FCC ID : Fest Report No : Date of issue : Festing laboratory : Festing location/ address:	Oct. 20, 2023		
Date of issue:	Oct. 20, 2023	(E)	
Festing laboratory: :	· · ·		
	Oct. 20, 2023		
Festing location/ address:	SHENZHEN TONGCE TESTING LAB		
-	2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China		
Applicant's name: :	HyVibe		
Address:	51 Rue de Maubeuge, Paris	s 75009, France	
Manufacturer's name:	Shenzhen Sunchip Technol	ogy Co.,Ltd	
Address:	2nd -3rd Floor, Building 4, F Development Zone, Fuyong		
Standard(s):	FCC CFR Title 47 Part 15 S FCC KDB 558074 D01 15.2 ANSI C63.10:2013	Subpart C Section 15.24	17
Product Name:	HyVibe System 2		
Frade Mark:	IIII HyVibe	3	
Model/Type reference:	: H2		
Rating(s):	Rechargeable Li-ion Battery DC 7.4V		
Date of receipt of test item	Jul. 28, 2023		Re la
Date (s) of performance of est:	of Jul. 28, 2023 - Oct. 20, 2023		Š)
Fested by (+signature) :	Aaron MO	Aaron Abesc	E TRO
Check by (+signature) :	Beryl ZHAO	Bayle PC	T
Approved by (+signature):	Tomsin	Tomsies	55

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	
1.2. Model(s) list	
1.3. Operation Frequency	
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	
3.2. Description of Support Units	5
4. Facilities and Accreditations	6
4.1. Facilities	6
4.2. Location	6
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	7
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	13
5.5. Carrier Frequencies Separation	
5.6. Hopping Channel Number	
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	
5.9. Conducted Band Edge Measurement	
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	HyVibe System 2	(\mathcal{S})
Model/Type reference:	H2	
Sample Number:	TCT230728E011-0101	
Bluetooth Version:	V4.2 (This report is for BDR+EDR)	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	
Antenna Type:	PCB Antenna	
Antenna Gain:	1.4dBi	KC)
Rating(s):	Rechargeable Li-ion Battery DC 7.4V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

1.3. Operation Frequency

Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
2421MHz	39	2441MHz	59	2461MHz		(\mathbf{c})
	2402MHz 2403MHz 2412MHz 2413MHz 2420MHz	2402MHz 20 2403MHz 21 2412MHz 30 2413MHz 31 2420MHz 38	2402MHz 20 2422MHz 2403MHz 21 2423MHz 2412MHz 30 2432MHz 2413MHz 31 2433MHz 2420MHz 38 2440MHz	2402MHz 20 2422MHz 40 2403MHz 21 2423MHz 41 2412MHz 30 2432MHz 50 2413MHz 31 2433MHz 51 2420MHz 38 2440MHz 58	2402MHz 20 2422MHz 40 2442MHz 2403MHz 21 2423MHz 41 2443MHz 2412MHz 30 2432MHz 50 2452MHz 2413MHz 31 2433MHz 51 2453MHz 2420MHz 38 2440MHz 58 2460MHz	2403MHz 21 2423MHz 41 2443MHz 61 2412MHz 30 2432MHz 50 2452MHz 70 2413MHz 31 2433MHz 51 2453MHz 71 2413MHz 31 2433MHz 51 2453MHz 71 2420MHz 38 2440MHz 58 2460MHz 78

Remark: Channel 0, 39 & 78 have been tested for GFSK, π /4-DQPSK, 8DPSK modulation mode.

Report No.: TCT230728E011

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:				
Condition	Conducted Emission	Radiated Emission		
Temperature:	24.1 °C	25.4 °C		
Humidity:	53 % RH	49 % RH		
Atmospheric Pressure:	1010 mbar	1010 mbar		
Test Software:	•			

Software Information:	EspRFTestTool_v3.6	
Power Level:	Default	

Test Mode:

Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Adapter EP-TA200 R37M4PR7QD4SE3 / SAMSUNG	Equipment	Model No.	Serial No.	FCC ID	Trade Name
	Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

FCT通测检测 TESTING CENTRE TECHNOLOGY

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

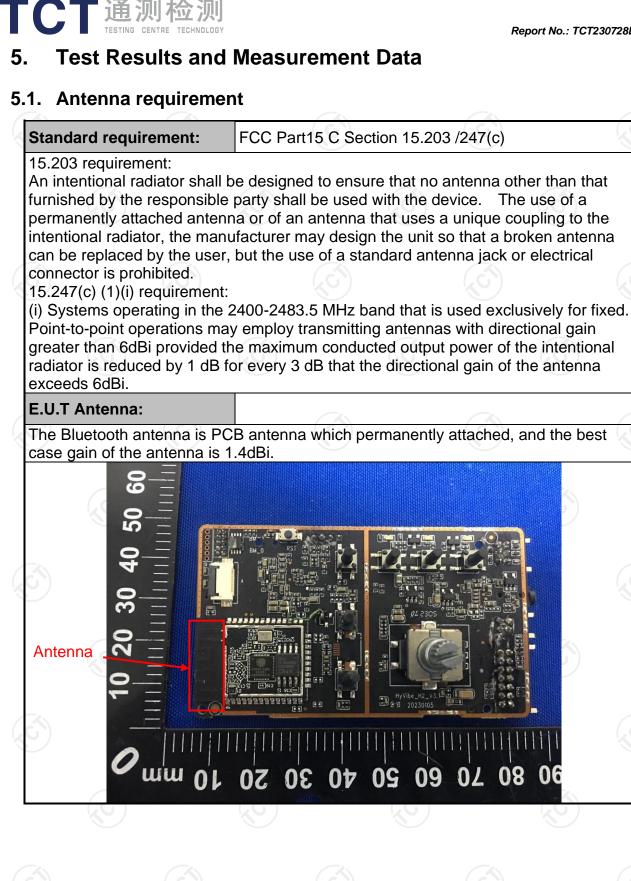
The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location


SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

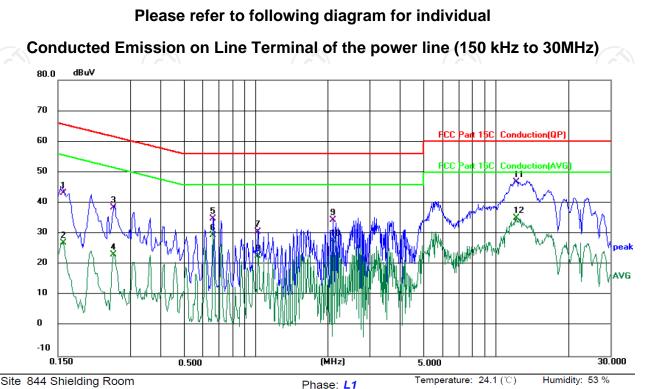
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5.2. Conducted Emission

5.2.1. Test Specification

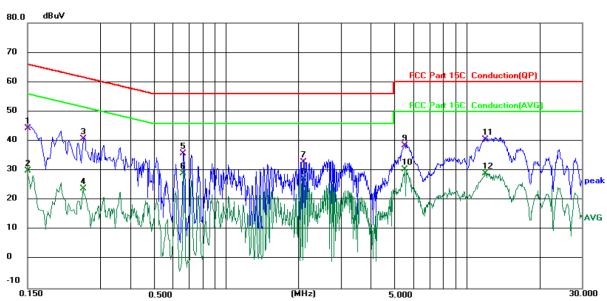
FCC Part15 C Section ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 Frequency range (MHz) 0.15-0.5 0.5-5 5-30	<u>s</u>			
150 kHz to 30 MHz RBW=9 kHz, VBW=30 Frequency range (MHz) 0.15-0.5 0.5-5	Limit (Quasi-peak 66 to 56*	dBuV) Average		
RBW=9 kHz, VBW=30 Frequency range (MHz) 0.15-0.5 0.5-5	Limit (Quasi-peak 66 to 56*	dBuV) Average		
Frequency range (MHz) 0.15-0.5 0.5-5	Limit (Quasi-peak 66 to 56*	dBuV) Average		
(MHz) 0.15-0.5 0.5-5	Quasi-peak 66 to 56*	Average		
(MHz) 0.15-0.5 0.5-5	Quasi-peak 66 to 56*	Average		
0.15-0.5 0.5-5	66 to 56*			
0.5-5				
	00	46		
	60	50		
Reference	e Plane			
40cm				
E.U.T AC power LISN				
	-/	_		
Remark: F I I T: Equipment I Inder Test	Receiver			
LISN: Line Impedence Stabilization Ne	ətwork			
l est table height=u.8m				
Charging + Transmittin	g Mode	9		
1. The F.U.T is connect	cted to an adapte	er through a line		
		U		
provides a 50ohm/50uH coupling impedance for the				
• • • •		acted to the main		
power through a LISN that provides a 500hm/50uH				
		•		
refer to the block diagram of the test setup and				
3. Both sides of A.C. line are checked for maximum				
conducted interference. In order to find the maximum				
the interface cables must be changed according to				
ANSI C63.10:2013 on conducted measurement.				
PASS				
	40cm E.U.T Ac powe Test table/Insulation plane Remark: EU.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m Charging + Transmittin 1. The E.U.T is conne impedance stabiliz provides a 50ohm/5 measuring equipment 2. The peripheral device power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferer emission, the relative the interface cables	 40cm E.U.T AC power 80cm LISN Filter Test table/Insulation plane Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Charging + Transmitting Mode The E.U.T is connected to an adapted impedance stabilization network provides a 50ohm/50uH coupling immeasuring equipment. The peripheral devices are also conner power through a LISN that provides coupling impedance with 50ohm term refer to the block diagram of the photographs). Both sides of A.C. line are checked conducted interference. In order to fine emission, the relative positions of equit the interface cables must be changed ANSI C63.10:2013 on conducted measuring equipment 		

5.2.2. Test Instruments


	Cond	ucted Emission	Shielding R	oom Test Site (8	43)
	Equipment	Manufacturer	Model	Serial Number	Calibration Due
0	EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 20, 2024
	Line-5	ТСТ	CE-05	/	Jul. 03, 2024
	EMI Test Software	Shurple Technology	EZ-EMC	1	1

Page 9 of 96

5.2.3. Test data


Report No.: TCT230728E011

Power: DC 5 V(Adapter Input AC 120 V/60 Hz) Limit: FCC Part 15C Conduction(QP) Reading Correct Measure-No. Mk. Limit Over Freq. Level Factor ment dB MHz dBuV dBuV dBuV dB Detector Comment 0.1580 QP 1 33.06 10.12 43.18 65.57 -22.39 2 0.1580 16.91 10.12 27.03 55.57 -28.54 AVG 3 0.2540 28.59 9.95 38.54 61.63 -23.09 QP 0.2540 23.13 51.63 -28.50 AVG 4 13.18 9.95 QP 5 0.6660 25.63 9.29 34.92 56.00 -21.08 0.6660 29.45 46.00 -16.55 AVG 6 20.16 9.29 7 1.0260 21.66 8.95 30.61 56.00 -25.39 QP 22.81 46.00 -23.19 8 1.0260 13.86 8.95 AVG 9 2.1059 24.36 10.01 34.37 56.00 -21.63 QP 27.64 10 2.1059 17.63 10.01 46.00 -18.36 AVG 46.89 QP 12.2140 36.73 10.16 60.00 -13.11 11 12 12.2140 24.94 10.16 35.10 50.00 -14.90 AVG

Note:

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Limit ($dB\mu V$) = Limit stated in standard Margin (dB) = Measurement ($dB\mu V$) – Limits ($dB\mu V$) Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Phase: N

Temperature: 24.1 (℃)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Limit: FCC Part 15C Conduction(QP)

				<u> </u>					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	34.23	10.09	44.32	66.00	-21.68	QP	
2		0.1500	19.84	10.09	29.93	56.00	-26.07	AVG	
3		0.2540	30.74	9.94	40.68	61.63	-20.95	QP	
4		0.2540	13.87	9.94	23.81	51.63	-27.82	AVG	
5		0.6660	26.51	9.30	35.81	56.00	-20.19	QP	
6	*	0.6660	19.70	9.30	29.00	46.00	-17.00	AVG	
7		2.1099	22.94	10.02	32.96	56.00	-23.04	QP	
8		2.1099	17.24	10.02	27.26	46.00	-18.74	AVG	
9		5.5500	28.29	10.12	38.41	60.00	-21.59	QP	
10		5.5500	20.28	10.12	30.40	50.00	-19.60	AVG	
11		11.9778	30.39	10.21	40.60	60.00	-19.40	QP	
12		11.9778	18.94	10.21	29.15	50.00	-20.85	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and GFSK) was submitted only.

