

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	MMD Hong Kong Holding Limited				
Address	Units 1208-11, 12th Floor, C-Bons International Center, 108 Wai Yip Street, Kwun Tong,				
Address:	Kowloon, Hong Kong				

Manufacturer or Supplier:	MMD Hong Kong Holding Limited			
Address:	Units 1208-11, 12th Floor, C-Bons International Center, 108 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong			
Product:	Soundbar speaker			
Brand Name:	PHILIPS			
Model Name:	TAB7908/37			
Serial Model Name:	TAB7908, TAB7908RE, TAB7908/10, TAB7908RE/10, TAB7908RE/37, TAB7908/93, TAB7908/98, TAB7908RE/98, TAB7908xx/yy (xx=A-Z or blank, yy=00-99 or blank for country code)			
FCC ID:	2AR2STAB7908			
Date of tests:	Apr. 13, 2023 ~ May. 25, 2023			

The tests have been carried out according to the requirements of the following standard:

□ 47 CFR FCC Part 15, Subpart C, Section 15.249

□ 47 CFR FCC Part 15, Subpart C, Section 15.203

MANSI C63.10-2013

CONCLUSION: The submitted sample was found to **COMPLY** with the test requirement

Prepared by Simon Wang	Approved by Luke Lu
Engineer / Mobile Department	Manager / Mobile Department
Simon Wang	lupe lu
Date: May. 25, 2023	Date: May. 25, 2023

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/http://www.bureauveritas.com/home/about-us/terms-conditions/-dialogs/<a href="http://www.bureauveritas.com/home/about-us/sour-business/cps/about-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-conditions/-dialogs-us/terms-us/terms-conditions/-dialogs-

BV 7Layers Communications Technology (Shenzhen) Co., Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

TABLE OF CONTENTS

RI	ELE/	ASE C	CONTROL RECORD	4
1	S	UMM	ARY OF TEST RESULTS	5
	1.1	MEA	ASUREMENT UNCERTAINTY	6
2	G	ENE	RAL INFORMATION	7
	2.1	GEN	IERAL DESCRIPTION OF EUT	7
	2.2	DES	CRIPTION OF TEST MODES	8
	2	.2.1	CONFIGURATION OF SYSTEM UNDER TEST	9
	2	.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
	2.3	GEN	IERAL DESCRIPTION OF APPLIED STANDARDS	12
	2.4	DES	CRIPTION OF SUPPORT UNITS	12
3	Т	EST	TYPES AND RESULTS	13
	3.1	RAD	DIATED EMISSION MEASUREMENT	13
	3	.1.1	LIMITS OF RADIATED EMISSION MEASUREMENT	13
	3	.1.2	TEST INSTRUMENTS	14
	3	.1.3	TEST PROCEDURES	15
	3	.1.4	DEVIATION FROM TEST STANDARD	15
	3	.1.5	TEST SETUP	15
	3	.1.6	EUT OPERATING CONDITIONS	17
	3	.1.7	TEST RESULTS	18
	3.2	CON	IDUCTED EMISSION MEASUREMENT	25
	3	.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	25
	3	.2.2	TEST INSTRUMENTS	25
	3	.2.3	TEST PROCEDURES	25
	3	.2.4	DEVIATION FROM TEST STANDARD	26
	3	.2.5	TEST SETUP	26
	3	.2.6	EUT OPERATING CONDITIONS	26
	3	.2.7	TEST RESULTS	27
	3.3	CHA	NNEL BANDWIDTH (20DB BANDWIDTH)	29
	3	.3.1	TEST SETUP	29
	3	.3.2	TEST INSTRUMENTS	29
	3	.3.3	TEST PROCEDURE	29
	3	.3.4	DEVIATION FROM TEST STANDARD	29
	3	.3.5	EUT OPERATING CONDITION	30
	3	.3.6	TEST RESULTS	30
	3.4	FCC	§15.203 - ANTENNA REQUIREMENT	32

VLI	TTAS	
4	PHOTOGRAPHS OF THE TEST CONFIGURATION	33
5	MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	2
J	MIDDIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	3-

