TEST REPORT

Product Name: Wireless Speaker

Trade Mark:

Model No./HVIN:

Test Result: PASS Date of Issue: June 26, 2024

PHILIPS or PHILIPS TAS1509 Add. Model No.: TAS1509BK/37,TAS1509/37,TAS1509xx/yy (x=A-Z or nil,yy=00-99 or nil, for the country code) Report Number: 24041610800EMC-1 Test Standards: FCC 47 CFR Part 15 Subpart B ICES-003 Issue 7 FCC ID: 2AR2STAS1509

Prepared for:

MMD Hong Kong Holding Limited Units 1208-11,12th Floor, C-Bons International Center, 108 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:

Pavid Chen

David Chen

Senior Project Engineer

Reviewed by:

Henry Lu Team Leader

Robben chen

Approved by:

Robben Chen Assistant Manager

June 26, 2024 Date:

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com http://www.uttlab.com UTTR-EMC-ICES003-V1.2

Version

Version No.	Date	Description
V1.0	June 26, 2024	Original

 Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China Tel: +86-755-28230888

 Tel: +86-755-28230888
 Fax: +86-755-28230886

 UTTR-EMC-ICES003-V1.2
 E-mail: info@uttlab.com

 http://www.uttlab.com

CONTENTS

GENE	RAL INFORMATION	4
1.1 1.2	EUT INFORMATION	4
-		
1.7		
1.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
1.9		
TEST	SUMMARY	7
EQUI	PMENT LIST	8
TEST	CONFIGURATION	9
4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	9
4.2		
4.3		
A A		
EMC		
6.1		
6.2		
PENDI	X 1 PHOTOS OF TEST SETUP	21
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 TEST EQUI TEST 4.1 4.2 4.3 4.4 REFE EMC I 6.1 6.2 PENDI2	1.2 EUT INFORMATION 1.2.1 GENERAL DESCRIPTION OF EUT 1.2.2 DESCRIPTION OF ACCESSORIES 1.3 DESCRIPTION OF SUPPORT UNITS 1.4 TEST LOCATION 1.5 TEST FACILITY 1.6 DEVIATION FROM STANDARDS 1.7 ABNORMALITIES FROM STANDARD CONDITIONS 1.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 1.9 MEASUREMENT UNCERTAINTY TEST SUMMARY EQUIPMENT LIST TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING 4.1.1 NORMAL OR EXTREME TEST CONDITIONS 4.1.2 RECORD OF NORMAL ENVIRONMENT AND TEST SAMPLE 4.3 TEST SETUP 4.3.1 FOR RADIATED EMISSIONS TEST SETUP 4.3.2 FOR CONDUCTED EMISSIONS TEST SETUP 4.3.3 FOR RADIATED EMISSIONS TEST SETUP 4.3.4 SYSTEM TEST CONFIGURATION REFERENCE DOCUMENTS FOR TESTING EMC REQUIREMENTS SPECIFICATION REFERENCE DOCUMENTS FOR TESTING EMC REQUIREMENTS SPECIFICATION 6.1

1. GENERAL INFORMATION

1.1 CLIENT INFORMA	ΓΙΟΝ
--------------------	------

Applicant:	MMD Hong Kong Holding Limited		
Address of Applicant: Units 1208-11,12th Floor,C-Bons International Center, 108 Wai Yip S Kwun Tong, Kowloon, Hong Kong			
Manufacturer: MMD Hong Kong Holding Limited			
Address of Manufacturer:	Units 1208-11,12th Floor,C-Bons International Center, 108 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong		

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Wireless Speaker		
Model No. / HVIN:	TAS1509		
Add. Model No.:	TAS1509BK/37,TAS1509/37,TAS1509xx/yy (x=A-Z or nil,yy=00-99 or nil, for the country code)		
Trade Mark:	PHILIPS or PHILIPS		
DUT Stage:	Identical Prototype		
Rated Voltage:	5.0 V == 1.0 A supplied by adapter 3.7V supplied by battery		
Classification of digital devices:	Class B		
Highest Internal Frequency:	2480 MHz		
Sample Received Date:	April 16, 2024		
Sample Tested Date:	April 19, 2024 to May 31, 2024		
	S1509BK/37,TAS1509/37,TAS1509xx/yy(x=A-Z or nil,yy=00-99 or nil, for the note that the test model TAS1509 except the model number for marketing purpose.		

