

Report No: JYTSZE200408501

FCC REPORT

Applicant:	RADIXON s.r.o.
Address of Applicant:	Opátska 19, 040 18 Košice-Krásna, Slovakia
Equipment Under Test (E	EUT)
Product Name:	G6 external wideband receiver up to 8 GHz
Model No.:	WR-G69DDCe
Trade mark:	WiNRADiO
FCC ID:	2AQYWG6E9
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B
Date of sample receipt:	29 Apr., 2020
Date of Test:	30 Apr., to 29 Oct., 2020
Date of report issued:	18 Jan., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	24 Dce., 2020	Original
01	18 Jan., 2021	Update page 6

Tested by:

Mike.DU Test Engineer

18 Jan., 2021 Date:

Reviewed by:

Winner Thang Project Engineer

Date: 18 Jan., 2021

3 Contents

		Page
1 C	COVER PAGE	1
2 V	/ERSION	2
3 C	CONTENTS	3
5 G	GENERAL INFORMATION	5
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF E.U.T.	5
5.3	Test Mode	5
5.4	Measurement Uncertainty	5
5.5	DESCRIPTION OF SUPPORT UNITS	6
5.6	Related Submittal(s) / Grant (s)	6
5.7	DESCRIPTION OF CABLE USED	6
5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.9	LABORATORY FACILITY	6
5.10		•
5.11	TEST INSTRUMENTS LIST	7
6 T	EST RESULTS AND MEASUREMENT DATA	8
6.1	Conducted Emission	8
6.2	RADIATED EMISSION	
6.3	Receiver Conducted Power	35
7 Т	EST SETUP PHOTO	
8 E	EUT CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Receiver Conducted Power	Part 15.111	Pass		
38dB Rejection	38dB Rejection Part 15.121			
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: Manufacturer provided attestation letter, no test required.				
Test Method: ANSI C63.4:2014				

5 General Information

5.1 Client Information

Applicant:	RADIXON s.r.o.
Address:	Opátska 19, 040 18 Košice-Krásna, Slovakia
Manufacturer/ Factory:	RADIXON s.r.o.
Address:	Opátska 19, 040 18 Košice-Krásna, Slovakia

5.2 General Description of E.U.T.

Product Name:	G6 external wideband receiver up to 8 GHz
Model No.:	WR-G69DDCe
Rx Frequencies:	Range 1: 8 kHz to 80 MHz
	Range 2: 80 MHz to 8 GHz
AC adapter:	Model No.:A124-4120200G
	Input: AC100-240V, 50/60Hz 0.6A
	Output: DC 142.0V, 2.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description
USB mode	Keep the EUT in receiving + AC/DC adapter +USB Link mode.
POE mode	Keep the EUT in receiving + POE + LAN Link mode.
vertical polarities were performed. continuously working, investigated a typical configuration to obtain worst	the ground plane of 3m chamber. Measurements in both horizontal and During the test, each emission was maximized by: having the EUT II operating modes, rotated about all 3 axis (X, Y & Z) and considered t position, manipulating interconnecting cables, rotating the turntable, n in both horizontal and vertical polarizations. The emissions worst-case wing pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
LENOVO	Laptop	SL510	2847A65	DoC
ZHONGCHI	Antenna	YL-AN0727+1101BSM	/	/
Fo Shan Great Power Co., LTD	POE POWER ADAPTER	GRT-POE20-480050A	1807250001	/
ZyXEL	POE POWER ADAPTER	PoE12-HP	/	/

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	0.78m	EUT	PC

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax:+86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

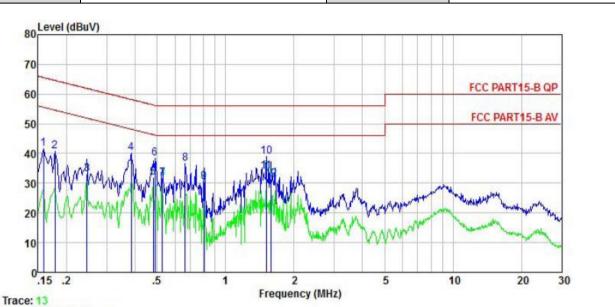
5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
SIII SAC	SAEIVIC	911 011 011	900	07-21-2020	07-20-2023	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Hom Antenna	SCHWARZBECK	BBITA9120D	1805	06-22-2020	06-21-2021	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020	
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
EXG Analog Signal Gnerator	KEYSIGHT	N5173B	MY59101009	11-28-2019	11-27-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
EXG Analog Signal Gnerator	KEYSIGHT	N5173B	MY59101009	11-28-2019	11-27-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020	
LISIN	Ronde & Schwarz	ESH3-20	8438621/010	07-20-2020	07-19-2021	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

