.375 11.19 35.67 42.31 47.20 51.75 74.00 -22.25 7236.000 10.07 36.09 41.83 45.09 49.42 74.00 -24.58 9648.000 10.77 37.69 38.36 41.71 51.81 74.00 -22.19

Page: 95 of 157

4.9.2.2.8 802.11G_ Middle Channel_ Peak_ Vertical

Site : chamber

Condition: 3m VERTICAL


Job No : 12741RG Mode : 2437 TX SE

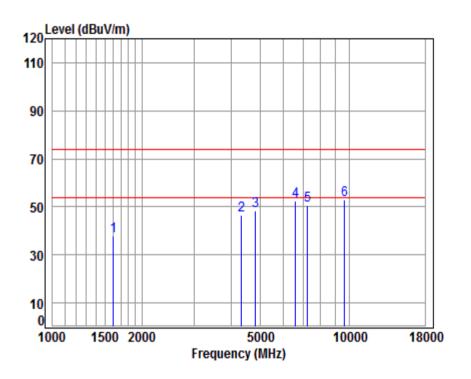
Note : 2.4G WIFI 11G

		_							
				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1451.878	5.32	25.62	40.67	47.31	37.58	74.00	-36.42	peak
2	4469.214	7.53	33.55	43.27	47.90	45.71	74.00	-28.29	peak
3	4874.000	7.96	34.05	43.68	55.46	53.79	74.00	-20.21	peak
4	6451.353	11.45	35.55	42.44	48.74	53.30	74.00	-20.70	peak
5	7311.000	10.05	36.15	41.78	47.42	51.84	74.00	-22.16	peak
6	9748.000	10.82	37.75	38.20	42.86	53.23	74.00	-20.77	peak

Page: 96 of 157

4.9.2.2.9 802.11G_ Highest Channel_ Peak_ Vertical

Site : chamber


Condition: 3m VERTICAL

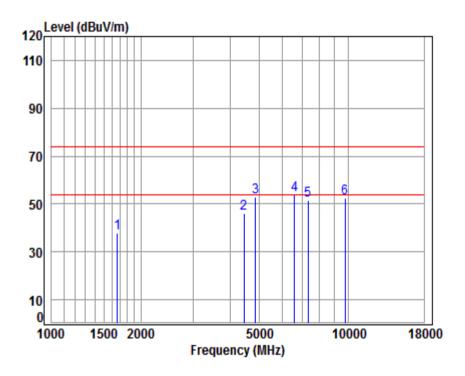
Job No : 12741RG Mode : 2462 TX SE Note : 2.4G WIFI 11G

	_							
	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1672.779	5.26	26.56	40.82	47.25	38.25	74.00	-35.75	peak
4469.214	7.53	33.55	43.27	47.91	45.72	74.00	-28.28	peak
4924.000	8.01	34.11	43.73	53.62	52.01	74.00	-21.99	peak
6583.209	11.30	35.65	42.34	48.04	52.65	74.00	-21.35	peak
7386.000	10.03	36.21	41.72	47.66	52.18	74.00	-21.82	peak
9848.000	10.87	37.81	38.04	41.98	52.62	74.00	-21.38	peak
	MHz 1672.779 4469.214 4924.000 6583.209 7386.000	Freq Loss MHz dB 1672.779 5.26 4469.214 7.53 4924.000 8.01 6583.209 11.30 7386.000 10.03	Freq Loss Factor MHz dB dB/m 1672.779 5.26 26.56 4469.214 7.53 33.55 4924.000 8.01 34.11 6583.209 11.30 35.65 7386.000 10.03 36.21	Freq Loss Factor Factor MHz dB dB/m dB 1672.779 5.26 26.56 40.82 4469.214 7.53 33.55 43.27 4924.000 8.01 34.11 43.73 6583.209 11.30 35.65 42.34 7386.000 10.03 36.21 41.72	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1672.779 5.26 26.56 40.82 47.25 4469.214 7.53 33.55 43.27 47.91 4924.000 8.01 34.11 43.73 53.62 6583.209 11.30 35.65 42.34 48.04 7386.000 10.03 36.21 41.72 47.66	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1672.779 5.26 26.56 40.82 47.25 38.25 4469.214 7.53 33.55 43.27 47.91 45.72 4924.000 8.01 34.11 43.73 53.62 52.01 6583.209 11.30 35.65 42.34 48.04 52.65 7386.000 10.03 36.21 41.72 47.66 52.18	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1672.779 5.26 26.56 40.82 47.25 38.25 74.00 4469.214 7.53 33.55 43.27 47.91 45.72 74.00 4924.000 8.01 34.11 43.73 53.62 52.01 74.00 6583.209 11.30 35.65 42.34 48.04 52.65 74.00 7386.000 10.03 36.21 41.72 47.66 52.18 74.00	Cable Loss Factor Factor Read Level Level Limit Limit Over Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dBuV/m dB 1672.779 5.26 26.56 40.82 47.25 38.25 74.00 -35.75 4469.214 7.53 33.55 43.27 47.91 45.72 74.00 -28.28 4924.000 8.01 34.11 43.73 53.62 52.01 74.00 -21.99 6583.209 11.30 35.65 42.34 48.04 52.65 74.00 -21.35 7386.000 10.03 36.21 41.72 47.66 52.18 74.00 -21.82 9848.000 10.87 37.81 38.04 41.98 52.62 74.00 -21.38

Page: 97 of 157

4.9.2.2.10 802.11G_Lowest Channel_ Peak_ Horizontal

Site : chamber


Condition: 3m HORIZONTAL

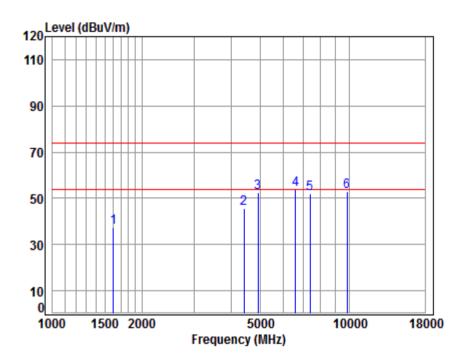
Job No : 12741RG Mode : 2412 TX SE Note : 2.4G WIFI 11G

	5			Preamp					Damada
	Freq	LOSS	Factor	Factor	revel	revel	Line	Limit	Kemark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1601.804	5.35	26.26	40.77	47.17	38.01	74.00	-35.99	peak
2	4341.886	7.38	33.33	43.14	48.77	46.34	74.00	-27.66	peak
3	4824.000	7.91	34.00	43.63	49.95	48.23	74.00	-25.77	peak
4	6602.265	11.24	35.66	42.32	47.94	52.52	74.00	-21.48	peak
5	7236.000	10.07	36.09	41.83	46.33	50.66	74.00	-23.34	peak
6	9648.000	10.77	37.69	38.36	42.73	52.83	74.00	-21.17	peak

Page: 98 of 157

4.9.2.2.11 802.11G_ Middle Channel_ Peak_ Horizontal

Site : chamber


Condition: 3m HORIZONTAL

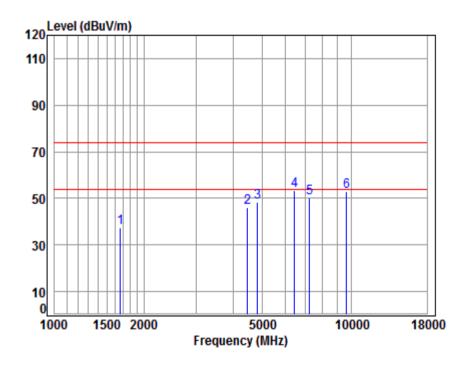
Job No : 12741RG Mode : 2437 TX SE Note : 2.4G WIFI 11G

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
						-ID- 3//	-ID- A//		
	MHz	dB	aB/m	dB	abuv	abuv/m	abuv/m	dB	
1	1667.951	5.27	26.54	40.81	46.68	37.68	74.00	-36.32	peak
2	4456.315	7.51	33.53	43.26	48.16	45.94	74.00	-28.06	peak
3	4874.000	7.96	34.05	43.68	54.54	52.87	74.00	-21.13	peak
4	6583.209	11.30	35.65	42.34	49.14	53.75	74.00	-20.25	peak
5	7311.000	10.05	36.15	41.78	47.09	51.51	74.00	-22.49	peak
6	9748.000	10.82	37.75	38.20	41.96	52.33	74.00	-21.67	peak

Page: 99 of 157

4.9.2.2.12 802.11G_ Highest Channel_ Peak_ Horizontal

Site : chamber


Condition: 3m HORIZONTAL

Job No : 12741RG Mode : 2462 TX SE Note : 2.4G WIFI 11G

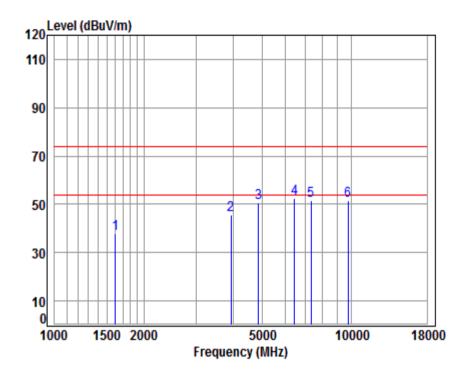
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1601.804	5.35	26.26	40.77	46.57	37.41	74.00	-36.59	peak
2	4417.841	7.47	33.46	43.22	48.12	45.83	74.00	-28.17	peak
3	4924.000	8.01	34.11	43.73	54.02	52.41	74.00	-21.59	peak
4	6602.265	11.24	35.66	42.32	49.08	53.66	74.00	-20.34	peak
5	7386.000	10.03	36.21	41.72	47.61	52.13	74.00	-21.87	peak
6	9848.000	10.87	37.81	38.04	42.42	53.06	74.00	-20.94	peak