2. The ISED certification is only for the main model.

Remark: The above EUT's information was provided by customer. Please refer to the specifications or user's manual for more detailed description.

1.2.2 Description of Accessories

Cable				
Description:	USB Type-C Plug Cable			
Cable Type:	Unshielded without ferrite			
Length:	0.3 Meter			

Battery 1		
Model No.:	18650 1200mAh	
Battery Type:	Li-ion Battery	
Rated Voltage:	3.7 Vdc	
Limited Charge Voltage:	4.2 Vdc	
Rated Capacity:	1200 mAh	

Battery 2		
Model No.:	18650-1500mAh	
Battery Type:	Li-ion Battery	

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-EMC-ICES003-V1.2
 Http://www.uttlab.com
 http://www.uttlab.com

Rated Voltage:	3.7 Vdc
Limited Charge Voltage:	4.2 Vdc
Rated Capacity:	1500 mAh

1.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	Lenovo B40-80	MP12NEQ6	UnionTrust
Adapter	HUAWEI	HW-050200C01	B78578GBT02395	UnionTrust

1.4 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.5 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

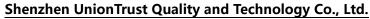
Designation Number: CN1194 Test Firm Registration Number: 259480

1.6 DEVIATION FROM STANDARDS

None.

1.7 ABNORMALITIES FROM STANDARD CONDITIONS

None.


1.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.9 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9kHz-150kHz	±3.2 dB
2	Conducted emission 150kHz-30MHz	±2.7 dB
3	Radiated emission 9kHz-30MHz	± 4.7 dB
4	Radiated emission 30MHz-1GHz	± 4.6 dB
5	Radiated emission 1GHz-18GHz	± 4.4 dB
6	Radiated emission 18GHz-26GHz	± 4.6 dB
7	Radiated emission 26GHz-40GHz	± 4.6 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart B Test Cases				
Test Item Test Requirement Test Method Res				
Conducted Emission	FCC 47 CFR Part 15.107 ICES-003 Issue 7 Section 3.2.1	ANSI C63.4-2014	PASS	
Radiated Emission	FCC 47 CFR Part 15.109 ICES-003 Issue 7 Section 3.2.2	ANSI C63.4-2014	PASS	

3. EQUIPMENT LIST

		Radiated Er	nission Test E	Equipment List		
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date
\boxtimes	3m SAC	ETS-LINDGREN	3m	Euroshiedpn- CT001270-13 17	11-Nov-2023	10-Nov-2026
\boxtimes	Receiver	R&S	ESIB26	100114	27-Oct-2023	26-Oct-2024
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	30-Oct-2023	29-Oct-2024
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	30-Oct-2023	29-Oct-2024
\boxtimes	Preamplifier	HP	8447F	2805A02960	31-Oct-2023	30-Oct-2024
×	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201541	16-Apr-2023	15-Apr-2025
\boxtimes	Pre-amplifier	ETS-Lindgren	00118385	00201874	31-Oct-2023	30-Oct-2024
\boxtimes	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	30-Oct-2023	29-Oct-2024
\boxtimes	Pre-amplifier	ETS-Lindgren	00118384	00202652	30-Oct-2023	29-Oct-2024
	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
\boxtimes	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