Report No.: TCT230728E011

Humidity: 53 %

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)	
Test Method:	KDB 558074 D01 v05r02	
Limit:	Section 15.247 (b) The maximum per power of the intentional radiator sha following: (1) For frequency hopping in the 2400-2483.5 MHz band employ non-overlapping hopping channels, hopping systems in the 5725-5850 M For all other frequency hopping syst 2400-2483.5 MHz band 0.125 watts	Il not exceed the systems operating bying at least 75 and all frequency MHz band: 1 watt. ems in the
Test Setup:	Spectrum Analyzer	л
Test Mode:	Transmitting mode with modulation	
Test Procedure:	Use the following spectrum analyzer Span = approximately 5 times the centered on a hopping channel RBW > the 20 dB bandwidth of the e measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to speak of the emission.	e 20 dB bandwidth, emission being
Test Result:	PASS	

5.3.2. Test Instruments

(C.)				
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	\mathbf{S}	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	N/A		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 		
Test Result:	PASS		

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems shall have hopping channed carrier frequencies separated by a minimum of 25 kHz of the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 			
Test Result:	PASS			

5.5.2. Test Instruments

5.5.2. Test Instru	ments			
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/ ~	1

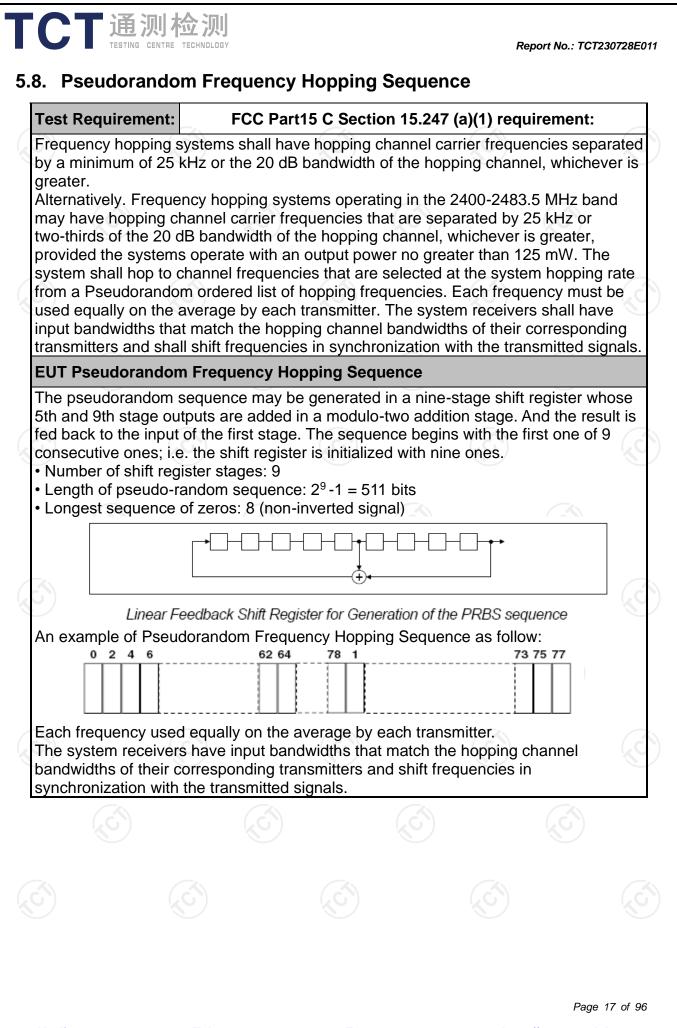
5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 			
Test Result:	PASS			
E 6 2 Test Instruments				

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/


5.7. Dwell Time

5.7.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)			
KDB 558074 D01 v05r02			
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.			
Spectrum Analyzer EUT			
Hopping mode			
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
PASS			

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d				
Test Method:	KDB 558074 D01 v05r02				
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.				
Test Setup:	Spectrum Analyzer	EUT			
Test Mode:	Transmitting mode with modulat	ion			
Test Procedure:	 Set to the maximum power s EUT transmit continuously. Set RBW = 100 kHz (≥1% sp kHz (≥RBW). Band edge em 20 dB down from the highest the authorized band as meas RBW. The attenuation shall b dB when RMS conducted ou used. Enable hopping function of th step 2 and 3. Measure and record the result 	ban=10MHz), VBW = 300 issions must be at least t emission level within sured with a 100kHz be 30 dB instead of 20 itput power procedure is he EUT and then repeat			
Test Result:	PASS				

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

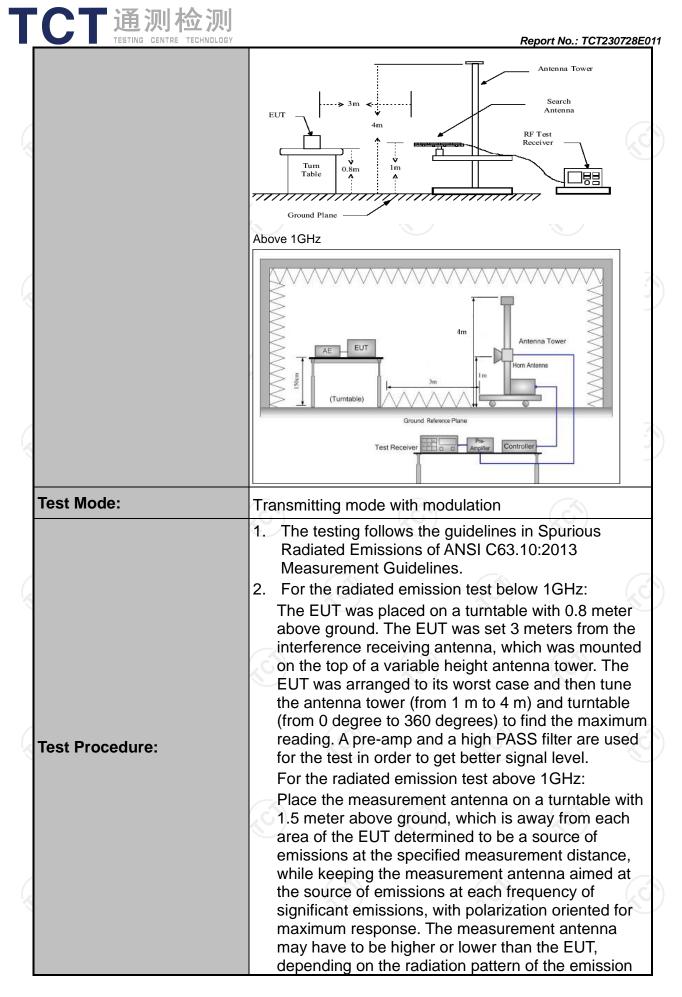
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		



5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

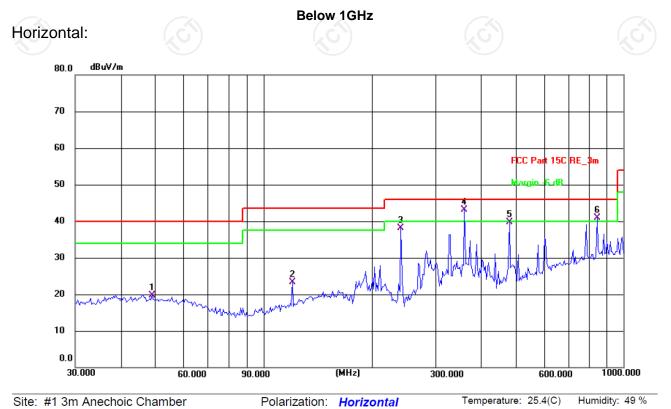
TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Sectior	n 15.209 🛛			
Test Method:	ANSI C63.10	0:2013				
Frequency Range:	9 kHz to 25 (GHz	3		C	í)
Measurement Distance:	3 m	X	9		R	
Antenna Polarization:	Horizontal &	Vertical				
	Frequency 9kHz- 150kHz	Detector Quasi-pea	RBW k 200Hz	VBW 1kHz		Remark i-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-pea	k 9kHz	30kHz	Quas	i-peak Value
	30MHz-1GHz Above 1GHz	Quasi-pea Peak Peak	k <u>120KHz</u> <u>1MHz</u> 1MHz	300KHz 3MHz 10Hz	Pe	i-peak Value eak Value erage Value
	Frequen		Field Stro (microvolts	ength	Mea	asurement nce (meters)
	0.009-0.4	490	2400/F(I			300
	0.490-1.7		24000/F((KHz)		30
	1.705-3		30			30
	30-88	1	100		6	3
Limit:	216-96		200		10	3
	Above 9		500			3
	Frequency		d Strength ovolts/meter)	Measurer Distand (meter	ce	Detector
	Above 1GHz	z	500 5000	3		Average Peak
Test setup:	For radiated emis	stance = 3m	30MHz		Comput	

Page 21 of 96

	ENTRE TECHNOLOGY	rece mea max ante rest abov 3. Set EU 4. Use (1) (2)	= max ho B) For avera	aximum si antenna ele emissions ion for max ange of he ind or refer ximum pov continuous ing spectru l wide enor being meas 120 kHz fe auto; Dete ld for peak ing emeasu factor me	emission s ignal. The evation sha . The meas kimum emi eights of fro ence grou wer setting ly. um analyze ugh to fully sured; or f < 1 GH BW; ector function thod per	final all be that surement issions sha om 1 m to nd plane. g and enal er settings: capture the lz, RBW=1 on = peaks se duty cyc	whic all be 4 m ble th : he 1MHz ; Trac
		Ś	Where N length of Average Level + 2 Corrected	N1*L1+N2 1 is numbe type 1 puts Emission L 0*log(Duty Reading: A	*L2++Nn er of type 1 ses, etc. evel = Pea cycle)	pulses, L ak Emissic actor + Ca	⊦Nn*l 1 is on ble
est results:		PASS	Where N length of Average Level + 2	N1*L1+N2 1 is numbe type 1 puts Emission L 0*log(Duty Reading: A	*L2++Nn er of type 1 ses, etc. evel = Pea cycle)	pulses, L ak Emissic actor + Ca	⊦Nn*l 1 is on ble
est results:		PASS	Where N length of Average Level + 2 Corrected	N1*L1+N2 1 is numbe type 1 puts Emission L 0*log(Duty Reading: A	*L2++Nn er of type 1 ses, etc. evel = Pea cycle)	pulses, L ak Emissic actor + Ca	⊦Nn*l 1 is on ble
est results:		PASS	Where N length of Average Level + 2 Corrected	N1*L1+N2 1 is numbe type 1 puts Emission L 0*log(Duty Reading: A	*L2++Nn er of type 1 ses, etc. evel = Pea cycle)	pulses, L ak Emissic actor + Ca	⊦Nn*l 1 is on ble
est results:		PASS	Where N length of Average Level + 2 Corrected	N1*L1+N2 1 is numbe type 1 puts Emission L 0*log(Duty Reading: A	*L2++Nn er of type 1 ses, etc. evel = Pea cycle)	pulses, L ak Emissic actor + Ca	⊦Nn* 1 is on ble

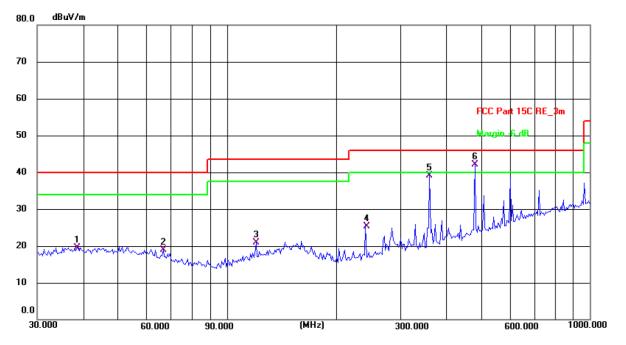
5.11.2. Test Instruments


	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 20, 2024
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC		/

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.11.3. Test Data

Please refer to following diagram for individual


Limit: FCC Part 15C RE 3m

Report No.: TCT230728E011

Limit: I	FCC Part 15C F	RE_3m				Power:	DC 7.4 V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	49.0144	5.99	13.66	19.65	40.00	-20.35	QP	Ρ	
2	120.2766	10.80	12.44	23.24	43.50	-20.26	QP	Ρ	
3	240.8300	25.77	12.24	38.01	46.00	-7.99	QP	Ρ	
4 *	361.7137	27.69	15.43	43.12	46.00	-2.88	QP	Ρ	
5	482.2155	21.43	18.21	39.64	46.00	-6.36	QP	Ρ	
6 !	845.0877	17.27	23.57	40.84	46.00	-5.16	QP	Ρ	

Page 24 of 96

Vertical:

Site: #1 3m Anechoic Chamber Polarization: Vertical Temperature: 25.4(C) Humidity: 49 %

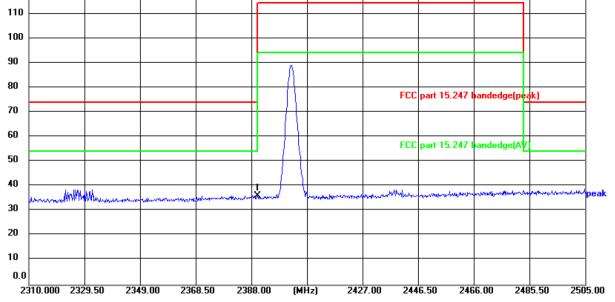
Limit: FCC Part 15C RE_3m

Power: DC 7.4 V

		-							
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	38.6160	5.36	14.05	19.41	40.00	-20.59	QP	Ρ	
2	66.7325	7.20	11.65	18.85	40.00	-21.15	QP	Ρ	
3	120.2766	8.42	12.44	20.86	43.50	-22.64	QP	Р	
4	240.8301	13.00	12.24	25.24	46.00	-20.76	QP	Ρ	
5	361.7137	23.70	15.43	39.13	46.00	-6.87	QP	Ρ	
6 *	482.2155	23.80	18.21	42.01	46.00	-3.99	QP	Ρ	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Highest channel and GFSK) was submitted only.


- 3. Freq. = Emission frequency in MHz
- Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
- *Limit* $(dB\mu V/m) = Limit$ stated in standard
- $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
- * is meaning the worst frequency has been tested in the test frequency range.