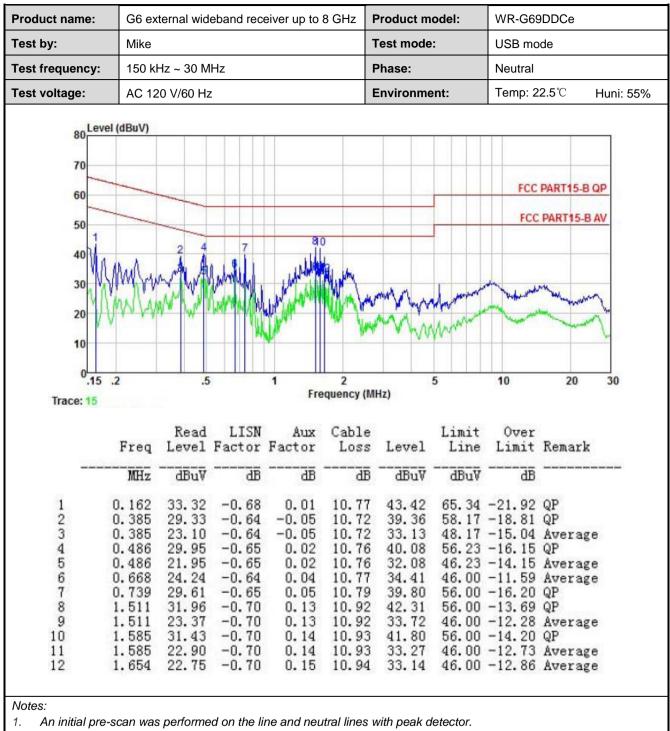
6.1 Conducted Emission


Test Requirement: Test Frequency Range:	FCC Part 15 B Section 15.107		
Test Frequency Range:			
	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit	(dBµV)
		Quasi-peak	Average
_	0.15-0.5	66 to 56*	56 to 46*
-	0.5-5	56	46
-	0.5-30	60	50
	* Decreases with the logarithm	of the frequency.	
Test setup:	Reference Plane		
	Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	
	 The E.U.T and simulators are impedance stabilization netw coupling impedance for the m The peripheral devices are al LISN that provides a 500hm/s termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.4(late) 	ork(L.I.S.N.). The prov neasuring equipment. Iso connected to the m 50uH coupling impedat the block diagram of t checked for maximum d the maximum emission all of the interface cab	ide a 50ohm/50uH ain power through a nce with 50ohm he test setup and conducted on, the relative bles must be changed
Test Instruments:	Refer to section 5.11 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement data:

Rang 1(8KHz~80MHz):

Product name:	G6 external wideband receiver up to 8 GHz	Product model:	WR-G69DDCe
Test by:	Mike	Test mode:	USB mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%



	Freq	Read Level		Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBuV	dB	db	dB	dBuV	dBuV	dB	
1	0.158	31.59	-0.57	-0.07	10.77	41.72	65.56	-23.84	QP
1 2 3 4 5 6 7 8 9 10	0.178	30.56	-0.58	-0.12	10.77	40.63	64.59	-23.96	QP
3	0.246	23.06	-0.57	-0.21	10.75	33.03	51.91	-18.88	Average
4	0.385	29.53	-0.49	0.33	10.72	40.09	58.17	-18.08	QP
5	0.481	21.74	-0.44	-0.24	10.75	31.81	46.32	-14.51	Average
6	0.489	28.27	-0.44	-0.26	10.76	38.33	56.19	-17.86	QP
7	0.527	21.78	-0.45	-0.36	10.76	31.73	46.00	-14.27	Average
8	0.665	26.60	-0.51	-0.39	10.77	36.47	56.00	-19.53	QP
9	0.804	20.10	-0.56	-0.07	10.81	30.28	46.00	-15.72	Average
10	1.511	28.73	-0.55	-0.01	10.92	39.09	56.00	-16.91	QP
11	1.511	23.47	-0.55	-0.01	10.92	33.83	46.00	-12.17	Average
12	1.585	21.10	-0.55	-0.05	10.93	31.43	46.00	-14.57	Average
12	1.585	21.10	-0.55	-0.05	10.93	31.43	46.00	-14.57	Average
s:									

