Company: Shoof Technologies, Inc.

Test of: Strix Wireless Tag

To: FCC CFR 47 PART 15.247 & ISED RSS-247

Report No.: SHOO03-U2 Rev A

COMPLETE TEST REPORT

Test of: Shoof Technologies, Inc. Strix Wireless Tag

To: FCC CFR 47 PART 15.247 & ISED RSS-247

Test Report Serial No.: SHOO03-U2 Rev A

This report supersedes: NONE

Applicant: Shoof Technologies, Inc. 440 N. Wolfe Rd, Suite E112 Sunnyvale, California 94085 USA

Product Function; Wireless Tag

Issue Date; 23rd January 2019

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:3 of 120

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	
1.1. TESTING ACCREDITATION	
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	
2. DOCUMENT HISTORY	
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	
4.1. Normative References	
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	
5.2. Scope Of Test Program	12
5.3. Equipment Model(s) and Serial Number(s)	
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	14
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	15
7. TEST EQUIPMENT CONFIGURATION(S)	16
7.1. Radiated Emissions - 3m Chamber	
7.2. Conducted	19
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
	~~~
9. TEST RESULTS	
9. TEST RESULTS	22
9. TEST RESULTS 9.1. 20 dB & 99% Bandwidth 9.2. Frequency Hopping Tests	22 25
9. TEST RESULTS 9.1. 20 dB & 99% Bandwidth 9.2. Frequency Hopping Tests 9.2.1. Number of Hopping Channels	22 25 26
9. TEST RESULTS 9.1. 20 dB & 99% Bandwidth 9.2. Frequency Hopping Tests 9.2.1. Number of Hopping Channels 9.2.2. Channel Separation	22 25 26 28
9. TEST RESULTS 9.1. 20 dB & 99% Bandwidth 9.2. Frequency Hopping Tests 9.2.1. Number of Hopping Channels 9.2.2. Channel Separation 9.2.3. Dwell Time and Channel Occupancy	22 25 26 28 30
9. TEST RESULTS 9.1. 20 dB & 99% Bandwidth 9.2. Frequency Hopping Tests 9.2.1. Number of Hopping Channels 9.2.2. Channel Separation 9.2.3. Dwell Time and Channel Occupancy 9.3. Output Power	22 25 26 28 30 32
9. TEST RESULTS 9.1. 20 dB & 99% Bandwidth 9.2. Frequency Hopping Tests 9.2.1. Number of Hopping Channels 9.2.2. Channel Separation 9.2.3. Dwell Time and Channel Occupancy 9.3. Output Power 9.4. Emissions	22 25 26 28 30 32 36
9. TEST RESULTS 9.1. 20 dB & 99% Bandwidth	22 26 26 28 30 32 36 36
9. TEST RESULTS 9.1. 20 dB & 99% Bandwidth 9.2. Frequency Hopping Tests 9.2.1. Number of Hopping Channels 9.2.2. Channel Separation 9.2.3. Dwell Time and Channel Occupancy 9.3. Output Power 9.4. Emissions 9.4.1. Conducted Emissions 9.4.2. Radiated Emissions	22 26 28 30 36 36 36 47
<ul> <li>9. TEST RESULTS</li> <li>9.1. 20 dB &amp; 99% Bandwidth</li> <li>9.2. Frequency Hopping Tests</li> <li>9.2.1. Number of Hopping Channels</li> <li>9.2.2. Channel Separation</li> <li>9.2.3. Dwell Time and Channel Occupancy</li> <li>9.3. Output Power</li> <li>9.4. Emissions</li> <li>9.4.1. Conducted Emissions</li> <li>9.4.2. Radiated Emissions</li> <li>9.4.3. Digital Emissions</li> </ul>	22 26 28 30 36 36 36 47 56
9. TEST RESULTS 9.1. 20 dB & 99% Bandwidth 9.2. Frequency Hopping Tests 9.2.1. Number of Hopping Channels 9.2.2. Channel Separation 9.2.3. Dwell Time and Channel Occupancy 9.3. Output Power 9.4. Emissions 9.4.1. Conducted Emissions 9.4.2. Radiated Emissions 9.4.3. Digital Emissions 9.4.3. Digital Emissions 9.4.4. APPENDIX - GRAPHICAL IMAGES	22 25 26 28 30 32 36 36 47 56 <b>69</b>
<ul> <li>9. TEST RESULTS</li></ul>	22 25 26 28 30 36 36 36 56 69 70
<ul> <li>9. TEST RESULTS</li></ul>	22 25 26 28 30 36 36 47 56 <b>69</b> 70 76
<ul> <li>9. TEST RESULTS</li></ul>	22 26 28 30 36 36 36 36 36 36 36 36 36 
<ul> <li>9. TEST RESULTS</li></ul>	22 26 28 30 32 36 36 36 47 56 76 76 76 76
<ul> <li>9. TEST RESULTS</li> <li>9.1. 20 dB &amp; 99% Bandwidth</li> <li>9.2. Frequency Hopping Tests</li> <li>9.2.1. Number of Hopping Channels</li> <li>9.2.2. Channel Separation</li> <li>9.2.3. Dwell Time and Channel Occupancy</li> <li>9.3. Output Power</li> <li>9.4. Emissions</li> <li>9.4.1. Conducted Emissions</li> <li>9.4.2. Radiated Emissions</li> <li>9.4.3. Digital Emissions</li> <li>9.4.3. Digital Emissions</li> <li>A. APPENDIX - GRAPHICAL IMAGES</li> <li>A.1. 20 dB &amp; 99% Bandwidth</li> <li>A.2. Frequency Hopping Tests</li> <li>A.2.1. Number of Hopping Channels</li> <li>A.2.2. Channel Separation</li> <li>A.2.3. Dwell Time</li> </ul>	22 26 28 30 32 36 36 47 56 76 76 76 76 76 82 84
<ul> <li>9. TEST RESULTS</li></ul>	22 26 28 30 32 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 
<ul> <li>9. TEST RESULTS</li> <li>9.1. 20 dB &amp; 99% Bandwidth</li> <li>9.2. Frequency Hopping Tests</li> <li>9.2.1. Number of Hopping Channels.</li> <li>9.2.2. Channel Separation</li> <li>9.2.3. Dwell Time and Channel Occupancy.</li> <li>9.3. Output Power</li> <li>9.4. Emissions</li> <li>9.4.1. Conducted Emissions</li> <li>9.4.2. Radiated Emissions</li> <li>9.4.3. Digital Emissions</li> <li>9.4.3. Digital Emissions</li> <li>A.1. 20 dB &amp; 99% Bandwidth</li> <li>A.2. Frequency Hopping Tests</li> <li>A.2.1. Number of Hopping Channels</li> <li>A.2.2. Channel Separation</li> <li>A.2.3. Dwell Time</li> <li>A.2.4. Channel Occupancy</li> <li>A.3. Emissions</li> </ul>	22 26 28 30 32 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 
<ul> <li>9. TEST RESULTS</li></ul>	22 26 28 30 32 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 
<ul> <li>9. TEST RESULTS</li> <li>9.1. 20 dB &amp; 99% Bandwidth</li> <li>9.2. Frequency Hopping Tests</li> <li>9.2.1. Number of Hopping Channels.</li> <li>9.2.2. Channel Separation</li> <li>9.2.3. Dwell Time and Channel Occupancy.</li> <li>9.3. Output Power</li> <li>9.4. Emissions</li> <li>9.4.1. Conducted Emissions</li> <li>9.4.2. Radiated Emissions</li> <li>9.4.3. Digital Emissions</li> <li>A.1. 20 dB &amp; 99% Bandwidth</li> <li>A.2. Frequency Hopping Tests</li> <li>A.2.1. Number of Hopping Channels</li> <li>A.2.2. Channel Separation</li> <li>A.2.3. Dwell Time</li> <li>A.2.4. Channel Occupancy</li> <li>A.3.1. Conducted Emissions</li> </ul>	22 26 28 30 32 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:4 of 120

# 1. ACCREDITATION, LISTINGS & RECOGNITION

# 1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>





Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:5 of 120

## 1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II - recognition for both product testing and certification



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:6 of 120

## 1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>



# Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.



Presented this 14th day of May 2018

President and CEO For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2019

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210



# 2. DOCUMENT HISTORY

Document History					
Revision	Date	Comments			
Draft	11th January 2019	Draft report for client review.			
Rev A	23 rd January 2019	Initial release.			

In the above table the latest report revision will replace all earlier versions.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:8 of 120

# 3. TEST RESULT CERTIFICATE

Manufacturer:	Shoof Technologies, Inc.
	440 N. Wolfe Rd, Suite E112
	Sunnyvale
	California 94085 USA

Model: Strix Wireless Tag

Type Of Equipment: Wireless Tag

**S/N's:** FCC#1, FCC#2

**Test Date(s):** 12 - 20 December 2018

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304

**TEST RESULTS** 

**EQUIPMENT COMPLIES** 

**Fax:** +1 925 462 0306

Website: www.micomlabs.com

## STANDARD(S)

FCC CFR 47 PART 15 15.247 & ISED RSS-247

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

### Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

## Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED TESTING CERT #2381.01

Altere

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:9 of 120

# 4. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

# 4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 558074 D01 v05	24th August 2018	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC Rules.
п	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
ш	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
IV	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
V	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VI	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VII	FCC 47 CFR Part 15, Subpart B	2014	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES, SubPart B; Unintentional Radiators
VIII	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	FCC Public Notice DA 00-705	March 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
X	ICES-003	Issue 6 Jan 2016; Updated April 2017	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
XI	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XII	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XIII	RSS-Gen Issue 5	April 2018	General Requirements for Compliance of Radio Apparatus
XIV	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:10 of 120

## 4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:11 of 120

# 5. PRODUCT DETAILS AND TEST CONFIGURATIONS

## 5.1. Technical Details

Details	Description
Purpose:	Test of the Shoof Technologies, Inc. Strix Wireless Tag to FCC
	CFR 47 PART 15 15.247 & ISED RSS-247
Applicant:	Shoof Technologies, Inc.
	440 N. Wolfe Rd, Suite E112
Manufacture	Sunnyvale California 94085 USA
	Shoof Technologies, Inc.
Laboratory performing the tests:	MiCOM Labs, Inc. 575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
	FCC CFR 47 PART 15 15.247 & ISED RSS-247
	12 - 20 December 2018
No of Units Tested:	2
Product Family Name:	STRIX 3
Model(s):	520-020
Location for use:	Indoor/Outdoor
Declared Frequency Range(s):	
Type of Modulation:	
EUT Modes of Operation:	902 - 928 MHz:50KBit/s;
Declared Nominal Output Power	27.00 dBm
Transmit/Receive Operation:	Transceiver
Rated Input Voltage and Current:	DC 3.6V, 0.8 A
Operating Temperature Range:	-40 - +85 °C
ITU Emission Designator:	107KF1D
Equipment Dimensions:	
Weight:	
Hardware Rev:	
Software Rev:	360-009

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

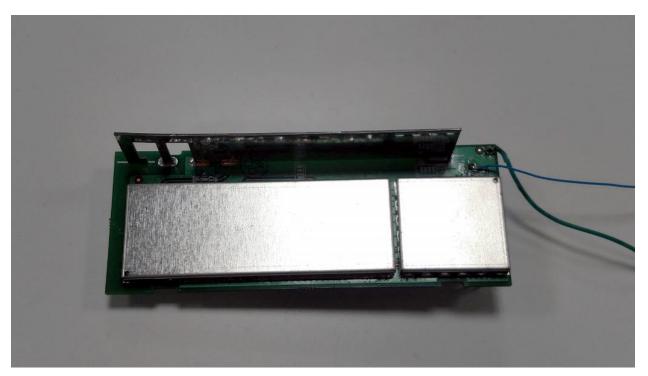


Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:12 of 120

## 5.2. Scope Of Test Program

### Shoof Technologies, Inc. Strix Wireless Tag

The scope of the test program was to test the Shoof Technologies, Inc. Strix Wireless Tag in the frequency range 902 - 928 MHz for compliance against the following specification:;


### FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Radio Frequency Devices; Subpart C – Intentional Radiators

### ISED RSS-247

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices

## Shoof Technologies, Inc. Strix Wireless Tag





Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:13 of 120

# 5.3. Equipment Model(s) and Serial Number(s)

Туре	Description	Manf	Model	Serial No.
EUT	Wireless Inventory Tracking	Shoof Technologies	Strix Wireless Tag	FCC#1, FCC#2
Support	Laptop	Dell		
Support	DC Linear PS	HP	6274	

# 5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	Shoof Tech.	FHSS Antenna	f type	0.0	-	360	-	902 - 928
integral	Shoof Tech.	FHSS Antenna	f type	0.0	-	360	-	2400 - 2483.5
external	WP	WPANT30211- S1A	OMNI	3.0	-	360	-	902 - 928
external	WP	WPANT30211- S1A	OMNI	3.5	-	360	-	2400 - 2483.5
BF Gain - Beamforming Gain Dir BW - Directional BeamWidth								

X-Pol - Cross Polarization

## 5.5. Cabling and I/O Ports

USB to TTL cable



# 5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power	Channel Frequency (MHz)						
FSK and OQPSK	KBit/s	Low Mid High						
	902 - 928 MHz							
50KBit/s	50	902.30	914.90	927.70				

## 5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

# 5.8. Deviations from the Test Standard

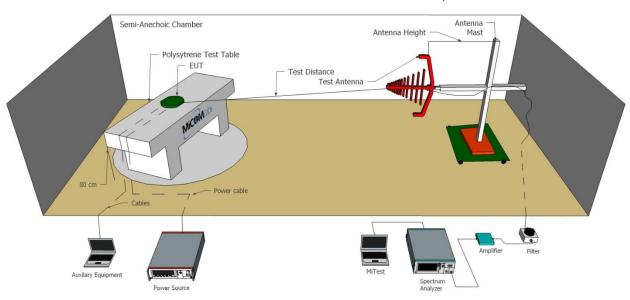
The following deviations from the test standard were required in order to complete the test program: 1. NONE



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:15 of 120

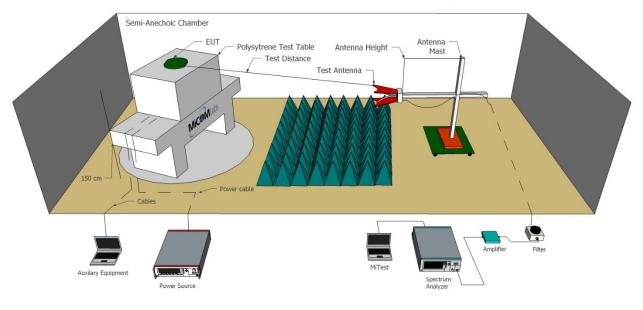
# 6. TEST SUMMARY

List of Measurements		
Test Header	Result	Data Link
20 dB & 99% Bandwidth	Complies	View Data
Frequency Hopping Tests	Complies	-
Number of Hopping Channels	Complies	View Data
Channel Separation	Complies	View Data
Dwell Time	Complies	View Data
Channel Occupancy	Complies	View Data
Output Power	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Unwanted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(ii) Restricted Edge & Band-Edge Emissions	Not Tested	-
(3) Digital Emissions (0.03 - 1 GHz)	Complies	View Data




Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:16 of 120

# 7. TEST EQUIPMENT CONFIGURATION(S)


# 7.1. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagrams below;-Radiated emissions below 1GHz; and Radiated Emissions above 1GHz.