Page: 100 of 157

4.9.2.2.13 802.11N20_Lowest Channel_ Peak_ Vertical

Site : chamber

Condition: 3m VERTICAL Job No : 12741RG


Mode : 2412 TX SE

Note : 2.4G WIFI 11N20

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1667.951	5.27	26.54	40.81	46.32	37.32	74.00	-36.68	peak
2	4469.214	7.53	33.55	43.27	48.26	46.07	74.00	-27.93	peak
3	4824.000	7.91	34.00	43.63	50.17	48.45	74.00	-25.55	peak
4	6451.353	11.45	35.55	42.44	48.81	53.37	74.00	-20.63	peak
5	7236.000	10.07	36.09	41.83	45.68	50.01	74.00	-23.99	peak
6	9648.000	10.77	37.69	38.36	42.92	53.02	74.00	-20.98	peak

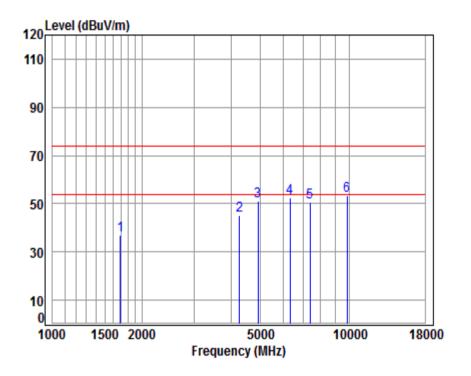
Page: 101 of 157

4.9.2.2.14 802.11N20_ Middle Channel_ Peak_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG


Mode : 2437 TX SE

Note : 2.4G WIFI 11N20

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1601.804	5.35	26.26	40.77	47.14	37.98	74.00	-36.02	peak
2	3935.493	6.92	32.58	42.68	48.81	45.63	74.00	-28.37	peak
3	4874.000	7.96	34.05	43.68	52.11	50.44	74.00	-23.56	peak
4	6432.732	11.41	35.54	42.46	48.00	52.49	74.00	-21.51	peak
5	7311.000	10.05	36.15	41.78	47.27	51.69	74.00	-22.31	peak
6	9748.000	10.82	37.75	38.20	41.24	51.61	74.00	-22.39	peak

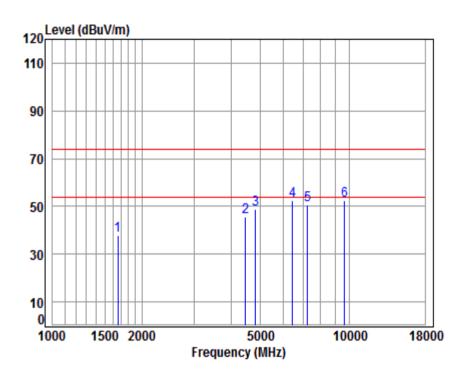
Page: 102 of 157

4.9.2.2.15 802.11N20_ Highest Channel_ Peak_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG


Mode : 2462 TX SE

Note : 2.4G WIFI 11N20

		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1692.231	5.24	26.64	40.83	45.85	36.90	74.00	-37.10	peak	
2	4267.237	7.30	33.19	43.06	47.93	45.36	74.00	-28.64	peak	
3	4924.000	8.01	34.11	43.73	52.60	50.99	74.00	-23.01	peak	
4	6322.136	11.20	35.43	42.55	48.34	52.42	74.00	-21.58	peak	
5	7386.000	10.03	36.21	41.72	46.06	50.58	74.00	-23.42	peak	
6	9848.000	10.87	37.81	38.04	42.52	53.16	74.00	-20.84	peak	

Page: 103 of 157

4.9.2.2.16 802.11N20_Lowest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG Mode : 2412 TX SE

Note : 2.4G WIFI 11N20

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1663.137	5.27	26.52	40.81	46.83	37.81	74.00	-36.19	peak
2	4469.214	7.53	33.55	43.27	47.96	45.77	74.00	-28.23	peak
3	4824.000	7.91	34.00	43.63	50.60	48.88	74.00	-25.12	peak
4	6451.353	11.45	35.55	42.44	47.94	52.50	74.00	-21.50	peak
5	7236.000	10.07	36.09	41.83	46.20	50.53	74.00	-23.47	peak
6	9648.000	10.77	37.69	38.36	42.51	52.61	74.00	-21.39	peak

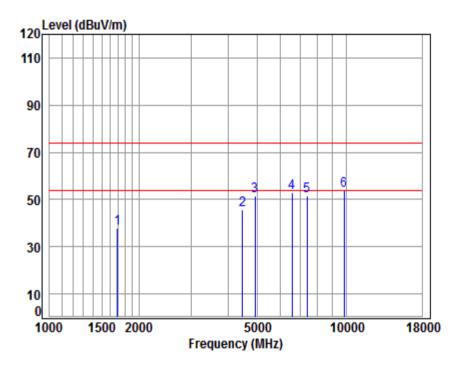
Page: 104 of 157

4.9.2.2.17 802.11N20_ Middle Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG


Mode : 2437 TX SE

Note : 2.4G WIFI 11N20

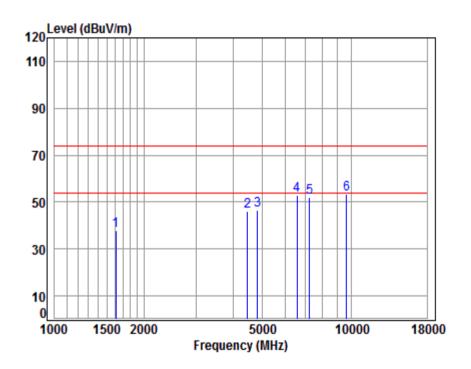
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	4667.054	F 07					74.00	26.52	
1	1667.951	5.2/	26.54	40.81	46.4/	3/.4/	/4.00	-36.53	peak
2	4062.629	7.06	32.82	42.82	49.11	46.17	74.00	-27.83	peak
3	4874.000	7.96	34.05	43.68	54.27	52.60	74.00	-21.40	peak
4	6717.762	10.91	35.73	42.23	48.10	52.51	74.00	-21.49	peak
5	7311.000	10.05	36.15	41.78	47.17	51.59	74.00	-22.41	peak
6	9748.000	10.82	37.75	38.20	42.21	52.58	74.00	-21.42	peak

Page: 105 of 157

4.9.2.2.18 802.11N20_ Highest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL


Job No : 12741RG Mode : 2462 TX SE

Note : 2.4G WIFI 11N20

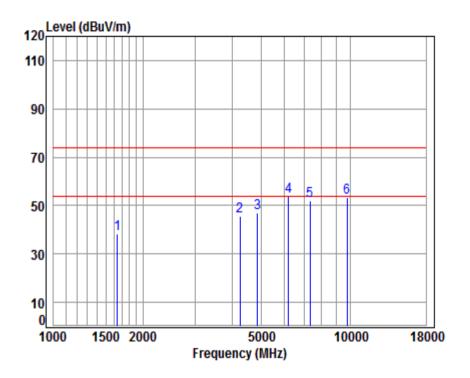
				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
_	4500 004			40.00		20.04	74.00	35.00	
1	1692.231	5.24	26.64	40.83	46.96	38.01	/4.00	-35.99	peak
2	4469.214	7.53	33.55	43.27	47.88	45.69	74.00	-28.31	peak
3	4924.000	8.01	34.11	43.73	53.31	51.70	74.00	-22.30	peak
4	6564.209	11.35	35.64	42.35	48.38	53.02	74.00	-20.98	peak
5	7386.000	10.03	36.21	41.72	46.82	51.34	74.00	-22.66	peak
6	9848.000	10.87	37.81	38.04	42.98	53.62	74.00	-20.38	peak

Page: 106 of 157

4.9.2.3 MIMO 4.9.2.3.1 802.11N20_MIMO_Lowest Channel_ Peak_ Vertical

Site : chamber Condition: 3m VERTICAL

Job No : 12741RG Mode : 2412 TX SE


Note : 2.4G WIFI 11N20

: MIMO

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1611.091	5.34	26.30	40.78	47.01	37.87	74.00	-36.13	peak
2	4469.214	7.53	33.55	43.27	48.36	46.17	74.00	-27.83	peak
3	4824.000	7.91	34.00	43.63	48.26	46.54	74.00	-27.46	peak
4	6564.209	11.35	35.64	42.35	48.33	52.97	74.00	-21.03	peak
5	7236.000								-
6	9648.000	10.77	37.69	38.36	43.08	53.18	74.00	-20.82	peak

Page: 107 of 157

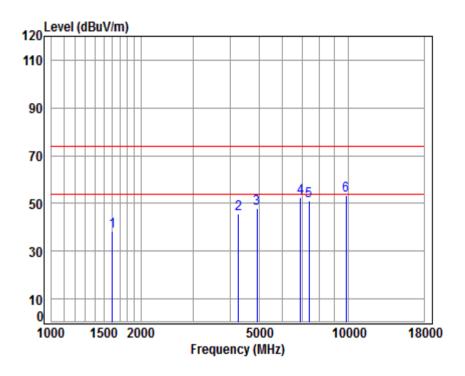
4.9.2.3.2 802.11N20_MIMO_Middle Channel_Peak_Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG

Mode : 2437 TX SE


Note : 2.4G WIFI 11N20

: MIMO

	_			Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1639.274	5.30	26.42	40.79	47.25	38.18	74.00	-35.82	peak
2	4242.641	7.27	33.15	43.03	48.30	45.69	74.00	-28.31	peak
3	4874.000	7.96	34.05	43.68	48.63	46.96	74.00	-27.04	peak
4	6195.508	10.96	35.30	42.66	50.16	53.76	74.00	-20.24	peak
5	7311.000	10.05	36.15	41.78	47.70	52.12	74.00	-21.88	peak
6	9748.000	10.82	37.75	38.20	43.06	53.43	74.00	-20.57	peak

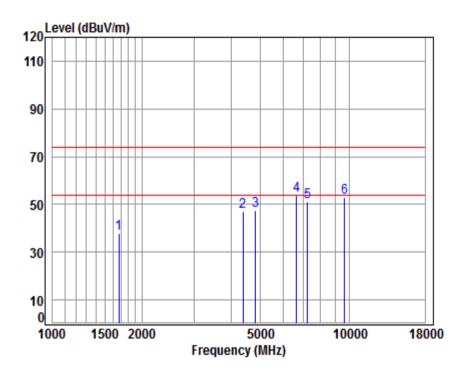
Page: 108 of 157

4.9.2.3.3 802.11N20_MIMO_ Highest Channel_ Peak_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG Mode : 2462 TX SE


Note : 2.4G WIFI 11N20

: MIMO

	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1606.441	5.34	26.28	40.77	47.44	38.29	74.00	-35.71	peak
4267.237	7.30	33.19	43.06	48.38	45.81	74.00	-28.19	peak
4924.000	8.01	34.11	43.73	49.39	47.78	74.00	-26.22	peak
6894.806	10.42	35.84	42.09	48.34	52.51	74.00	-21.49	peak
7386.000	10.03	36.21	41.72	46.66	51.18	74.00	-22.82	peak
9848.000	10.87	37.81	38.04	42.59	53.23	74.00	-20.77	peak
	MHz 1606.441 4267.237 4924.000 6894.806 7386.000	Freq Loss MHz dB 1606.441 5.34 4267.237 7.30 4924.000 8.01 6894.806 10.42 7386.000 10.03	Freq Loss Factor MHz dB dB/m 1606.441 5.34 26.28 4267.237 7.30 33.19 4924.000 8.01 34.11 6894.806 10.42 35.84 7386.000 10.03 36.21	Freq Loss Factor Factor MHz dB dB/m dB 1606.441 5.34 26.28 40.77 4267.237 7.30 33.19 43.06 4924.000 8.01 34.11 43.73 6894.806 10.42 35.84 42.09 7386.000 10.03 36.21 41.72	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1606.441 5.34 26.28 40.77 47.44 4267.237 7.30 33.19 43.06 48.38 4924.000 8.01 34.11 43.73 49.39 6894.806 10.42 35.84 42.09 48.34 7386.000 10.03 36.21 41.72 46.66	Freq Loss Factor Factor Level Level Level Level MHz dB dB/m dB dBuV dBuV/m 1606.441 5.34 26.28 40.77 47.44 38.29 4267.237 7.30 33.19 43.06 48.38 45.81 4924.000 8.01 34.11 43.73 49.39 47.78 6894.806 10.42 35.84 42.09 48.34 52.51 7386.000 10.03 36.21 41.72 46.66 51.18	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1606.441 5.34 26.28 40.77 47.44 38.29 74.00 4267.237 7.30 33.19 43.06 48.38 45.81 74.00 4924.000 8.01 34.11 43.73 49.39 47.78 74.00 6894.806 10.42 35.84 42.09 48.34 52.51 74.00 7386.000 10.03 36.21 41.72 46.66 51.18 74.00	Freq Cable Loss Factor Factor Read Level Level Level Line Limit Limit Over Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 1606.441 5.34 26.28 40.77 47.44 38.29 74.00 -35.71 4267.237 7.30 33.19 43.06 48.38 45.81 74.00 -28.19 4924.000 8.01 34.11 43.73 49.39 47.78 74.00 -26.22 6894.806 10.42 35.84 42.09 48.34 52.51 74.00 -21.49 7386.000 10.03 36.21 41.72 46.66 51.18 74.00 -22.82 9848.000 10.87 37.81 38.04 42.59 53.23 74.00 -20.77

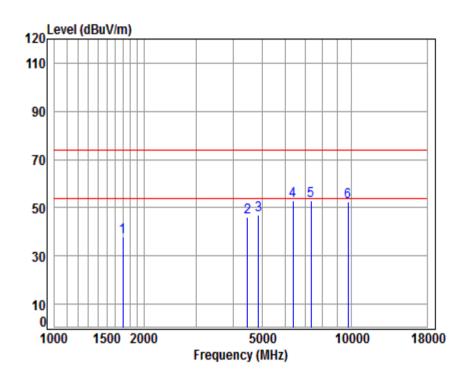
Page: 109 of 157

4.9.2.3.4 802.11N20_MIMO_Lowest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG Mode : 2412 TX SE


Note : 2.4G WIFI 11N20

: MIMO

	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1672.779	5.26	26.56	40.82	46.97	37.97	74.00	-36.03	peak
4379.699	7.43	33.39	43.18	49.17	46.81	74.00	-27.19	peak
4824.000	7.91	34.00	43.63	49.09	47.37	74.00	-26.63	peak
6640.542	11.13	35.69	42.29	49.19	53.72	74.00	-20.28	peak
7236.000	10.07	36.09	41.83	46.96	51.29	74.00	-22.71	peak
9648.000	10.77	37.69	38.36	42.97	53.07	74.00	-20.93	peak
	MHz 1672.779 4379.699 4824.000 6640.542 7236.000	Freq Loss MHz dB 1672.779 5.26 4379.699 7.43 4824.000 7.91 6640.542 11.13 7236.000 10.07	Freq Loss Factor MHz dB dB/m 1672.779 5.26 26.56 4379.699 7.43 33.39 4824.000 7.91 34.00 6640.542 11.13 35.69 7236.000 10.07 36.09	Freq Loss Factor Factor MHz dB dB/m dB 1672.779 5.26 26.56 40.82 4379.699 7.43 33.39 43.18 4824.000 7.91 34.00 43.63 6640.542 11.13 35.69 42.29 7236.000 10.07 36.09 41.83	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1672.779 5.26 26.56 40.82 46.97 4379.699 7.43 33.39 43.18 49.17 4824.000 7.91 34.00 43.63 49.09 6640.542 11.13 35.69 42.29 49.19 7236.000 10.07 36.09 41.83 46.96	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1672.779 5.26 26.56 40.82 46.97 37.97 4379.699 7.43 33.39 43.18 49.17 46.81 4824.000 7.91 34.00 43.63 49.09 47.37 6640.542 11.13 35.69 42.29 49.19 53.72 7236.000 10.07 36.09 41.83 46.96 51.29	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1672.779 5.26 26.56 40.82 46.97 37.97 74.00 4379.699 7.43 33.39 43.18 49.17 46.81 74.00 4824.000 7.91 34.00 43.63 49.09 47.37 74.00 6640.542 11.13 35.69 42.29 49.19 53.72 74.00 7236.000 10.07 36.09 41.83 46.96 51.29 74.00	Cable Ant Preamp Read Limit Over Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB dBuV/m dBuV/m dB dBuV/m

Page: 110 of 157

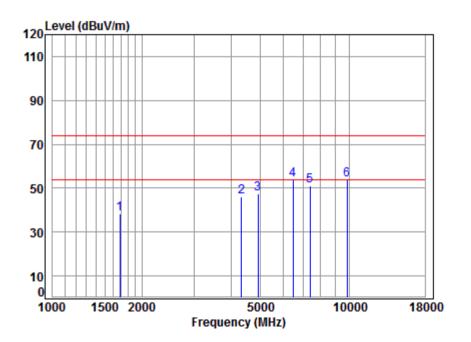
4.9.2.3.5 802.11N20_MIMO_Middle Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2437 TX SE


Note : 2.4G WIFI 11N20

: MIMO

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1702.042	5.23	26.68	40.83	46.71	37.79	74.00	-36.21	peak
2	4469.214	7.53	33.55	43.27	48.46	46.27	74.00	-27.73	peak
3	4874.000	7.96	34.05	43.68	48.77	47.10	74.00	-26.90	peak
4	6377.195	11.31	35.48	42.51	48.43	52.71	74.00	-21.29	peak
5	7311.000	10.05	36.15	41.78	48.42	52.84	74.00	-21.16	peak
6	9748.000	10.82	37.75	38.20	42.04	52.41	74.00	-21.59	peak

Page: 111 of 157

4.9.2.3.6 802.11N20_MIMO_ Highest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

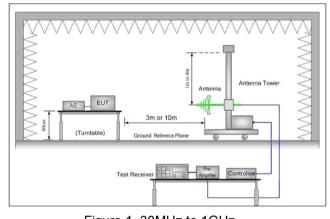
Job No : 12741RG Mode : 2462 TX SE

Note : 2.4G WIFI 11N20

: MIMO

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1687.347	5.24	26.62	40.82	47.21	38.25	74.00	-35.75	peak
2	4341.886	7.38	33.33	43.14	48.44	46.01	74.00	-27.99	peak
3	4924.000	8.01	34.11	43.73	49.05	47.44	74.00	-26.56	peak
4	6470.026	11.48	35.57	42.43	49.02	53.64	74.00	-20.36	peak
5	7386.000	10.03	36.21	41.72	46.54	51.06	74.00	-22.94	peak
6	9848.000	10.87	37.81	38.04	43.06	53.70	74.00	-20.30	peak

Page: 112 of 157


Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz and 18GHz to 25GHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.
- 4) All Modes have been tested, but only the worst case data displayed in this report.