Report No.: TCT230728E011

Report No.: TCT230728E011 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: dBu¥/m 120.0 110 100 90 80 FCC part 15.247 bandedge(peak) 70 60 FCC part 15.247 bandedge(AV 50 40 eak No. Am and a ball huh the states 30 20 10 0.0 2310.000 2329.50 2349.00 2368.50 2388.00 (MHz) 2427.00 2446.50 2466.00 2485.50 2505.00 Temperature: 25.2(℃) Humidity: 43 % Site: #3 3m Anechoic Chamber Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power: DC 7.4 V Reading Factor Level Limit Margin Frequency No. Detector P/F Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) 1 * 2390.000 53.21 -17.10 -37.89 Ρ 36.11 74.00 peak Page 26 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TCT通测检测 Vertical:

Report No.: TCT230728E011

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 25.2(°C) Humidity: 43 %

Limit: FCC part 15.247 bandedge(peak)

Frequency Reading Factor Level Limit Margin No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 2390.000 53.14 -17.10 36.04 74.00 -37.96 Ρ peak

Power: DC 7.4 V

Report No.: TCT230728E011 Highest channel 2480: Horizontal: 120.0 dBu¥/m 110 100 90 80 FCC part 15.247 bandedge(peak) 70 60 FCC part 15.247 andedge(A 50 40 eak www. Alle Antonia Ann 30 20 10 0.0

2310.000 2329.50 2349.00 2368.50 2388.00 (MHz) 2427.00 2446.50 2466.00 2485.50 2505.00

Site: #3 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 25.2(°C) Humidity: 43 %

Li	mit: I	FCC part 15.2	247 bandeo	dge(peak)		Po	ower: D	C 7.4 V		
1	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1 *	2483.500	68.60	-16.88	51.72	74.00	-22.28	peak	Ρ	

120.0 dBu\	//m											
110												
100						_						
90										٨		
80							FCC	part 15.247	banded	ge(pea	sk)	
70 60										\square		
50							FCC	part 15.247	banded			
40	And Manuan			and real market war			Son A.	unal standard	min	 *	William	mater
30	MMAN THE PUYLShquaran	mangelisetationservyant	n terrentet terretet		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4244 (A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.						
20												
10 0.0												
	0000 50 0							650 240	66.00			
2310.000				38.00 (MH	-	2427.00	244				35.50	
#3 3m Ane	2329.50 2 choic Cham 15.247 band	ber	Polarizatio	on: Vertic	-	Ter		ture: 25.2(°			nidity: 4	
#3 3m Ane	choic Cham 15.247 band cy Readin	iber ledge(peak g Factor	Polarizatio	on: Vertic	al ower: DC	Ter	mpera		C)			
#3 3m Ane FCC part	choic Cham 15.247 band cy Readin (dBuV)	iber ledge(peak g Factor	Polarizatio	on: Vertic Po	al ower: DC	Ter C 7.4 V	mpera	ture: 25.2(°	C)			
#3 3m Ane FCC part Frequer (MHz) 2483.50	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor (dB/m) -16.88	Polarizatio	on: Vertic Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	ture: 25.2(* Remari	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV)	ber ledge(peak g Factor) (dB/m) -16.88	Polarizatio	on: Vertic Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarizatio	on: Vertic Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	ture: 25.2(* Remari	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarizatio	on: Vertic Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarizatio	on: Vertic Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarizatio	on: Vertic Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarizatio	on: Vertic Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarizatio	on: Vertic. Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarization	on: Vertic. Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarizatio	on: Vertic. Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarization	on: Vertic. Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	43 %
#3 3m Ane FCC part Frequer (MHz) 2483.50 Measuren (GFSK) w	choic Cham 15.247 band cy Readin (dBuV) 00 63.54	ber ledge(peak g Factor) (dB/m) -16.88	Polarization	on: Vertic. Po Limit (dBuV/m) 74.00	al ower: DC Margin (dB) -27.34	Ter C 7.4 V Detector peak	P/F	Remark	C) (Hun	nidity: 4	43 %

Above 1GHz

Modulation	Type: GF	SK							
Low channe	el: 2402 N	IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	45.52		0.66	46.18		74	54	-7.82
7206	Н	34.97		9.50	44.47		74	54	-9.53
	H					~~~~			
(` O``)		(, C)	`)	()	$G^{}$		(\mathcal{O})	
4804	V	46.03		0.66	46.69	<u> </u>	74	54	-7.31
7206	V	35.84		9.50	45.34		74	54	-8.66
	V								

Middle cha	nnel: 2441	MHz))				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4882	Н	46.13		0.99	47.12	<u> </u>	74	54	-6.88
7323	X OH)	35.72	-120	9.87	45.59	01	74	54	-8.41
	Ĥ					· · · ·			
4882	V	45.46		0.99	46.45		74	54	-7.55
7323	V	35.29		9.87	45.16		74	54	-8.84
/	V			\	· /				

High channel: 2480 MHz

CT 通测检测 TESTING CENTRE TECHNOLOGY

i ligit chatli	ICI. 2400 IN	/11 12							
Frequency (MHz)	Ant. Pol. H/V	Peak	AV	Correction	Emission Level		Peak limit	A\/ limit	Margin
		reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4960	Н	45.53		1.33	46.86		74	54	-7.14
7440	Н	35.01		10.22	45.23		74	54	-8.77
	Н								
G)		(.G)		(.0			(.c.)		(.c)
4960	V	45.12		1.33	46.45		74	54	-7.55
7440	V	34.85		10.22	45.07		74	54	-8.93
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

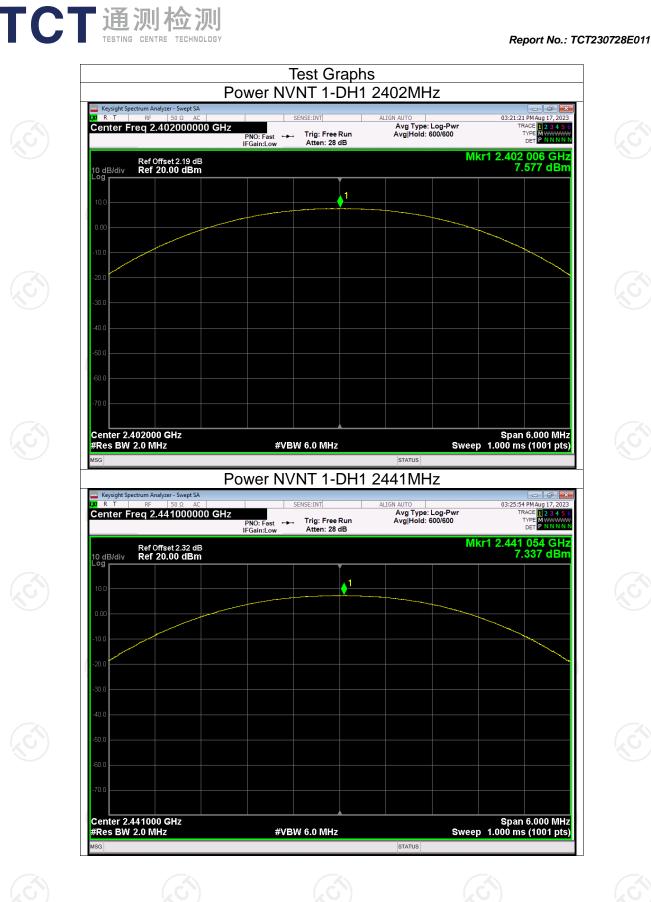
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

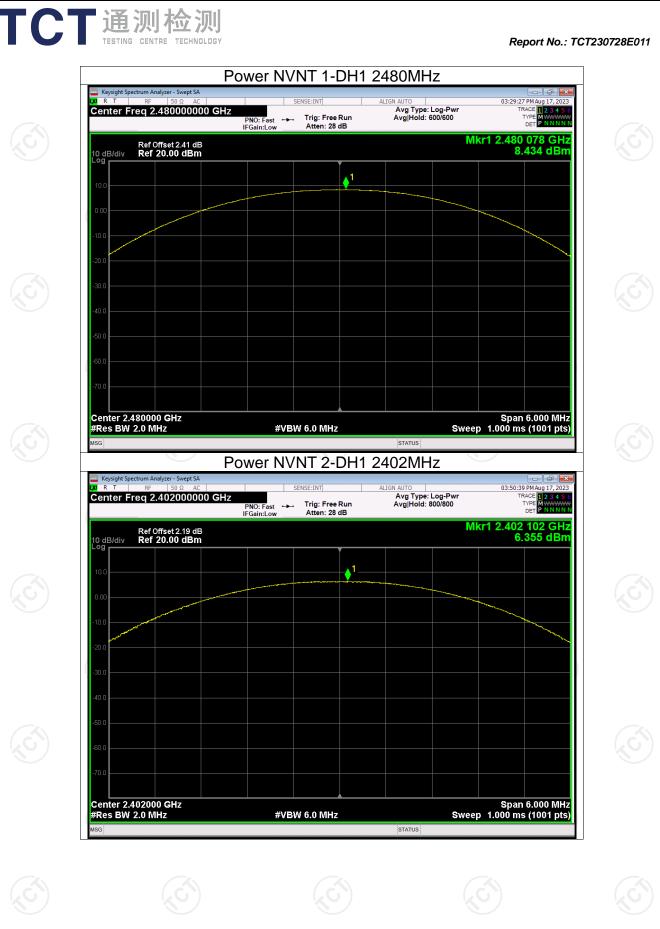
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

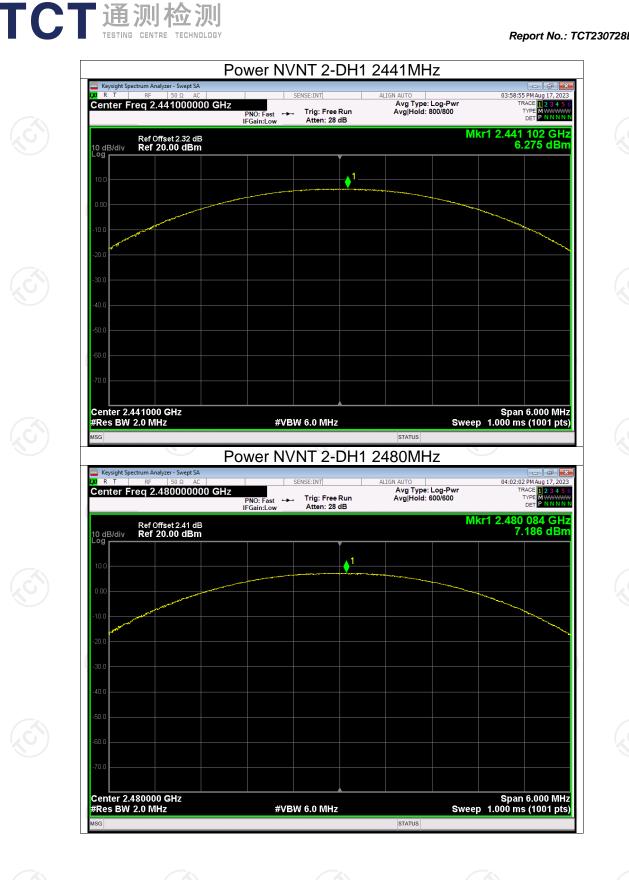
7. All the restriction bands are compliance with the limit of 15.209.

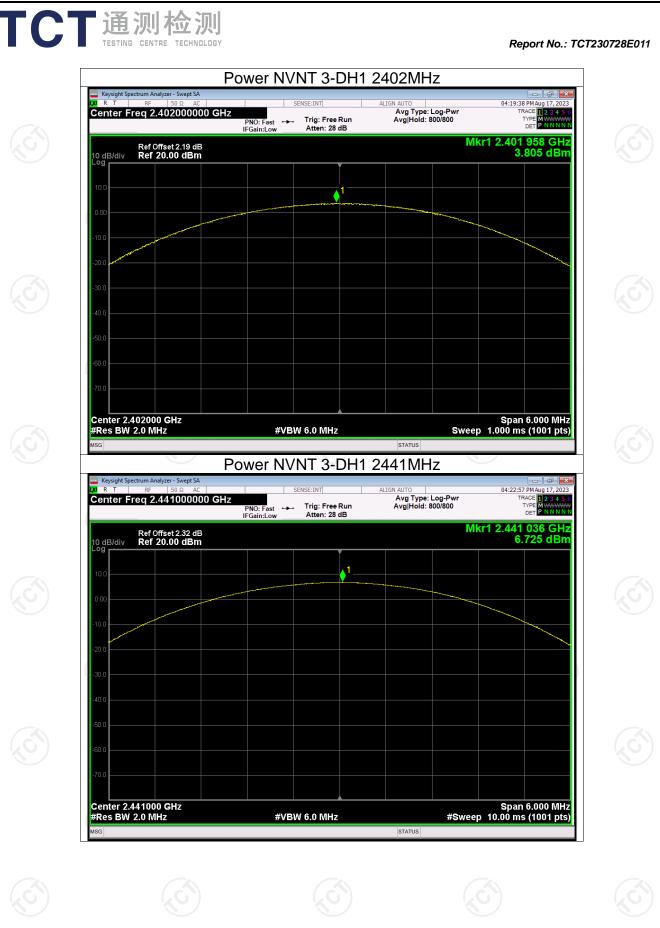
Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power									
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict				
NVNT	1-DH1	2402	7.58	30	Pass				
NVNT	1-DH1	2441	7.34	30	Pass				
NVNT	1-DH1	2480	8.43	30	Pass				
NVNT	2-DH1	2402	6.36	21	Pass				
NVNT	2-DH1	2441	6.28	21	Pass				
NVNT 🔇	2-DH1	2480	7.19	21	Pass				
NVNT	3-DH1	2402	3.81	21	Pass				
NVNT	3-DH1	2441	6.73	21	Pass				
NVNT	3-DH1	2480	7.59	21	Pass				
KU /		KU)							