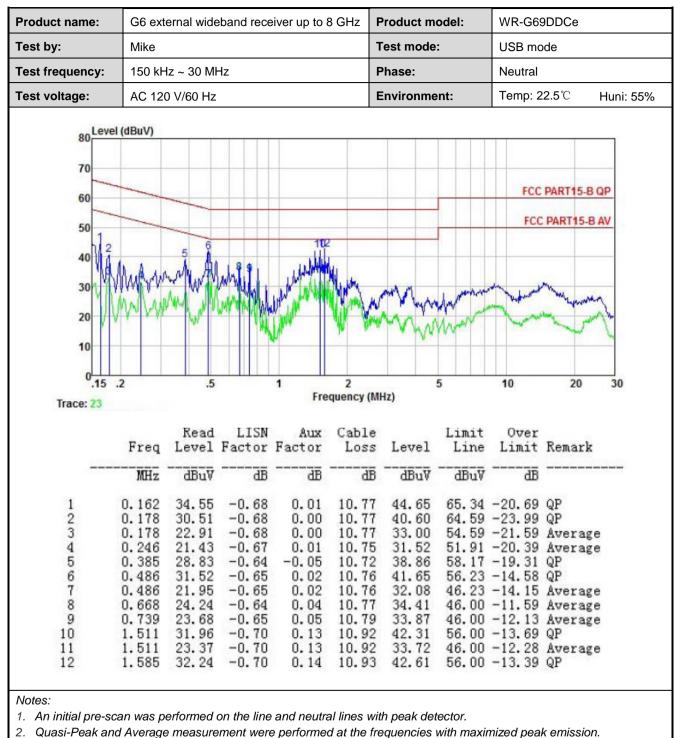
1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

Product name:	G6 ext	ernal wide	band rece	eiver up to	o 8 GHz	Produc	t model:	WR-G	69DDCe
Гest by:	Mike					Test m	ode:	POEm	node
Test frequency:	150 kH	lz ~ 30 M⊦	łz			Phase:		Line	
Test voltage:	AC 12	0 V/60 Hz				Enviror	nment:	Temp: 22.5℃ Huni: 55%	
80 Level (dBuV) 70 60 50 40 30 20 10 0.15 .2	- mark	7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9		2 ency (MHz		5	-	2 PART15-B QP
Fre	Read 1 Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark		
<u>M</u> H	zdBu∛	āb	<u>ab</u>	 dBu∛	<u>d</u> BuV	āē		<u>199</u> 9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 39.98 2 34.25 9 42.77	-0.57 -0.58 -0.46 -0.45 -0.45 -0.45 -0.45	10.78 10.77 10.74 10.74 10.74 10.75 10.76	54.30 50.06 44.61 53.08 44.37 51.42 50.35 41.55		-3.81 -2.30 -5.21 -5.65	QP Average QP Average QP		

oduct name	: G	6 externa	l wideband	d receiver	up to 8 GI	Hz Pro	duct mod	el:	WR-G69DD	Ce	
est by:	N	like				Tes	t mode:		receiving + mode	POE +	⊦ LAN Lin
st frequency	y: 1	50 kHz ~	30 MHz			Pha	ise:	1	Neutral		
st voltage:	A	C 120 V/6	60 Hz			Env	vironment	:	Temp: 22.5°C Huni: 55%		Huni: 55%
80 Level (d	IBuV)										
70									FCC	PART15	ROD
60									ru	PARITS	D-D QP
50 1		- tak	8			9	10		FCC	PART1	5-BAV
40	MANN	WWAR	2 Vy Arthur	wheely provide	Normal And Westerney	W	Mar Mar	unnum time	Museum		
M	NO. W	MAR	With Hardward	Walker	When the work	1 march	nm	man	non	N. Marth	×
30 4	J WI					V V	*			Millel	Wint
20										. Maria	The
10											
.15 .2			5	1	2 Frequen	cy (MHz)	5		10	20) 30
		Read	LISN	Cable		Limit	Over				
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark			
	MHz	dBuV	dB	dB	dBu∛	dBu∛	₫₿				
).158).377	38.21 29.74	-0.69 -0.64	10.77 10.72	48.30 39.78	65.56 48.34	-17.26	QP Averag	2		
3 ().415	33.22	-0.63	10.73	43.27	47.55	-4.28	Averag	e		
5 ().435).449	35.34 42.76	-0.64 -0.64	10.73 10.74	45.40 52.85	47.15 56.89	-4.04				
6 ().454).513	33.18 31.42	-0.64 -0.65	10.74 10.76	43.27 41.56	46.80 46.00	-3.53	Averag Averag	e e		
		38.95	-0.65	10.76	49.09	56.00	-6.91	QP	~		
7 (8 (0.527		0 25	10.92	47.29	56.00	-8.71				
7 (8 (9 2	2.915	36.72	-0.65 -0.64			56 00	-X X6	LIF			
7 (8 (9 2 10 4 11 14		36.72 36.28 35.06 30.92	-0.65 -0.64 -0.81 -0.81	10.86 10.90 10.90	47.14 48.06 43.92	56.00 60.00 50.00	-8.86 -11.94	QP Averag			