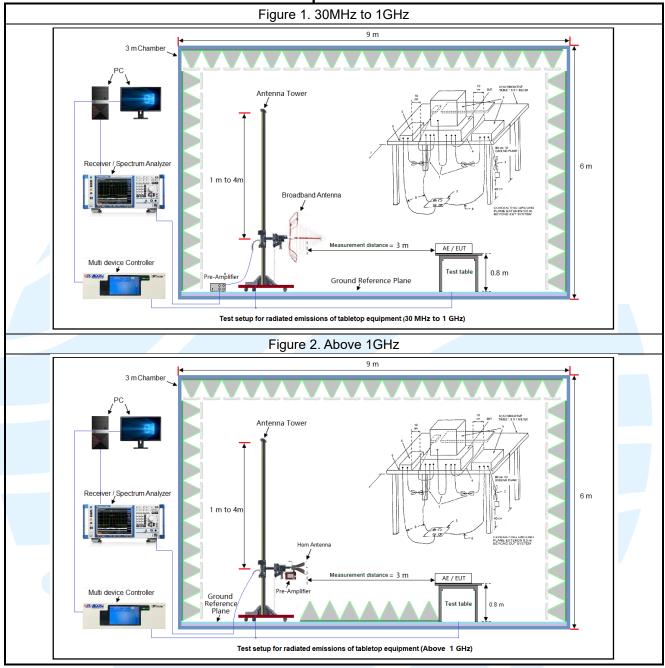
		Conducted E	mission Test	Equipment List		
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date
\boxtimes	Receiver	R&S	ESR7	101181	27-Oct-2023	26-Oct-2024
\mathbf{X}	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	27-Oct-2023	26-Oct-2024
\boxtimes	LISN	R&S	ESH2-Z5	860014/024	27-Oct-2023	26-Oct-2024
\boxtimes	LISN	ETS-Lindgren	3816/2SH	00201088	27-Oct-2023	26-Oct-2024
\boxtimes	Test Software	EZ-EMC	EZ-CON	Softwar	e Version: EMC-CC	N 3A1.1

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selec	cted Values During Tests	
		Ambient	
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)
NV/NT	+15 to +35	5.0 V == 1.0 A supplied by adapter 3.7V supplied by battery	20 to 75
Remark: 1) NV: Normal Voltage; N	T: Normal Temperature		

4.1.2 Record of Normal Environment and Test sample

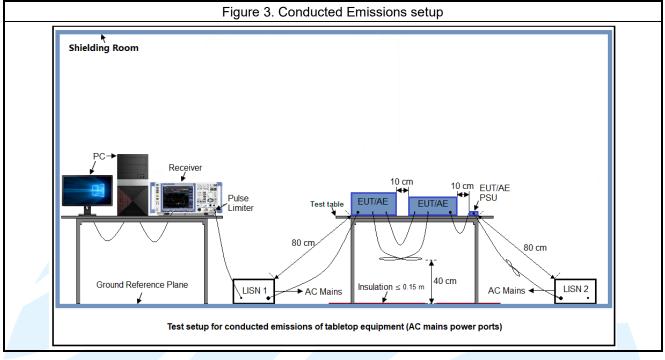

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Sample No.	Tested by
Conducted Emission	23.3	56.5	100.4	S202405063307-ZJA02/6	Linson Xie
Radiated Emission	24.5	65.6	100.1	S202405153418-ZJB04/5	Jackson Wu

4.2TEST MODES

_	Test Item	EMI Test Modes
	Radiated Emission	Test Mode 1: (Battery 1) Powered by USB port + BT playing Test Mode 2: (Battery 1) Powered by Battery + BT playing Test Mode 3: (Battery 2) Alternative supplier battery sample + Worst from test mode 1~2
	Conducted Emission	Test Mode 1: (Battery 1)Powered by USB port + BT playing Test Mode 2: (Battery 2) Powered by USB port + BT playing
	Remark: The above test modes in	boldface were the worst cases, only the test data of these modes were reported.

4.3 TEST SETUP

4.3.1 For Radiated Emissions test setup


Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-EMC-ICES003-V1.2
 http://www.uttlab.com
 http://www.uttlab.com

4.3.2 For Conducted Emissions test setup

4.4 SYSTEM TEST CONFIGURATION

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic (according to KDB 896810 D02 SDoC FAQ v01r01) of the highest fundamental frequency or to 40 GHz, whichever is lower.

5. REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part15 Subpart B	Unintentional Radiators
2	ICES-003 Issue 7	Information Technology Equipment (Including Digital Apparatus)
3	ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
4	KDB 174176 D01 Line Conducted FAQ v01r01	AC power-line conducted emission frequency asked questions
5	KDB 896810 D02 SDoC FAQ v01r02	Supplier's Declaration of Conformity frequency asked questions

6. EMC REQUIREMENTS SPECIFICATION 6.1 RADIATED EMISSION

 Test Requirement:
 FCC 47 CFR Part 15.109 ICES-003 Issue 7 Clause 3.2.2

 Test Method:
 ANSI C63.4-2014

 Receiver Setup:
 Frequency: (f)

 Patentor type
 Measurement receiver bandwidth

Frequency: (f)	Detector type	Measurement red	ceiver bandwidth
(MHz)	Detector type	RBW	VBW
30 ≤ f ≤ 1 000	Quasi Peak	120 kHz	300 kHz
f ≥1000	Peak	1 MHz	3 MHz
121000	Average	1 MHz	3 MHz

Measured frequency range

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30.
1.705-108	1000.
108-500	2000.
500-1000	5000.
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.