Email: customerservice.sw@bureauveritas.com

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED	
W7L-P23040008RF03	Original release	May. 25, 2023	

Email: customerservice.sw@bureauveritas.com

SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C						
STANDARD TEST TYPE AND LIMIT RESU						
15.207	AC Power Conducted Emission	Compliance				
15.249 (a)	Field Strength of the Fundamental Signal	Compliance				
47 CFR Part 15, Subpart C 15.205 & 15.249(d) &15.209	Restricted Band Around Fundamental Frequency	Compliance				
47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Radiated Emissions Below 1GHz	Compliance				
47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Radiated Emissions Above 1GHz	Compliance				
15.203	Antenna Requirement	Compliance				
15.215	Channel Bandwidth Measurement(20 dB bandwidth)	Compliance				

NOTE:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

Test Lab Information Reference:

BV 7Layers Communications Technology (Shenzhen) Co., Ltd

Lab Address:

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Accredited Test Lab Cert 3939.01

Page 5 of 34

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9kHz ~ 30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Occupied Channel Bandwidth	±43.58KHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Soundbar speaker		
BRAND NAME	PHILIPS		
MODEL NAME	TAB7908/37		
SERIAL MODEL NAME	TAB7908, TAB7908RE, TAB7908/10, TAB7908RE/10, TAB7908RE/37, TAB7908/93, TAB7908/98, TAB7908RE/98, TAB7908xx/yy (xx=A-Z or blank, yy=00-99 or blank for country code)		
NOMINAL VOLTAGE	Input: 100-240Vac, 50/60Hz, 56W Output: 5Vdc, 500mA		
MODULATION TECHNOLOGY	DTS		
MODULATION TYPE	GFSK		
OPERATING FREQUENCY	5729MHz-5849MHz		
NUMBER OF CHANNEL	61		
FIELD STRENGTH	90.9dBuV/m(3m Average)		
ANTENNA TYPE	FPC Antenna with 3.01dBi gain		
HW VERSION	V0.2		
SW VERSION	V0.38		
I/O PORTS	Refer to user's manual		
CABLE SUPPLIED	Power Line 1: non-shielded cable, with w/o ferrite core, 1.54 meter Remote control		

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. Model difference: All models are identical except model name and country destination for marketing purpose.

2.2 DESCRIPTION OF TEST MODES

61 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
1 (Low)	5729	21	5769	41	5809	61 (High)	5849
2	5731	22	5771	42	5811		
3	5733	23	5773	43	5813		
4	5735	24	5775	44	5815		
5	5737	25	5777	45	5817		
6	5739	26	5779	46	5819		
7	5741	27	5781	47	5821		
8	5743	28	5783	48	5823		
9	5745	29	5785	49	5825		
10	5747	30	5787	50	5827		
11	5749	31 (Mid)	5789	51	5829		
12	5751	32	5791	52	5831		
13	5753	33	5793	53	5833		
14	5755	34	5795	54	5835		
15	5757	35	5797	55	5837		
16	5759	36	5799	56	5839		
17	5761	37	5801	57	5841		
18	5763	38	5803	58	5843		
19	5765	39	5805	59	5845		
20	5767	40	5807	60	5847		

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 4 photograph of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE		APPLICA	ABLE TO		DESCRIPTION
MODE	RE<1G	RE≥1G	PLC	APCM	DESCRIPTION
-	√	$\sqrt{}$	V	$\sqrt{}$	-

Where **RE<1G:** Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement

NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED FREQUENCY
5.8G SRD	1-61	Low

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED FREQUENCY
5.8G SRD	1-61	Low, Mid, High

Email: customerservice.sw@bureauveritas.com

[&]quot;-"means no effect.