## Radiated Emissions Below 1GHz Test Setup

## Radiated Emissions Above 1GHz Test Setup



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:17 of 120

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	21 Jan 2019
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	29 Nov 2019
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2019
341	900MHz Notch Filter	EWT	EWT-14-0199	H1	8 Oct 2019
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	8 Oct 2019
346	1.6 TO 10GHz High Pass Filter	EWT	EWT-57-0112	H1	8 Oct 2019
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	21 Sep 2019
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	9 Oct 2019
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	8 Oct 2019
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	8 Oct 2019
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Jan 2019
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2019
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Jan 2019
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



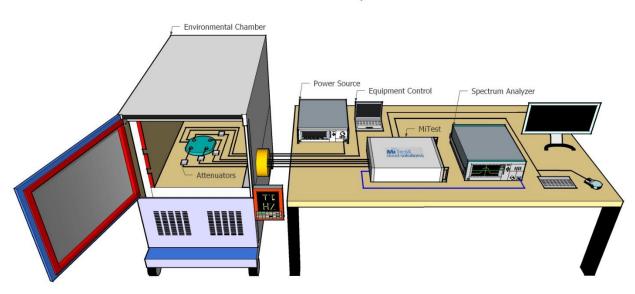
Title: Shoof Technologies, Inc. Strix Wireless Tag To: FCC PART 15.247 & ISED RSS-247

Serial #: SHOO03-U2 Rev A 23rd January 2019

Issue Date:

18 of 120 Page:

447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	9 Oct 2019
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	9 Oct 2019
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Oct 2019
465	Low Pass Filter DC- 1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	9 Oct 2019
466	Low Pass Filter DC- 1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	9 Oct 2019
467	2495 to 2650 MHz notch filter	MicroTronics	BRM50709	011	8 Oct 2019
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	24 Aug 2019
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	24 Aug 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	24 Aug 2019
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used
VLF-1700	Low pass filter DC-1700 MHz	Mini Circuits	VLF-1700	None	8 Oct 2019




Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:19 of 120

# 7.2. Conducted

Conducted RF Emission Test Set-up(s) The following tests were performed using the conducted test setup shown in the diagram below.

MiTest Automated Test System



A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	20 Jan 2019
#3P1	EUT to MiTest box port	Fairview Microwave	SCA1814- 0101-72	#3P1	20 Jan 2019
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	20 Jan 2019
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	20 Jan 2019
#3P4	EUT to MiTest box port	Fairview Microwave	SCA1812- 0101-72	#3P4	20 Jan 2019
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2019
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019

Page: 20 of 120

398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2019
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Sep 2019
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2019
442	USB Wideband Power Sensor	Boonton	55006	9181	6 Oct 2019
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	20 Jan 2019
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Feb 2019



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:21 of 120

# 8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.





The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:22 of 120

9. <u>TEST RESULTS</u>

# 9.1. 20 dB & 99% Bandwidth

Conducted Test Conditions for 20 dB and 99% Bandwidth						
Standard:	CC CFR 47:15.247         Ambient Temp. (°C):         24.0 - 27.5           SED RSS-247         24.0 - 27.5         24.0 - 27.5					
Test Heading:	20 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a)(1)(i)/(ii) RSS-247 5.1 (a) <b>Pressure (mBars):</b> 999 - 1001					
Reference Document(s):	See Normative References					

### Test Procedure for 20 dB and 99% Bandwidth Measurement

The bandwidth at 20 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

### Limits for 20 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:23 of 120

### Equipment Configuration for 20 dB 99% Bandwidth

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

#### **Test Measurement Results**

Test Frequency	Measured 20 dB Bandwidth (MHz) Port(s)			20 dB Band	width (MHz)	Limit	Lowest Margin	
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.3	<u>0.128</u>				0.128	0.128	0.5	-0.37
914.9	<u>0.131</u>				0.131	0.131	0.5	-0.37
927.7	<u>0.131</u>				0.131	0.131	0.5	-0.37

Test		Measured 99%	Bandwidth (MHz	Maximum 99%		
Frequency		Port(s)			Bandwidth	
MHz	а	b	С	d	(MHz)	
902.3	<u>0.117</u>				0.117	
914.9	<u>0.116</u>				0.116	
927.7	<u>0.117</u>				0.117	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:24 of 120

Equipment Configuration for 20 dB 99% Bandwidth					
Variant:	FHSS	Duty Cycle (%):	99		
Data Rate:	200.00 KBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					

#### **Test Measurement Results**

Test	Ме	asured 20 dB	Bandwidth (M	Hz)	20 dB Band	width (MHz)	Limit	Lowest
Frequency		Por	t(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.2	<u>0.113</u>				0.113	0.113	0.5	-0.39
915.0	<u>0.107</u>				0.107	0.107	0.5	-0.39
927.8	<u>0.107</u>				0.107	0.107	0.5	-0.39

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)				Maximum 99% Bandwidth	
MHz	а	b	с	d	(MHz)	
902.2	<u>0.107</u>				0.107	
915.0	<u>0.106</u>				0.106	
927.8	<u>0.105</u>				0.105	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).



## 9.2. Frequency Hopping Tests

Conducted Test Conditions for Frequency Hopping Measurements						
Standard:	CC CFR 47:15.247         Ambient Temp. (°C):         24.0 - 27.5           SED RSS-247         24.0 - 27.5         24.0 - 27.5					
Test Heading:	Frequency Hopping Tests	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a)(1)(i)/(ii) RSS-247 5.1 (a)(b) <b>Pressure (mBars):</b> 999 - 1001					
Reference Document(s):	See Normative References, FCC Public Notice DA 00-705					

#### **Test Procedure for Frequency Hopping Measurements**

These tests cover the following measurements:

- i) channel separation
- ii) channel occupancy
- iii) dwell time
- iv) number of hopping frequencies

Frequency hopping testing was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency or hopping mode.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

#### **Limits for Frequency Hopping Measurements**

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



## 9.2.1. Number of Hopping Channels

Variant:	FHSS	Antenna:	Not Applicable
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

#### **Test Measurement Results**

Frequency Range (MHz)	Number of Hopping Channels	Limit	Pass / Fail
902.0-910.0	<u>39</u>		
910.0-920.0	<u>51</u>		
920.0-928.0	<u>39</u>		
Total number of Hops	128	50	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:27 of 120

Equipment Configuration for Number of Hopping Channels				
Variant:	FHSS	Antenna:	Not Applicable	
Data Rate:	200.00 KBit/s	Antenna Gain (dBi):	Not Applicable	
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable	
Duty Cycle (%):	99.0	Tested By:	SB	
Engineering Test Notes:				
	•			

#### **Test Measurement Results**

Frequency Range (MHz)	Number of Hopping Channels	Limit	Pass / Fail
902.0-910.0	<u>20</u>		
910.0-920.0	<u>25</u>		
920.0-928.0	<u>20</u>		
Total number of Hops	65	50	Pass

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:28 of 120

## 9.2.2. Channel Separation

Equipment Configuration for Channel Separation				
Variant:	FHSS	Antenna:	Not Applicable	
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable	
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable	
Duty Cycle (%):	99.0	Tested By:	SB	
Engineering Test Notes:				

#### Test Measurement Results

Center Frequency (MHz)	Chan Separation (MHz)	Limit (MHz)	Pass / Fail
914.9	<u>0.200</u>	0.131	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:29 of 120

Equipment Configuration for Channel Separation			
Variant:	THEE	Antonno	Not Appliachla
			Not Applicable
	200.00 KBit/s	Antenna Gain (dBi):	11
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

#### **Test Measurement Results**

Center Frequency (MHz)	Chan Separation (MHz)	Limit (MHz)	Pass / Fail
915.0	<u>0.400</u>	0.128	Pass

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).



### 9.2.3. Dwell Time and Channel Occupancy

Equipment Configuration for Channel Dwell & Occupancy Time									
Variant	Variant: FHSS Antenna: Not Applicable								
	50.00 KBit/s	Antenna Gain (dBi):							
Modulation:		Beam Forming Gain (Y)(dB):	11						
Duty Cycle (%):	Not Applicable	Tested By:							
Engineering Test Notes:									

#### **Test Measurement Results**

Channel Frequency(MHz)	Dwell Time (Single Burst) (S)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
914.90	<u>0.112</u>	<u>0.224</u>	20.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:		
Measurement Uncertainty:		

Note: click the links in the above matrix to view the graphical image (plot)..



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:31 of 120

Equipment Configuration for Dwell and Occupancy Time						
Variant:	FHSS	Duty Cycle (%):	99			
Data Rate:	200.00 KBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	OQPSK	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:						
3 . 3						

### **Test Measurement Results**

Channel Frequency(MHz)	Dwell Time (Single Burst) (S)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
915.00	0.056	168.00	30.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies			
Work Instruction:			
Measurement Uncertainty:			

Note: click the links in the above matrix to view the graphical image (plot).



## 9.3. Output Power

Conducted Test Conditions for Fundamental Emission Output Power								
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (ºC):	24.0 - 27.5					
Test Heading:		Rel. Humidity (%):	32 - 45					
Standard Section(s):	15.247 (a)(1), (b)(1)/(2)/(3) RSS-247 5.4 (a)	Pressure (mBars):	999 - 1001					
Reference Document(s): See Normative References								
	al Emission Output Power Meas							
In the case of average power me	easurements an average power ser	isor was utilized.						
For peak power measurements the bandwidth.	he spectrum analyzer built-in powe	er function was used to integrate p	eak power over the 20 dB					
Testing was performed under am device, each port was measured	bient conditions, nominal voltage. , summed $(\Sigma)$ and reported.	Where the device operated with	multiple antenna ports i.e. MIMO					
Test configuration and setup use Supporting Information Calculated Power = A + G + Y+ 7	d for the measurement was per the	e Conducted Test Set-up specified	l in this document.					
A = Total Power [10*Log10 (10 ^{a/1} G = Antenna Gain Y = Beamforming Gain x = Duty Cycle (average power m	<i>,</i>							
Limits for Fundamental Emissi	on Output Power							
(a) Operation under the provisior comply with the following provision	ns of this Section is limited to freque	ency hopping and digitally modula	ted intentional radiators that					
bandwidth of the hopping c MHz band may have hopping the hopping channel, which system shall hop to channe hopping frequencies. Each have input bandwidths that	tems shall have hopping channel c hannel, whichever is greater. Alter ng channel carrier frequencies that hever is greater, provided the syste el frequencies that are selected at t frequency must be used equally of match the hopping channel bandwitton tion with the transmitted signals.	natively, frequency hopping syster t are separated by 25 kHz or two-t ms operate with an output power r he system hopping rate from a pse n the average by each transmitter.	ns operating in the 2400-2483.5 hirds of the 20 dB bandwidth of no greater than 125 mW. The eudo randomly ordered list of The system receivers shall					
(b) The maximum peak conducte	ed output power of the intentional ra	adiator shall not exceed the followi	ng for frequency bopping					

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for frequency hopping systems:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:33 of 120

antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:34 of 120

Equipment Configuration for Output Power Peak						
Variant: FHSS Duty Cycle (%						
50.00 KBit/s	Antenna Gain (dBi):	0.00				
FSK	Beam Forming Gain (Y)(dB):	Not Applicable				
Not Applicable	Tested By:	SB				
	FHSS 50.00 KBit/s FSK Not Applicable	FHSS     Duty Cycle (%):       50.00 KBit/s     Antenna Gain (dBi):       FSK     Beam Forming Gain (Y)(dB):       Not Applicable     Tested By:				

#### **Test Measurement Results**

Test Frequency	Measured Output Power (dBm) Port(s)				Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
902.3	26.76				26.76	30.00	-3.24	30.00
914.9	26.19				26.19	30.00	-3.81	30.00
927.7	25.86				25.86	30.00	-4.14	30.00

### Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:35 of 120

Equipment Configuration for Output Power Peak							
Variant: FHSS Duty Cycle (%):							
200.00 KBit/s	Antenna Gain (dBi):	0.00					
OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable					
Not Applicable	Tested By:	SB					
	FHSS 200.00 KBit/s OQPSK Not Applicable	FHSS     Duty Cycle (%):       200.00 KBit/s     Antenna Gain (dBi):       OQPSK     Beam Forming Gain (Y)(dB):       Not Applicable     Tested By:					

#### **Test Measurement Results**

Test Frequency	Measured Output Power (dBm) Port(s)				Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	3
902.2	26.51				26.51	30.00	-3.49	30.00
915.0	26.37				26.37	30.00	-3.63	30.00
927.8	25.90				25.90	30.00	-4.10	30.00

### Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:36 of 120

## 9.4. Emissions

### 9.4.1. Conducted Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions			
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (ºC):	24.0 - 27.5
Test Heading:	Transmitter Conducted Spurious and Band-Edge Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (d) RSS-247 5.5	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

### Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

### Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:37 of 120

# 9.4.1.1. Conducted Unwanted Spurious Emissions

	Equipment Configuration for Unwanted Emissions Peak							
Variant:	FHSS	Duty Cycle (%):	99					
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable					
Modulation:	FSK	Beam Forming Gain (Y):	Not Applicable					
TPC:	Not Applicable	Tested By:	SB					
Engineering Test Notes:								

#### **Test Measurement Results**

Frequency	Unwanted Emissions Peak (dBm)							
Range	Ро	rt a	Po	ort b	Po	ort c	Po	rt d
MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
30.0 - 10000.0	<u>-33.683</u>	5.01						
30.0 - 10000.0	<u>-33.783</u>	4.83						
30.0 - 10000.0	<u>-34.844</u>	4.65						
	Range           MHz           30.0 -           10000.0           30.0 -           10000.0           30.0 -           30.0 -           30.0 -           30.0 -           30.0 -	Range         Por           MHz         SE           30.0 - 10000.0         -33.683           30.0 - 10000.0         -33.783           30.0 - 10000.0         -34.844	Range         Port a           MHz         SE         Limit           30.0 - 10000.0         -33.683         5.01           30.0 - 10000.0         -33.783         4.83           30.0 - 10000.0         -34.844         4.65	Range         Port a         Pc           MHz         SE         Limit         SE           30.0 - 10000.0         -33.683         5.01         30.0 - -33.783         4.83           30.0 - 10000.0         -33.783         4.83         4.65         4.65	Range         Port a         Port b           MHz         SE         Limit         SE         Limit           30.0 - 10000.0         -33.683         5.01	Range         Port a         Port b         Pc           MHz         SE         Limit         SE         Limit         SE           30.0 - 10000.0         -33.683         5.01	Range         Port a         Port b         Port c           MHz         SE         Limit         SE         Limit         SE         Limit           30.0 - 10000.0         -33.683         5.01         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Range         Port a         Port b         Port c         Poil           MHz         SE         Limit         SE         SE

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:38 of 120

Equipment Configuration for Unwanted Emissions Peak							
FHSS	Duty Cycle (%):	99					
200.00 KBit/s	Antenna Gain (dBi):	Not Applicable					
OQPSK	Beam Forming Gain (Y):	Not Applicable					
Not Applicable	Tested By:	SB					
	Equipment Configuration for FHSS 200.00 KBit/s OQPSK Not Applicable	FHSS     Duty Cycle (%):       200.00 KBit/s     Antenna Gain (dBi):       OQPSK     Beam Forming Gain (Y):					

**Test Measurement Results** 

Test	Frequency	Unwanted Emissions Peak (dBm)							
Frequency	Range	Ро	rt a	Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
902.2	30.0 - 10000.0	<u>-33.764</u>	5.04						
915.0	30.0 - 10000.0	<u>-34.633</u>	4.91						
927.8	30.0 - 10000.0	<u>-34.482</u>	4.81						

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB		

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:39 of 120

# 9.4.1.2. Conducted Band-Edge Emissions

Variant:	FHSS	Duty Cycle (%):	99.0
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

#### **Test Measurement Results**

Channel	902.3 MHz					
Frequency:	902.3 IVII IZ					
Band-Edge Frequency:	902.0 MHz					
Test Frequency Range:	875.0 - 905.0 MHz	<u>.</u>				
	Band	-Edge Markers and	l Limit	Revis	ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	-11.23	5.38	902.00			-16.61

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).