Limits:

Limits for Class B devices

FCC 47 CFR Part 15 Subpart B

		limits at 3m (dBµV/m)	
Frequency (MHz)	QP Detector	PK Detector	AV Detector
30 – 88	40.0		
88 – 216	43.5		
216 – 960	46.0		
960 - 1000	54.0		
Above 1000		74.0	54.0

ICES-003 Issue 7

		limits at 3m (dBµV/m)	
Frequency (MHz)	QP Detector	PK Detector	AV Detector
30 – 88	40.0		
88 – 216	43.5		
216 – 230	46.0		

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com <u>http://www.uttlab.com</u> <u>UTTR-EMC-ICES003-V1.2</u>

230 – 960	47.0		
960 – 1000	54.0		
Above 1000		74.0	54.0

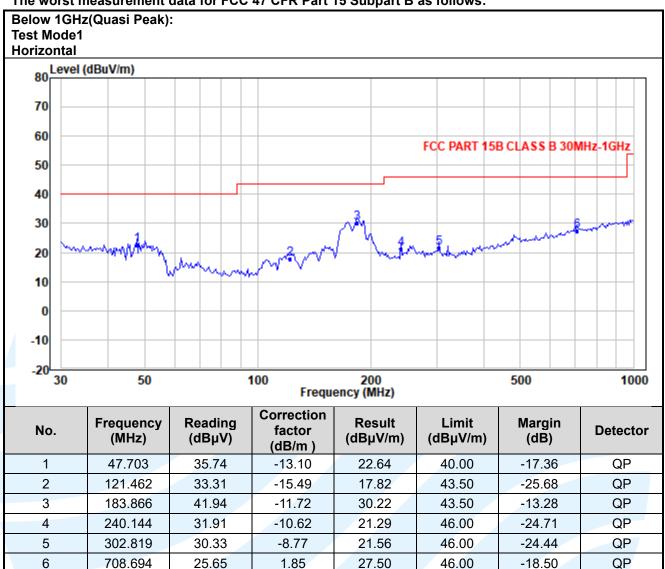
Remark:

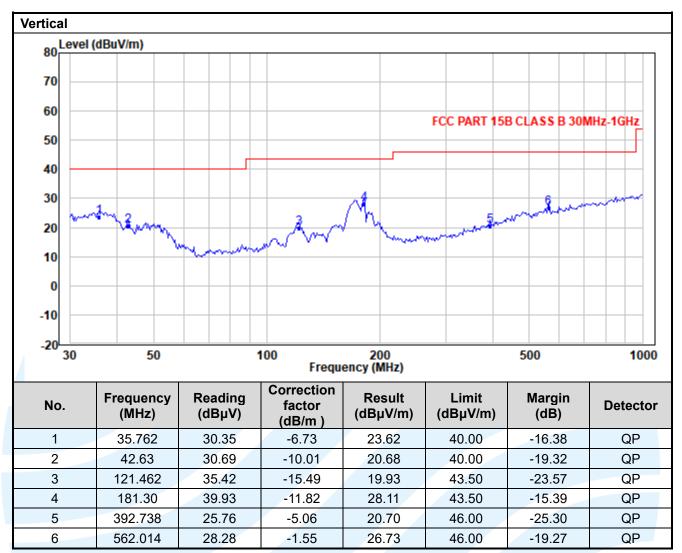
- The lower limit shall apply at the transition frequencies. 1
- Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$. 2.

3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Test Setup: Refer to section 4.3.1 for details.