Page: 113 of 157

4.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013 Sect	ion 11.12								
Test Site:	Measurement Distance:	3m or 10m (Semi-Anechoic (Chamber)							
	Frequency	Limit (dBuV/m @3m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak Value							
	88MHz-216MHz	43.5	Quasi-peak Value							
Limit:	216MHz-960MHz	46.0	Quasi-peak Value							
	960MHz-1GHz	54.0	Quasi-peak Value							
	Above 1CHz	54.0	Average Value							
	Above 1GHz	74.0	Peak Value							
Test Setup:										

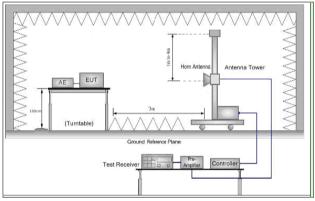
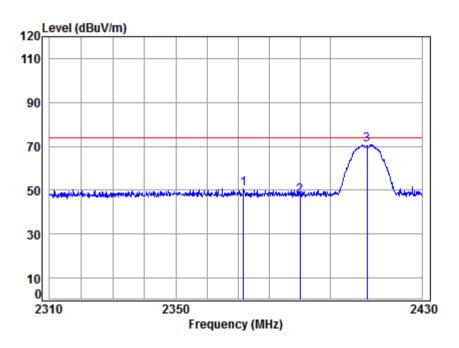


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM171201274102

Page: 114 of 157


	 For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 						
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.						
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.						
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.						
Test Procedure:	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel						
	h. Test the EUT in the lowest channel , the Highest channel						
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.						
	j. Repeat above procedures until all frequencies measured was complete.						
Exploratory Tost Mode:	Transmitting with all kind of modulations, data rates.						
Exploratory Test Mode:	Charge + Transmitting mode.						
	Pretest the EUT at Charge +Transmitting mode.						
	Through Pre-scan, find the						
Final Test Mode:	1Mbps of rate is the worst case of 802.11B;						
Tillal Test Mode.	6Mbps of rate is the worst case of 802.11G;						
	6.5Mbps of rate is the worst case of 802.11N(HT20);						
	Only the worst case is recorded in the report.						
Instruments Used:	Refer to section 5.10 for details						
Test Results:	Pass						

Page: 115 of 157

Test plot as follows:

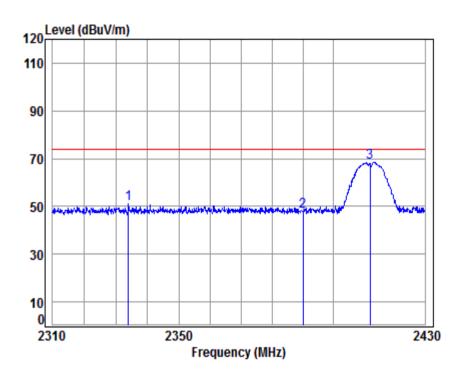
4.10.1 ANT1

4.10.1.1 802.11B_Lowest Channel_ Peak_ Vertical

Site : chamber Condition: 3m VERTICAL

Job No : 12741RG

Mode : 2412 Band edge


: 2.4G WIFI 11B

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2371.761	5.45	28.49	41.16	57.89	50.67	74.00	-23.33	peak
2	2390.000	5.47	28.52	41.17	54.74	47.56	74.00	-26.44	peak
3	2412.000	5.50	28.56	41.18	77.68	70.56	74.00	-3.44	peak

Report No.: SZEM171201274102

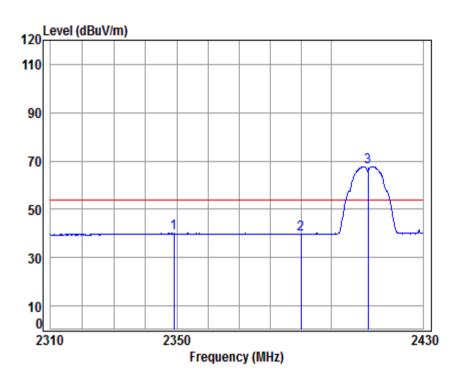
Page: 116 of 157

4.10.1.2 802.11B_Lowest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11B

	Freq			Preamp Factor					Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-
1	2333.989	5.40	28.42	41.15	58.55	51.22	74.00	-22.78	peak	
2	2390.000	5.47	28.52	41.17	54.86	47.68	74.00	-26.32	peak	
3	2412.000	5.50	28.56	41.18	75.50	68.38	74.00	-5.62	peak	

Page: 117 of 157

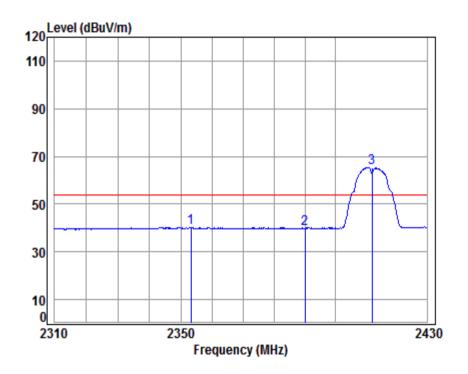
4.10.1.3 802.11B_Lowest Channel_ Average_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG

1


Mode : 2412 Band edge

: 2.4G WIFI 11B

				Preamp						
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
	2349.168	5.42	28.45	41.16	47.33	40.04	54.00	-13.96	Average	
	2390.000	5.47	28.52	41.17	46.98	39.80	54.00	-14.20	Average	
*	2412.000	5.50	28.56	41.18	74.84	67.72	54.00	13.72	Average	

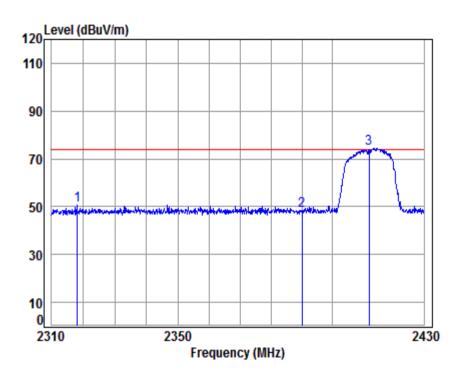
Page: 118 of 157

4.10.1.4 802.11B_Lowest Channel_ Average _ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11B

Freq			Preamp Factor					Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2353.217								_
2390.000 2412.000								_

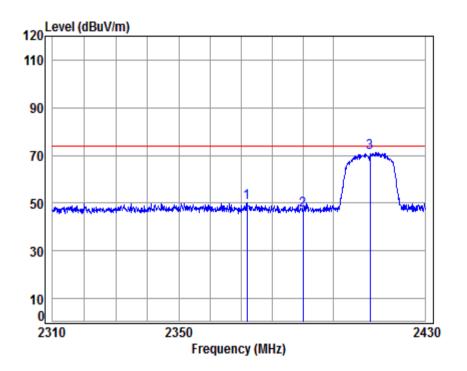
Page: 119 of 157

4.10.1.5 802.11G_Lowest Channel_ Peak_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11G

		_								
	Freq			Preamp Factor						
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-
1	2318.086	5.38	28.40	41.14	58.23	50.87	74.00	-23.13	peak	
2	2390.000	5.47	28.52	41.17	55.37	48.19	74.00	-25.81	peak	
3 *	* 2412.000	5.50	28.56	41.18	81.58	74.46	74.00	0.46	peak	

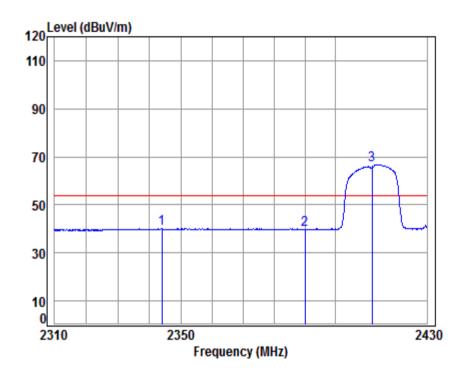
Page: 120 of 157

4.10.1.6 802.11G_Lowest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11G

	Freq			Preamp Factor					
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2371.882	5.45	28.49	41.16	57.61	50.39	74.00	-23.61	peak
2	2390.000	5.47	28.52	41.17	53.97	46.79	74.00	-27.21	peak
3	2412.000	5.50	28.56	41.18	78.34	71.22	74.00	-2.78	peak

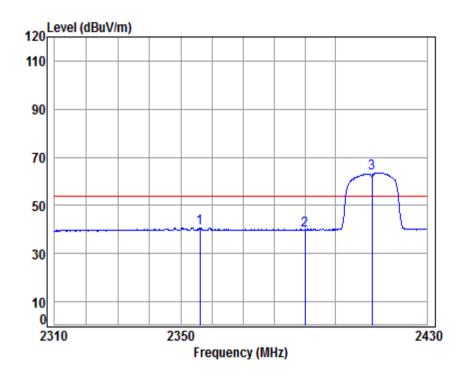
Page: 121 of 157

4.10.1.7 802.11G_Lowest Channel_ Average_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11G