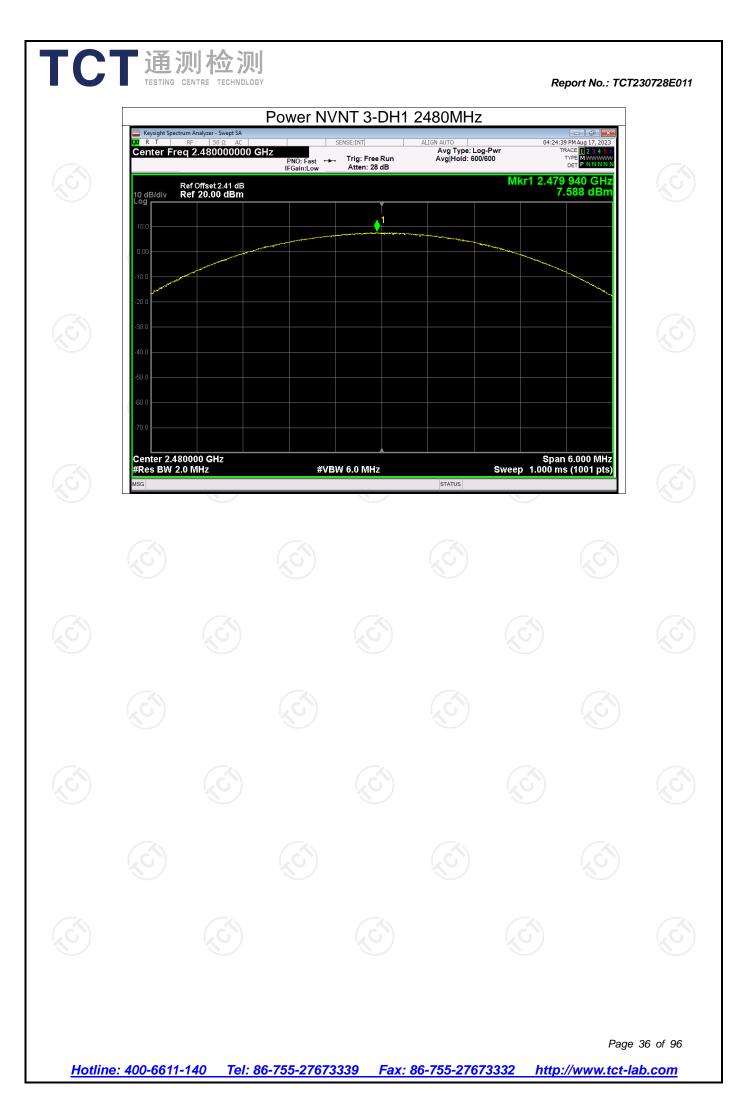




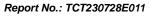

Page 31 of 96



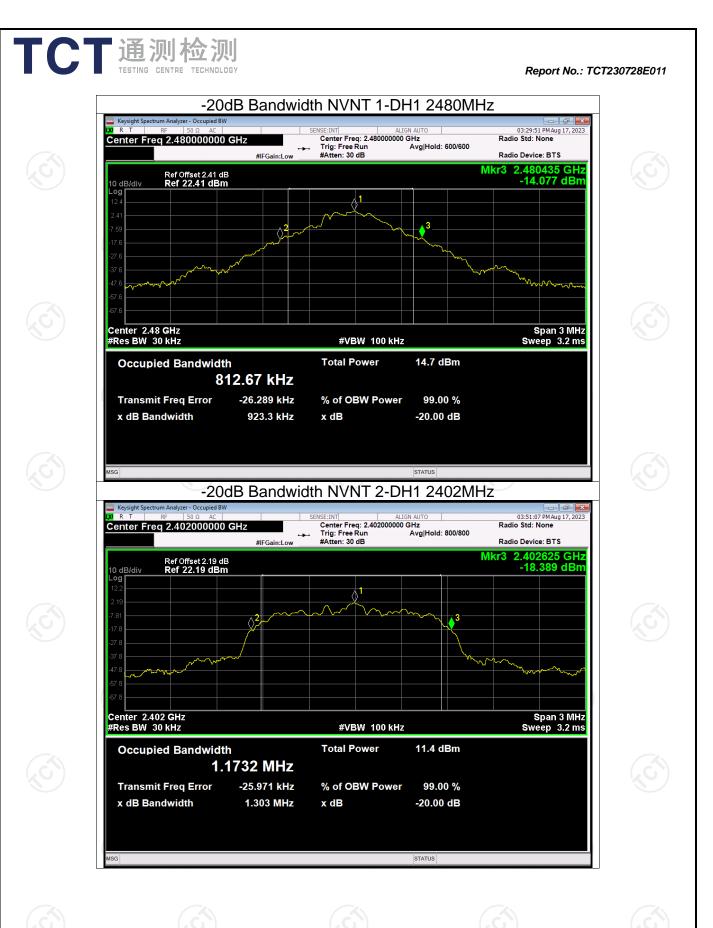
Page 32 of 96

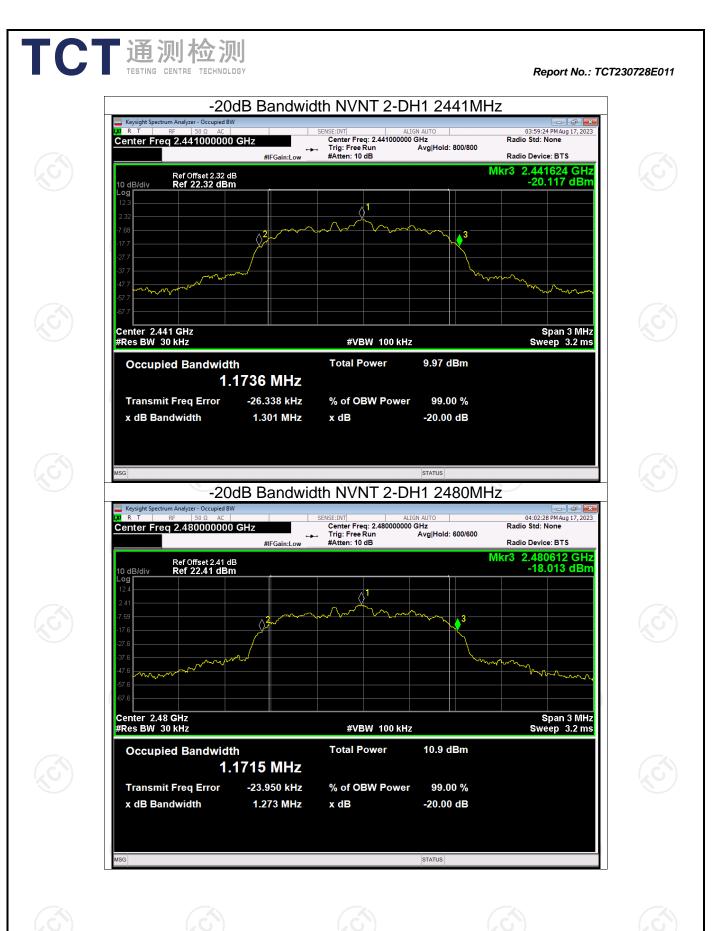


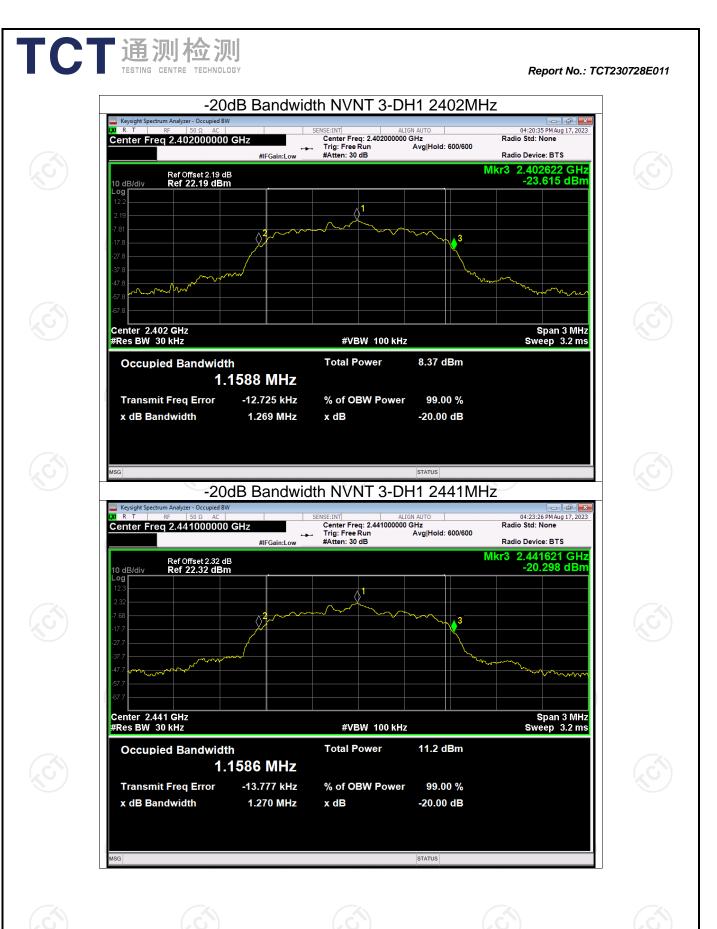
Page 33 of 96

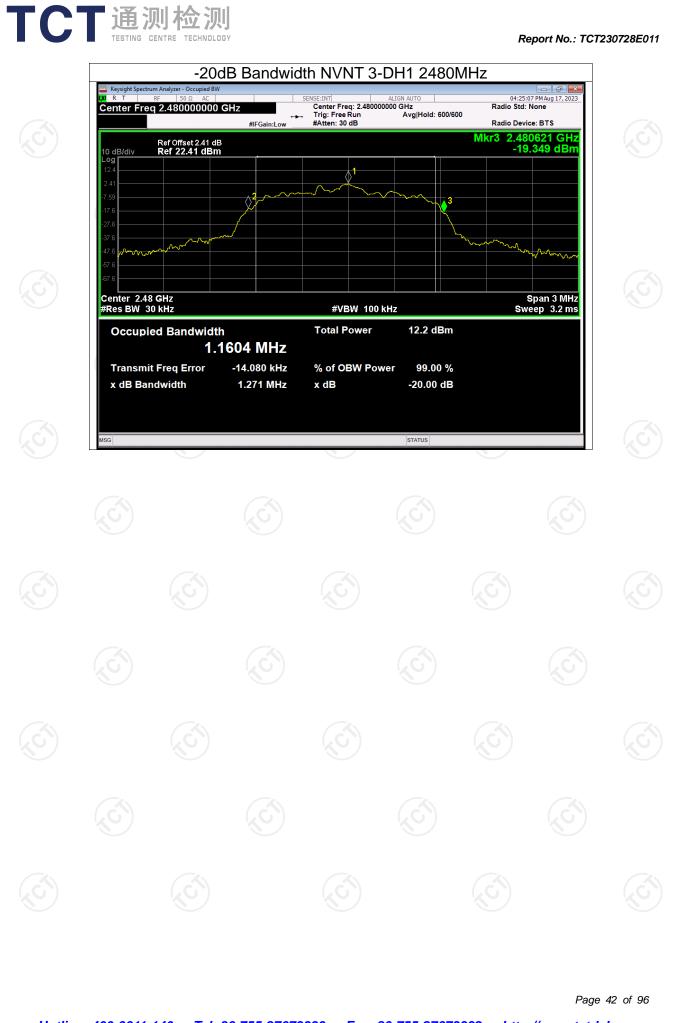

Page 35 of 96

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict			
NVNT	1-DH1	2402	0.926	Pass			
NVNT 🚫	1-DH1	2441	0.924	Pass			
NVNT	1-DH1	2480	0.923	Pass			
NVNT	2-DH1	2402	1.303	Pass			
NVNT	2-DH1	2441	1.301	Pass			
NVNT	2-DH1	2480	1.273	Pass			
NVNT	3-DH1	2402	1.269	Pass			
NVNT	3-DH1	2441	1.270	Pass			
NVNT	3-DH1	2480	1.271	Pass			
N.	5)		KO)				





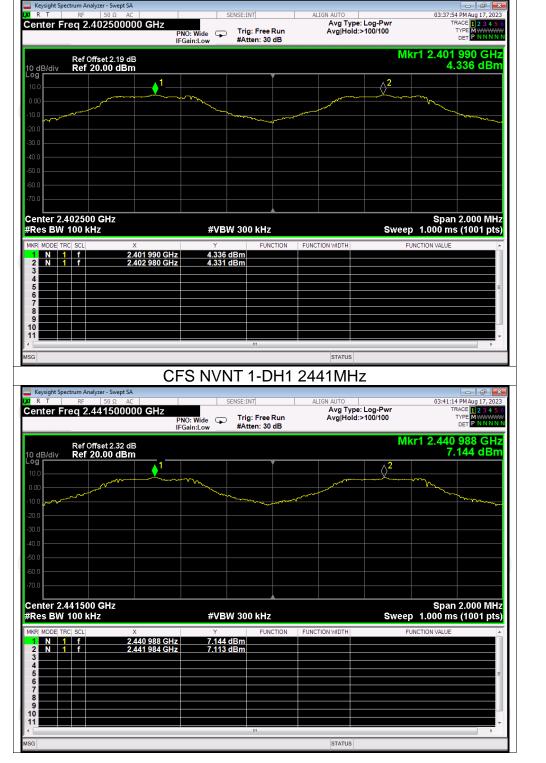



Page 37 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condition	Mode	(MHz)	(MHz)	(MHz)	(MHz)	Verdict
NVNT	1-DH1	2401.990	2402.980	0.990	0.926	Pass
NVNT	1-DH1	2440.988	2441.984	0.996	0.926	Pass
NVNT	1-DH1	2478.974	2479.974	1.000	0.926	Pass
NVNT	2-DH1	2401.984	2402.982	0.998	0.869	Pass
NVNT	2-DH1	2440.998	2441.970	0.972	0.869	Pass
NVNT 🐇	2-DH1	2478.982	2479.980	0.998	0.869	Pass
NVNT	3-DH1	2401.992	2402.984	0.992	0.847	Pass
NVNT	3-DH1	2440.990	2441.984	0.994	0.847	Pass
NVNT	3-DH1	2478.984	2479.980	0.996	0.847	Pass