Test Procedures:

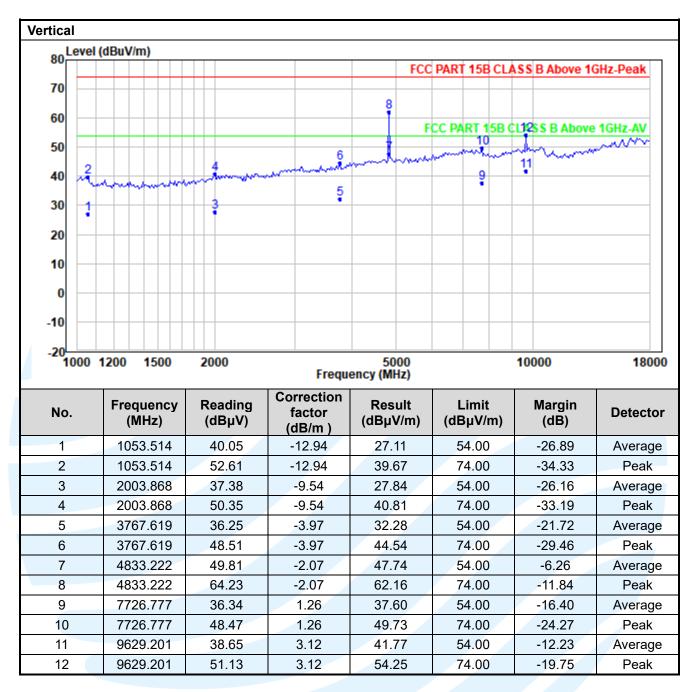

- From 30 MHz to 1GHz test procedure as below:
- 1) The Product was placed on the non-conductive turntable 0.8 m above the ground at a chamber.
- 2) Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the 3) antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.
- 2. Above 1GHz test procedure as below:
- The Product was placed on the non-conductive turntable 0.8 m above the ground at a chamber. 1)
- Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the 2) maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- 3) For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.


Equipment Used: Refer to section 3 for details. Pass

Test Result:

The measurement data as follows:

The worst measurement data for FCC 47 CFR Part 15 Subpart B as follows:


rizontal							
80 Level	(dBuV/m)			FCC	PART 15B CL	SS B Above 1	GHz-Peak
70							
				8			
60				F	CC PART 15B (LAS B Above	e 1GHz-AV
50			6		moment		m
40	2	4	man	man and and and and and and and and and a		9 11	
1.000	montine		5			1 F	
30	1						
20							
10 -							
0							
-10							
20							
-20 1000	1200 1500	2000	Frequ	5000 ency (MHz)		10000	180
-20 1000 No.	1200 1500 Frequency (MHz)	2000 Reading (dBµV)	Frequ Correction factor (dB/m)		Limit (dBµV/m)	10000 Margin (dB)	
1000	Frequency	Reading	Correction factor	ency (MHz) Result		Margin	Detect
1000 No.	Frequency (MHz)	Reading (dBµV)	Correction factor (dB/m)	ency (MHz) Result (dBµV/m)	(dBµV/m)	Margin (dB)	Detecto Averag
1000 No .	Frequency (MHz) 1312.901 1312.901 2263.061	Reading (dBμV) 39.69 52.20 37.62	Correction factor (dB/m) -13.02 -13.02 -8.84	ency (MHz) Result (dBµV/m) 26.67 39.18 28.78	(dBµV/m) 54.00 74.00 54.00	Margin (dB) -27.33 -34.82 -25.22	Detecto Averag Peak Averag
1000 No. 1 2 3 4	Frequency (MHz) 1312.901 1312.901 2263.061 2263.061	Reading (dBμV) 39.69 52.20 37.62 50.56	Correction factor (dB/m) -13.02 -13.02 -8.84 -8.84	ency (MHz) Result (dBµV/m) 26.67 39.18 28.78 41.72	(dBµV/m) 54.00 74.00 54.00 74.00	Margin (dB) -27.33 -34.82 -25.22 -32.28	Detecto Averag Peak Averag Peak
1000 No. 1 2 3 4 5	Frequency (MHz) 1312.901 1312.901 2263.061 2263.061 3535.05	Reading (dBμV) 39.69 52.20 37.62 50.56 35.98	Correction factor (dB/m) -13.02 -13.02 -8.84 -8.84 -5.05	ency (MHz) Result (dBµV/m) 26.67 39.18 28.78 41.72 30.93	(dBµV/m) 54.00 74.00 54.00 74.00 54.00	Margin (dB) -27.33 -34.82 -25.22 -32.28 -23.07	Detector Averag Peak Averag Peak Averag
1000 No. 1 2 3 4 5 6	Frequency (MHz) 1312.901 1312.901 2263.061 2263.061 3535.05 3535.05	Reading (dBμV) 39.69 52.20 37.62 50.56 35.98 48.49	Correction factor (dB/m) -13.02 -13.02 -13.02 -8.84 -8.84 -8.84 -5.05 -5.05	ency (MHz) Result (dBµV/m) 26.67 39.18 28.78 41.72 30.93 43.44	(dBµV/m) 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -27.33 -34.82 -25.22 -32.28 -23.07 -30.56	Detector Averag Peak Averag Peak Averag Peak
1000 No. 1 2 3 4 5 6 7	Frequency (MHz) 1312.901 1312.901 2263.061 2263.061 3535.05 3535.05 4889.539	Reading (dBµV) 39.69 52.20 37.62 50.56 35.98 48.49 49.28	Correction factor (dB/m) -13.02 -13.02 -8.84 -8.84 -5.05 -5.05 -2.04	ency (MHz) Result (dBµV/m) 26.67 39.18 28.78 41.72 30.93 43.44 47.24	(dBµV/m) 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -27.33 -34.82 -25.22 -32.28 -23.07 -30.56 -6.76	Detector Averag Peak Averag Peak Averag Peak Averag
1000 No. 1 2 3 4 5 6 7 8	Frequency (MHz) 1312.901 1312.901 2263.061 2263.061 3535.05 3535.05 4889.539 4889.539	Reading (dBμV) 39.69 52.20 37.62 50.56 35.98 48.49 49.28 66.61	Correction factor (dB/m) -13.02 -13.02 -13.02 -8.84 -8.84 -8.84 -5.05 -5.05 -5.05 -2.04 -2.04	ency (MHz) Result (dBµV/m) 26.67 39.18 28.78 41.72 30.93 43.44 47.24 64.57	(dBµV/m) 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -27.33 -34.82 -25.22 -32.28 -23.07 -30.56 -6.76 -9.43	Detector Averag Peak Averag Peak Averag Peak Averag Peak
1000 No. 1 2 3 4 5 6 7 8 9	Frequency (MHz) 1312.901 1312.901 2263.061 2263.061 3535.05 3535.05 4889.539 4889.539 9854.908	Reading (dBµV) 39.69 52.20 37.62 50.56 35.98 48.49 49.28 66.61 35.72	Correction factor (dB/m) -13.02 -13.02 -13.02 -8.84 -8.84 -5.05 -5.05 -5.05 -2.04 -2.04 3.24	ency (MHz) Result (dBµV/m) 26.67 39.18 28.78 41.72 30.93 43.44 47.24 64.57 38.96	(dBµV/m) 54.00 54.00 74.00 54.00 54.00 74.00 54.00 74.00 54.00	Margin (dB) -27.33 -34.82 -25.22 -32.28 -23.07 -30.56 -6.76 -9.43 -15.04	Detector Average Peak Average Peak Average Peak Average Peak Average
1000 No. 1 2 3 4 5 6 7 8	Frequency (MHz) 1312.901 1312.901 2263.061 2263.061 3535.05 3535.05 4889.539 4889.539	Reading (dBμV) 39.69 52.20 37.62 50.56 35.98 48.49 49.28 66.61	Correction factor (dB/m) -13.02 -13.02 -13.02 -8.84 -8.84 -8.84 -5.05 -5.05 -5.05 -2.04 -2.04	ency (MHz) Result (dBµV/m) 26.67 39.18 28.78 41.72 30.93 43.44 47.24 64.57	(dBµV/m) 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin (dB) -27.33 -34.82 -25.22 -32.28 -23.07 -30.56 -6.76 -9.43	Detector Averag Peak Averag Peak Averag Peak Averag

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

 Tel: +86-755-28230888
 E-mail: info@uttlab.com

 UTTR-EMC-ICES003-V1.2
 http://www.uttlab.com

Remark:

- 1. Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.
- 2. Result = Reading + Correct Factor.
- 3. Margin = Result Limit
- 4. For Radiated Emission above 18GHz, there was not any unwanted emission detected.
- 5. The limit of ICES-003 in the 230MHz to 960MHz band is higher than that of FCC Part 15B, so the radiation emission test data conform to the limit of ICES-003.