Freq			Preamp Factor					Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2343.939								_
2390.000 * 2412.000								_

Page: 122 of 157

4.10.1.8 802.11G_Lowest Channel_ Average _ Horizontal

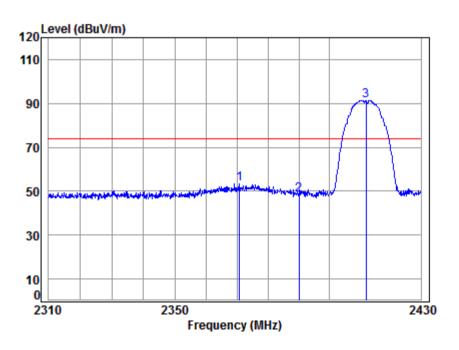
Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2412 Band edge

: 2.4G WIFI 11G


Freq			Preamp Factor					Remark	
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
1 2356.078								_	
2 2390.000 3 * 2412.000	5.47	28.52	41.17	46.97	39.79	54.00	-14.21	Average	

Report No.: SZEM171201274102

Page: 123 of 157

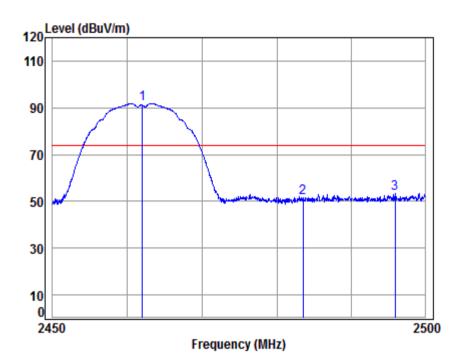
4.10.2 ANT2

4.10.2.1 802.11B Lowest Channel Peak Vertical

Site : chamber Condition: 3m VERTICAL

Job No : 12741RG

1 2


Mode : 2412 Band edge

: 2.4G WIFI 11B

	Freq			Preamp Factor					Remark
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2	370.801	5.45	28.49	41.16	60.79	53.57	74.00	-20.43	peak
2	390.000	5.47	28.52	41.17	55.66	48.48	74.00	-25.52	peak
* 2	412.000	5.50	28.56	41.18	98.60	91.48	74.00	17.48	peak

Page: 124 of 157

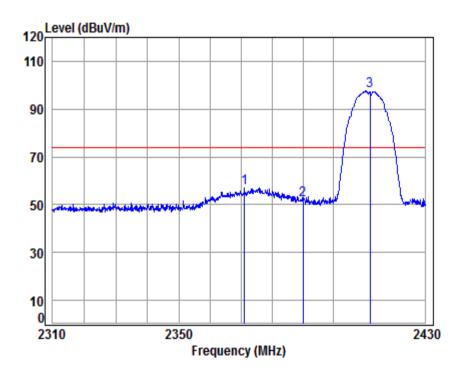
4.10.2.2 802.11B Highest Channel Peak Vertical

Site : chamber Condition: 3m VERTICAL

Job No : 12741RG

1 2 3

Mode : 2462 Band edge


: 2.4G WIFI 11B

			Preamp						
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
									_
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
* 2462.000	5.57	28.64	41.20	98.67	91.68	74.00	17.68	peak	
2483.500	5.60	28.67	41.21	58.28	51.34	74.00	-22.66	peak	
2495 963	5.61	28.69	41 22	60.25	53, 33	74 00	-20.67	neak	

Report No.: SZEM171201274102

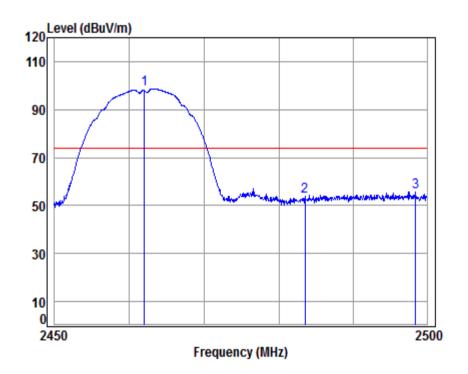
Page: 125 of 157

4.10.2.3 802.11B_Lowest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11B

	Freq		Ant Factor						Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2371.041	5.45	28.49	41.16	64.18	56.96	74.00	-17.04	peak
2	2390.000	5.47	28.52	41.17	59.10	51.92	74.00	-22.08	peak
3 :	* 2412.000	5.50	28.56	41.18	104.56	97.44	74.00	23.44	peak

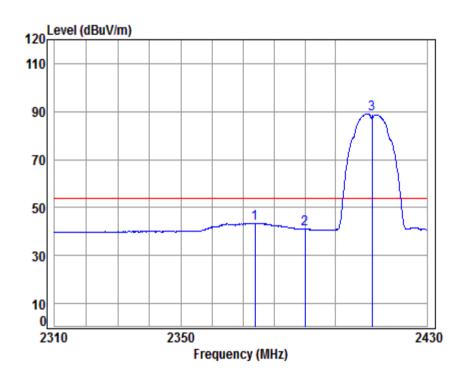
Page: 126 of 157

4.10.2.4 802.11B_ Highest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG


Mode : 2462 Band edge

: 2.4G WIFI 11B

		Freq					Level			Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	*	2462.000	5.57	28.64	41.20	105.65	98.66	74.00	24.66	peak
2		2483.500	5.60	28.67	41.21	60.56	53.62	74.00	-20.38	peak
3		2498.435	5.62	28.70	41.22	62.61	55.71	74.00	-18.29	peak

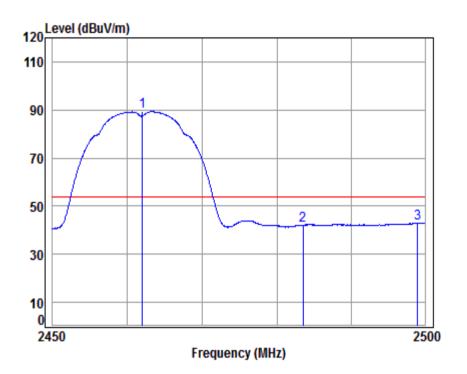
Page: 127 of 157

4.10.2.5 802.11B_Lowest Channel_ Average_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11B

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2373.804	5.45	28.49	41.17	50.78	43.55	54.00	-10.45	Average
2	2390.000	5.47	28.52	41.17	48.13	40.95	54.00	-13.05	Average
3	* 2412.000	5.50	28.56	41.18	96.12	89.00	54.00	35.00	Average

Page: 128 of 157

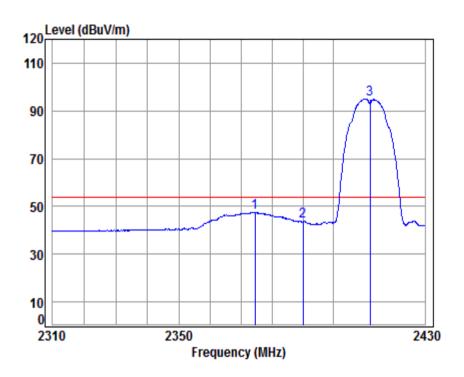
4.10.2.6 802.11B_ Highest Channel_ Average _ Vertical

Site : chamber

1

Condition: 3m VERTICAL Job No : 12741RG

Mode : 2462 Band edge


: 2.4G WIFI 11B

: ΔNT2

	. AIV	1 4								
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
*	2462.000	5.57	28.64	41.20	96.24	89.25	54.00	35.25	Average	
	2483.500	5.60	28.67	41.21	48.99	42.05	54.00	-11.95	Average	
	2498 990	5 62	28 70	41 22	49 74	42 84	54 00	-11 16	Average	

Page: 129 of 157

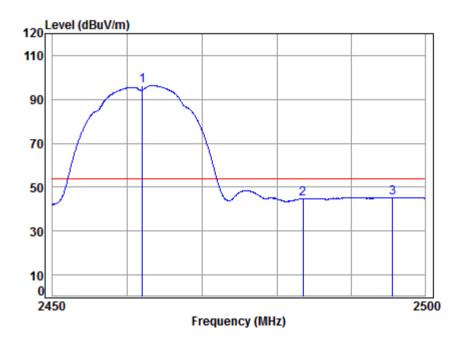
4.10.2.7 802.11B_Lowest Channel_ Average _ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2412 Band edge


: 2.4G WIFI 11B

	Freq		Ant Factor						Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2374.526	5.45	28.49	41.17	54.84	47.61	54.00	-6.39	Average	
2	2390.000	5.47	28.52	41.17	50.82	43.64	54.00	-10.36	Average	
3	* 2412.000	5.50	28.56	41.18	102.06	94.94	54.00	40.94	Average	

Report No.: SZEM171201274102

Page: 130 of 157

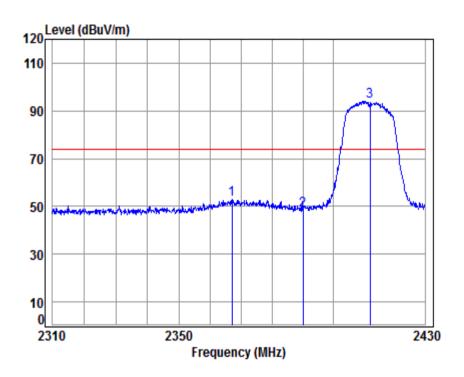
4.10.2.8 802.11B_ Highest Channel_ Average_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2462 Band edge