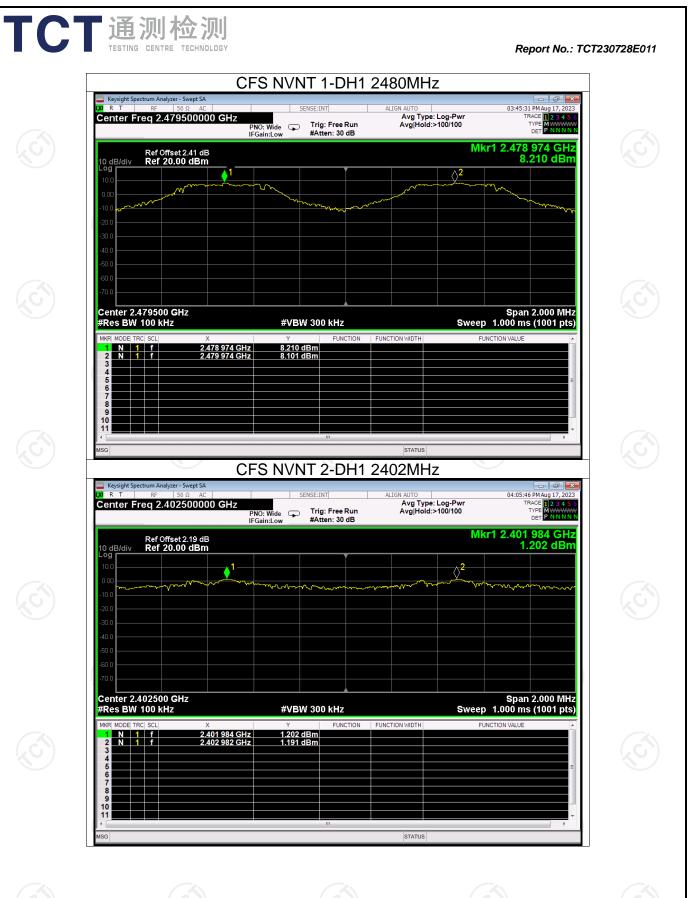

Carrier Frequencies Separation Hopping Freq1 Hopping Freq2

Report No.: TCT230728E011

Page 43 of 96

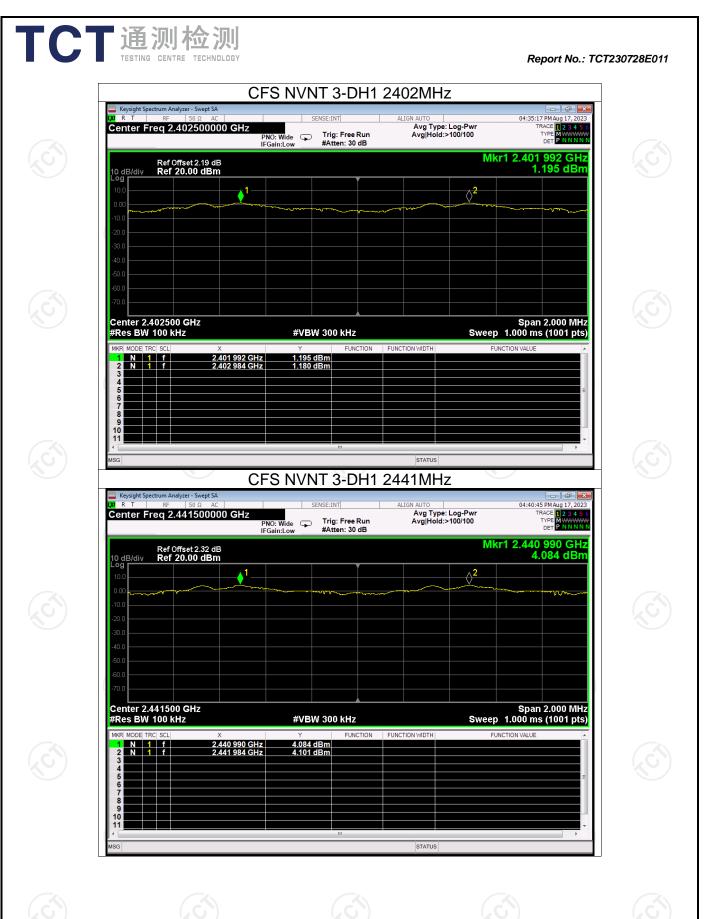
l imit

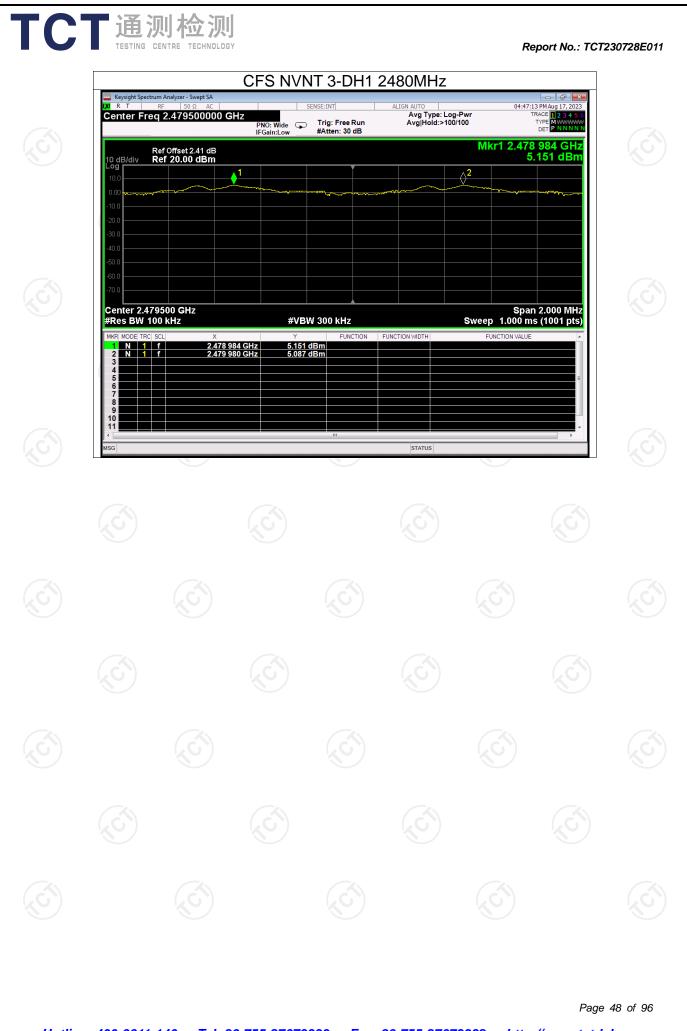
HFS



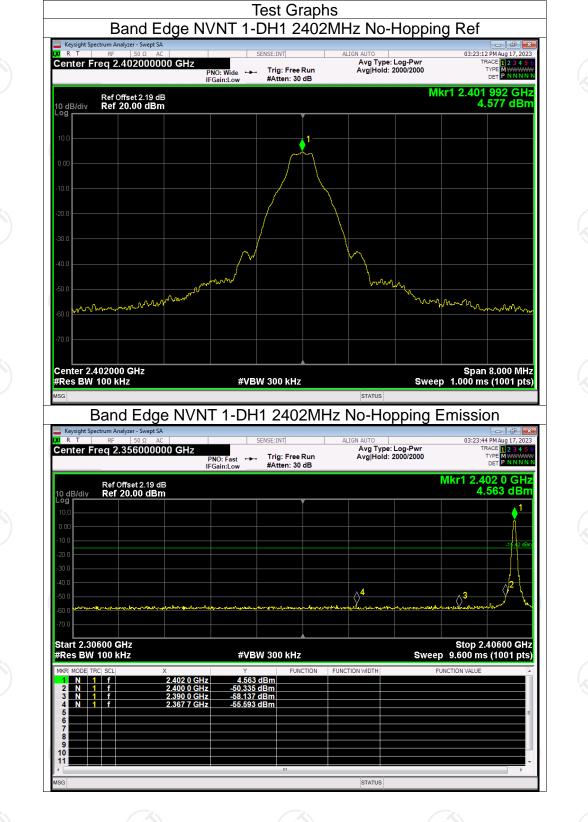
Test Graphs CFS NVNT 1-DH1 2402MHz

FCT通测检测 TESTING CENTRE TECHNOLOGY


Report No.: TCT230728E011

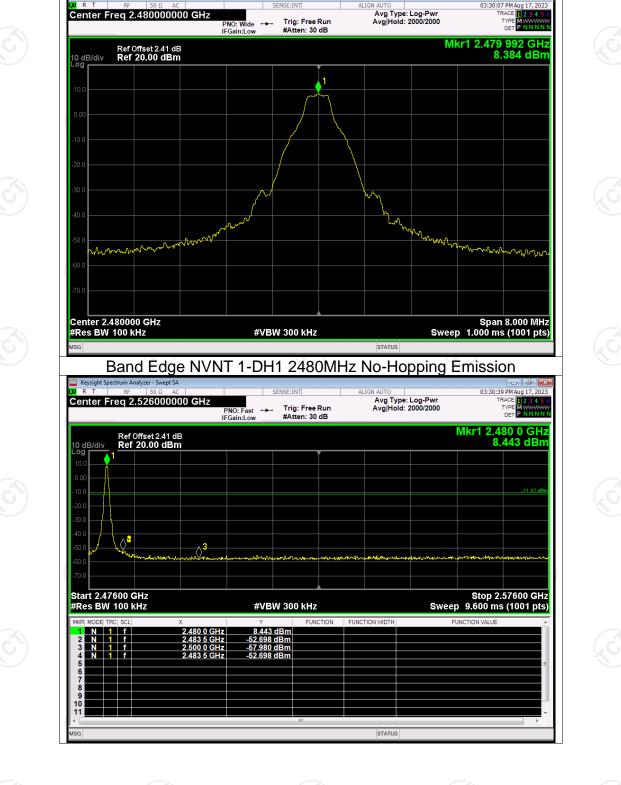

Page 44 of 96

Page 46 of 96


Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-60.17	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-61.07	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-60.27	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-58.57	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-56.90	-20	Pass
NVNT 🐇	3-DH1	2480	No-Hopping	-59.76	-20	Pass

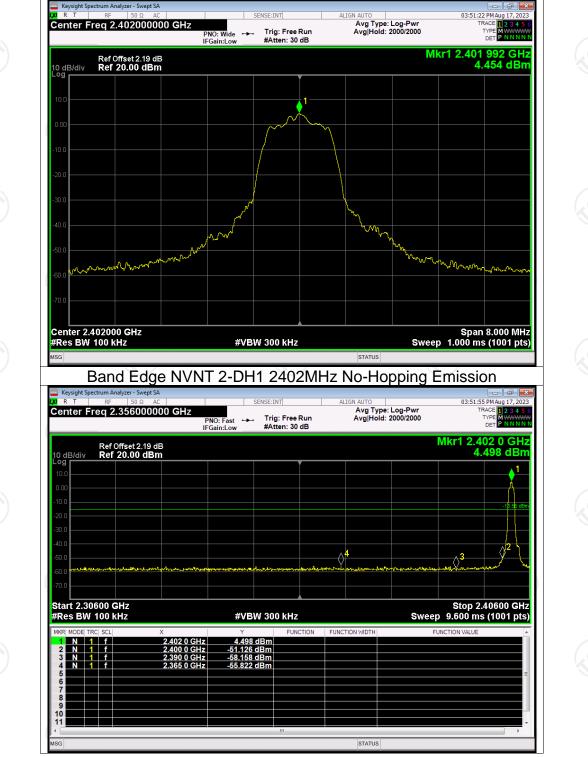
					Report No 10	12301
			Band Edge			
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Ve
NVNT	1-DH1	2402	No-Hopping	-60.17	-20	F
NVNT	1-DH1	2480	No-Hopping	-61.07	-20	F
NVNT	2-DH1	2402	No-Hopping	-60.27	-20	F
		0.400	NI. 11		00	-

CT通测检测 TESTING CENTRE TECHNOLOGY	
-------------------------------------	--


Report No.: TCT230728E011

FCT通测检测 TESTING CENTRE TECHNOLOGY

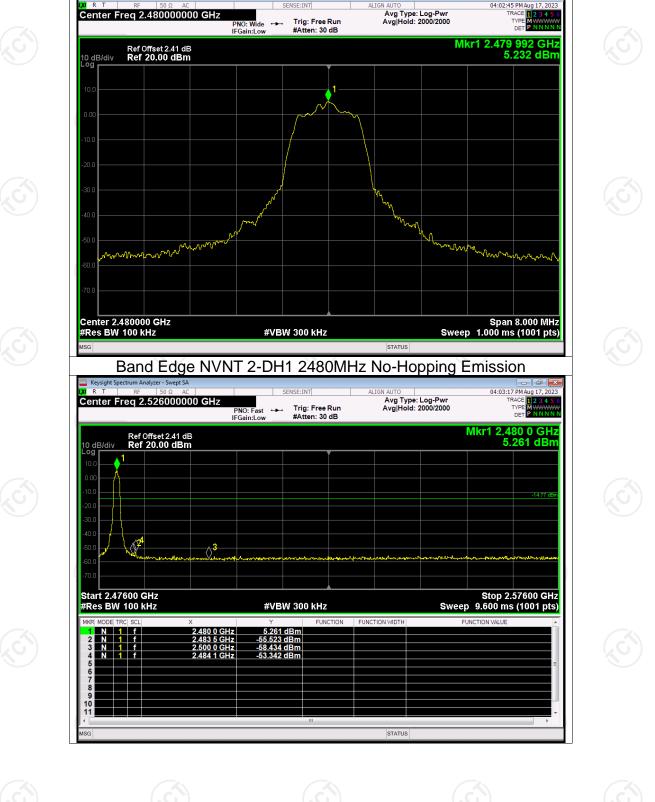
Report No.: TCT230728E011


Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

Keysight Sp

Report No.: TCT230728E011

Page 51 of 96


03:30:07 PM Aug 17, 202

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Report No.: TCT230728E011

Page 52 of 96

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

Keysight Sp

Report No.: TCT230728E011

Page 53 of 96

04:02:45 PM Aug 17, 202

Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref Keysight Spectrum Analyzer - Swept SA R T RF 50 Ω AC Center Freq 2.402000000 GHz 04:20:53 PM Aug 17, 2 Avg Type: Log-Pwr Avg|Hold: 2000/2000 PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 992 GHz 1.377 dBm Ref Offset 2.19 dB Ref 20.00 dBm 1

h no

mon h

www

Span 8.000 MHz Sweep 1.000 ms (1001 pts)