2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

Rang 2(80MHz~8GHz):

Product name:	G6 e	external w	ideband ı	receiver up	to 8 GHz	Produc	ct model:	WF	R-G69DDCe	WR-G69DDCe		
ſest by:	Mike	•				Test m	ode:	US	B mode			
Test frequency:	150	kHz ~ 30	MHz			Phase:	:	Lin	е			
Test voltage:	AC 1	20 V/60	Hz			Enviro	nment:	Tei	mp: 22.5 ℃	Huni: 55		
Lev	el (dBuV)											
80	ci (ubu i j									i.		
70							_					
60					_	_		F	CC PART15-E	BQP		
-	-							1	FCC PART15-	BAV		
50	2	4					-			and the second		
40 M	al al	Å	7 8		10 		_			_		
30	WWW	WW The	Hamste	1 hall	Maluk			1	2027			
22522		shift 1			HUMIA.	man	Anna	+	entralistic management	N		
	WWW	MM INA	A AND A REAL PROPERTY OF	1 4 4 Y 1			and the second se					
20	VVVW	and W	YAN		MM V	Low MA	Annant	w two	musty	"The		
20	VVVW	VIN NA	- ANN - A	Jury	W. C	row why	Mum		mark more	1		
10	VVV	ANA MY	- Adda and a			www	Mum		- A mark	A. C.		
10 0.15	.2	ANA MY	.5		2 Frequency (employ	5 5	10	20	30		
10	.2	ANY M	.5		2 Frequency (employ	Mum	10	20	30		
10 0.15	.2	Read	LISN	Aux	Frequency (Cable	MHz)	5 Limit	Over		30		
10 0.15	.2 Freq		LISN		Frequency (employ	5	Over		30		
10 0.15			LISN	Aux Factor	Frequency (Cable	MHz)	5 Limit	Over		30		
10 0.15 Trace: 21	Freq MHz 0.158	Level dBuV 33.54	LISN Factor	Aux Factor dB	Cable Loss dB 10.77	MHz) Level dBuV 43.67	5 Limit Line dBuV 65.56	Over Limit dB -21.89	Remark 	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.178	Level dBuV 33.54 33.51	LISN Factor -0.57 -0.58	Aux Factor dB 0.07 0.12	Cable Loss dB 10.77 10.77	MHz) Level dBuV 43.67 43.58	5 Limit Line dBuV 65.56 64.59	Over Limit dB -21.89 -21.01	Remark QP QP	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.178 0.246	Level dBuV 33.54 33.51 21.06	LISN Factor -0.57 -0.58 -0.57	Aux Factor dB -0.07 -0.12 -0.21	Cable Loss dB 10.77 10.77 10.75	MHz) Level dBuV 43.67 43.58 31.03	5 Limit Line dBuV 65.56 64.59 51.91	Over Limit -21.89 -21.01 -20.88	Remark QP QP Average	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.178 0.246 0.385	Level dBuV 33.54 33.51 21.06 30.53	LISN Factor -0.57 -0.58 -0.57 -0.49	Aux Factor 	Cable Loss dB 10.77 10.77 10.75 10.72	MHz) Level dBuV 43.67 43.58 31.03 41.09	5 Limit Line dBuV 65.56 64.59 51.91 58.17	Over Limit -21.89 -21.01 -20.88 -17.08	Remark QP QP Average QP	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.178 0.246 0.385 0.385	Level dBuV 33.54 33.51 21.06 30.53 21.49	LISN Factor -0.57 -0.58 -0.57 -0.49 -0.49	Aux Factor -0.07 -0.12 -0.21 0.33 0.33	Cable Loss dB 10.77 10.77 10.75 10.72 10.72	MHz) Level dBuV 43.67 43.58 31.03 41.09 32.05	5 Limit Line dBuV 65.56 64.59 51.91 58.17 48.17	Over Limit -21.89 -21.01 -20.88 -17.08 -16.12	Remark QP QP Average QP Average	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.178 0.246 0.385 0.385 0.385	Level dBuV 33.54 33.51 21.06 30.53 21.49 22.74	LISN Factor -0.57 -0.58 -0.57 -0.49 -0.49 -0.44	Aux Factor -0.07 -0.12 -0.21 0.33 0.33 -0.24	Cable Loss dB 10.77 10.77 10.75 10.72 10.72 10.72 10.75	MHz) Level dBuV 43.67 43.58 31.03 41.09 32.05 32.81	5 Limit Line dBuV 65.56 64.59 51.91 58.17 48.17 46.32	Over Limit -21.89 -21.01 -20.88 -17.08 -16.12 -13.51	QP QP Average