Equipment Configuration for Conducted Upper Band-Edge Emissions (Static) Peak					
Variant:	FHSS	Duty Cycle (%):	99.0		
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					

Channel	927.7 MHz					
Frequency:	927.7 WI 12					
Band-Edge	928.0 MHz					
Frequency:						
Test Frequency	925.0 - 950.0 MHz	,				
Range:	02010 00010 11112	-				
	Band	-Edge Markers and	l Limit	Revise	ed Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
	-8.19	4.67	928.00			-12.86

# Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).



Equipment Configuration for Conducted Low Band-Edge Emissions (Hopping) Peak						
Variant:	FHSS	Duty Cycle (%):	99.0			
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:						

Channel	902.3 MHz					
Frequency:	902.3 WI 12					
Band-Edge	902.0 MHz					
Frequency:						
Test Frequency	875.0 - 905.0 MHz	,				
Range:	075.0 - 505.0 10112	-				
	Band-Edge Markers and Limit			Revis	ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
	-13.17	5.61	902.10			-18.78

# Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).



Equipment Configuration for Conducted Upper Band-Edge Emissions (Hopping) Peak						
Variant:	FHSS	Duty Cycle (%):	99.0			
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:						

Channel	927.7 MHz					
Band-Edge Frequency:	028 0 MHz					
Test Frequency	925.0 - 950.0 MHz	,				
Range:	923.0 - 930.0 IVII 12	-				
	Band-Edge Markers and Limit				ed Limit	Margin
	Dana					
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)

# Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:43 of 120

Equipment Configuration for Conducted Low Band-Edge Emissions (Static) Peak					
Variant:	FHSS	Duty Cycle (%):	99.0		
Data Rate:	200.00 KBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					

#### **Test Measurement Results**

Channel	902.2 MHz					
Frequency:	902.2 IVII IZ					
Band-Edge	902.0 MHz					
Frequency:						
Test Frequency	875.0 - 905.0 MHz					
Range:	07 5.0 - 505.0 101 12					
	Band	Edge Markers and	l Limit	Revise	ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	3.02	5.28	902.00			-2.26

# Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:44 of 120

Equipment Configuration for Conducted Upper Band-Edge Emissions (Static) Peak					
Variant:	FHSS	Duty Cycle (%):	99.0		
Data Rate:	200.00 KBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					

#### Test Measurement Results

Channel	927.8 MHz					
Frequency:	927.0 WII IZ					
Band-Edge	928.0 MHz					
Frequency:						
Test Frequency	925.0 - 950.0 MHz	,				
Range:	923.0 - 930.0 IVII 12					
	Band-Edge Markers and Limit			Revise	ed Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	4.78	4.82	928.00			-0.04

# Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).



Equipment Configuration for Conducted Low Band-Edge Emissions (Hopping) Peak							
Variant: FHSS Duty Cycle (%): 99.0							
Data Rate:	200.00 KBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							

Channel	902.2 MHz					
Frequency:	902.2 WII 12					
Band-Edge	902.0 MHz					
Frequency:						
Test Frequency	875.0 - 905.0 MHz	,				
Range:	075.0 - 505.0 10112	-				
	Band	-Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M1 Amplitude (dBm) Plot Limit (dBm) M2 Frequency (dBm) M2A Frequency (MHz) (dBm) (MHz)				M2A Frequency (MHz)	(MHz)
а	0.52	5.54	902.00			-5.02

# Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:46 of 120

Equipment Configuration for Conducted Upper Band-Edge Emissions (Hopping) Peak							
Variant: FHSS Duty Cycle (%): 99.0							
	200.00 KBit/s	Antenna Gain (dBi):					
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							

#### Test Measurement Results

Channel	927.8 MHz					
Frequency:	527.0 WI 12					
Band-Edge	928.0 MHz					
Frequency:						
Test Frequency	925.0 - 950.0 MHz	,				
Range:	923.0 - 930.0 IVIT IZ					
	Band	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M3 Amplitude (dBm) Plot Limit (dBm) M2 Frequency (MHz) (dBm) (MHz) (dBm) (MHz)				M2A Frequency (MHz)	(MHz)
а	5.06	5.14	928.00			-0.08

# Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:47 of 120

# 9.4.2. Radiated Emissions

Radiated Test C	conditions for Radiated Spurious	s and Band-Edge Emissions (Re	estricted Bands)		
Standard:	FCC CFR 47:15.247 ISED RSS-247 ISED RSS-Gen	Ambient Temp. (ºC):	20.0 - 24.5		
Test Heading:	Radiated Spurious and Band- Edge Emissions				
Standard Section(s):	15.205, 15.209 RSS-247 5.5 RSS Gen 6.13	999 - 1001			
Reference Document(s):	See Normative References				
Radiated emissions for restricted n both horizontal and vertical pol 360° with a spectrum analyzer in used to remove the fundamental	arities. The emissions are record peak hold mode. Depending on the frequency. The highest emissions	d in the anechoic chamber at a 3-r led and maximized as a function o he frequency band spanned a notc s relative to the limit are listed for e	f azimuth by rotation through h filter and waveguide filter wa ach frequency spanned.		
employing peak and average dete	ectors. All measurements were p	ove 1 GHz are based on the use o erformed using a resolution bandv Measurement were per the Radia	vidth of 1 MHz.		
imits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m					
Field Strength Calculation The field strength is calculated by reading. All factors are included in FS = R + AF + CORR - FO		Cable Loss, and subtracting Amplif	ier Gain from the measured		
where: FS = Field Strength R = Measured Spectrum analyze AF = Antenna Factor CORR = Correction Factor = CL - CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Wave	– AG + NFL				
	1.5 dBmV; Antenna Factor of 8.5 c 1 dB. The Field Strength (FS) of	B; Cable Loss of 1.3 dB; Falloff Father the measured emission is:	actor of 0 dB, an Amplifier Gai		
FS = 51.5 + 8.5 + 1.3 - 26.0 +1 =	36.3 dBmV/m				
Conversion between dBmV/m (or Level (dBmV/m) = 20 * Log (leve	r dBmV) and mV/m (or mV) are as I (mV/m))	follows:			
40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m Restricted Bands of Operation	(15.205)				

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:48 of 120

below:

	Frequenc	y Band		
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825 108-121.94		1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
2.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:49 of 120

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:50 of 120

# 9.4.2.3. TX Spurious & Restricted Band Emissions

#### Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	Shoof Tech. FHSS Antenna	Variant:	50KBit/s
Antenna Gain (dBi):	0.00	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	902.30	Data Rate:	50.00 KBit/s
Power Setting:	Max	Tested By:	JMH

#### **Test Measurement Results**

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1804.16	58.55	-1.55	-14.44	42.56	Peak (NRB)	Horizontal	151	211			Pass
#2												
Test No	tes: EUT pow	ered by D	C Linear	PS.								

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:51 of 120

Equipment Configuration for TX Spurious & Restricted Band Emissions								
Antenna: Shoof Tech. FHSS Antenna Variant: 50KBit/s								
Antenna Gain (dBi):	0.00	Modulation:	FSK					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99					
Channel Frequency (MHz):	Channel Frequency (MHz): 914.90 Data Rate:							
Power Setting:	Max	Tested By:	JMH					

# **Test Measurement Results**

Click here to view measurement data...

Test Notes: EUT powered by DC Linear PS.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:52 of 120

Equipment Configuration for TX Spurious & Restricted Band Emissions							
Antenna:	Shoof Tech. FHSS Antenna	Variant:	50KBit/s				
Antenna Gain (dBi):	0.00	Modulation:	FSK				
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99				
Channel Frequency (MHz):	927.70	Data Rate:	50.00 KBit/s				
Power Setting:	Max	Tested By:	JMH				

**Test Measurement Results** 

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2783.21	59.19	-1.89	-11.89	45.41	Max Peak	Horizontal	104	146	74.0	-28.6	Pass
#2	2783.21	53.67	-1.89	-11.89	39.89	Max Avg	Horizontal	104	146	54.0	-14.1	Pass
#3	8349.36	66.62	-3.36	-8.17	55.09	Max Peak	Horizontal	113	246	74.0	-18.9	Pass
#4	8349.36	62.18	-3.36	-8.17	50.65	Max Avg	Horizontal	113	246	54.0	-3.4	Pass
Test No	tes: EUT pow	ered by D	C Linear	PS.						•		

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:53 of 120

#### Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	WP WPANT30211-S1A	Variant:	50KBit/s
Antenna Gain (dBi):	3.00	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	902.30	Data Rate:	50.00 KBit/s
Power Setting:	Max	Tested By:	JMH

#### **Test Measurement Results**

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1804.40	63.04	-1.55	-14.44	47.05	Peak (NRB)	Vertical	151	0			Pass
#2	9924.16	59.66	-3.77	-6.94	48.95	Peak (NRB)	Horizontal	151	0			Pass
Test Not	tes: EUT pow	ered by D	C Linear	PS.								

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:54 of 120

Eq	Equipment Configuration for TX Spurious & Restricted Band Emissions							
Antenna:	WP WPANT30211-S1A	Variant:	50KBit/s					
Antenna Gain (dBi):	3.00	Modulation:	FSK					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99					
Channel Frequency (MHz):	914.90	Data Rate:	50.00 KBit/s					
Power Setting:	Max	Tested By:	JMH					

# **Test Measurement Results**

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1829.95	67.69	-1.52	-14.04	52.13	Peak (NRB)	Vertical	200	86			Pass
Test Not	rest Notes: EUT powered by DC Linear PS.											

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:55 of 120

Eq	Equipment Configuration for TX Spurious & Restricted Band Emissions							
Antenna:	WP WPANT30211-S1A	Variant:	50KBit/s					
Antenna Gain (dBi):	3.00	Modulation:	FSK					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99					
Channel Frequency (MHz):	927.70	Data Rate:	50.00 KBit/s					
Power Setting:	Max	Tested By:	JMH					

# **Test Measurement Results**

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1855.58	62.38	-1.56	-13.80	47.02	Peak (NRB)	Vertical	151	0			Pass
Test Not	Fest Notes: EUT powered by DC Linear PS.											

Note: click the links in the above matrix to view the graphical image (plot).



# 9.4.3. Digital Emissions

	Radiated Test Conditions for Radiated Digital Emissions (0.03 – 1 GHz)									
Standard:	FCC CFR 47:15.247 ISED RSS-Gen	CC CFR 47:15.247         Ambient Temp. (°C):         20.0 - 24.5           ED RSS-Gen         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5         20.0 - 24.5								
Test Heading:	Digital Emissions	Rel. Humidity (%):	32 - 45							
Standard Section(s):	15.209 RSS Gen 8.9	Pressure (mBars):	999 - 1001							
Reference Document(s):	See Normative References									

#### Test Procedure for Radiated Digital Emissions (0.03 - 1 GHz)

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

#### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where: FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dBmV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are done as:

Level (dBmV/m) = 20 * Log (level (mV/m))

 $\begin{array}{l} 40 \text{ dBmV/m} = 100 \text{mV/m} \\ 48 \text{ dBmV/m} = 250 \text{mV/m} \end{array}$ 

#### Limits for Radiated Digital Emissions (0.03 - 1 GHz)

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength	Measurement Distance (m)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:57 of 120

	μV/m (microvolts/meter)	dBµV/m (dB microvolts/meter)	
0.009-0.490	2400/F(kHz)		300
0.490-1.705	24000/F(kHz)		30
1.705-30.0	30	29.5	30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46.0	3
Above 960	500	54.0	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. (b) In the emission table above, the tighter limit applies at the band edges. (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:58 of 120

	Equipment Configuration for Radiated Digital Emissions							
Antenna:	Shoof Tech. FHSS Antenna	Variant:	50KBit/s					
Antenna Gain (dBi):	0.00	Modulation:	FSK					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99					
Channel Frequency (MHz):	902.30	Data Rate:	50.00 KBit/s					
Power Setting:	Max	Tested By:	JMH					

# **Test Measurement Results**

					30.	00 - 1000.00 MH	lz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	838.18	42.56	6.47	-5.30	43.73	Peak (NRB)	Horizontal	100	0			Pass
#2	850.18	43.79	6.52	-5.50	44.81	Peak (NRB)	Horizontal	100	0			Pass
#3	859.22	40.23	6.53	-5.40	41.36	Peak (NRB)	Horizontal	100	0			Pass
#4	870.19	42.66	6.57	-5.30	43.93	Peak (NRB)	Horizontal	100	0			Pass
#5	876.15	42.84	6.59	-5.20	44.23	Peak (NRB)	Horizontal	100	0			Pass
#6	902.20	56.80	6.65	-5.10	58.35	Fundamental	Horizontal	100	0			
#7	966.20	35.95	6.84	-4.00	38.79	MaxQP	Horizontal	150	185	53.0	-14.2	Pass

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:59 of 120

	Equipment Configuration for	Radiated Digital Emissions									
Antenna:	Antenna:         Shoof Tech. FHSS Antenna         Variant:         50KBit/s										
Antenna Gain (dBi):	0.00	Modulation:	FSK								
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99								
Channel Frequency (MHz):	914.90	Data Rate:	50.00 KBit/s								
Power Setting:	Max	Tested By:	JMH								

# **Test Measurement Results**

					30.	00 - 1000.00 MH	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	837.04	41.71	6.46	-5.50	42.67	Peak (NRB)	Horizontal	100	0			Pass
#2	851.04	44.78	6.52	-5.50	45.80	Peak (NRB)	Horizontal	100	0			Pass
#3	863.06	45.96	6.54	-5.30	47.20	Peak (NRB)	Horizontal	100	0			Pass
#4	883.06	42.67	6.61	-5.10	44.18	Peak (NRB)	Horizontal	100	0			Pass
#5	914.96	47.11	6.67	-4.70	49.08	Fundamental	Horizontal	100	0			
#6	966.96	39.21	6.84	-4.00	42.05	MaxQP	Horizontal	247	6	53.0	-11.0	Pass
Test No	tes: EUT pow	ered by D	C Linear	PS. 900	MHz notch	in front of amp	to prevent o	verload.				

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:60 of 120

	Equipment Configuration for	Radiated Digital Emissions	
Antenna:	Shoof Tech. FHSS Antenna	Variant:	50KBit/s
Antenna Gain (dBi):		Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	927.70	Data Rate:	50.00 KBit/s
Power Setting:	Max	Tested By:	JMH

# **Test Measurement Results**

					30.	00 - 1000.00 MH	lz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	849.82	40.46	6.52	-5.40	41.58	Peak (NRB)	Horizontal	100	0			Pass
#2	863.76	45.39	6.54	-5.30	46.63	Peak (NRB)	Horizontal	100	0			Pass
#3	875.89	43.55	6.59	-5.20	44.94	Peak (NRB)	Horizontal	100	0			Pass
#4	927.80	53.54	6.72	-4.70	55.56	Fundamental	Horizontal	100	0			
#5	959.78	38.00	6.81	-4.10	40.71	Peak (NRB)	Horizontal	100	0			Pass
#6	979.81	38.41	6.88	-3.80	41.49	MaxQP	Horizontal	154	186	53.0	-11.5	Pass
Test No	tes: EUT pow	ered by D	C Linear	PS. 900	MHz notch	in front of amp	to prevent o	verload.	•	•		

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:61 of 120

	Equipment Configuration for	Radiated Digital Emissions								
Antenna:         Shoof Tech. FHSS Antenna         Variant:         50KBit/s										
Antenna Gain (dBi):	0.00	Modulation:	FSK							
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	Hopping	Data Rate:	50.00 KBit/s							
Power Setting:	Max	Tested By:	JMH							

# **Test Measurement Results**

					30.	00 - 1000.00 MH	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	859.49	40.81	6.53	-5.40	41.94	Peak (NRB)	Horizontal	150	0			Pass
#2	863.02	41.09	6.54	-5.30	42.33	Peak (NRB)	Horizontal	150	0			Pass
#3	873.38	41.02	6.58	-5.30	42.30	Peak (NRB)	Horizontal	150	0			Pass
#4	902.59	53.74	6.65	-5.10	55.29	Fundamental	Horizontal	150	0			Pass
#5	927.80	53.54	6.72	-4.70	55.56	Fundamental	Horizontal	150	0			
#6	977.36	35.58	6.87	6.00	28.45	MaxQP	Horizontal	148	261	53.0	-14.6	Pass
Test No	tes: EUT pow	ered by D	C Linear	PS. 900	MHz notch	in front of amp	to prevent o	verload.				