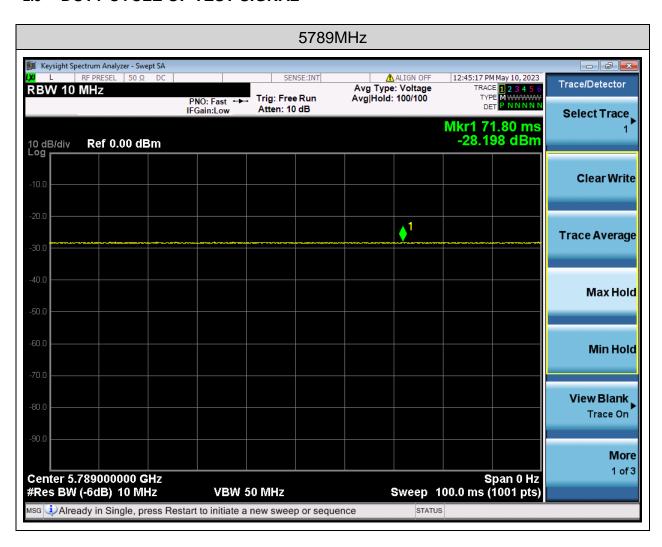
POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture) and packet type.
- \boxtimes Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED FREQUENCY
5.8G SRD	1-61	Low

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- \bowtie Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.


MODE	AVAILABLE CHANNEL	TESTED FREQUENCY
5.8G SRD	1-61	Low, Mid, High

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY
RE<1G	23deg. C, 70%RH	AC 120V	Jace Hu
RE≥1G	23deg. C, 70%RH	AC 120V	Jace Hu
APCM	25deg. C, 60%RH	AC 120V	James Fu

2.3 DUTY CYCLE OF TEST SIGNAL

Note: Duty cycle of test signal is > 98%, duty cycle factor needn't be considered.

2.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

47 CFR FCC Part 15, Subpart C. Section 15.249 47 CFR FCC Part 15, Subpart C, Section 15.203 ANSI C63.10-2013

NOTE: 1. All test items have been performed and recorded as per the above standards.

 The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
ĺ	1	N/A	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

Page 12 of 34

Tel: +86 755 8869 6566

3 TEST TYPES AND RESULTS

3.1 RADIATED EMISSION MEASUREMENT

3.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following.

FUNDAMENTAL FREQUENCY(MHZ)	FIELD STRENGTH OF FUNDAMENTAL (MILLIVOLTS/METER)	FIELD STRENGTH OF HARMONICS (MICROVOLTS/METER)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	1.705 ~ 30.0 30 30	
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- 4. For fundamental frequency in "902-928MHz", the field strength of fundamental is based on Quasi-Peak.

3.1.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	May. 19,20	May. 18,23
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	May. 18,23	May. 17,26
Bilog Antenna	ETS-LINDGREN	3143B	00161965	Mar. 05,23	Mar. 04,24
Horn Antenna	ETS-LINDGREN	3117	00168692	Mar. 05,23	Mar. 04,24
Horn Antenna (18GHz-40GHz)	N/A	QWH-SL-18-40- K-SG/QMS-003 61	15433	Sep.04, 22	Sep.03, 23
Test Software	E3	V 9.160323	N/A	N/A	N/A
Test Software	JS1120-3	3.2.06	N/A	N/A	N/A
10dB Attenuator	JFW/USA	50HF-010-SMA	N/A	May. 12,22	May. 11,23
10dB Attenuator	JFW/USA	50HF-010-SMA	N/A	May. 11,23	May. 10,24
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Feb. 20,23	Feb. 19,24
Signal Pre-Amplifier	EMSI	EMC 9135	980249	May.12,22	May.11,23
Signal Pre-Amplifier	EMSI	EMC 9135	980249	May.11,23	May.10,24
Signal Pre-Amplifier	EMSI	EMC 012645B	980257	May.12,22	May.11,23
Signal Pre-Amplifier	EMSI	EMC 012645B	980257	May.11,23	May.10,24
Signal Pre-Amplifier	EMSI	EMC 184045B	980259	Feb. 17,23	Feb. 16,24
DC Source	Kikusui/JP	PMX18-5A	0000001	Aug. 12,22	Aug. 11,23
Power Meter	Anritsu	ML2495A	1506002	Feb. 14,23	Feb. 13,24
Power Sensor	Anritsu	MA2411B	1339352	Feb. 14,23	Feb. 13,24
Loop Antenna	Schwarzbeck	FMZB 1519B	00173	Sep.03,22	Sep.02,23

NOTE: 1. The calibration interval of the above test instruments is 12 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