QP Average Average	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.178 0.246 0.385 0.385 0.385 0.481 0.489	Level dBuV 33.54 33.51 21.06 30.53 21.49 22.74 29.01	LISN Factor -0.57 -0.58 -0.57 -0.49 -0.49 -0.44 -0.44	Aux Factor dB -0.07 -0.12 -0.21 0.33 0.33 -0.24 -0.26	Cable Loss dB 10.77 10.77 10.75 10.72 10.72 10.72 10.75 10.75 10.76	MHz) Level dBuV 43.67 43.58 31.03 41.09 32.05 32.81 39.07	5 Limit Line dBuV 65.56 64.59 51.91 58.17 48.17 46.32 56.19	Over Limit -21.89 -21.01 -20.88 -17.08 -16.12 -13.51 -17.12	QP QP Average QP Average Average QP	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.178 0.246 0.385 0.385 0.385 0.481 0.489 0.743	Level dBuV 33.54 33.51 21.06 30.53 21.49 22.74 29.01 28.03	LISN Factor -0.57 -0.58 -0.57 -0.49 -0.49 -0.44 -0.44 -0.54	Aux Factor -0.07 -0.12 -0.21 0.33 0.33 -0.24 -0.26 -0.26	Cable Loss dB 10.77 10.77 10.75 10.72 10.72 10.72 10.75 10.76 10.79	MHz) Level dBuV 43.67 43.58 31.03 41.09 32.05 32.81 39.07 38.02	5 Limit Line dBuV 65.56 64.59 51.91 58.17 48.17 46.32 56.19 56.00	Over Limit -21.89 -21.01 -20.88 -17.08 -16.12 -13.51 -17.12 -17.98	QP QP Average QP Average Average QP QP	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.178 0.246 0.385 0.385 0.481 0.489 0.743 0.804	Level dBuV 33.54 33.51 21.06 30.53 21.49 22.74 29.01 28.03 21.10	LISN Factor -0.57 -0.58 -0.57 -0.49 -0.49 -0.44 -0.44 -0.54 -0.56	Aux Factor dB -0.07 -0.12 -0.21 0.33 0.33 -0.24 -0.26 -0.26 -0.07	Cable Loss dB 10.77 10.77 10.75 10.72 10.72 10.72 10.75 10.76 10.79 10.81	MHz) Level dBuV 43.67 43.58 31.03 41.09 32.05 32.81 39.07 38.02 31.28	5 Limit Line dBuV 65.56 64.59 51.91 58.17 48.17 46.32 56.19 56.00 46.00	Over Limit -21.89 -21.01 -20.88 -17.08 -16.12 -13.51 -17.12 -17.98 -14.72	QP QP Average QP Average Average QP QP Average	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.246 0.385 0.385 0.481 0.489 0.743 0.804 1.511	Level dBuV 33.54 33.51 21.06 30.53 21.49 22.74 29.01 28.03 21.10 27.73	LISN Factor -0.57 -0.58 -0.57 -0.49 -0.49 -0.44 -0.44 -0.54 -0.55	Aux Factor dB -0.07 -0.12 -0.21 0.33 0.33 -0.24 -0.26 -0.26 -0.07 -0.01	Cable Loss dB 10.77 10.77 10.75 10.72 10.72 10.72 10.75 10.76 10.79 10.81 10.92	MHz) Level dBuV 43.67 43.58 31.03 41.09 32.05 32.81 39.07 38.02 31.28 38.09	5 Limit Line dBuV 65.56 64.59 51.91 58.17 48.17 46.32 56.19 56.00 46.00 56.00	Over Limit -21.89 -21.01 -20.88 -17.08 -16.12 -13.51 -17.12 -17.98 -14.72 -17.91	QP QP Average QP Average Average QP QP Average QP Average QP	30		
10 0.15 Trace: 21	Freq MHz 0.158 0.178 0.246 0.385 0.385 0.481 0.489 0.743 0.804	Level dBuV 33.54 33.51 21.06 30.53 21.49 22.74 29.01 28.03 21.10	LISN Factor -0.57 -0.58 -0.57 -0.49 -0.49 -0.44 -0.44 -0.54 -0.56	Aux Factor dB -0.07 -0.12 -0.21 0.33 0.33 -0.24 -0.26 -0.26 -0.07 -0.01 -0.01	Cable Loss dB 10.77 10.77 10.75 10.72 10.72 10.72 10.75 10.76 10.79 10.81	MHz) Level dBuV 43.67 43.58 31.03 41.09 32.05 32.81 39.07 38.02 31.28	5 Limit Line dBuV 65.56 64.59 51.91 58.17 48.17 46.32 56.19 56.00 46.00 56.00 46.00	Over Limit -21.89 -21.01 -20.88 -17.08 -16.12 -13.51 -17.12 -17.98 -14.72 -17.91 -14.17	QP QP Average QP Average Average QP Average QP Average	30		