: 2.4G WIFI 11B

	12								
	Cable	Ant	Preamp	Read		Limit	0ver		
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 * 2462.000	5.57	28.64	41.20	103.18	96.19	54.00	42.19	Average	
2 2483.500	5.60	28.67	41.21	51.71	44.77	54.00	-9.23	Average	
3 2495.610								_	

Report No.: SZEM171201274102

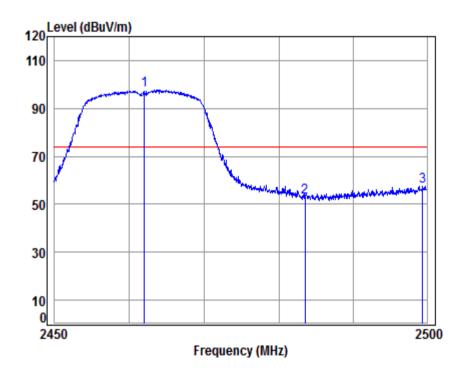
Page: 131 of 157

4.10.2.9 802.11G Lowest Channel Peak Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11G

		Freq				Read Level					
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-
1		2367.082	5.44	28.48	41.16	60.37	53.13	74.00	-20.87	peak	
2		2390.000	5.47	28.52	41.17	55.36	48.18	74.00	-25.82	peak	
3	*	2412.000	5.50	28.56	41.18	101.19	94.07	74.00	20.07	peak	

Page: 132 of 157

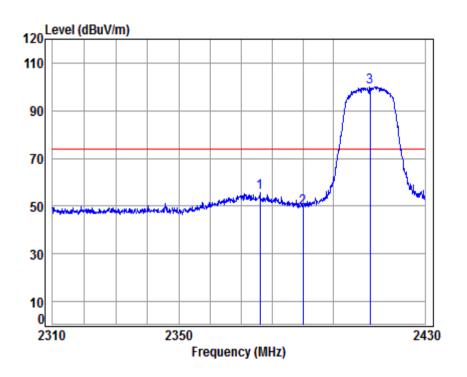
4.10.2.10 802.11G_ Highest Channel_ Peak_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG

Mode : 2462 Band edge


: 2.4G WIFI 11G

			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	*	2462.000	5.57	28.64	41.20	104.84	97.85	74.00	23.85	peak	
2		2483.500	5.60	28.67	41.21	59.87	52.93	74.00	-21.07	peak	
3		2499.394	5.62	28.70	41.22	64.57	57.67	74.00	-16.33	peak	

Report No.: SZEM171201274102

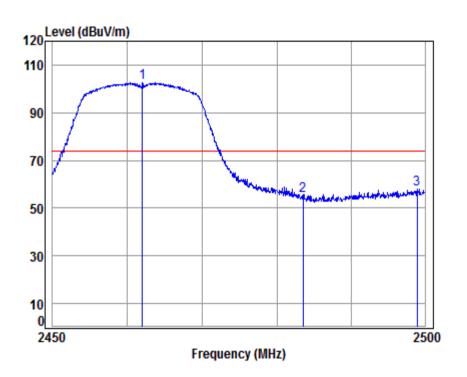
Page: 133 of 157

4.10.2.11 802.11G_Lowest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11G

	Freq						Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2376.090	5.46	28.49	41.17	62.87	55.65	74.00	-18.35	peak
2	2390.000	5.47	28.52	41.17	56.68	49.50	74.00	-24.50	peak
3 *	2412.000	5.50	28.56	41.18	107.18	100.06	74.00	26.06	peak

Page: 134 of 157

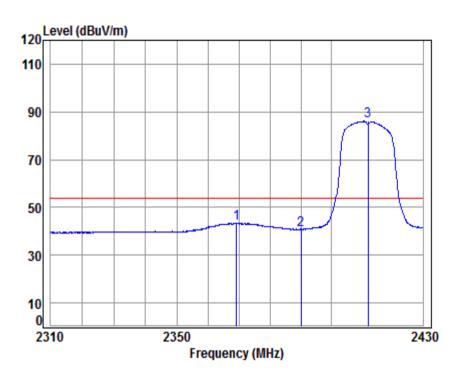
4.10.2.12 802.11G_ Highest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2462 Band edge


: 2.4G WIFI 11G

			C-1-1-	۸+	D	Dand		1224	0		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	-										-
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	*	2462.000	5 57	28 64	41 20	100 55	102 56	7/ 00	28 56	nook	
1		2402.000	5.57	20.04	41.20	109.55	102.50	74.00	20.50	peak	
2		2483.500	5.60	28.67	41.21	62.33	55.39	74.00	-18.61	peak	
		2498.940								•	
_		2430.340	J. 0Z	20.70	41.22	03.01	20.11	74.00	-13.03	peak	

Report No.: SZEM171201274102

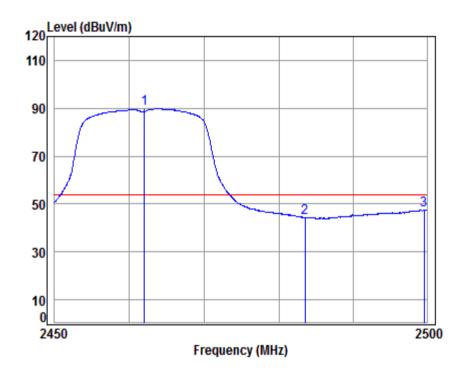
Page: 135 of 157

4.10.2.13 802.11G_Lowest Channel_ Average_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11G

	Freq			Preamp Factor					Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-
1	2369.240	5.45	28.48	41.16	50.61	43.38	54.00	-10.62	Average	
2	2390.000	5.47	28.52	41.17	47.94	40.76	54.00	-13.24	Average	
3	* 2412.000	5.50	28.56	41.18	93.17	86.05	54.00	32.05	Average	

Page: 136 of 157

4.10.2.14 802.11G_ Highest Channel_ Average _ Vertical

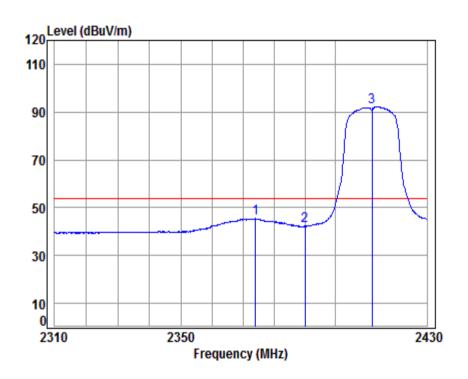
Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG

Mode : 2462 Band edge

: 2.4G WIFI 11G


: ΔNT2

			-								
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	*	2462.000	5.57	28.64	41.20	96.78	89.79	54.00	35.79	Average	
2		2483.500	5.60	28.67	41.21	51.27	44.33	54.00	-9.67	Average	
3		2499.646	5.62	28.70	41.22	54.22	47.32	54.00	-6.68	Average	

Report No.: SZEM171201274102

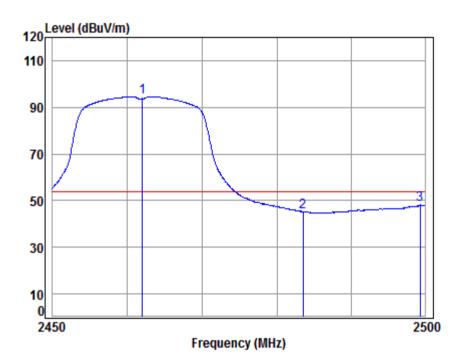
Page: 137 of 157

4.10.2.15 802.11G Lowest Channel Average Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11G

		Freq			Preamp Factor						
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		—
1		2373.925	5.45	28.49	41.17	52.69	45.46	54.00	-8.54	Average	
2		2390.000	5.47	28.52	41.17	49.47	42.29	54.00	-11.71	Average	
3	*	2412.000	5.50	28.56	41.18	99.27	92.15	54.00	38.15	Average	

Page: 138 of 157

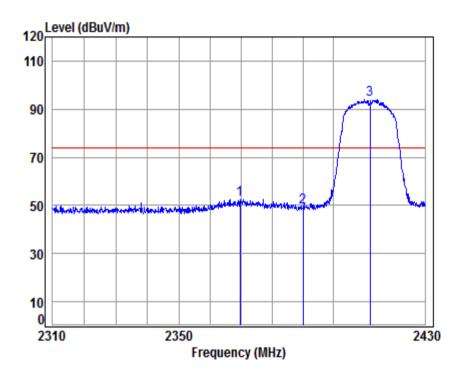
4.10.2.16 802.11G_ Highest Channel_ Average_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

2 3


Mode : 2462 Band edge

: 2.4G WIFI 11G

		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
*	2462.000	5.57	28.64	41.20	101.50	94.51	54.00	40.51	Average	
	2483.500	5.60	28.67	41.21	52.15	45.21	54.00	-8.79	Average	
	2499.344	5.62	28.70	41.22	55.13	48.23	54.00	-5.77	Average	

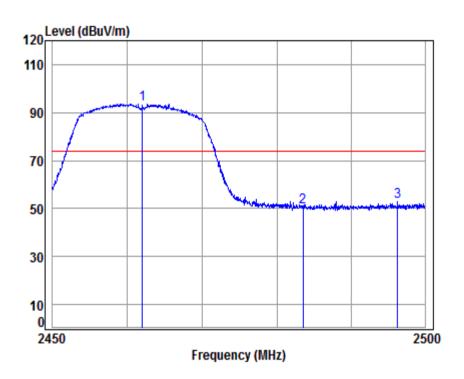
Page: 139 of 157

4.10.2.17 802.11N20 Lowest Channel Peak Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG


Mode : 2412 Band edge

: 2.4G WIFI 11N20

	Freq				Read Level				Remark	
-	MHz	dB	dB/m	——dB	dBuV	dBuV/m	dBuV/m	——dB		_
	2369.720								-	
	2390.000								•	
3 *	2412.000	5.50	28.56	41.18	101.16	94.04	/4.00	20.04	peak	

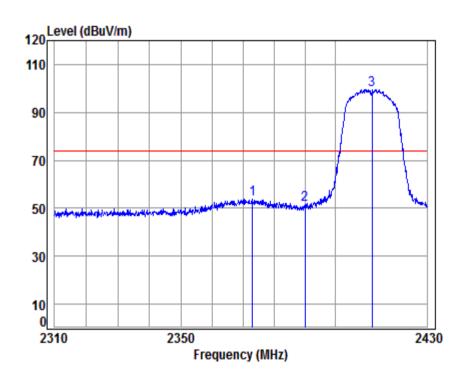
Page: 140 of 157

4.10.2.18 802.11N20 _ Highest Channel_ Peak_ Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG


Mode : 2462 Band edge

: 2.4G WIFI 11N20

		Freq				Read Level				Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	*	2462.000	5.57	28.64	41.20	100.70	93.71	74.00	19.71	peak
2		2483.500	5.60	28.67	41.21	57.42	50.48	74.00	-23.52	peak
3		2496.316	5.62	28.69	41.22	59.79	52.88	74.00	-21.12	peak

Page: 141 of 157

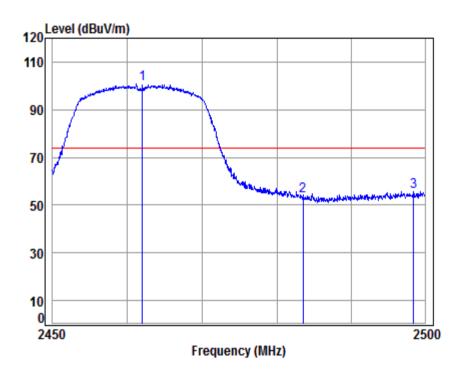
4.10.2.19 802.11N20 Lowest Channel Peak Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2412 Band edge


: 2.4G WIFI 11N20

	Freq		Ant Factor							
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2373.083	5.45	28.49	41.17	61.26	54.03	74.00	-19.97	peak	
2	2390.000	5.47	28.52	41.17	58.60	51.42	74.00	-22.58	peak	
3	* 2412 000	5.50	28.56	41 18	106 64	99.52	74 00	25.52	neak	

Report No.: SZEM171201274102

Page: 142 of 157

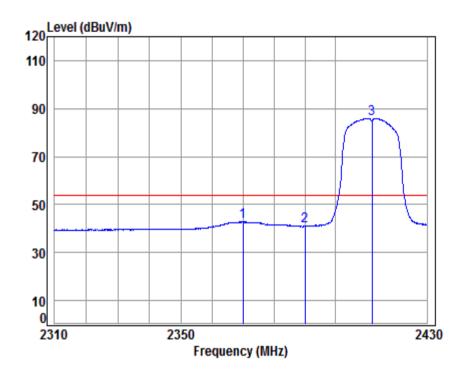
4.10.2.20 802.11N20 _Highest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2462 Band edge


: 2.4G WIFI 11N20

		Freq					Level			Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	*	2462.000	5.57	28.64	41.20	107.81	100.82	74.00	26.82	peak
2		2483.500	5.60	28.67	41.21	60.56	53.62	74.00	-20.38	peak
3		2498.485	5.62	28.70	41.22	62.57	55.67	74.00	-18.33	peak

Report No.: SZEM171201274102

Page: 143 of 157

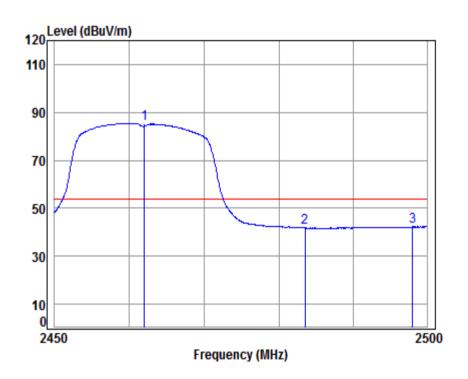
4.10.2.21 802.11N20 Lowest Channel Average Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG

Mode : 2412 Band edge


: 2.4G WIFI 11N20

			12								
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	-										_
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		0360 060	- 4-	00.40		F0 04	40.00	F4 00	44.00		
1		2369.960	5.45	28.48	41.16	50.21	42.98	54.00	-11.02	Average	
2		2390.000	5.47	28.52	41.17	48.08	40.90	54.00	-13.10	Average	
3	*	2412,000	5.50	28.56	41.18	93.00	85.88	54.00	31.88	Average	

Report No.: SZEM171201274102

Page: 144 of 157

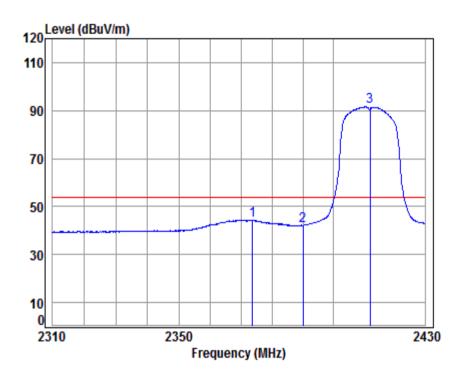
4.10.2.22 802.11N20 Highest Channel Average Vertical

Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG

Mode : 2462 Band edge


: 2.4G WIFI 11N20

			-								
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	*	2462.000	5.57	28.64	41.20	92.49	85.50	54.00	31.50	Average	
2		2483.500	5.60	28.67	41.21	48.74	41.80	54.00	-12.20	Average	
3		2498.031	5.62	28.70	41.22	49.22	42.32	54.00	-11.68	Average	

Report No.: SZEM171201274102

Page: 145 of 157

4.10.2.23 802.11N20 Lowest Channel Average Horizontal

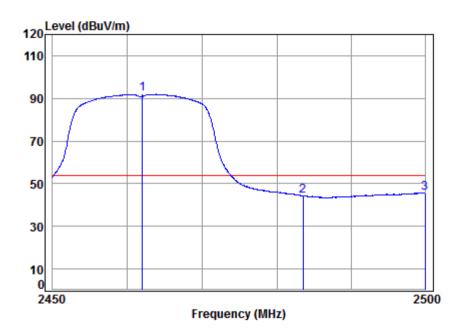
Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2412 Band edge

: 2.4G WIFI 11N20


: ANT2

	Freq			Preamp Factor					Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
1	2373.684	5.45	28.49	41.17	51.58	44.35	54.00	-9.65	Average	
2	2390.000	5.47	28.52	41.17	49.34	42.16	54.00	-11.84	Average	
3	* 2412.000	5.50	28.56	41.18	98.68	91.56	54.00	37.56	Average	

Report No.: SZEM171201274102

Page: 146 of 157

4.10.2.24 802.11N20 _Highest Channel_ Average_ Horizontal

Site : chamber

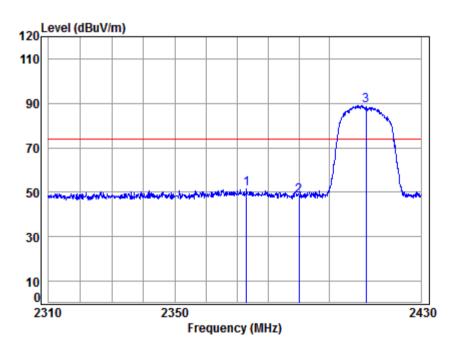
Condition: 3m HORIZONTAL

Job No : 12741RG

1 2

Mode : 2462 Band edge

: 2.4G WIFI 11N20


: ANT2

	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
* 2462.000	5.57	28.64	41.20	98.97	91.98	54.00	37.98	Average
2483.500	5.60	28.67	41.21	51.22	44.28	54.00	-9.72	Average
2500.000	5.62	28.70	41.22	52.55	45.65	54.00	-8.35	Average

Page: 147 of 157

4.10.3 MIMO

4.10.3.1 802.11N20_MIMO_Lowest Channel_ Peak_ Vertical

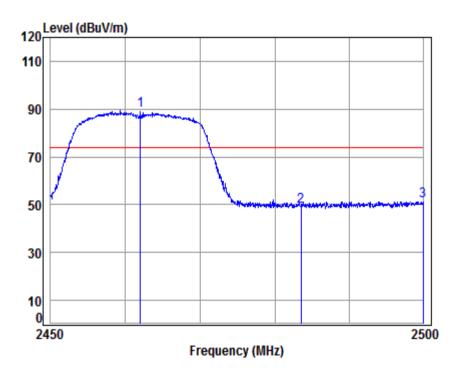
Site : chamber Condition: 3m VERTICAL

Job No : 12741RG

2 3

Mode : 2412 Band edge

: 2.4G WIFI 11N20


: MTMO

	Freq			Preamp Factor					Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		—
	2373.083	5.45	28.49	41.17	58.77	51.54	74.00	-22.46	peak	
	2390.000	5.47	28.52	41.17	55.33	48.15	74.00	-25.85	peak	
*	2412.000	5.50	28.56	41.18	96.32	89.20	74.00	15.20	neak	