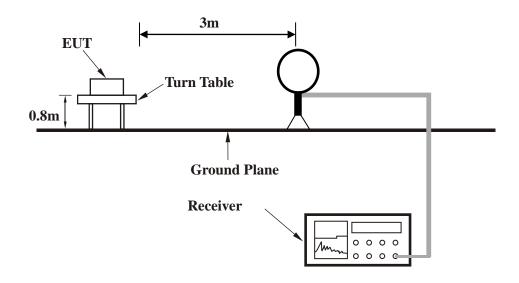
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

3.1.3 TEST PROCEDURES

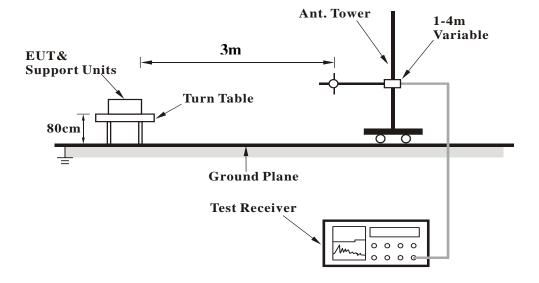
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

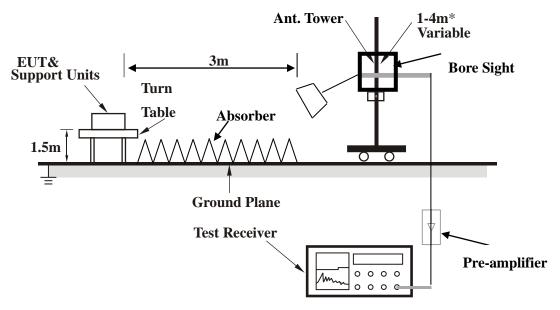
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.
- 5. All modes of operation were investigated and the worst-case emissions are reported.


3.1.4 DEVIATION FROM TEST STANDARD

No deviation.


3.1.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

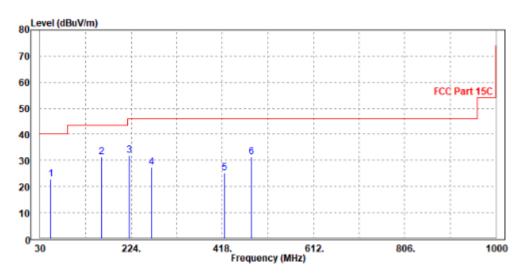
- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

District, Shenzhen, Guangdong, China

3.1.7 TEST RESULTS

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA:

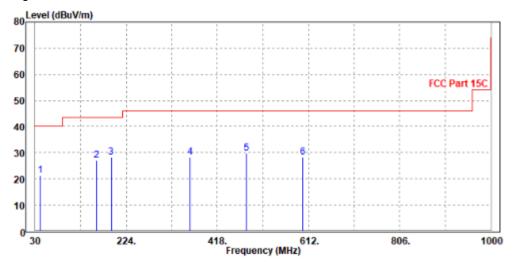

30 MHz - 1GHz data:

5.8G SRD

CHANNEL	Low	DETECTOR FUNCTION	Ouesi Deek (OD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ.	EMISSION LEVEL	READ LEVEL	LIMIT	MARGIN	ANTENNA FACTOR	CABLE LOSS	PREAMP FACTOR	ANTENNA HEIGHT	TABLE ANGLE	REMARK
(MHz)	(dBuV/m)	(dBuV)	(dBuV/m)	(dB)	(dB /m)	(dB)	(dB)	(cm)	(Degree)	
52.31	22.93	49.54	40	-17.07	9.97	0.41	36.99	188	225	QP
159.98	31.19	56.12	43.5	-12.31	10.9	0.68	36.51	164	270	QP
220.12	31.88	55.2	46	-14.12	12.19	0.77	36.28	144	181	QP
266.68	27.39	49.13	46	-18.61	13.67	0.86	36.27	104	185	QP
422.85	25.4	44.13	46	-20.6	16.63	1.11	36.47	170	78	QP
480.08	31.26	48.93	46	-14.74	17.72	1.19	36.58	169	276	QP