Note: click the links in the above matrix to view the graphical image (plot).



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:62 of 120

	Equipment Configuration for	Radiated Digital Emissions									
Antenna:	Shoof Tech. FHSS Antenna	Variant:	50KBit/s								
Antenna Gain (dBi):	Antenna Gain (dBi): 0.00 Modulation: FSK										
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99								
Channel Frequency (MHz):	0.00	Data Rate:	50.00 KBit/s								
Power Setting:	Not Applicable	Tested By:	JMH								

# **Test Measurement Results**

	30.00 - 1000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	466.19	34.19	5.42	-10.60	29.01	MaxQP	Horizontal	204	241	46.0	-17.0	Pass	
Test Not	est Notes: EUT powered by DC Linear PS. RCVR												

Note: click the links in the above matrix to view the graphical image (plot).



Title: Shoof Technologies, Inc. Strix Wireless Tag To: FCC PART 15.247 & ISED RSS-247 Serial #: SHOO03-U2 Rev A 23rd January 2019 Issue Date: 63 of 120 Page:

	Equipment Configuration for	Digital Emissions 1-10GHz								
Antenna:	Shoof Tech. FHSS Antenna	Variant:	FHSS							
Antenna Gain (dBi): 0.00 Modulation:										
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	Not Applicable	Data Rate:								
Power Setting:	Not Applicable	Tested By:	JMH							

# **Test Measurement Results**

Click here to view measurement data... Test Notes: EUT powered by DC linear PS, RCVR



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:64 of 120

	Equipment Configuration for Radia	ated Digital Emissions									
Antenna:	WP WPANT30211-S1A	Variant:	50KBit/s								
Antenna Gain (dBi):	3.00	Modulation:	FSK								
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):									
Channel Frequency (MHz):	902.30	Data Rate:	50.00 KBit/s								
Power Setting:	Max	Tested By:	JMH								

# **Test Measurement Results**

					30.	00 - 1000.00 MH	Ηz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	824.33	40.55	6.44	-5.60	41.39	Peak (NRB)	Vertical	201	0			Pass
#2	838.33	42.32	6.47	-5.30	43.49	Peak (NRB)	Vertical	201	0			Pass
#3	850.15	40.31	6.52	-5.50	41.33	Peak (NRB)	Horizontal	100	0			Pass
#4	870.22	39.60	6.57	-5.30	40.87	Peak (NRB)	Horizontal	100	0			Pass
#5	876.23	38.07	6.59	-5.20	39.46	Peak (NRB)	Vertical	100	0			Pass
#6	902.20	65.91	6.65	-5.10	67.46	Fundamental	Vertical	100	0			
Test No	tes: EUT pow	ered by D	DC Linear	PS. 900	MHz notch	in front of amp	to prevent o	verloads		•		



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:65 of 120

Equipment Configuration for Radiated Digital Emissions						
Antenna: WP WPANT30211-S1A Variant: 50KBit/s						
Antenna Gain (dBi):	3.00	Modulation:	FSK			
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):				
Channel Frequency (MHz):	914.90	Data Rate:	50.00 KBit/s			
Power Setting:	Max	Tested By:	JMH			

### **Test Measurement Results**

30.00 - 1000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	836.87	36.86	6.46	-5.40	37.92	Peak (NRB)	Vertical	100	0			Pass
#2	851.09	40.34	6.52	-5.50	41.36	Peak (NRB)	Horizontal	100	0			Pass
#3	862.99	41.32	6.55	-5.40	42.47	Peak (NRB)	Horizontal	100	0			Pass
#4	883.05	37.53	6.61	-5.10	39.04	Peak (NRB)	Horizontal	100	0			Pass
#5	914.97	47.65	6.67	-4.70	49.62	Fundamental	Vertical	100	0			



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:66 of 120

Equipment Configuration for Radiated Digital Emissions						
Antenna:	WP WPANT30211-S1A	Variant:	50KBit/s			
Antenna Gain (dBi):	3.00	Modulation:	FSK			
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):				
Channel Frequency (MHz):	927.70	Data Rate:	50.00 KBit/s			
Power Setting:	Max	Tested By:	JMH			

# **Test Measurement Results**

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	849.78	38.06	6.52	-5.40	39.18	Peak (NRB)	Horizontal	100	0			Pass
#2	863.84	40.18	6.54	-5.30	41.42	Peak (NRB)	Horizontal	100	0			Pass
#3	875.83	40.95	6.59	-5.20	42.34	Peak (NRB)	Vertical	100	0			Pass
#4	927.82	51.92	6.72	-4.70	53.94	Fundamental	Vertical	100	0			
Test No	tes: EUT pow	ered by D	C Linear	PS. 900	MHz notch	n in front of amp	to prevent o	verloads		•		



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:67 of 120

Equipment Configuration for Radiated Digital Emissions							
Antenna:	Antenna: WP WPANT30211-S1A Variant: 50KBit/s						
Antenna Gain (dBi):		Modulation:					
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):					
Channel Frequency (MHz):	0.00	Data Rate:	50.00 KBit/s				
Power Setting:	Мах	Tested By:	JMH				

# **Test Measurement Results**

Click here to view measurement data...

Test Notes: EUT powered by DC Linear PS. RCVR



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:68 of 120

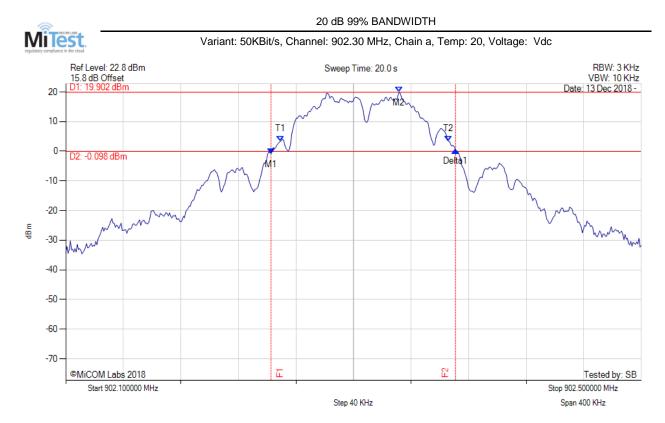
#### **Equipment Configuration for Radiated Digital Emissions** WP WPANT30211-S1A Variant: 50KBit/s Antenna: Antenna Gain (dBi): Modulation: 3.00 FSK Beam Forming Gain (Y): Duty Cycle (%): Not Applicable 99 Channel Frequency (MHz): Hopping Data Rate: 50.00 KBit/s **Power Setting:** Tested By: JMH Max

#### **Test Measurement Results**

30.00 - 1000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	700.21	45.73	6.10	-7.10	44.73	Peak (NRB)	Vertical	150	0			Pass
#2	708.42	32.64	6.14	-6.90	31.88	Peak (NRB)	Vertical	150	0			Pass
#3	857.92	38.16	6.53	-5.30	39.39	Peak (NRB)	Vertical	150	0			Pass
#4	863.87	39.43	6.54	-5.30	40.67	Peak (NRB)	Vertical	150	0			Pass
#5	868.28	38.68	6.56	-5.30	39.94	Peak (NRB)	Vertical	150	0			Pass
#6	902.20	59.92	6.65	-5.10	61.47	Peak (NRB)	Vertical	150	0			Pass
#7	912.67	45.62	6.67	-4.80	47.49	Peak (NRB)	Vertical	150	0			Pass