6.2 CONDUCTED EMISSION FCC 47 CFR Part 15.107

Test Requirement:

Test Method: ICES-003 Issue 7 Section 3.2.1 ANSI C63.4-2014

Limits:

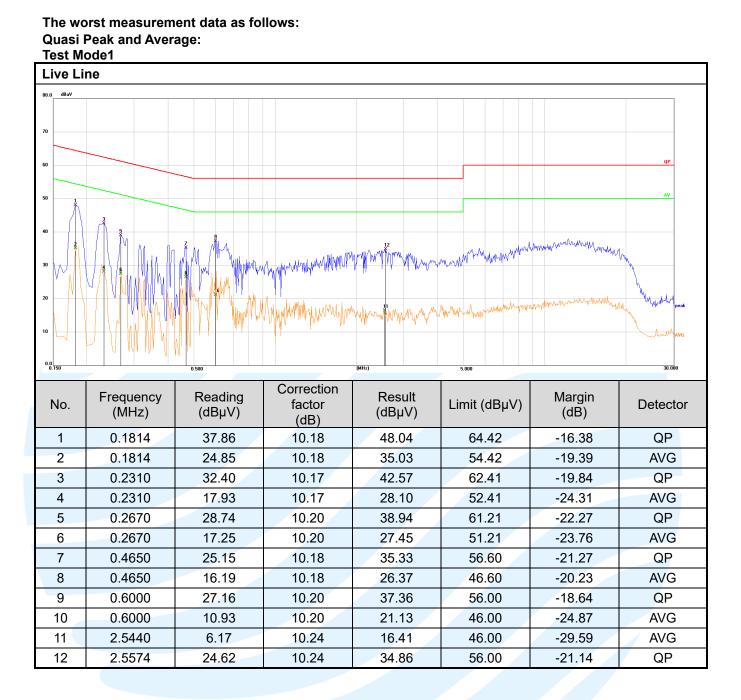
Limits for Class B devices

Frequency range (MHz)	Limits (dB(µV)	
	Quasi-peak	Average
0,15 to 0,50	66 to 56	56 to 46
0,50 to 5	56	46
5 to 30	60	50

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.
- Test Setup: Refer to section 4.3.2 for details.

Test Procedures:

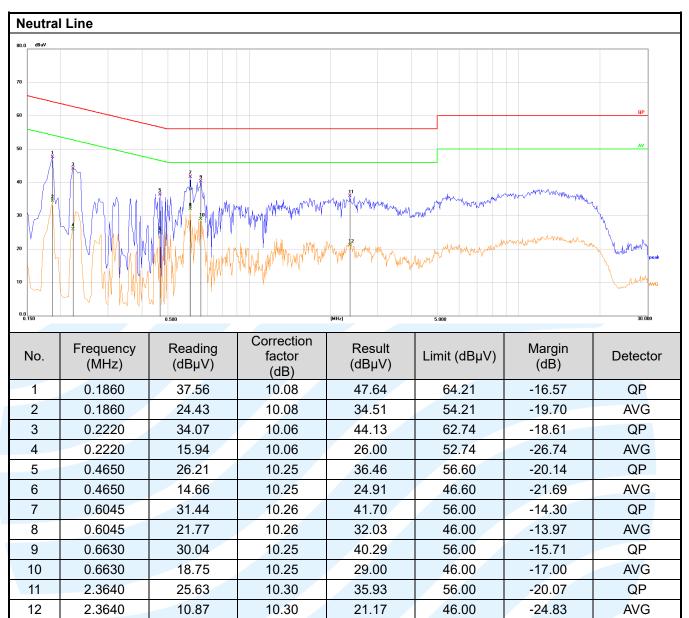

- 1) The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- 2) The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- 3) For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

Equipment Used: Refer to section 3 for details.

Test Result:

Pass

Page 19 of 21


Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

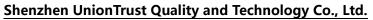
 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-EMC-ICES003-V1.2
 Http://www.uttlab.com
 http://www.uttlab.com

Page 20 of 21

Remark:

- 1. Correct Factor = LISN Factor + Cable Loss + Pulse Limiter Factor, the value was added to Original Receiver Reading by the software automatically.
- 2. Result = Reading + Correct Factor.
- 3. Margin = Result Limit
- 4. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.