STATUS Band Edge NVNT 3-DH1 2402MHz No-Hopping Emission

#VBW 300 kHz

		er - Swept SA				-						- 6 2
Center Fi	^{R⊧} req 2.3	50 Ω AC 56000000	P	PNO: Fast ↔ Gain:Low		: Free F en: 30 d				: Log-Pwr 2000/2000		25 PM Aug 17, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN
10 dB/div		set 2.19 dB .00 dBm										402 0 GH .422 dBn
10.0												<u>_</u> 1-
-10.0												Å
-20.0												-13.62 dBr
-30.0												
-50.0										<mark>4</mark>		2
-60.0 -70.0	مدر میں	anna than a state	<u></u>	ที่ไหนสมมาราวไทยไปเม ร์ได้	p ^{ol} istalson (s.	~w~~b~~o	بمامينه		west warper a	- por how - por any	unternation and the	water W
Start 2.30	1600 CH	7									Stop 2	2.40600 GH
#Res BW				#VB	W 300) kHz				Swe	ep 9.600 m	is (1001 pts
MKR MODE TR	RC SCL		402 0 GHz	Y 1.422		FUNC	TION	FUNCTIO	N WIDTH		FUNCTION VALUE	
2 N 1 3 N 1 4 N 1	f f f	2	.400 0 GHz .390 0 GHz .379 0 GHz	-53.665 -57.269 -55.524	dBm							
5 6				00.021	abiii							
7 8 9												
10 11												
ISG									STATUS			1

manna

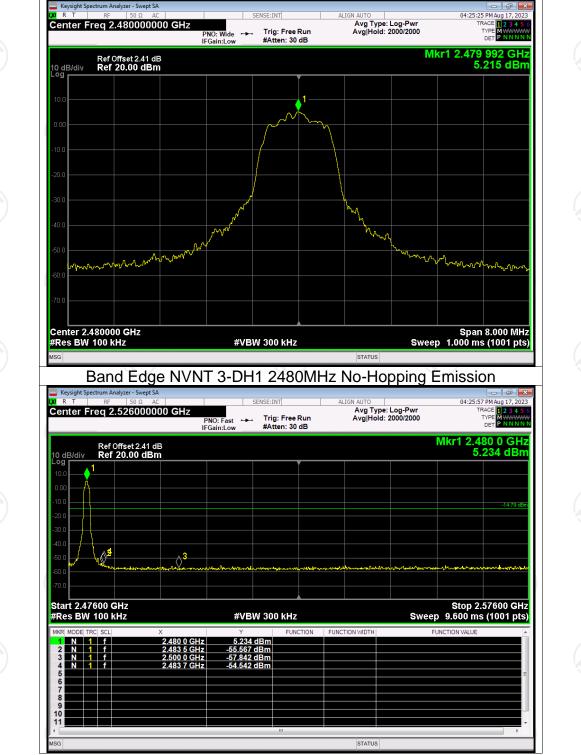
mm

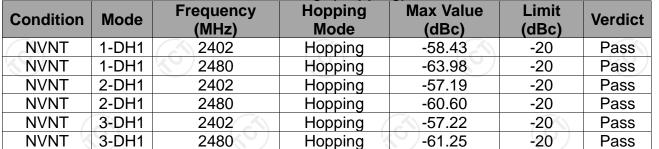
Center 2.402000 GHz #Res BW 100 kHz

10 dB/div bg

Report No.: TCT230728E011

TYPE NNN


TYPE



Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

TCT通测检测

Report No.: TCT230728E011

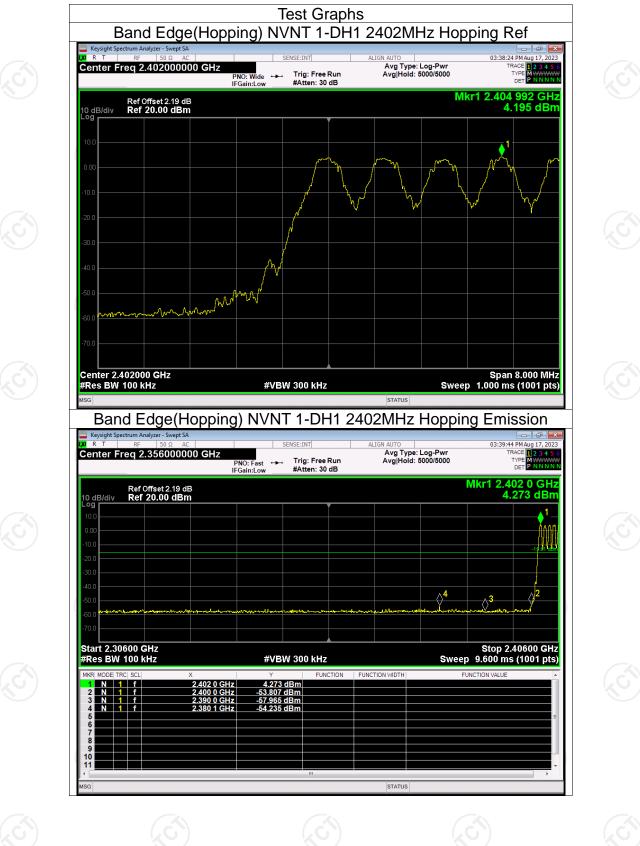
Page 55 of 96

Band Edge(Hopping)

. .

Report No.: TCT230728E011

Page 56 of 96



FCT通测检测 TESTING CENTRE TECHNOLOGY

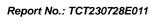
Report No.: TCT230728E011

Page 57 of 96

Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Ref Keysight Spectrum Analyzer - Swept SA R R 50 Ω AC Center Freq 2.402000000 GHz AVG Type: Log-Pwr Avg Hold: 5000/5000 PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.403 992 GHz 1.370 dBm **≜**1

Mr W

ANN


STATUS Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Emission

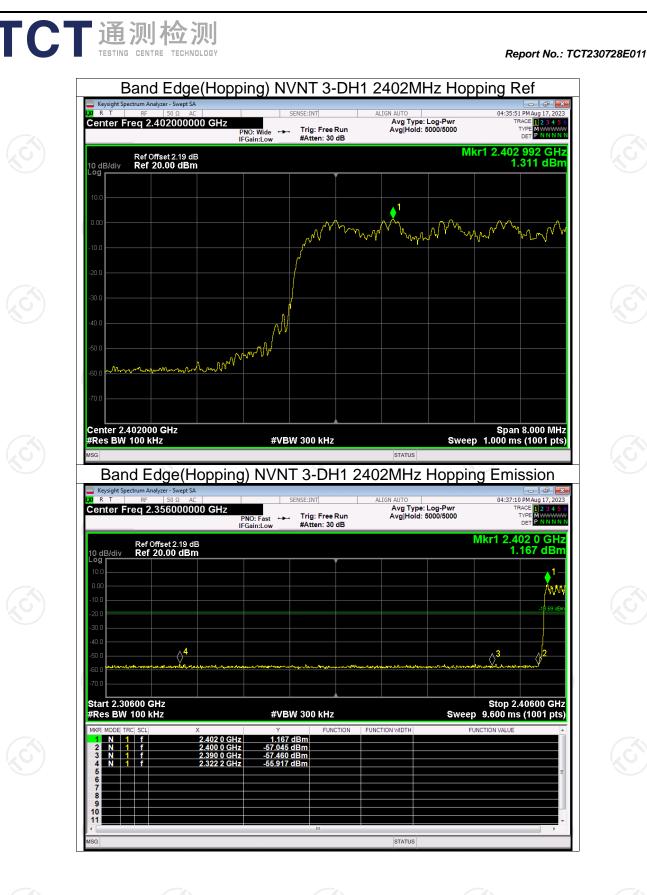
Keysight Spectrum Analyzer - Swe										
α R T RF 50 Ω Center Freq 2.35600		SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log Avg Hold: 500							
Ref Offset 2.19 dB Mkr1 2.406 0 GHz 10 dB/div Ref 20.00 dBm 0.984 dBm										
10.0										
0.00				, ULA						
-10.0				-1 <mark>5.63 dE</mark>						
-30.0										
40.0										
	Mal Madan market and a second and			3						
70.0										
Start 2.30600 GHz				Stop 2.40600 GH						
Res BW 100 kHz	#\	/BW 300 kHz		Sweep 9.600 ms (1001 pt						
MKR MODE TRC SCL	X Y 2.406 0 GHz 0.9	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE						
2 N 1 f	2.400 0 GHz -55.1	85 dBm 90 dBm								
4 N 1 f		24 dBm								
6										
9										
G			STATUS							