- 1. Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



CHANNEL	Low	DETECTOR FUNCTION	Ouggi Book (OD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
FREQ.	EMISSION LEVEL	READ LEVEL	LIMIT	MARGIN	ANTENNA FACTOR	CABLE	PREAMP FACTOR	ANTENNA HEIGHT	TABLE	REMARK		
(MHz)	(dBuV/m)	(dBuV)	(dBuV/m)	(dB)	(dB /m)	(dB)	(dB)	(cm)	(Degree)	TLIVIJ-UTT		
40.67	21.4	46.13	40	-18.6	12.11	0.37	37.21	103	164	QP		
159.98	27	51.93	43.5	-16.5	10.9	0.68	36.51	133	317	QP		
191.99	28.14	52.37	43.5	-15.36	11.38	0.72	36.33	119	79	QP		
359.8	28.2	48.17	46	-17.8	15.38	1.01	36.36	117	17	QP		
480.08	29.7	47.75	46	-16.3	17.34	1.19	36.58	200	350	QP		
599.39	28.32	44.22	46	-17.68	19.59	1.36	36.85	176	83	QP		

- 1. Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

ABOVE 1GHz WORST-CASE DATA:

CHANNEL	Low	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	Α	NTENN	A POLAF	RITY & TE	ST DISTA	NCE: H	ORIZONT	AL AT 3 M		
FREQ.	EMISSION	READ	LIMIT	MARGIN	ANTENNA	CABLE	PREAMP	ANTENNA	TABLE	DEMARK
(MHz)	LEVEL	LEVEL	(dBuV/m)	(dB)	FACTOR	LOSS	FACTOR	HEIGHT	ANGLE	REMARK
,	(dBuV/m)	(dBuV)	,	(**)	(dB /m)	(dB)	(dB)	(cm)	(Degree)	
5725	57.75	58.3	74	-16.25	35.07	9.88	45.5	127	247	Peak
5725	50.69	51.24	54	-3.31	35.07	9.88	45.5	127	247	Average
5729	88.87	89.42	114	-25.13	35.07	9.88	45.5	133	246	Peak
5729	87.47	88.02	94	-6.53	35.07	9.88	45.5	133	246	Average
5875	55.78	56.1	74	-18.22	35.25	9.93	45.5	126	256	Peak
5875	49.66	49.98	54	-4.34	35.25	9.93	45.5	126	256	Average
		ANTEN	NA POLA	ARITY & 1	EST DIST	ANCE: \	VERTICA	L AT 3 M	-	
FREQ.	EMISSION	READ	LIMIT	MARGIN	ANTENNA	CABLE	PREAMP	ANTENNA	TABLE	
	LEVEL	LEVEL			FACTOR	LOSS	FACTOR	HEIGHT	ANGLE	REMARK
(MHz)	(dBuV/m)	(dBuV)	(dBuV/m)	(dB)	(dB /m)	(dB)	(dB)	(cm)	(Degree)	
5725	61.83	62.58	74	-12.17	34.87	9.88	45.5	129	97	Peak
5725	50.83	51.58	54	-3.17	34.87	9.88	45.5	129	97	Average
5729	92.41	93.16	114	-21.59	34.87	9.88	45.5	122	106	Peak
5729	90.9	91.65	94	-3.1	34.87	9.88	45.5	122	106	Average
5875	55.83	56.35	74	-18.17	35.05	9.93	45.5	122	100	Peak
5875	48.84	49.36	54	-5.16	35.05	9.93	45.5	122	100	Average

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level – Limit value.
- 2. 5729MHz: Fundamental frequency.