Product name:	G6 ex	xternal wi	deband re	ceiver up to	o 8 GHz	Product n	nodel:	WR-G	WR-G69DDCe		
Test by:	Mike					Test mod	e:	POEm	ode		
Test frequency:	150 k	Hz ~ 30 I	MHz			Phase:		Line	Line		
Test voltage:	AC 1	20 V/60 H	łz			Environm	ent:	Temp:	Temp: 22.5℃ Huni: 55%		
Levi	el (dBuV)										
80	cr (ubuv)									Î	
70	_				_			_	_		
60					_			FCC PA	RT15-B QP		
1-2	_	5	7		_			ECC DA	ART15-B AV		
50 M	Vie	- A	her	9		10		FLC PA	ARTID-DAV		
40	MAN	War I	SW 44 MAT	we had been always a	he worth later	Another A	Mennhownsh	THE			
40	A notest	NWW 1	Mannan	Mayanum	with st	1AM	render	M	When I		
30	MAN			1.1	Y	V W A	-		A have been and	-	
N.	1								MMM 1		
20									with the		
10											
10											
0.15	.2		5	1 Fre	2 quency (MH	5 (z)		10	20 3	30	
	.2		5		2 equency (MH			10	20 3	30	
0.15	.2			Fre	quency (MH				20 3	30	
0.15 Trace: 17		Read	LISN	Fre Aux	quency (MH Cable	lz)	Limit	Over		30	
0.15 Trace: 17	.2 Freq	Read	LISN	Fre	quency (MH			Over	20 : Remark	30	
0.15 Trace: 17		Read	LISN	Fre Aux	quency (MH Cable	lz)	Limit	Over		30	
0.15 Trace: 17	Freq MHz	Read Level dBuV	LISN Factor dB	Aux Factor dB	Cable Loss dB	Level dBuV	Limit Line dBuV	Over Limit dB	Remark	30	
0.15 Trace: 17	Freq MHz	Read Level dBuV 42.15	LISN Factor dB -0.57	Aux Factor 	Quency (MH Cable Loss dB 10.78	Level dBuV 52.30	Limit Line dBuV 65.78	Over Limit 	Remark 	30	
0.15 Trace: 17	Freq MHz . 154 . 174	Read Level dBuV 42.15 41.98	LISN Factor -0.57 -0.58	Aux Factor dB -0.06 -0.11	Cable Loss dB 10.78 10.77	Level dBuV 52.30 52.06	Limit Line dBuV 65.78 64.77	Over Limit -13.48 -12.71	Remark QP QP		
0.15 Trace: 17	Freq MHz . 154 . 174 . 322	Read Level dBuV 42.15 41.98 31.21	LISN Factor -0.57 -0.58 -0.53	Fre Aux Factor dB -0.06 -0.11 -0.09	Cable Loss dB 10.78 10.77 10.74	Level dBuV 52.30 52.06 41.33	Limit Line dBuV 65.78 64.77 49.66	Over Limit -13.48 -12.71 -8.33	Remark QP QP Averag	 e	
0.15 Trace: 17	Freq MHz 154 174 322 142	Read Level dBuV 42.15 41.98 31.21 34.25	LISN Factor -0.57 -0.58 -0.53 -0.46	Fre Aux Factor dB -0.06 -0.11 -0.09 0.08	Cable Loss dB 10, 78 10, 77 10, 74 10, 74	Level dBuV 52.30 52.06 41.33 44.61	Limit Line dBuV 65.78 64.77 49.66 47.02	Over Limit -13.48 -12.71 -8.33 -2.41	Remark QP Averag Averag	 e	
0.15 Trace: 17	Freq MHz 154 174 322 142 142	Read Level dBuV 42.15 41.98 31.21 34.25 42.28	LISN Factor -0.57 -0.58 -0.53 -0.46 -0.45	Fre Aux Factor dB -0.06 -0.11 -0.09 0.08 -0.06	Cable Loss dB 10.78 10.77 10.74 10.74 10.74	Level dBuV 52.30 52.06 41.33 44.61 52.51	Limit Line dBuV 65.78 64.77 49.66 47.02 56.67	Over Limit -13.48 -12.71 -8.33 -2.41 -4.16	Remark QP QP Averag Averag QP	 e e	
0.15 Trace: 17	Freq MHz 154 1322 142 142 1461 1461	Read Level dBuV 42.15 41.98 31.21 34.25 42.28 33.14	LISN Factor -0.57 -0.58 -0.53 -0.46 -0.45 -0.45	Fre Aux Factor -0.06 -0.11 -0.09 0.08 -0.06 -0.06	Cable Loss dB 10.78 10.77 10.74 10.74 10.74 10.74 10.74	Level dBuV 52.30 52.06 41.33 44.61 52.51 43.37	Limit Line dBuV 65.78 64.77 49.66 47.02 56.67 46.67	Over Limit -13.48 -12.71 -8.33 -2.41 -4.16 -3.30	Remark QP QP Averag Averag QP Averag	 e e	