Report No.: SZEM171201274102

Page: 148 of 157

4.10.3.2 802.11N20_MIMO_ Highest Channel_ Peak_ Vertical

Site : chamber Condition: 3m VERTICAL

Job No : 12741RG

Mode : 2462 Band edge

: 2.4G WIFI 11N20

Freq			Preamp Factor					Remark	
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB		_
1 * 2462.000 2 2483.500								•	
3 2500.000								•	

Report No.: SZEM171201274102

Page: 149 of 157

4.10.3.3 802.11N20 MIMO Lowest Channel Peak Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2412 Band edge

: 2.4G WIFI 11N20

: MTMO

	Freq		Ant Factor						Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2373.925	5.45	28.49	41.17	62.75	55.52	74.00	-18.48	peak
2	2390.000	5.47	28.52	41.17	56.34	49.16	74.00	-24.84	peak
3 :	* 2412.000	5.50	28.56	41.18	102.10	94.98	74.00	20.98	peak

Report No.: SZEM171201274102

Page: 150 of 157

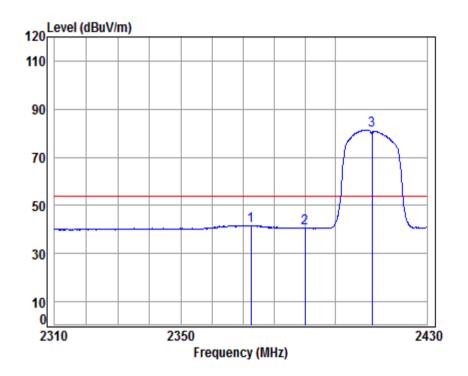
4.10.3.4 802.11N20_ MIMO_Highest Channel_ Peak_ Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2462 Band edge


: 2.4G WIFI 11N20

			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	*	2462.000	5.57	28.64	41.20	101.76	94.77	74.00	20.77	peak	
2		2483.500	5.60	28.67	41.21	57.73	50.79	74.00	-23.21	peak	
3		2494.954	5.61	28.69	41.22	60.13	53.21	74.00	-20.79	peak	

Report No.: SZEM171201274102

Page: 151 of 157

4.10.3.5 802.11N20_ MIMO_Lowest Channel_ Average_ Vertical

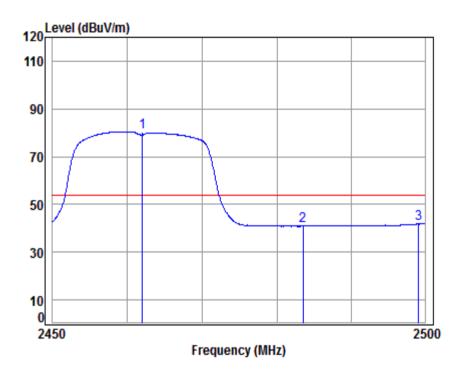
Site : chamber

Condition: 3m VERTICAL

Job No : 12741RG

2 3

Mode : 2412 Band edge


: 2.4G WIFI 11N20

	Freq			Preamp Factor					Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
	2372.482	5.45	28.49	41.17	48.88	41.65	54.00	-12.35	Average	
	2390.000	5.47	28.52	41.17	47.65	40.47	54.00	-13.53	Average	
*	2412.000	5.50	28.56	41.18	88.49	81.37	54.00	27.37	Average	

Report No.: SZEM171201274102

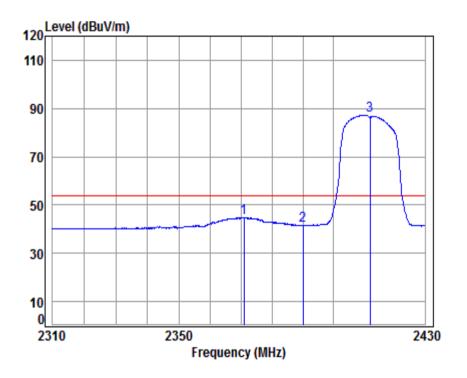
Page: 152 of 157

4.10.3.6 802.11N20_ MIMO_ Highest Channel_ Average _ Vertical

Site : chamber Condition: 3m VERTICAL

Job No : 12741RG

Mode : 2462 Band edge


: 2.4G WIFI 11N20

		Freq			Preamp Factor					Remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
1	*	2462.000	5.57	28.64	41.20	87.41	80.42	54.00	26.42	Average	
2		2483.500	5.60	28.67	41.21	47.80	40.86	54.00	-13.14	Average	
3		2499.142	5.62	28.70	41.22	48.94	42.04	54.00	-11.96	Average	

Report No.: SZEM171201274102

Page: 153 of 157

4.10.3.7 802.11N20 MIMO Lowest Channel Average Horizontal

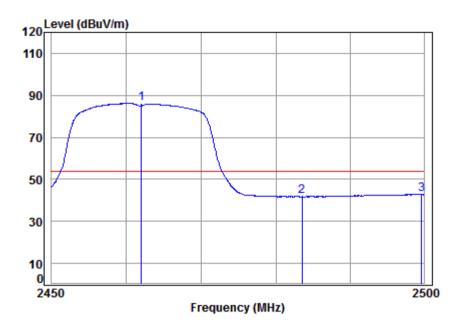
Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

1 2 3

Mode : 2412 Band edge


: 2.4G WIFI 11N20

	Freq			Preamp Factor					Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
	2370.921	5.45	28.49	41.16	51.94	44.72	54.00	-9.28	Average	
	2390.000	5.47	28.52	41.17	48.72	41.54	54.00	-12.46	Average	
*	2412,000	5.50	28.56	41.18	94.44	87.32	54.00	33.32	Average	

Report No.: SZEM171201274102

Page: 154 of 157

4.10.3.8 802.11N20 MIMO Highest Channel Average Horizontal

Site : chamber

Condition: 3m HORIZONTAL

Job No : 12741RG

Mode : 2462 Band edge

: 2.4G WIFI 11N20

: MIMO

Freq			Preamp Factor					Remark	
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
2462.000 2483.500								Average Average	
2499.697								_	

Remark:

1 2 3

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

All Modes have been tested, but only the worst case data displayed in this report.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms

Page: 155 of 157

5 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	±0.75dB
2	RF power density, conducted	±2.84dB
3	Spurious emissions, conducted	±0.75dB
4	Dedicted Courieus emission test	±4.5dB (30MHz-1GHz)
4	Radiated Spurious emission test	±4.8dB (1GHz-25GHz)
5	Conduct emission test	±3.12 dB (9KHz- 30MHz)
6	Temperature test	±1°C
7	Humidity test	±3%
8	DC and low frequency voltages	±0.5%

Page: 156 of 157

6 Equipment List

	Conducted Emission											
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Duedate							
rest Equipment	Manufacturer	model No.	inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)							
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017/5/10	2020/5/9							
LISN	Rohde & Schwarz	ENV216	SEM007-01	2018/9/2	2019/9/2							
LISN	ETS-LINDGREN	Feb-16	SEM007-02	2018/4/2	2019/4/1							
Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A							
Coaxial Cable	SGS	N/A	SEM024-01	2018/7/12	2019/7/11							
2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2-02	EMC0122	2018/2/14	2019/2/13							
EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2018/4/2	2019/4/1							

RF conducted test								
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Duedate			
				(yyyy-mm-dd)	(yyyy-mm-dd)			
DC Power Supply	Agilent Technologies Inc	66311B	W009-09	2018/9/15	2019/9/15			
Signal Analyzer	Rohde & Schwarz	FSV	W025-05	2018/3/13	2019/3/12			
Coaxial Cable	SGS	N/A	SEM031-01	2018/7/13	2019/7/12			
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A			
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2018/9/2	2019/9/2			
Temperature Chamber	GIANT FORCE	ICT-150-40-CP-AR	W027-03	2018/11/27	2019/11/27			
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2018/9/2	2019/9/2			

RE in Chamber								
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)			
10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2018/3/31	2021/3/30			
EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2018/4/2	2019/4/1			
Trilog-Broadband Antenna(25M-2GHz)	Schwarzbeck	VULB9168	SEM003-18	2016/6/29	2019/6/28			
Pre-amplifier (9k-1GHz)	Sonoma	310N	SEM005-03	2018/4/13	2019/4/12			
Loop Antenna (9kHz-30MHz)	ETS-Lindgren	6502	SEM003-08	2017/8/22	2020/8/21			
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM029-01	2018/7/12	2019/7/11			

RE in Chamber								
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Due date			
				(yyyy-mm-dd)	(yyyy-mm-dd)			
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018/3/13	2021/3/12			
Measurement Software	AUDIX	e3V8.2014-6-27	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM026-01	2018/7/12	2019/7/11			
EXA Signal Analyzer (10Hz- 26.5GHz)	Agilent Technologies Inc	N9010A	SEM004-09	2018/4/13	2019/4/12			
BiConiLog Antenna (26- 3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017/6/27	2020/6/26			
Horn Antenna (0.8-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018/4/13	2021/4/12			
Pre-amplifier(0.1-1.3GHz)	HP	8447D	SEM005-02	2018/9/2	2019/9/2			
Low Noise Amplifier(100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2018/9/27	2019/9/27			
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018/4/2	2019/4/1			
Band filter	N/A	N/A	SEM023-01	N/A	N/A			

Page: 157 of 157

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1712012741RG.

The End