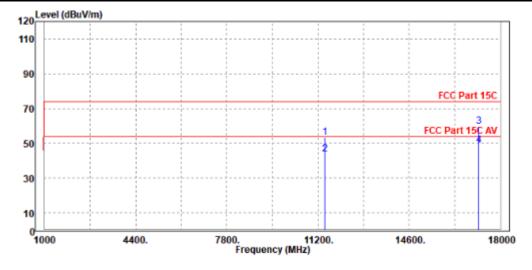
CHANNEL	Mid	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	A	NTENN	IA POLAF	RITY & TE	ST DISTA	NCE: H	ORIZONT	AL AT 3 M			
FREQ.	EMISSION	READ	LIMIT	MARGIN	ANTENNA	CABLE	PREAMP	ANTENNA	TABLE		
(MHz)	LEVEL	LEVEL	(dBuV/m)	(dB)	FACTOR	LOSS	FACTOR	HEIGHT	ANGLE	REMARK	
, ,	(dBuV/m)	(dBuV)		. ,	(dB /m)	(dB)	(dB)	(cm)	(Degree)		
5725	54.81	55.36	74	-19.19	35.07	9.88	45.5	187	302	Peak	
5725	49.66	50.21	54	-4.34	35.07	9.88	45.5	187	302	Average	
5789	87.83	88.28	114	-26.17	35.15	9.9	45.5	186	305	Peak	
5789	85.69	86.14	94	-8.31	35.15	9.9	45.5	186	305	Average	
5875	54.48	54.8	74	-19.52	35.25	9.93	45.5	183	312	Peak	
5875	49.73	50.05	54	-4.27	35.25	9.93	45.5	183	312	Average	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
FREQ.	EMISSION	READ	LIMIT	MARGIN	ANTENNA	CABLE	PREAMP	ANTENNA	TABLE		
(MHz)	LEVEL	LEVEL	(dBuV/m)	(dB)	FACTOR	LOSS	FACTOR	HEIGHT	ANGLE	REMARK	
(IVITIZ)	(dBuV/m)	(dBuV)	(ubuv/iii)	(ub)	(dB /m)	(dB)	(dB)	(cm)	(Degree)		
5725	54.19	54.94	74	-19.81	34.87	9.88	45.5	162	240	Peak	
5725	48.58	49.33	54	-5.42	34.87	9.88	45.5	162	240	Average	
5789	92.01	92.66	114	-21.99	34.95	9.9	45.5	172	247	Peak	
5789	90.22	90.87	94	-3.78	34.95	9.9	45.5	172	247	Average	
5875	53.6	54.12	74	-20.4	35.05	9.93	45.5	168	243	Peak	
5875	49.14	49.66	54	-4.86	35.05	9.93	45.5	168	243	Average	

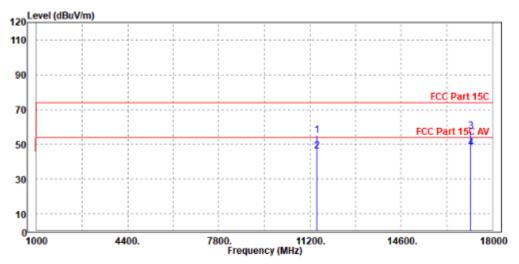
- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level Limit value.
- 2. 5789MHz: Fundamental frequency.

CHANNEL	High	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	Δ	NTENN	IA POLAF	RITY & TE	ST DISTA	NCE: HO	DRIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB /m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
5725	54.22	54.77	74	-19.78	35.07	9.88	45.5	121	244	Peak
5725	47.7	48.25	54	-6.3	35.07	9.88	45.5	121	244	Average
5849	87.89	88.25	114	-26.11	35.22	9.92	45.5	130	242	Peak
5849	85.73	86.09	94	-8.27	35.22	9.92	45.5	130	242	Average
5875	55.43	55.75	74	-18.57	35.25	9.93	45.5	128	244	Peak
5875	48.46	48.78	54	-5.54	35.25	9.93	45.5	128	244	Average
		ANTEN	NA POL	ARITY & 1	TEST DIST	ANCE: \	/ERTICA	L AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
5725	52.79	53.54	74	-21.21	34.87	9.88	45.5	195	114	Peak
5725	47.17	47.92	54	-6.83	34.87	9.88	45.5	195	114	Average
5849	91.77	92.33	114	-22.23	35.02	9.92	45.5	202	107	Peak
5849	90.26	90.26	94	-3.74	35.02	9.92	45.5	202	107	Average
5875	54.94	55.46	74	-19.06	35.05	9.93	45.5	185	109	Peak
5875	47.83	48.35	54	-6.17	35.05	9.93	45.5	185	109	Average


- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level – Limit value.
- 2. 5849MHz: Fundamental frequency.