10 dB/div

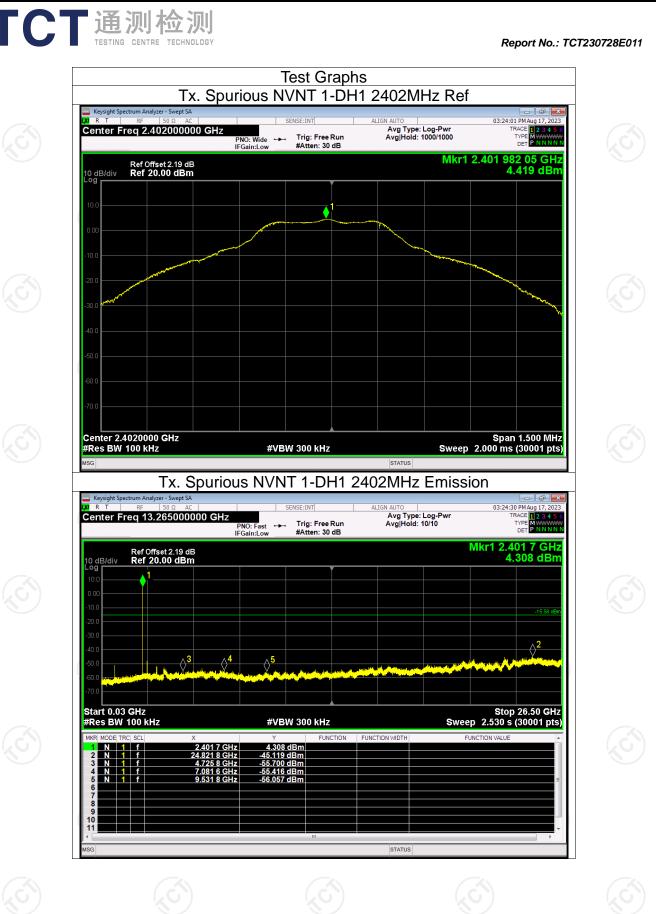
Ref Offset 2.19 dB Ref 20.00 dBm

w

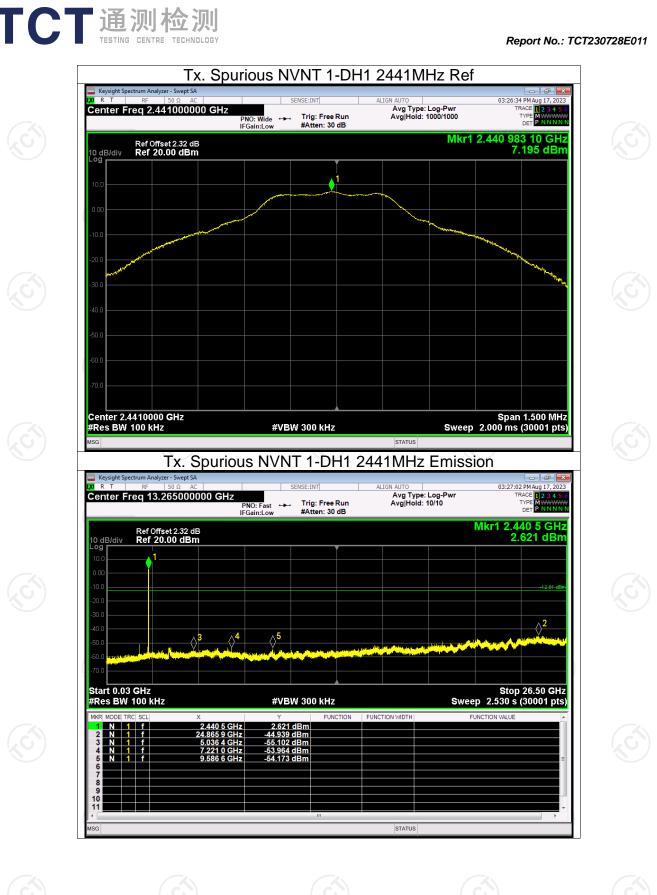
VN

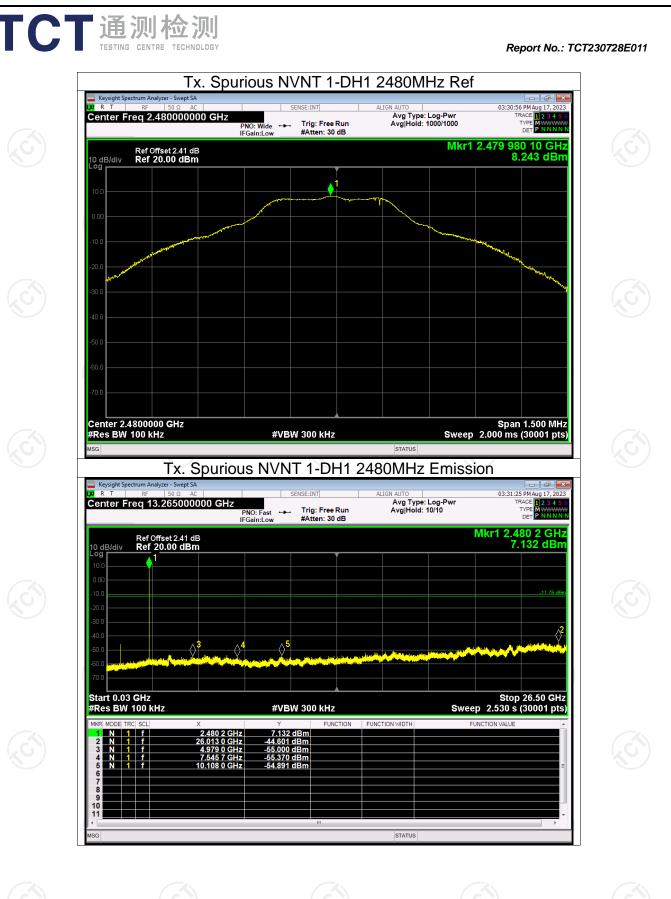

ma

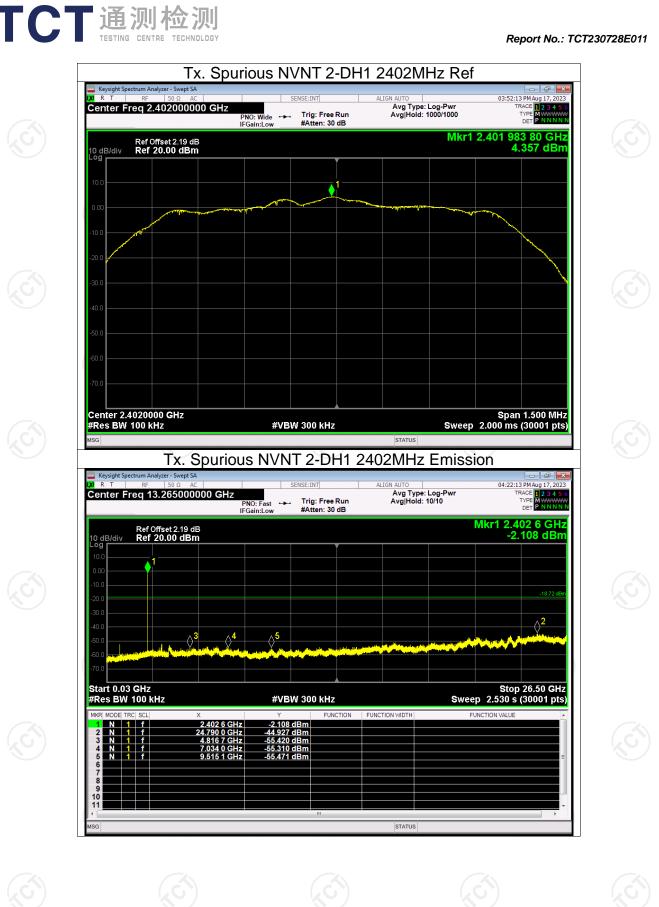
WWW

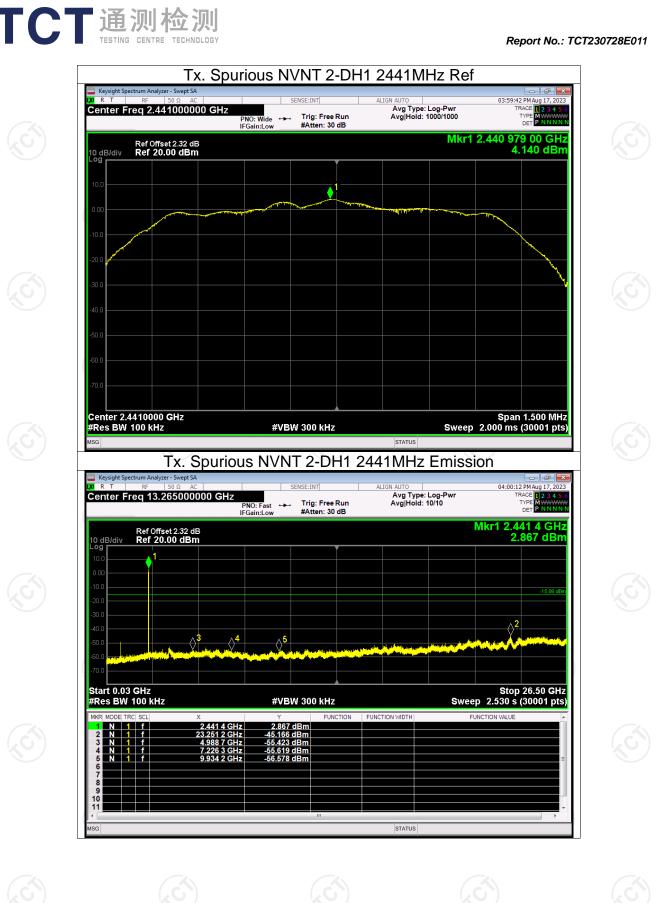


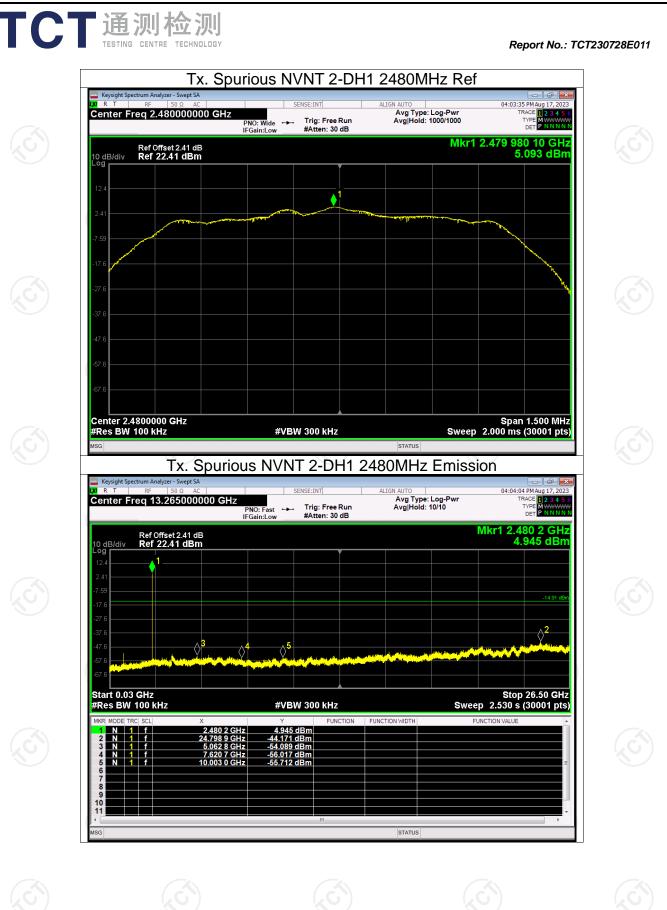
Conducted RF Spurious Emission

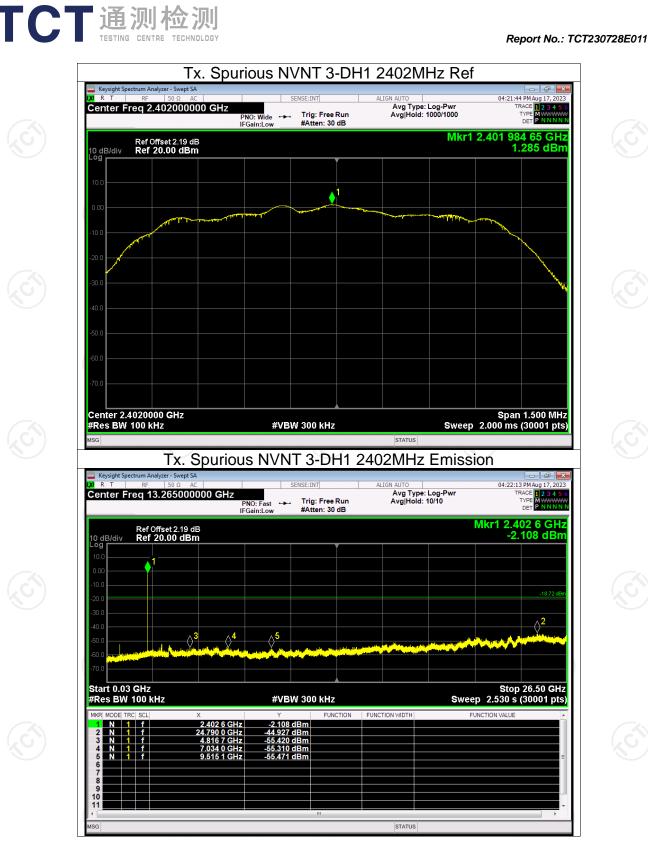

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict				
NVNT	1-DH1	2402	-49.53	-20	Pass				
NVNT	1-DH1	2441	-52.13	-20	Pass				
NVNT	1-DH1	2480	-52.84	-20	Pass				
NVNT	2-DH1	2402	-46.21	-20	Pass				
NVNT	2-DH1	2441	-49.30	-20	Pass				
NVNT	2-DH1	2480	-49.26	-20	Pass				
NVNT 🚫	3-DH1	2402	-46.21	-20	Pass				
NVNT	3-DH1	2441	-49.21	-20	Pass				
NVNT	3-DH1	2480	-49.27	-20	Pass				