0.15 Trace: 17 1 0 2 0 3 0 4 0 5 0 6 0 7 0	Freq MHz 1.154 1.174 1.322 1.442 1.461 1.461 1.502	Read Level dBuV 42.15 41.98 31.21 34.25 42.28 33.14 40.37	LISN Factor -0.57 -0.58 -0.53 -0.46 -0.45 -0.45 -0.45 -0.43	Fre Aux Factor dB -0.06 -0.11 -0.09 0.08 -0.06 -0.06 -0.35	Cable Loss dB 10.78 10.77 10.74 10.74 10.74 10.74 10.74 10.74 10.74	Level dBuV 52.30 52.06 41.33 44.61 52.51 43.37 50.35	Limit Line dBuV 65.78 64.77 49.66 47.02 56.67 46.67 56.00	Over Limit -13.48 -12.71 -8.33 -2.41 -4.16 -3.30 -5.65	QP QP Averag Averag QP Averag QP	e e e	
0.15 Trace: 17 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0	Freq MHz 154 174 1322 142 142 1461 1461 1502 1529	Read Level dBuV 42.15 41.98 31.21 34.25 42.28 33.14 40.37 31.16	LISN Factor dB -0.57 -0.58 -0.53 -0.46 -0.45 -0.45 -0.43 -0.43 -0.45	Fre Aux Factor dB -0.06 -0.11 -0.09 0.08 -0.06 -0.06 -0.35 -0.36	Cable Loss dB 10.78 10.77 10.74 10.74 10.74 10.74 10.74 10.76 10.76	Level dBuV 52.30 52.06 41.33 44.61 52.51 43.37 50.35 41.11	Limit Line dBuV 65.78 64.77 49.66 47.02 56.67 46.67 56.00 46.00	Over Limit -13.48 -12.71 -8.33 -2.41 -4.16 -3.30 -5.65 -4.89	QP QP Averag Averag QP Averag QP Averag QP	e e e	
0.15 Trace: 17 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1	Freq MHz 154 174 174 174 174 174 174 174 174 174 17	Read Level dBuV 42.15 41.98 31.21 34.25 42.28 33.14 40.37 31.16 38.38	LISN Factor dB -0.57 -0.58 -0.53 -0.46 -0.45 -0.45 -0.45 -0.43 -0.45 -0.61	Free Aux Factor dB -0.06 -0.11 -0.09 0.08 -0.06 -0.06 -0.35 -0.36 0.40	Cable Loss dB 10.78 10.77 10.74 10.74 10.74 10.74 10.76 10.76 10.88	Level dBuV 52.30 52.06 41.33 44.61 52.51 43.37 50.35 41.11 49.05	Limit Line dBuV 65.78 64.77 49.66 47.02 56.67 46.67 56.00 46.00 56.00	Over Limit dB -13.48 -12.71 -8.33 -2.41 -4.16 -3.30 -5.65 -4.89 -6.95	QP QP Averag Averag QP Averag QP Averag QP Averag QP	e e e	
0.15 Trace: 17 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 10 4	Freq MHz 154 174 174 142 142 1461 1502 1529 1529 1060 1721	Read Level dBuV 42.15 41.98 31.21 34.25 42.28 33.14 40.37 31.16 38.38 37.63	LISN Factor dB -0.57 -0.58 -0.46 -0.45 -0.45 -0.45 -0.43 -0.45 -0.61 -0.39	Free Aux Factor dB -0.06 -0.11 -0.09 0.08 -0.06 -0.06 -0.35 -0.36 0.40 0.05	Cable Loss dB 10.78 10.77 10.74 10.74 10.74 10.74 10.76 10.76 10.88 10.86	Level dBuV 52.30 52.06 41.33 44.61 52.51 43.37 50.35 41.11 49.05 48.15	Limit Line dBuV 65.78 64.77 49.66 47.02 56.67 46.67 56.00 46.00 56.00 56.00	Over Limit dB -13.48 -12.71 -8.33 -2.41 -4.16 -3.30 -5.65 -4.89 -6.95 -7.85	QP QP Averag Averag QP Averag QP Averag QP Averag QP Averag QP	e e e	
0.15 Trace: 17 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 10 4 11 12	Freq MHz 154 174 174 174 174 174 174 174 174 174 17	Read Level dBuV 42.15 41.98 31.21 34.25 42.28 33.14 40.37 31.16 38.38	LISN Factor dB -0.57 -0.58 -0.53 -0.46 -0.45 -0.45 -0.45 -0.43 -0.45 -0.61	Free Aux Factor dB -0.06 -0.11 -0.09 0.08 -0.06 -0.06 -0.35 -0.36 0.40	Cable Loss dB 10.78 10.77 10.74 10.74 10.74 10.74 10.76 10.76 10.88	Level dBuV 52.30 52.06 41.33 44.61 52.51 43.37 50.35 41.11 49.05	Limit Line dBuV 65.78 64.77 49.66 47.02 56.67 46.67 56.00 46.00 56.00 56.00 50.00	Over Limit dB -13.48 -12.71 -8.33 -2.41 -4.16 -3.30 -5.65 -4.89 -6.95 -7.85 -10.86	QP QP Averag Averag QP Averag QP Averag QP Averag QP	e e e	