harmonic:


CHANNEL	Low	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
-D-0	EMISSION	READ		MADOIN	ANTENNA	CABLE	PREAMP	ANTENNA	TABLE		
FREQ.	LEVEL	LEVEL	LIMIT	MARGIN	FACTOR	LOSS	FACTOR	HEIGHT	ANGLE	REMARK	
(MHz)	(dBuV/m)	(dBuV)	(dBuV/m)	(dB)	(dB /m)	(dB)	(dB)	(cm)	(Degree)		
11455	53.24	44.38	74	-20.76	38.38	13.95	43.47	145	336	Peak	
11455	43.69	34.83	54	-10.31	38.38	13.95	43.47	145	336	Average	
17187	59.7	41.52	74	-14.3	42.04	17.51	41.37	186	50	Peak	
17187	48.74	30.56	54	-5.26	42.04	17.51	41.37	186	50	Average	

		ANTEN	INA POLA	ARITY & 1	TEST DIST	ANCE: \	/ERTICA	L AT 3 M		
FDFO	EMISSION	READ	LINAIT	MADOIN	ANTENNA	CABLE	PREAMP	ANTENNA	TABLE	
FREQ.	LEVEL	LEVEL	LIMIT	MARGIN	FACTOR	LOSS	FACTOR	HEIGHT	ANGLE	REMARK
(MHz)	(dBuV/m)	(dBuV)	(dBuV/m)	(dB)	(dB /m)	(dB)	(dB)	(cm)	(Degree)	
11458	54.99	45.53	74	-19.01	38.97	13.96	43.47	142	61	Peak
11458	46.1	36.64	54	-7.9	38.97	13.96	43.47	142	61	Average
17184	57.69	41.01	74	-16.31	40.54	17.51	41.37	144	267	Peak
17184	47.96	31.28	54	-6.04	40.54	17.51	41.37	144	267	Average

REMARKS:

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Emission level – Limit value.
- 2. 5729MHz: Fundamental frequency.
- 3. For frequency above 18GHz, the emission was tested 20db below the limit so the data not recorded in the sheet.

Tel: +86 755 8869 6566

3.2 CONDUCTED EMISSION MEASUREMENT

3.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)				
	Quasi-peak	Average			
0.15 ~ 0.5	66 to 56	56 to 46			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	101900	Feb. 14,23	Feb. 13,24
EMC32 test software	Rohde&Schwarz	EMC32	NA	NA	NA
LISN network	Rohde&Schwarz	ENV216	101922	Mar. 03,23	Mar. 02,24

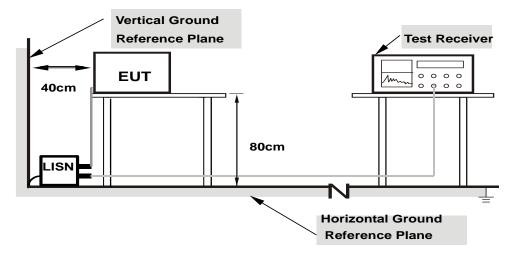
NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.


Email: customerservice.sw@bureauveritas.com

3.2.4 DEVIATION FROM TEST STANDARD

No deviation.

3.2.5 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

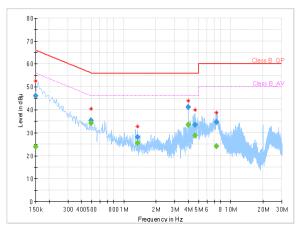
For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

Same as 3.1.6.

3.2.7 TEST RESULTS

CONDUCTED WORST-CASE DATA:

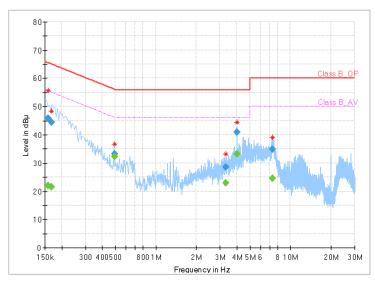

Frequency Range	1160KH7 - 30N/H7	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Carl Xie		