Test No	tes: EUT powe	ered by D	C Linear I	PS. 900 N	IHz notch	in front of amp to	prevent	overloads		1		



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:69 of 120

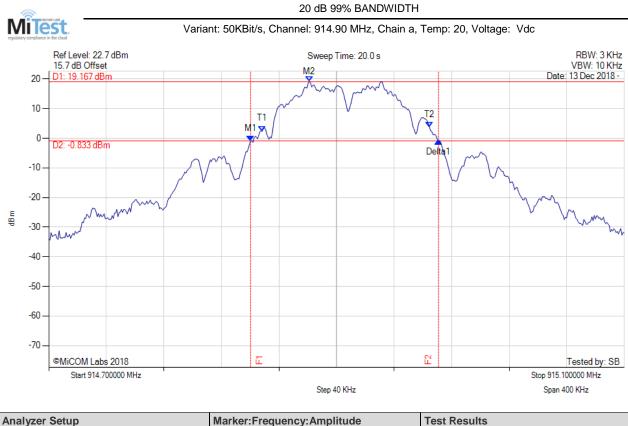

# A. APPENDIX - GRAPHICAL IMAGES

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



# A.1. 20 dB & 99% Bandwidth

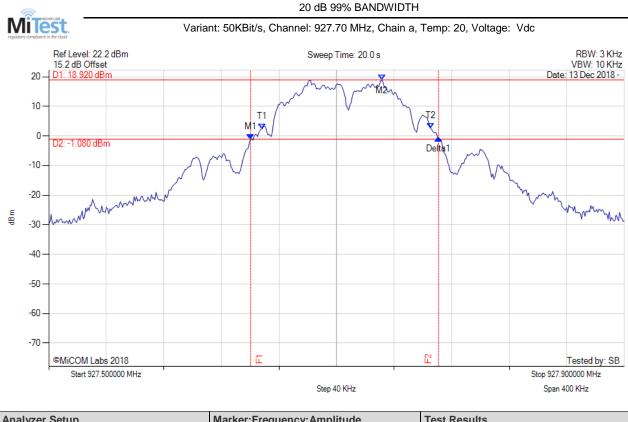



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 902.243 MHz : -0.834 dBm M2 : 902.332 MHz : 19.902 dBm Delta1 : 128 KHz : 1.182 dB T1 : 902.249 MHz : 3.333 dBm T2 : 902.366 MHz : 3.345 dBm OBW : 117 KHz	Measured 20 dB Bandwidth: 0.128 MHz Limit: 0.5 kHz Margin: 0.37 MHz

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:71 of 120

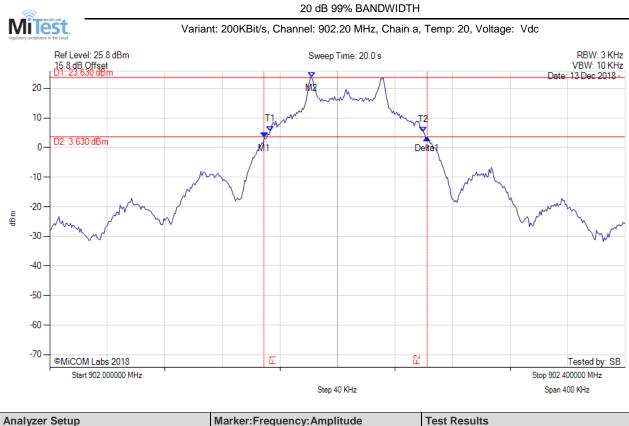



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 914.840 MHz : -1.003 dBm	Measured 20 dB Bandwidth: 0.131 MHz
Sweep Count = 0	M2 : 914.881 MHz : 19.167 dBm	Limit: 0.5 kHz
RF Atten (dB) = $20$	Delta1 : 131 KHz : 0.033 dB	Margin: 0.37 MHz
Trace Mode = MAX HOLD	T1 : 914.848 MHz : 2.462 dBm	
	T2 : 914.965 MHz : 3.831 dBm	
	OBW : 116 KHz	

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:72 of 120

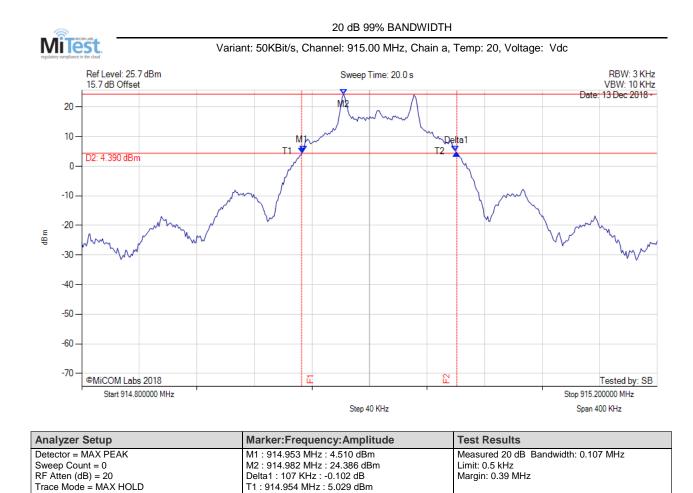



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 927.640 MHz : -1.241 dBm M2 : 927.732 MHz : 18.920 dBm Delta1 : 131 KHz : 0.474 dB T1 : 927.648 MHz : 2.357 dBm T2 : 927.765 MHz : 2.617 dBm OBW : 117 KHz	Measured 20 dB Bandwidth: 0.131 MHz Limit: 0.5 kHz Margin: 0.37 MHz

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:73 of 120




Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.149 MHz : 3.354 dBm	Measured 20 dB Bandwidth: 0.113 MHz
Sweep Count = 0	M2 : 902.182 MHz : 23.634 dBm	Limit: 0.5 kHz
RF Atten (dB) = $20$	Delta1 : 113 KHz : -0.073 dB	Margin: 0.39 MHz
Trace Mode = MAX HOLD	T1 : 902.153 MHz : 5.383 dBm	
	T2 : 902.260 MHz : 5.160 dBm	
	OBW : 107 KHz	

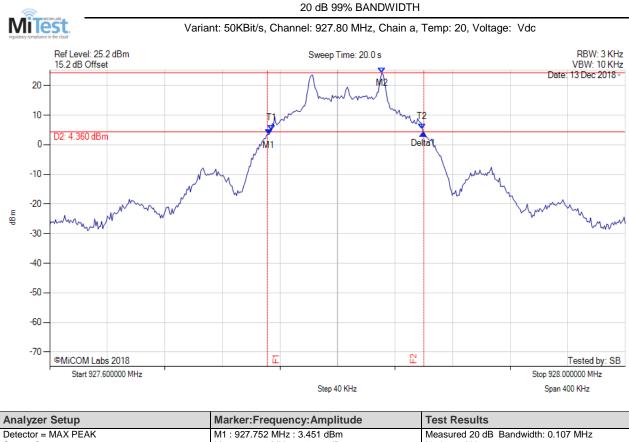
back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:74 of 120



T2 : 915.060 MHz : 5.051 dBm


OBW : 106 KHz

back to matrix

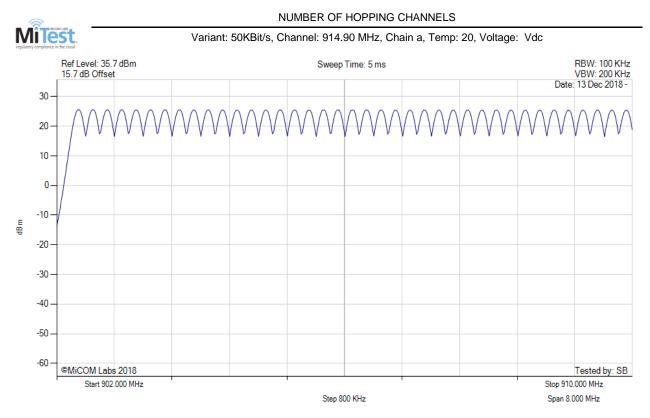
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:75 of 120



Analyzer Setup		Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		M1 : 927.752 MHz : 3.451 dBm	Measured 20 dB Bandwidth: 0.107 MHz
Sweep Count = 0		M2 : 927.831 MHz : 24.360 dBm	Limit: 0.5 kHz
RF Atten (dB) = 20		Delta1 : 107 KHz : 0.519 dB	Margin: 0.39 MHz
Trace Mode = MAX HOLD	C	T1 : 927.754 MHz : 4.802 dBm	
		T2 : 927.859 MHz : 5.357 dBm	
		OBW : 105 KHz	

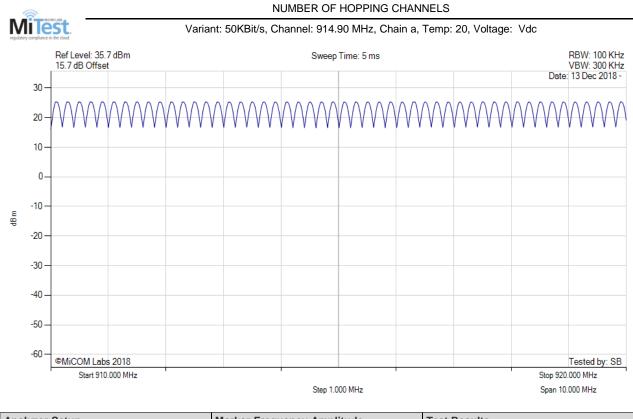

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:76 of 120

# A.2. Frequency Hopping Tests

## A.2.1. Number of Hopping Channels

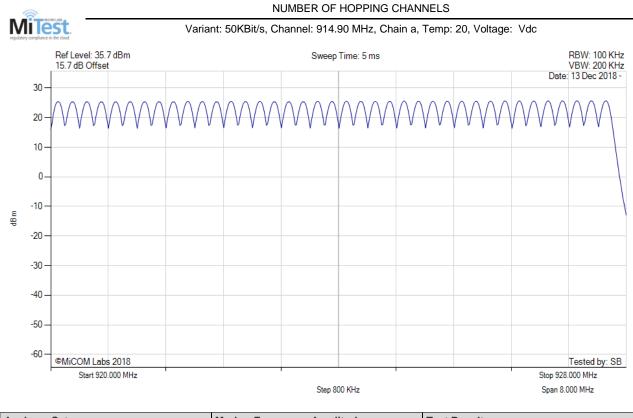



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 914.90 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:77 of 120

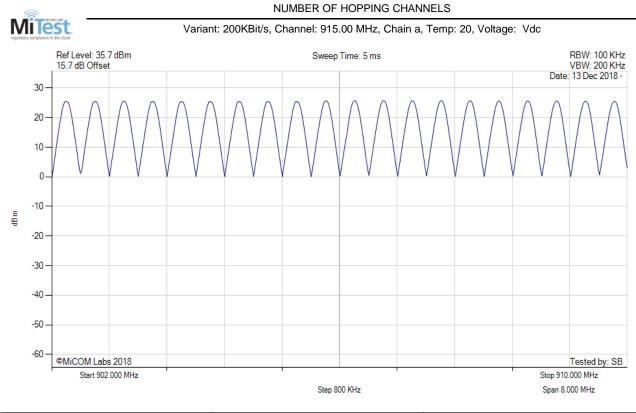



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK		Channel Frequency: 914.90 MHz	
Sweep Count = 0			
RF Atten (dB) = $30$			
Trace Mode = VIEW			

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:78 of 120

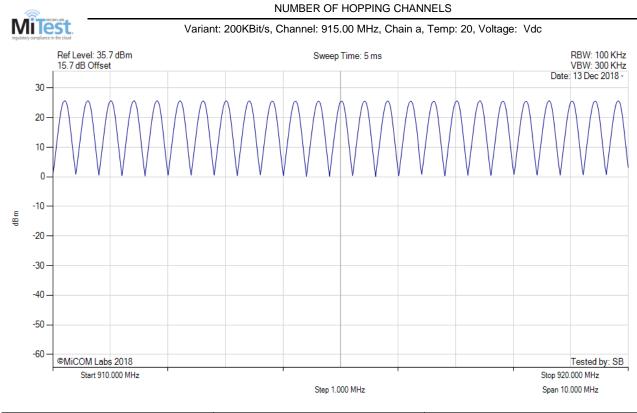



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK		Channel Frequency: 914.90 MHz	
Sweep Count = 0			
RF Atten (dB) = 30			
Trace Mode = VIEW			

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:79 of 120

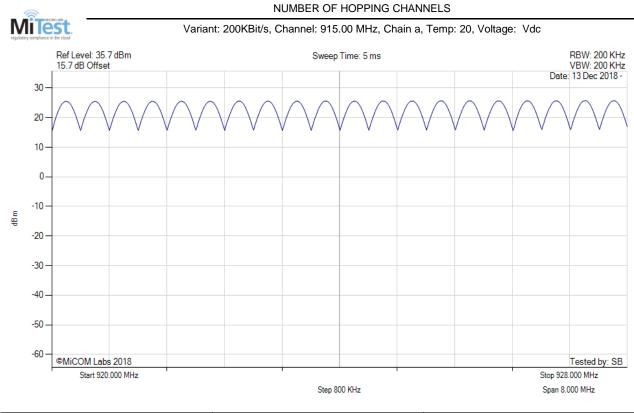



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.00 MHz
Sweep Count = 0		
RF Atten (dB) = $40$		
Trace Mode = VIEW		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:80 of 120

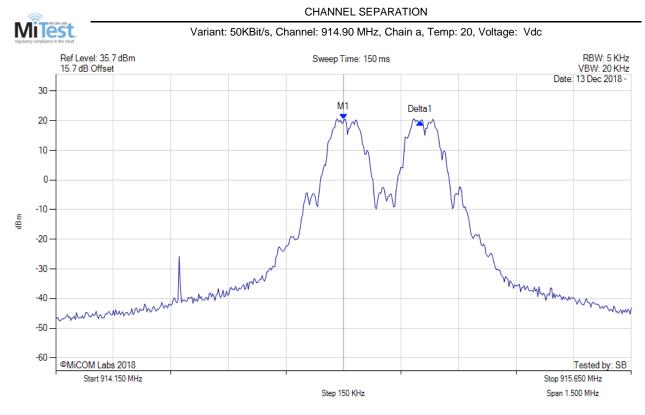



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.00 MHz
Sweep Count = 0		
RF Atten (dB) = $30$		
Trace Mode = VIEW		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:81 of 120

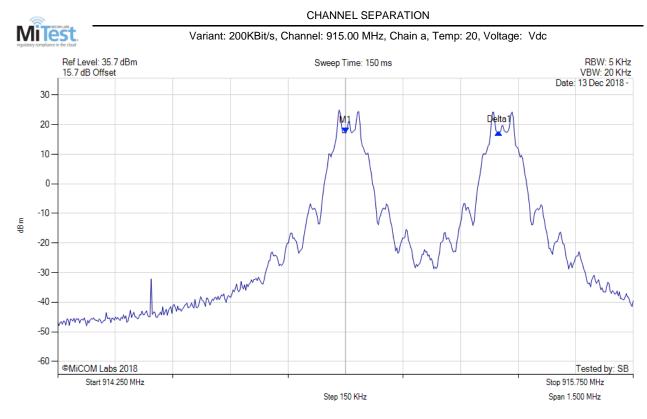



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.00 MHz
Sweep Count = 0		
RF Atten $(dB) = 30$		
Trace Mode = VIEW		

back to matrix



## A.2.2. Channel Separation



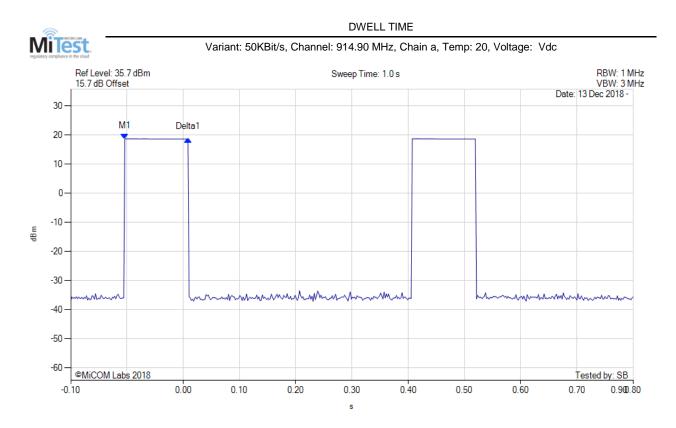

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 914.900 MHz : 20.390 dBm	Channel Frequency: 914.90 MHz
Sweep Count = 0	Delta1 : 200 KHz : -0.921 dB	
RF Atten (dB) = $30$		
Trace Mode = VIEW		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:83 of 120



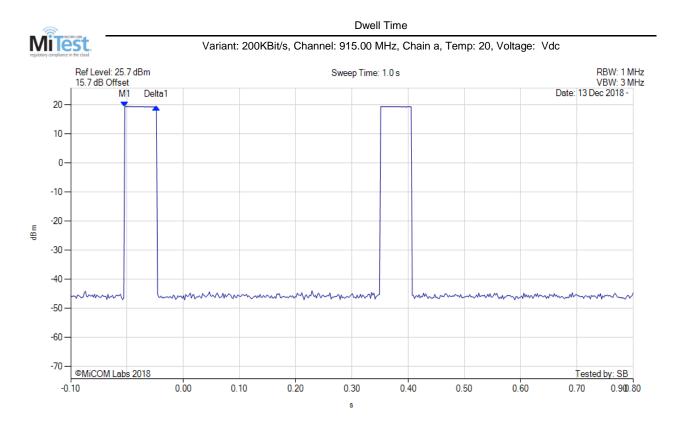

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 915.000 MHz : 17.181 dBm	Channel Frequency: 915.00 MHz
Sweep Count = 0	Delta1 : 400 KHz : 0.323 dB	
RF Atten (dB) = $30$		
Trace Mode = VIEW		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:84 of 120

## A.2.3. Dwell Time

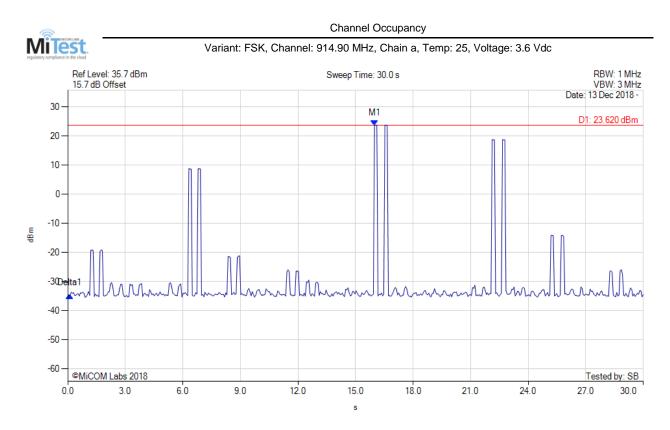



Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK	M1(914.90 MHz) : -0.004 s : 18.669 dBm	Channel Frequency: 914.90 MHz
Sweep Count = 0	Delta1(914.90 MHz) : 0.112 s : -0.081 dB	
RF Atten (dB) = 30		
Trace Mode = VIEW		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:85 of 120

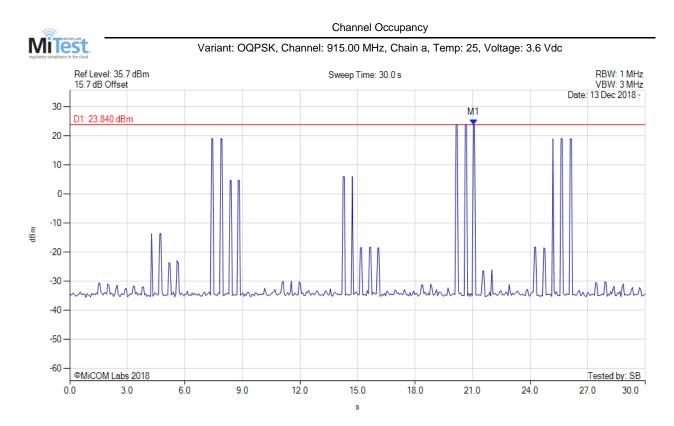



Analyzer Setup	Marker:Time:Amplitude	Test Results
	M1(915.00 MHz) : -0.004 s : 19.343 dBm Delta1(915.00 MHz) : 0.056 s : -0.120 dB	Channel Frequency: 915.00 MHz

back to matrix



## A.2.4. Channel Occupancy




Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK	M1(914.90 MHz) : 15.992 s : 23.622 dBm	Channel Frequency: 914.90 MHz
Sweep Count = 0	Delta1(914.90 MHz) : -15.884 s : -58.366 dB	
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

back to matrix

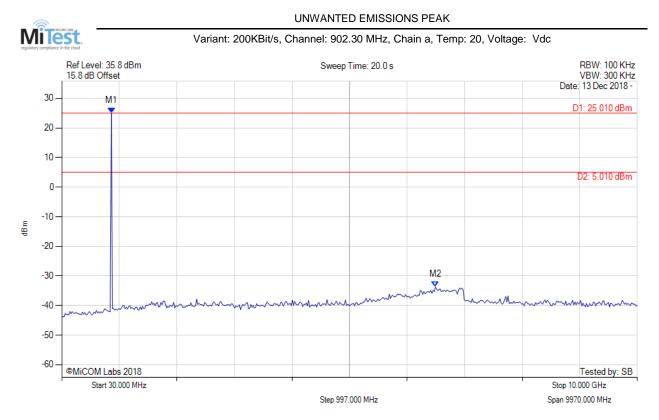


Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:87 of 120



Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = CLR/WRITE	M1(915.00 MHz) : 21.042 s : 23.843 dBm	Channel Frequency: 915.00 MHz

back to matrix



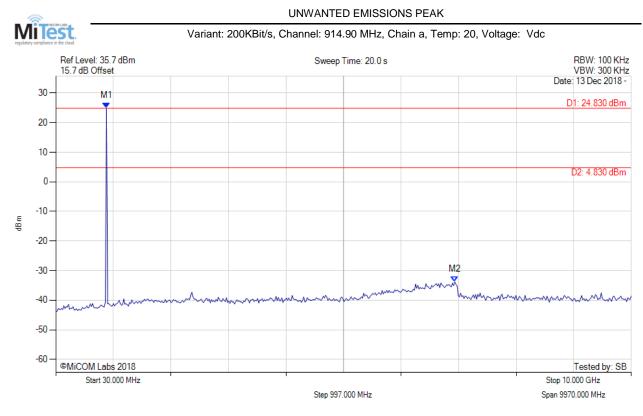

Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:88 of 120

## A.3. Emissions

## A.3.1. Conducted Emissions

A.3.1.1. Conducted Unwanted Spurious Emissions



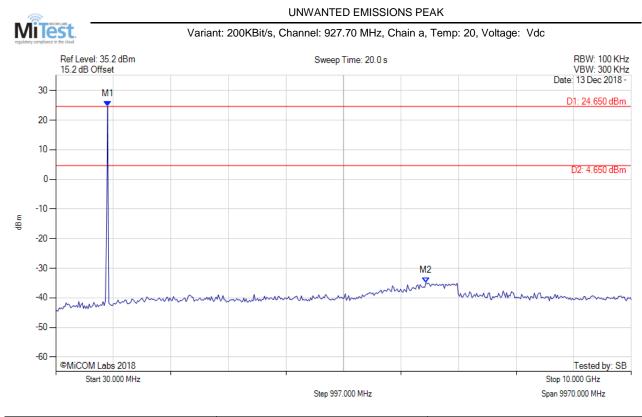

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 889.138 MHz : 25.009 dBm	Limit: 5.01 dBm
Sweep Count = 0	M2 : 6503.507 MHz : -33.683 dBm	Margin: -38.69 dB
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:89 of 120

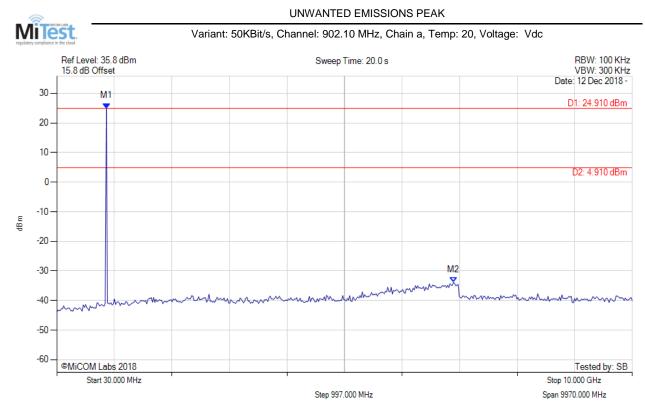



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 909.118 MHz : 24.828 dBm	Limit: 4.83 dBm
Sweep Count = 0	M2 : 6943.066 MHz : -33.783 dBm	Margin: -38.61 dB
RF Atten (dB) = $30$		-
Trace Mode = CLR/WRITE		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:90 of 120

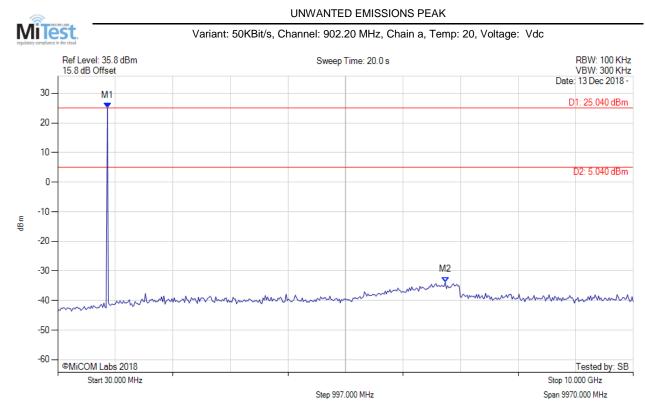



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 929.098 MHz : 24.649 dBm	Limit: 4.65 dBm	
Sweep Count = 0	M2 : 6443.567 MHz : -34.844 dBm	Margin: -39.49 dB	
RF Atten (dB) = $30$			
Trace Mode = CLR/WRITE			

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:91 of 120

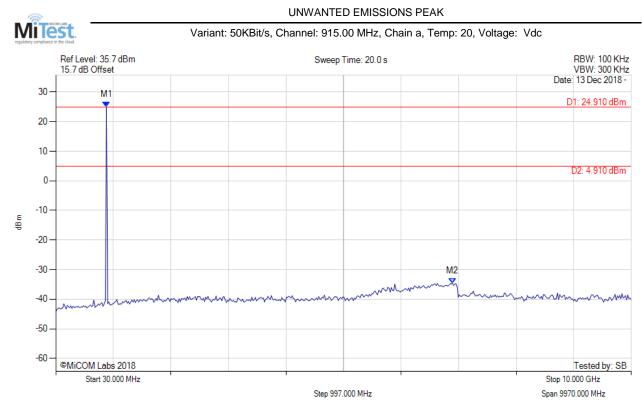



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 889.138 MHz : 24.909 dBm	Limit: 4.91 dBm	
Sweep Count = 0	M2 : 6903.106 MHz : -33.848 dBm	Margin: -38.76 dB	
RF Atten (dB) = 30			
Trace Mode = VIEW			

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:92 of 120

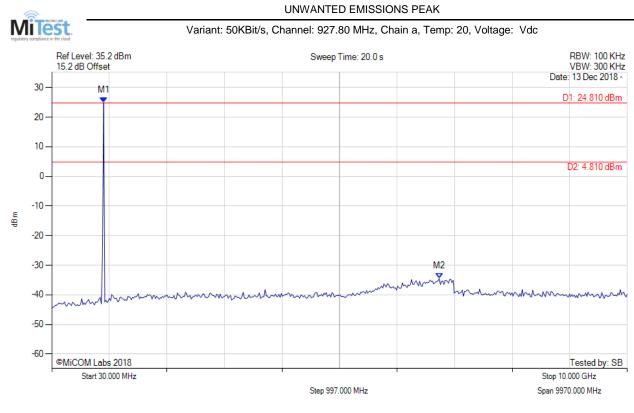



Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 889.138 MHz : 25.041 dBm	Limit: 5.04 dBm	
Sweep Count = 0	M2 : 6743.267 MHz : -33.764 dBm	Margin: -38.80 dB	
RF Atten (dB) = $30$		-	
Trace Mode = CLR/WRITE			

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:93 of 120

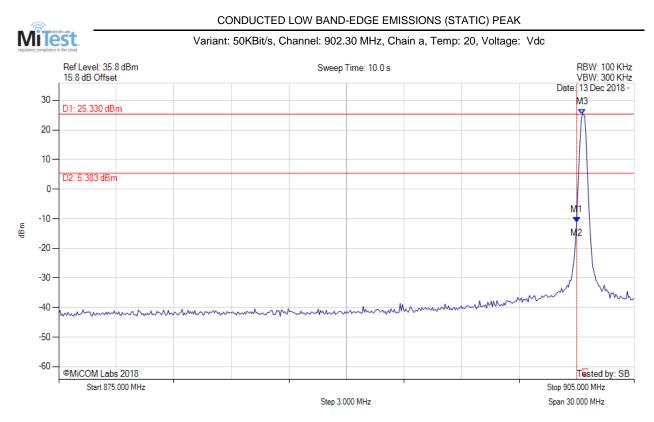



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 909.118 MHz : 24.907 dBm	Limit: 4.91 dBm
Sweep Count = 0	M2 : 6903.106 MHz : -34.633 dBm	Margin: -39.54 dB
RF Atten (dB) = $30$		-
Trace Mode = CLR/WRITE		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:94 of 120




Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 929.098 MHz : 24.806 dBm	Limit: 4.81 dBm	
Sweep Count = 0	M2 : 6743.267 MHz : -34.482 dBm	Margin: -39.29 dB	
RF Atten (dB) = $30$			
Trace Mode = CLR/WRITE			

back to matrix



## A.3.1.2. Conducted Band-Edge Emissions

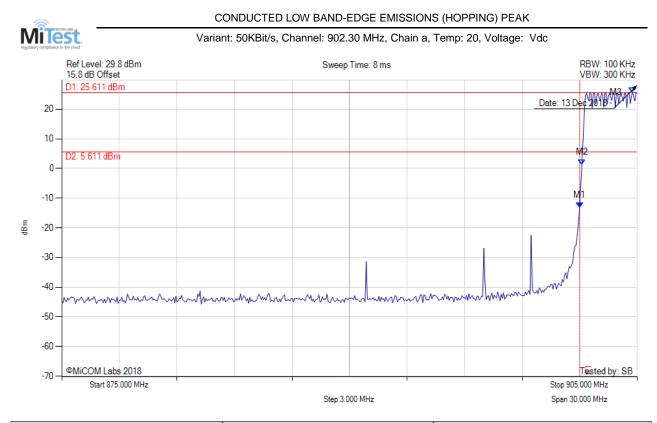


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.000 MHz : -11.234 dBm	Channel Frequency: 902.30 MHz
Sweep Count = 0	M2 : 902.000 MHz : -11.234 dBm	
RF Atten (dB) = 30	M3 : 902.295 MHz : 25.332 dBm	
Trace Mode = CLR/WRITE		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:96 of 120

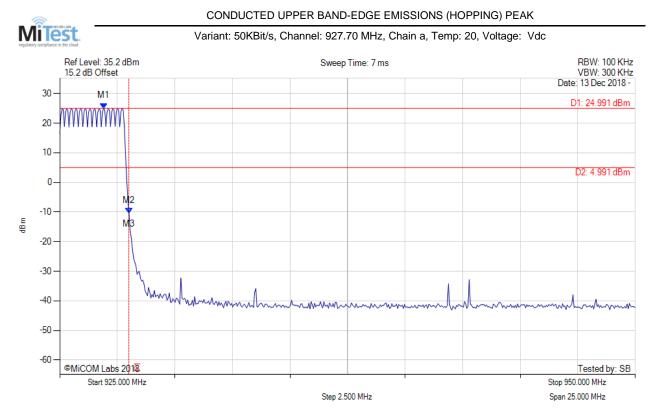



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 927.705 MHz : 24.669 dBm	Channel Frequency: 927.70 MHz
Sweep Count = 0	M2 : 928.000 MHz : -8.192 dBm	
RF Atten (dB) = $30$	M3 : 928.000 MHz : -8.192 dBm	
Trace Mode = CLR/WRITE		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:97 of 120

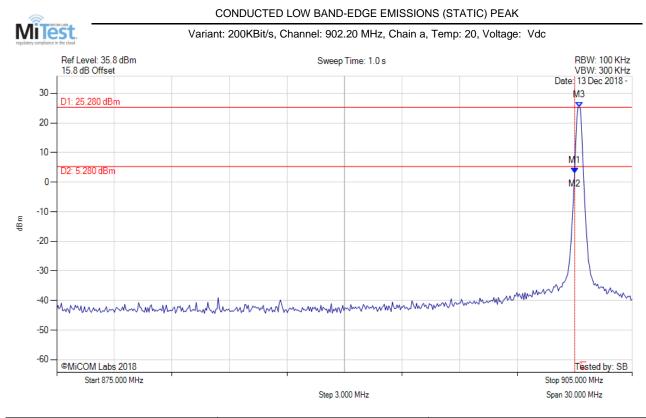



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.000 MHz : -13.171 dBm	Channel Frequency: 902.30 MHz
Sweep Count = 0	M2 : 902.114 MHz : 1.214 dBm	
RF Atten (dB) = $30$	M3 : 904.760 MHz : 25.611 dBm	
Trace Mode = VIEW		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:98 of 120

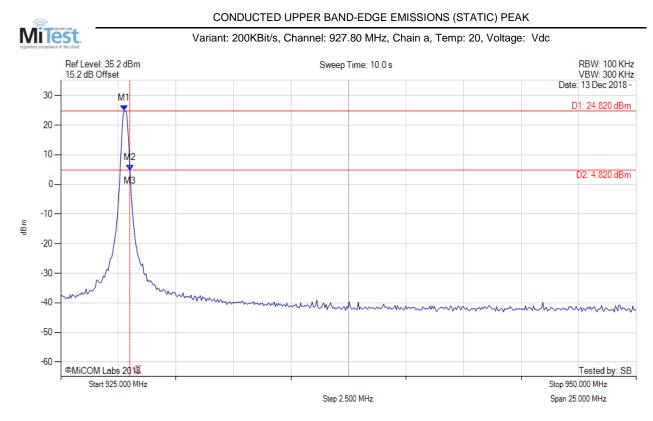



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.904 MHz : 24.991 dBm	Channel Frequency: 927.70 MHz
Sweep Count = 0	M2 : 928.000 MHz : -10.413 dBm	
RF Atten (dB) = 30	M3 : 928.000 MHz : -10.413 dBm	
Trace Mode = VIEW		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:99 of 120

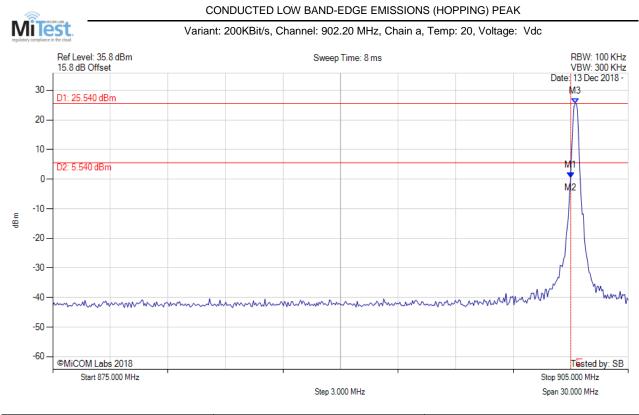



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.000 MHz : 3.024 dBm	Channel Frequency: 902.20 MHz
Sweep Count = 0	M2 : 902.000 MHz : 3.024 dBm	
RF Atten (dB) = 30	M3 : 902.234 MHz : 25.284 dBm	
Trace Mode = CLR/WRITE		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:100 of 120



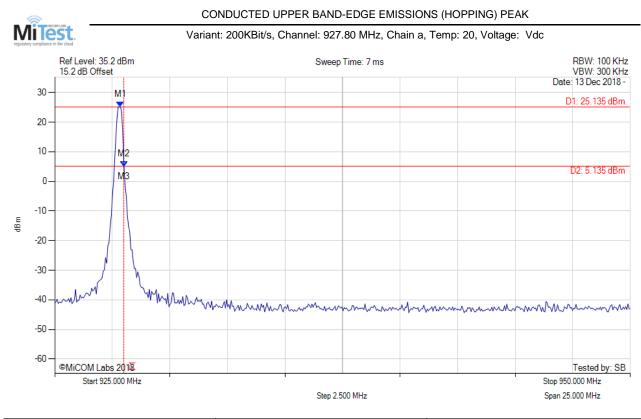

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 927.756 MHz : 24.822 dBm	Channel Frequency: 927.80 MHz
Sweep Count = 0	M2 : 928.000 MHz : 4.777 dBm	
RF Atten (dB) = 30	M3 : 928.000 MHz : 4.777 dBm	
Trace Mode = CLR/WRITE		

back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:101 of 120




Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.000 MHz : 0.521 dBm	Channel Frequency: 902.20 MHz
Sweep Count = 0	M2 : 902.000 MHz : 0.521 dBm	
RF Atten (dB) = $30$	M3 : 902.234 MHz : 25.540 dBm	
Trace Mode = VIEW		

back to matrix

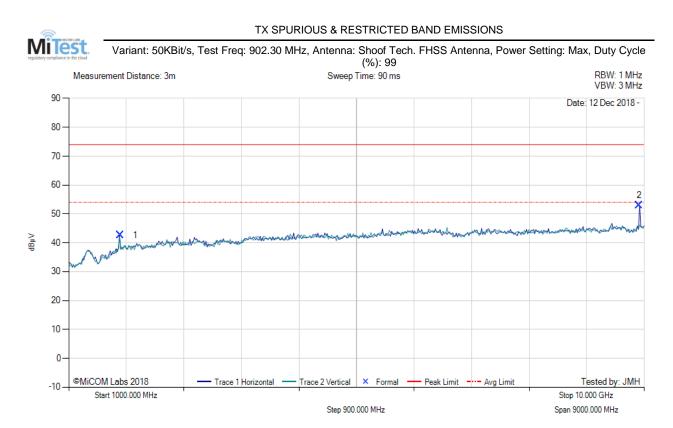
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:102 of 120



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 927.856 MHz : 25.135 dBm	Channel Frequency: 927.80 MHz
Sweep Count = 0	M2 : 928.000 MHz : 5.061 dBm	
RF Atten (dB) = $30$	M3 : 928.000 MHz : 5.061 dBm	
Trace Mode = VIEW		


back to matrix



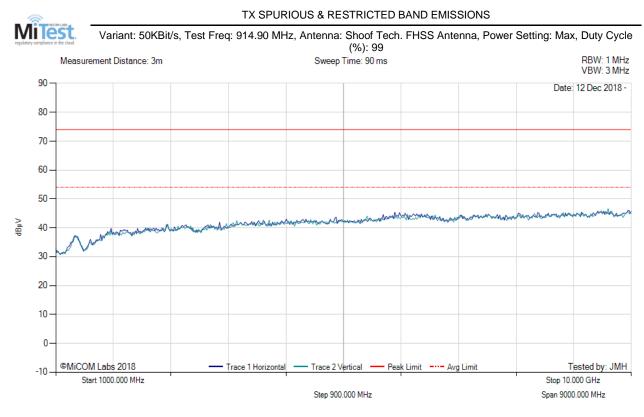
Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:103 of 120

#### A.3.2. Radiated Emissions

#### A.3.2.3. TX Spurious & Restricted Band Emissions



1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1804.16	58.55	-1.55	-14.44	42.56	Peak (NRB)	Horizontal	151	211			Pass	
2	9922.91	63.67	-3.75	-6.95	52.97	Peak (NRB)	Horizontal	100	360			Pass	


Test Notes: EUT powered by linear PS.