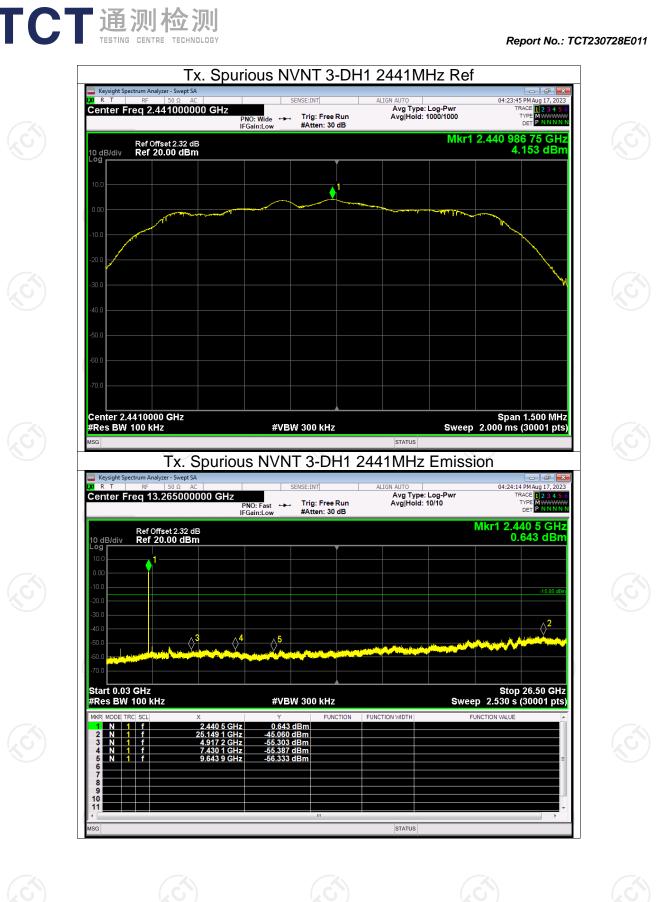


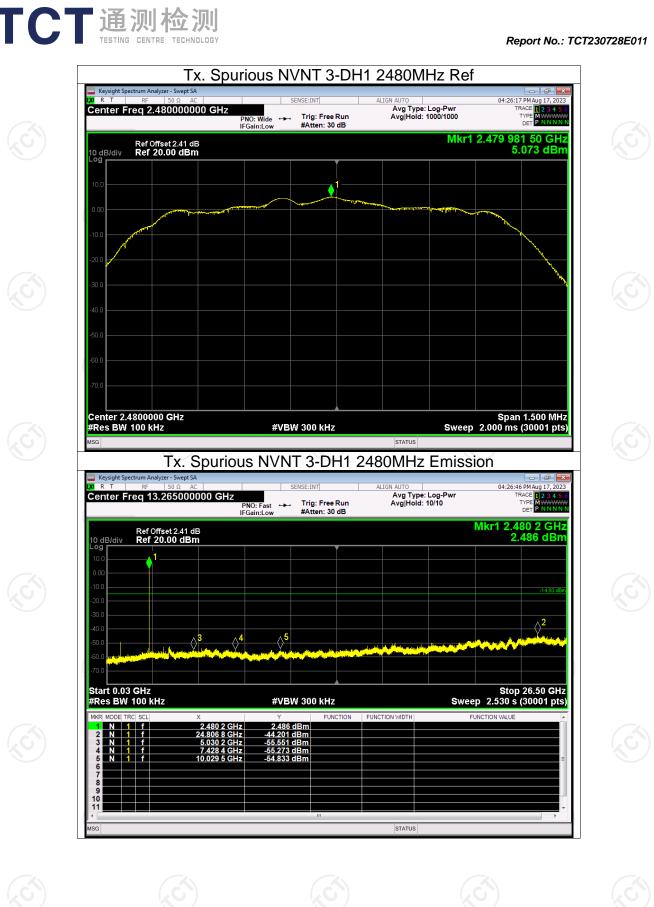

Report No.: TCT230728E011



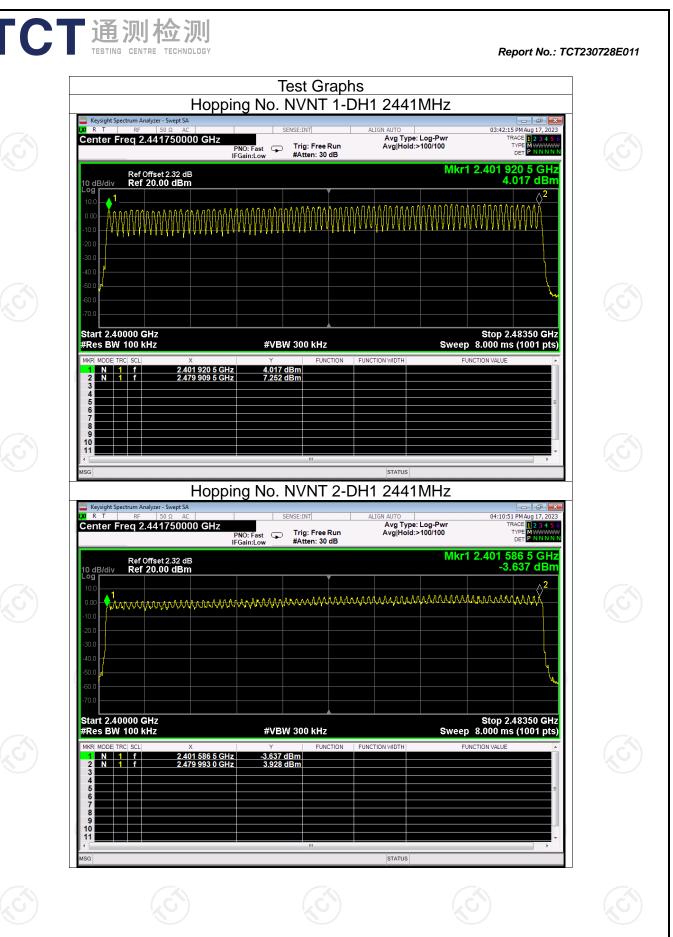

Page 64 of 96







Page 69 of 96


Page 70 of 96

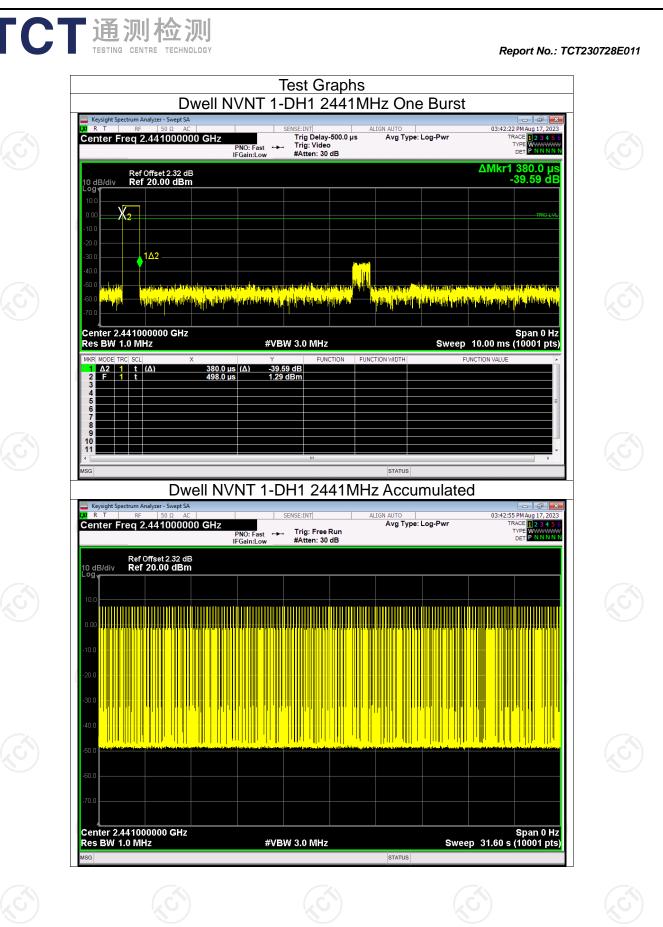
Page 72 of 96

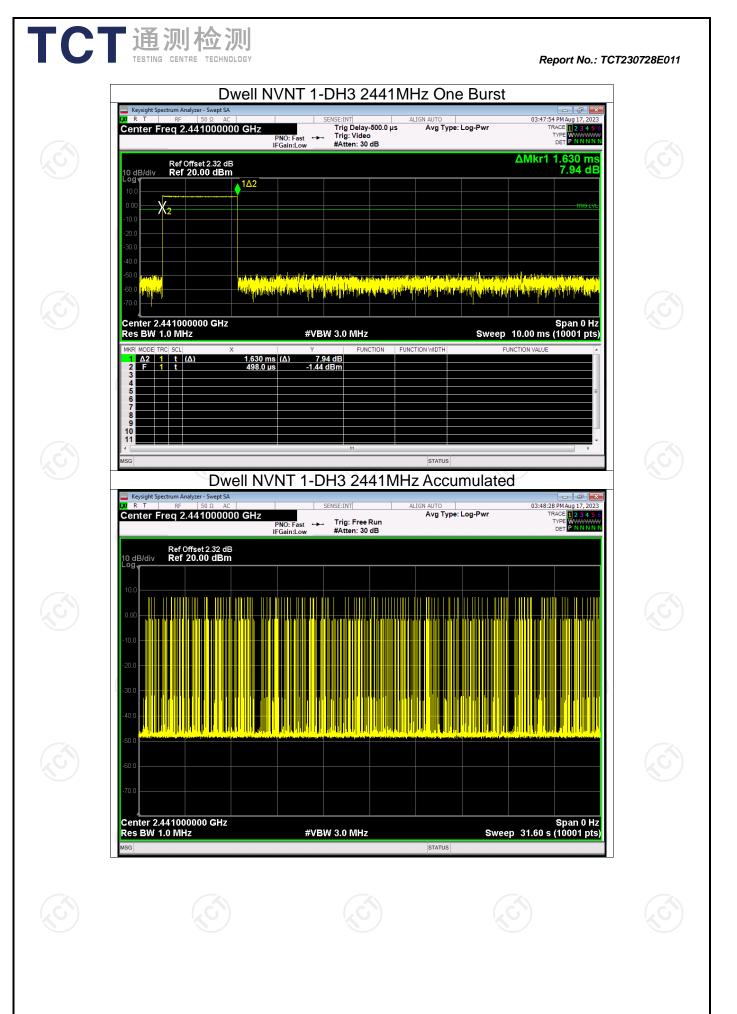
is is	Verd Pas Pas Pas	Limit 15 15 15	umber	10000000000000000000000000000000000000	Mode 1-DH 2-DH 3-DH	Condition NVNT NVNT NVNT	

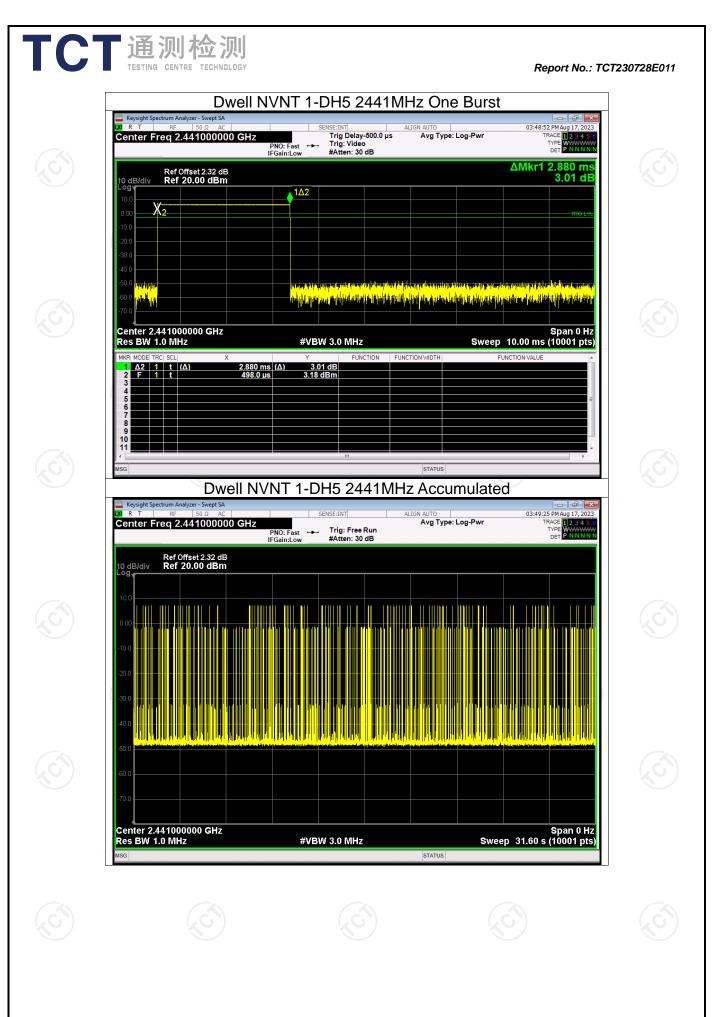
10 dB/div 10 dB/div 10.0 10.0 10.0 -20.0	um Analyzer - Swept SA RF 50 & AC eq 2.441750000 (Ref Offset 2.32 dB Ref 20.00 dBm	Opping No.	SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log Avg Hold:>100	-Pwr 1100 Mkr1 2.401	3.389 dBm	
-30.0 -40.0 -50.0 -70.0 Start 2.400 #Res BW 1 MKR MODE TRC 1 N 1 2 N 1 3 4 5 5 6 6 7 8	00 kHz SCL X f 2.401 5	Y 03 0 GHz -3.389	BW 300 kHz	FUNCTION WIDTH	Stop Sweep 8.000 n FUNCTION VALU		
9 10 11 • MSG				STATUS		• •	

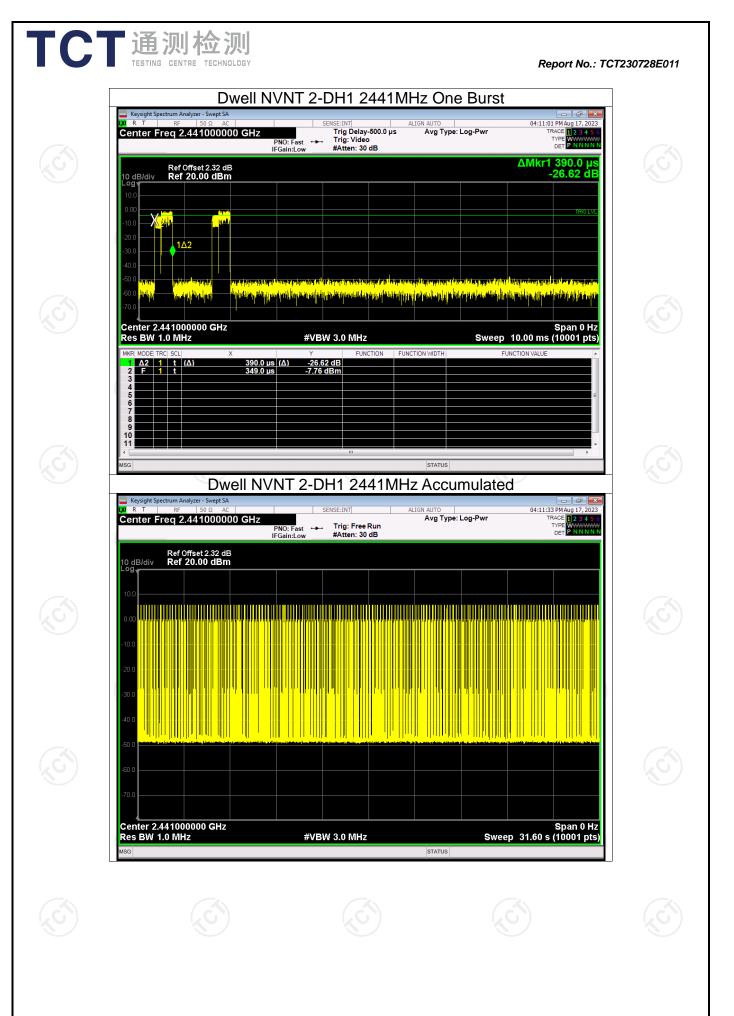
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	Dwell Time										
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict			
NVNT	1-DH1	2441	0.38	121.22	319	31600	400	Pass			
NVNT	1-DH3	2441	1.63	257.54	158	31600	400	Pass			
NVNT	1-DH5	2441	2.88	328.32	114	31600	400	Pass			
NVNT 🐇	2-DH1	2441	0.39	124.41	319	31600	400	Pass			
NVNT	2-DH3	2441	1.64	267.32	163	31600	400	Pass			
NVNT	2-DH5	2441	2.89	274.55	95	31600	400	Pass			
NVNT	3-DH1	2441	0.39	124.41	319	31600	400	Pass			
NVNT	3-DH3	2441	1.64	254.20	155	31600	400	Pass			
NVNT	3-DH5	2441	2.89	332.35	115	31600	400	Pass			






Page 76 of 96


Report No.: TCT230728E011

Page 77 of 96

Page 80 of 96