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		23.97	56.00	32.03	L1	ON	9.7
0.150000	46.07		66.00	19.93	L1	ON	9.7
0.492000		34.23	46.13	11.90	L1	ON	9.7
0.492000	35.26		56.13	20.87	L1	ON	9.7
1.348000		25.41	46.00	20.59	L1	ON	9.7
1.348000	28.08		56.00	27.92	L1	ON	9.7
4.000000		33.46	46.00	12.54	L1	ON	9.7
4.000000	41.28		56.00	14.72	L1	ON	9.7
4.656000		28.83	46.00	17.17	L1	ON	9.7
4.656000	33.43		56.00	22.57	L1	ON	9.7
7.340000		24.17	50.00	25.83	L1	ON	9.7
7.340000	34.70		60.00	25.30	L1	ON	9.7

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

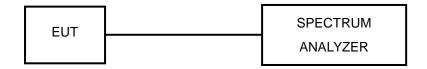
Email: <u>customerservice.sw@bureauveritas.com</u>


Frequency Range	150KHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Carl Xie		

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.158000		22.01	55.57	33.56	N	ON	9.7
0.158000	45.92		65.57	19.65	N	ON	9.7
0.168000		21.63	55.06	33.43	N	ON	9.7
0.168000	44.38		65.06	20.68	N	ON	9.7
0.492000		32.25	46.13	13.88	N	ON	9.7
0.492000	33.21		56.13	22.92	N	ON	9.7
3.316000		23.00	46.00	23.00	N	ON	9.8
3.316000	28.58		56.00	27.42	N	ON	9.8
4.004000		33.19	46.00	12.81	N	ON	9.8
4.004000	40.95		56.00	15.05	N	ON	9.8
7.312000		24.49	50.00	25.51	N	ON	9.8
7.312000	34.76		60.00	25.24	N	ON	9.8

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



Email: <u>customerservice.sw@bureauveritas.com</u>

3.3 CHANNEL BANDWIDTH (20DB BANDWIDTH)

3.3.1 TEST SETUP

3.3.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EXA Signal Analyzer	KEYSIGHT	N9010A-544	MY54510355	May.14,22	May.13,23
EXA Signal Analyzer	KEYSIGHT	N9010A-544	MY54510355	May.13,23	May.12,24

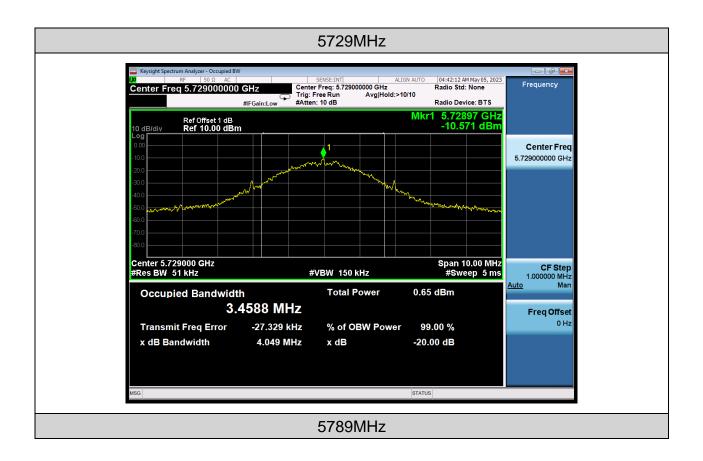
3.3.3 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.
- d. Repeat above procedures until all frequencies measured were complete.

3.3.4 DEVIATION FROM TEST STANDARD

No deviation.

District, Shenzhen, Guangdong, China



3.3.5 EUT OPERATING CONDITION

The EUT provided by client can transmission continuously at test frequency individually.

3.3.6 TEST RESULTS

Frequency (MHz)	OBW (MHz)	20dB bandwidth (MHz)	Result
5729	3.4588	4.049	Pass
5789	3.5926	4.064	Pass
5849	3.6116	4.078	Pass

3.4 FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT

were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has a metal plate Antenna arrangement, which was permanently attached and the antenna gain is 3.01dBi, fulfill the requirement of this section.

Please refer to the EUT photos.

Result: Compliance.

District, Shenzhen, Guangdong, China

PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

--- END ---