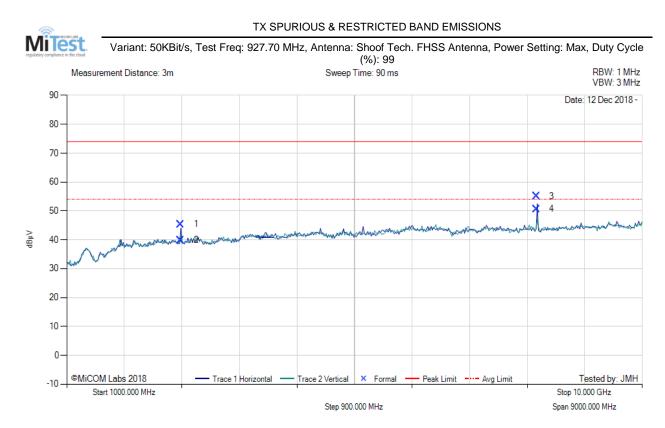
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:104 of 120




There are no emissions found within 6dB of the limit line.

Test Notes: EUT powered by DC Linear PS.

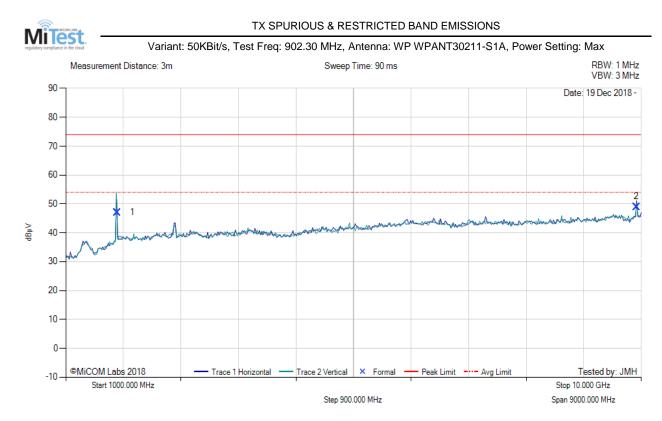
back to matrix



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:105 of 120



	1000.00 - 10000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	2783.21	59.19	-1.89	-11.89	45.41	Max Peak	Horizontal	104	146	74.0	-28.6	Pass			
2	2783.21	53.67	-1.89	-11.89	39.89	Max Avg	Horizontal	104	146	54.0	-14.1	Pass			
3	8349.36	66.62	-3.36	-8.17	55.09	Max Peak	Horizontal	113	246	74.0	-18.9	Pass			
4	8349.36	62.18	-3.36	-8.17	50.65	Max Avg	Horizontal	113	246	54.0	-3.4	Pass			


Test Notes: EUT powered by DC Linear PS..

back to matrix

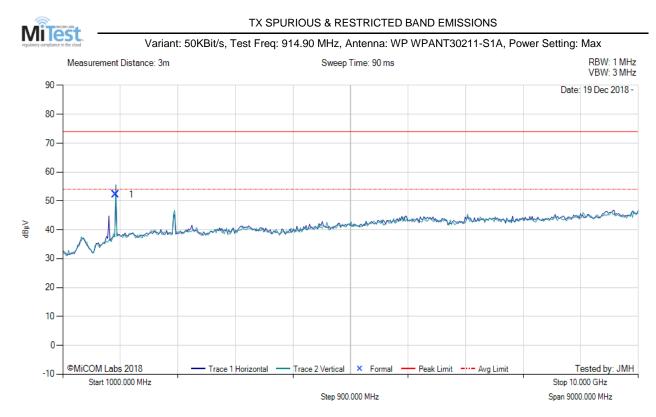
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:106 of 120



	1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	1804.40	63.04	-1.55	-14.44	47.05	Peak (NRB)	Vertical	151	0			Pass		
2	9924.16	59.66	-3.77	-6.94	48.95	Peak (NRB)	Horizontal	151	0			Pass		
2	9924.10	59.00	-3.77	-0.94	40.90	Feak (INKD)	HUHZUHIAI	151	0					


Test Notes: EUT powered by DC Linear PS.

back to matrix

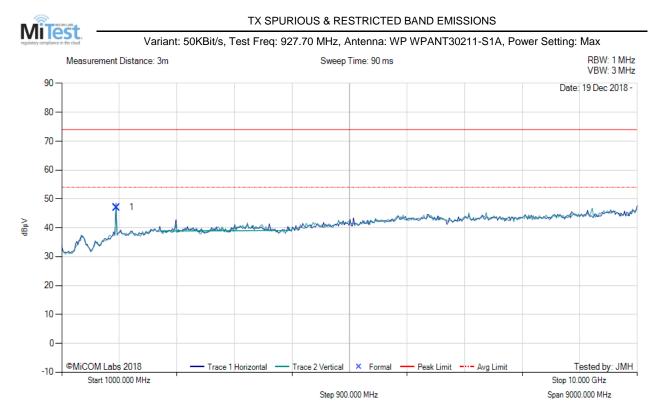
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:107 of 120



	1000.00 - 10000.00 MHz												
Num											Pass /Fail		
1	1829.95	67.69	-1.52	-14.04	52.13	Peak (NRB)	Vertical	200	86			Pass	
Test No	Test Notes: EUT powered by DC Linear PS.												


. .

back to matrix

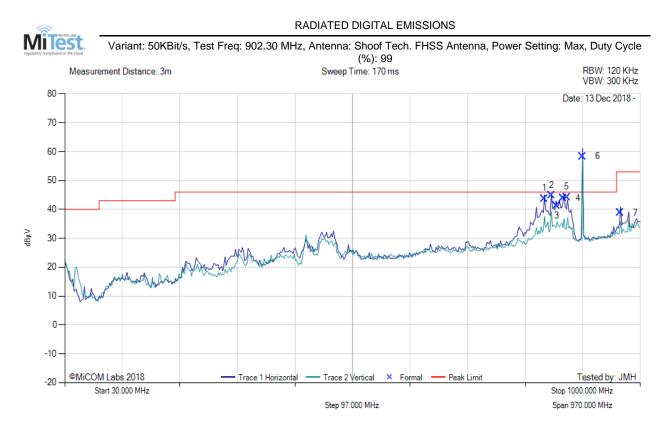
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:108 of 120



	1000.00 - 10000.00 MHz												
Num											Pass /Fail		
1	1855.58	62.38	-1.56	-13.80	47.02	Peak (NRB)	Vertical	151	0			Pass	
Test No	Test Notes: EUT powered by DC Linear PS.												


back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

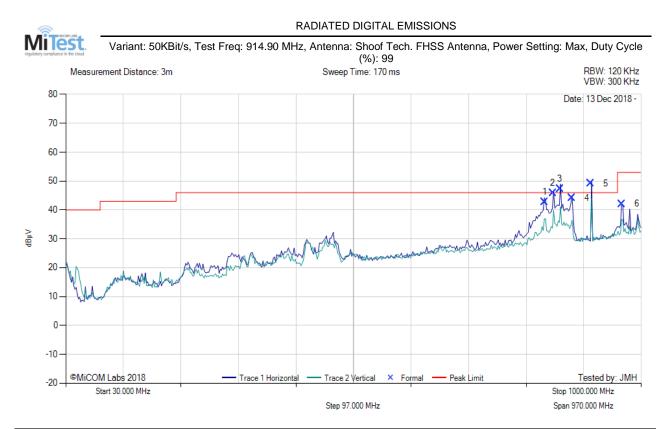


Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:109 of 120

## A.3.3. Digital Emissions



	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	838.18	42.56	6.47	-5.30	43.73	Peak (NRB)	Horizontal	100	0			Pass			
2	850.18	43.79	6.52	-5.50	44.81	Peak (NRB)	Horizontal	100	0			Pass			
3	859.22	40.23	6.53	-5.40	41.36	Peak (NRB)	Horizontal	100	0			Pass			
4	870.19	42.66	6.57	-5.30	43.93	Peak (NRB)	Horizontal	100	0			Pass			
5	876.15	42.84	6.59	-5.20	44.23	Peak (NRB)	Horizontal	100	0			Pass			
6	902.20	56.80	6.65	-5.10	58.35	Fundamental	Horizontal	100	0						
7	966.20	35.95	6.84	-4.00	38.79	MaxQP	Horizontal	150	185	53.0	-14.2	Pass			


Test Notes: EUT powered by DC Linear PS. 900 MHz notch in front of amp to prevent overload.

back to matrix

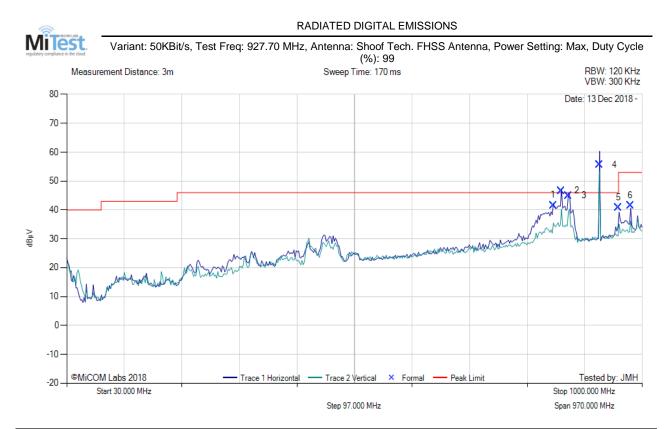
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:110 of 120



	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	837.04	41.71	6.46	-5.50	42.67	Peak (NRB)	Horizontal	100	0			Pass			
2	851.04	44.78	6.52	-5.50	45.80	Peak (NRB)	Horizontal	100	0			Pass			
3	863.06	45.96	6.54	-5.30	47.20	Peak (NRB)	Horizontal	100	0			Pass			
4	883.06	42.67	6.61	-5.10	44.18	Peak (NRB)	Horizontal	100	0			Pass			
5	914.96	47.11	6.67	-4.70	49.08	Fundamental	Horizontal	100	0						
6	966.96	39.21	6.84	-4.00	42.05	MaxQP	Horizontal	247	6	53.0	-11.0	Pass			
6	966.96	39.21	6.84	-4.00	42.05	MaxQP	Horizontal	247	6	53.0	-11.0	P			


Test Notes: EUT powered by DC Linear PS. 900 MHz notch in front of amp to prevent overload.

back to matrix

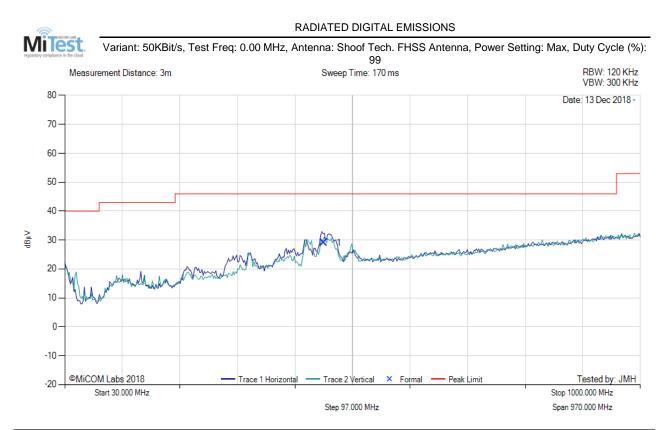
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:111 of 120



30.00 - 1000.00 MHz														
Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
849.82	40.46	6.52	-5.40	41.58	Peak (NRB)	Horizontal	100	0			Pass			
863.76	45.39	6.54	-5.30	46.63	Peak (NRB)	Horizontal	100	0			Pass			
875.89	43.55	6.59	-5.20	44.94	Peak (NRB)	Horizontal	100	0			Pass			
927.80	53.54	6.72	-4.70	55.56	Fundamental	Horizontal	100	0						
959.78	38.00	6.81	-4.10	40.71	Peak (NRB)	Horizontal	100	0			Pass			
979.81	38.41	6.88	-3.80	41.49	MaxQP	Horizontal	154	186	53.0	-11.5	Pass			
	MHz           849.82           863.76           875.89           927.80           959.78	MHz         dBµV           849.82         40.46           863.76         45.39           875.89         43.55           927.80         53.54           959.78         38.00	Frequency MHz         Raw dBµV         Loss dB           849.82         40.46         6.52           863.76         45.39         6.54           875.89         43.55         6.59           927.80         53.54         6.72           959.78         38.00         6.81	Frequency MHz         Raw dBµV         Loss dB         AF dB/m           849.82         40.46         6.52         -5.40           863.76         45.39         6.54         -5.30           875.89         43.55         6.59         -5.20           927.80         53.54         6.72         -4.70           959.78         38.00         6.81         -4.10	Frequency MHz         Raw dBμV         Cable Loss dB         AF dB/m         Level dBμV/m           849.82         40.46         6.52         -5.40         41.58           863.76         45.39         6.54         -5.30         46.63           875.89         43.55         6.59         -5.20         44.94           927.80         53.54         6.72         -4.70         55.56           959.78         38.00         6.81         -4.10         40.71	Frequency MHz         Raw dBµV         Cable Loss dB         AF dB/m         Level dBµV/m         Measurement Type           849.82         40.46         6.52         -5.40         41.58         Peak (NRB)           863.76         45.39         6.54         -5.30         46.63         Peak (NRB)           875.89         43.55         6.59         -5.20         44.94         Peak (NRB)           927.80         53.54         6.72         -4.70         55.56         Fundamental           959.78         38.00         6.81         -4.10         40.71         Peak (NRB)	Frequency MHz         Raw dBμV         Cable Loss dB         AF dB/m         Level dBμV/m         Measurement Type         Pol           849.82         40.46         6.52         -5.40         41.58         Peak (NRB)         Horizontal           863.76         45.39         6.54         -5.30         46.63         Peak (NRB)         Horizontal           875.89         43.55         6.59         -5.20         44.94         Peak (NRB)         Horizontal           927.80         53.54         6.72         -4.70         55.56         Fundamental         Horizontal           959.78         38.00         6.81         -4.10         40.71         Peak (NRB)         Horizontal	Frequency MHz         Raw dBµV         Cable Loss dB         AF dB/m         Level dBµV/m         Measurement Type         Pol         Hgt cm           849.82         40.46         6.52         -5.40         41.58         Peak (NRB)         Horizontal         100           863.76         45.39         6.54         -5.30         46.63         Peak (NRB)         Horizontal         100           875.89         43.55         6.59         -5.20         44.94         Peak (NRB)         Horizontal         100           927.80         53.54         6.72         -4.70         55.56         Fundamental         Horizontal         100           959.78         38.00         6.81         -4.10         40.71         Peak (NRB)         Horizontal         100	Frequency MHz         Raw dBµV         Cable Loss dB         AF dB/m         Level dBµV/m         Measurement Type         Pol         Hgt cm         Azt Deg           849.82         40.46         6.52         -5.40         41.58         Peak (NRB)         Horizontal         100         0           863.76         45.39         6.54         -5.30         46.63         Peak (NRB)         Horizontal         100         0           875.89         43.55         6.59         -5.20         44.94         Peak (NRB)         Horizontal         100         0           927.80         53.54         6.72         -4.70         55.56         Fundamental         Horizontal         100         0           959.78         38.00         6.81         -4.10         40.71         Peak (NRB)         Horizontal         100         0	Frequency MHz         Raw dBμν         Cable Loss dB         AF dB/m         Level dBμν/m         Measurement Type         Pol         Hgt cm         Azt Deg         Limit dBμν/m           849.82         40.46         6.52         -5.40         41.58         Peak (NRB)         Horizontal         100         0            863.76         45.39         6.54         -5.30         46.63         Peak (NRB)         Horizontal         100         0            875.89         43.55         6.59         -5.20         44.94         Peak (NRB)         Horizontal         100         0            927.80         53.54         6.72         -4.70         55.56         Fundamental         Horizontal         100         0            959.78         38.00         6.81         -4.10         40.71         Peak (NRB)         Horizontal         100         0	Frequency MHz         Raw dBμV         Cable Loss dB         AF dB/m         Level dBμV/m         Measurement Type         Pol         Hgt cm         Azt Deg         Limit dBμV/m         Margin dB           849.82         40.46         6.52         -5.40         41.58         Peak (NRB)         Horizontal         100         0             863.76         45.39         6.54         -5.30         46.63         Peak (NRB)         Horizontal         100         0             875.89         43.55         6.59         -5.20         44.94         Peak (NRB)         Horizontal         100         0             927.80         53.54         6.72         -4.70         55.56         Fundamental         Horizontal         100         0             959.78         38.00         6.81         -4.10         40.71         Peak (NRB)         Horizontal         100         0			


Test Notes: EUT powered by DC Linear PS. 900 MHz notch in front of amp to prevent overload.

back to matrix

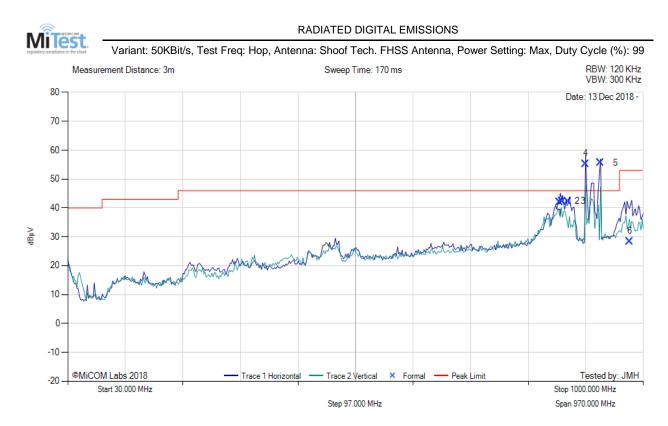
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:112 of 120



	30.00 - 1000.00 MHz														
	Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
	1	466.19	34.19	5.42	-10.60	29.01	MaxQP	Horizontal	204	241	46.0	-17.0	Pass		
Г															


Test Notes: EUT powered by DC Linear PS. RCVR

back to matrix

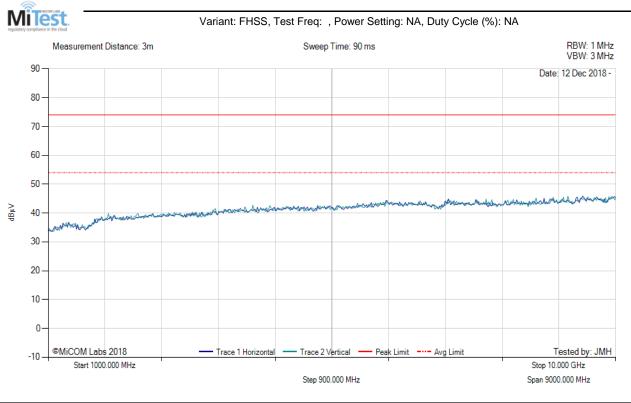
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:113 of 120



	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	859.49	40.81	6.53	-5.40	41.94	Peak (NRB)	Horizontal	150	0			Pass			
2	863.02	41.09	6.54	-5.30	42.33	Peak (NRB)	Horizontal	150	0			Pass			
3	873.38	41.02	6.58	-5.30	42.30	Peak (NRB)	Horizontal	150	0			Pass			
4	902.59	53.74	6.65	-5.10	55.29	Fundamental	Horizontal	150	0			Pass			
5	927.80	53.54	6.72	-4.70	55.56	Fundamental	Horizontal	150	0						
6	977.36	35.58	6.87	6.00	28.45	MaxQP	Horizontal	148	261	53.0	-14.6	Pass			


Test Notes: EUT powered by DC Linear PS. 900 MHz notch in front of amp to prevent overload.

back to matrix

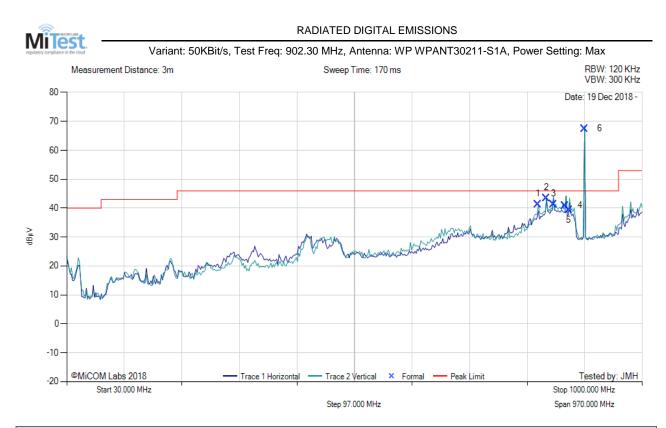
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:114 of 120



There are no emissions found within 6dB of the limit line.


Test Notes: EUT powered by DC linear PS, RCVR

back to matrix

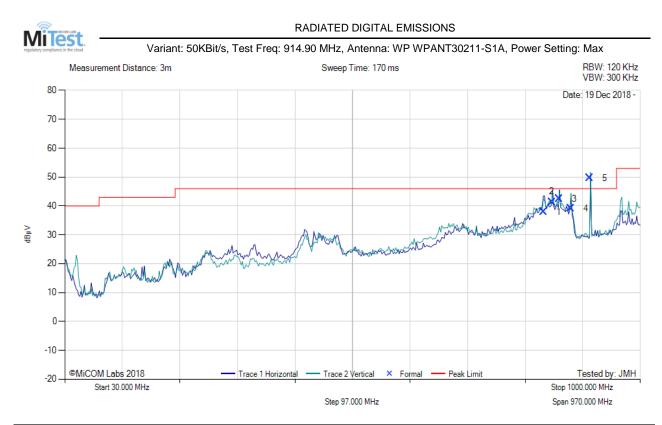
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:115 of 120



30.00 - 1000.00 MHz														
Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
824.33	40.55	6.44	-5.60	41.39	Peak (NRB)	Vertical	201	0			Pass			
838.33	42.32	6.47	-5.30	43.49	Peak (NRB)	Vertical	201	0			Pass			
850.15	40.31	6.52	-5.50	41.33	Peak (NRB)	Horizontal	100	0			Pass			
870.22	39.60	6.57	-5.30	40.87	Peak (NRB)	Horizontal	100	0			Pass			
876.23	38.07	6.59	-5.20	39.46	Peak (NRB)	Vertical	100	0			Pass			
902.20	65.91	6.65	-5.10	67.46	Fundamental	Vertical	100	0						
	MHz           824.33           838.33           850.15           870.22           876.23	MHz         dBμV           824.33         40.55           838.33         42.32           850.15         40.31           870.22         39.60           876.23         38.07	Frequency MHz         Raw dBµV         Loss dB           824.33         40.55         6.44           838.33         42.32         6.47           850.15         40.31         6.52           870.22         39.60         6.57           876.23         38.07         6.59	Frequency MHz         Raw dBµV         Loss dB         AF dB/M           824.33         40.55         6.44         -5.60           838.33         42.32         6.47         -5.30           850.15         40.31         6.52         -5.50           870.22         39.60         6.57         -5.30           876.23         38.07         6.59         -5.20	Frequency MHz         Raw dBµV         Cable Loss dB         AF dB/m         Level dBµV/m           824.33         40.55         6.44         -5.60         41.39           838.33         42.32         6.47         -5.30         43.49           850.15         40.31         6.52         -5.50         41.33           870.22         39.60         6.57         -5.30         40.87           876.23         38.07         6.59         -5.20         39.46	Frequency MHz         Raw dBμV         Cable Loss dB         AF dB/m         Level dBμV/m         Measurement Type           824.33         40.55         6.44         -5.60         41.39         Peak (NRB)           838.33         42.32         6.47         -5.30         43.49         Peak (NRB)           850.15         40.31         6.52         -5.50         41.33         Peak (NRB)           870.22         39.60         6.57         -5.30         40.87         Peak (NRB)           876.23         38.07         6.59         -5.20         39.46         Peak (NRB)	Frequency MHz         Raw dBμV         Cable Loss dB         AF dB/m         Level dBμV/m         Measurement Type         Pol           824.33         40.55         6.44         -5.60         41.39         Peak (NRB)         Vertical           838.33         42.32         6.47         -5.30         43.49         Peak (NRB)         Vertical           850.15         40.31         6.52         -5.50         41.33         Peak (NRB)         Horizontal           870.22         39.60         6.57         -5.30         40.87         Peak (NRB)         Horizontal           876.23         38.07         6.59         -5.20         39.46         Peak (NRB)         Vertical	Frequency MHz         Raw dBμV         Cable Loss dB         AF dB/m         Level dBμV/m         Measurement Type         Pol         Hgt cm           824.33         40.55         6.44         -5.60         41.39         Peak (NRB)         Vertical         201           838.33         42.32         6.47         -5.30         43.49         Peak (NRB)         Vertical         201           850.15         40.31         6.52         -5.50         41.33         Peak (NRB)         Horizontal         100           870.22         39.60         6.57         -5.30         40.87         Peak (NRB)         Horizontal         100           876.23         38.07         6.59         -5.20         39.46         Peak (NRB)         Vertical         100	Frequency MHz         Raw dBμV         Cable Loss dB         AF dB/m         Level dBμV/m         Measurement Type         Pol         Hgt cm         Azt Deg           824.33         40.55         6.44         -5.60         41.39         Peak (NRB)         Vertical         201         0           838.33         42.32         6.47         -5.30         43.49         Peak (NRB)         Vertical         201         0           850.15         40.31         6.52         -5.50         41.33         Peak (NRB)         Horizontal         100         0           870.22         39.60         6.57         -5.30         40.87         Peak (NRB)         Horizontal         100         0           876.23         38.07         6.59         -5.20         39.46         Peak (NRB)         Vertical         100         0	Frequency MHz         Raw dBμV         Cable Loss dB         AF dB/m         Level dBμV/m         Measurement Type         Pol         Hgt cm         Azt Deg         Limit dBμV/m           824.33         40.55         6.44         -5.60         41.39         Peak (NRB)         Vertical         201         0            838.33         42.32         6.47         -5.30         43.49         Peak (NRB)         Vertical         201         0            850.15         40.31         6.52         -5.50         41.33         Peak (NRB)         Horizontal         100         0            870.22         39.60         6.57         -5.30         40.87         Peak (NRB)         Horizontal         100         0            876.23         38.07         6.59         -5.20         39.46         Peak (NRB)         Vertical         100         0	Frequency MHz         Raw dBμV         Cable Loss dB         AF dB/m         Level dBμV/m         Measurement Type         Pol         Hgt cm         Azt Deg         Limit dBμV/m         Margin dB           824.33         40.55         6.44         -5.60         41.39         Peak (NRB)         Vertical         201         0             838.33         42.32         6.47         -5.30         43.49         Peak (NRB)         Vertical         201         0             850.15         40.31         6.52         -5.50         41.33         Peak (NRB)         Horizontal         100         0             870.22         39.60         6.57         -5.30         40.87         Peak (NRB)         Horizontal         100         0             876.23         38.07         6.59         -5.20         39.46         Peak (NRB)         Vertical         100         0			


Test Notes: EUT powered by DC Linear PS. 900 MHz notch in front of amp to prevent overloads

back to matrix

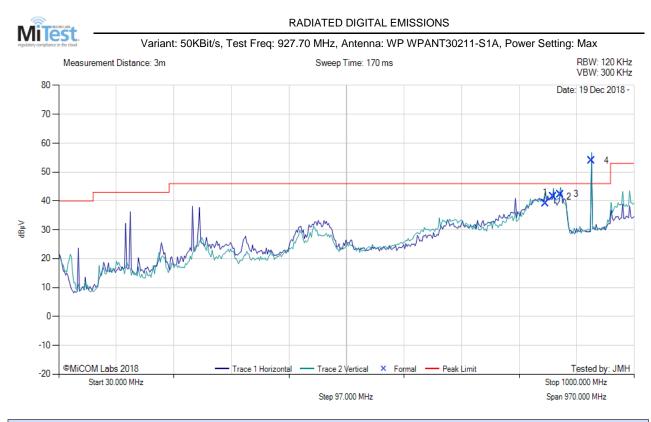
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:116 of 120



	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	836.87	36.86	6.46	-5.40	37.92	Peak (NRB)	Vertical	100	0			Pass			
2	851.09	40.34	6.52	-5.50	41.36	Peak (NRB)	Horizontal	100	0			Pass			
3	862.99	41.32	6.55	-5.40	42.47	Peak (NRB)	Horizontal	100	0			Pass			
4	883.05	37.53	6.61	-5.10	39.04	Peak (NRB)	Horizontal	100	0			Pass			
5	914.97	47.65	6.67	-4.70	49.62	Fundamental	Vertical	100	0						


Test Notes: EUT powered by DC Linear PS. 900 MHz notch in front of amp to prevent overloads

back to matrix

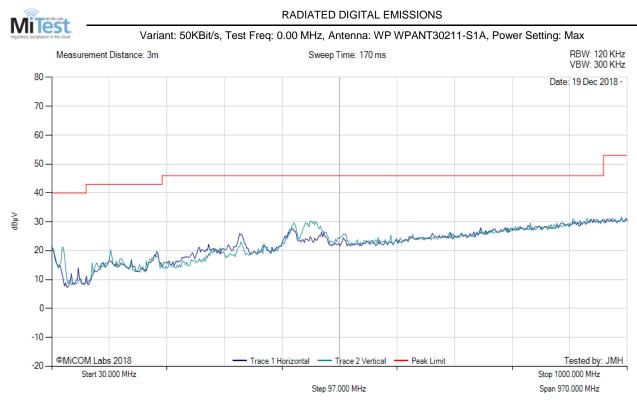
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:117 of 120



	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	849.78	38.06	6.52	-5.40	39.18	Peak (NRB)	Horizontal	100	0			Pass			
2	863.84	40.18	6.54	-5.30	41.42	Peak (NRB)	Horizontal	100	0			Pass			
3	875.83	40.95	6.59	-5.20	42.34	Peak (NRB)	Vertical	100	0			Pass			
4	927.82	51.92	6.72	-4.70	53.94	Fundamental	Vertical	100	0						


Test Notes: EUT powered by DC Linear PS. 900 MHz notch in front of amp to prevent overloads

back to matrix

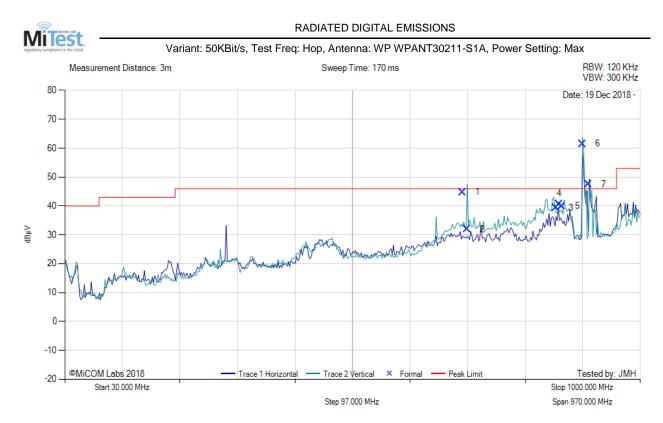
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:118 of 120



There are no emissions found within 6dB of the limit line.


Test Notes: EUT powered by DC Linear PS. RCVR

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Title:Shoof Technologies, Inc. Strix Wireless TagTo:FCC PART 15.247 & ISED RSS-247Serial #:SHOO03-U2 Rev AIssue Date:23rd January 2019Page:119 of 120



	30.00 - 1000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	700.21	45.73	6.10	-7.10	44.73	Peak (NRB)	Vertical	150	0			Pass			
2	708.42	32.64	6.14	-6.90	31.88	Peak (NRB)	Vertical	150	0			Pass			
3	857.92	38.16	6.53	-5.30	39.39	Peak (NRB)	Vertical	150	0			Pass			
4	863.87	39.43	6.54	-5.30	40.67	Peak (NRB)	Vertical	150	0			Pass			
5	868.28	38.68	6.56	-5.30	39.94	Peak (NRB)	Vertical	150	0			Pass			
6	902.20	59.92	6.65	-5.10	61.47	Peak (NRB)	Vertical	150	0			Pass			
7	912.67	45.62	6.67	-4.80	47.49	Peak (NRB)	Vertical	150	0			Pass			

Test Notes: EUT powered by DC Linear PS. 900 MHz notch in front of amp to prevent overloads

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com