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

Test by: Mike Test mode: receiving + POE + LAN L mode Test frequency: 150 kHz - 30 MHz Phase: Neutral Test voltage: AC 120 V/60 Hz Environment: Temp: 22.5°C Huni: 55' 0000^{-0} 000^{-0	Product name:	G6 ex	ternal wid	eband rec	eiver up to	8 GHz	Product m	odel:	WR-G69	9DDCe							
Fest voltage: AC 120 V/60 Hz Environment: Temp: 22.5°C Huni: 55' Multi: 55' Multi: 55' Feet (dBuV) FCC PARTISE OP FCC PARTISE OP <	Гest by:	Mike					ſest mode	:		g + POE	+ LAN Lin						
$\frac{1}{1} \qquad \qquad$	Test frequency:	: 150 kł	Hz ~ 30 M	Hz			Phase:		Neutral								
$\frac{1}{10000000000000000000000000000000000$	Test voltage:	AC 12	20 V/60 Hz	<u>z</u>		1	Environme	ent:	Temp: 22.5℃ Huni: 55%								
$\frac{1}{10000000000000000000000000000000000$																	
$\frac{1}{1} 0.158 39.47 - 0.69 0.01 10.77 49.56 65.56 - 16.00 QP$ $\frac{1}{2} 0.307 30.38 - 0.67 0.00 10.74 40.45 50.06 - 9.61 Average$ $3 0.415 33.22 - 0.63 - 0.05 10.73 51.50 57.15 - 5.66 QP$ $5 0.452 41.55 - 0.64 - 0.01 10.74 43.27 46.80 - 3.53 Average$ $9 0.928 29.62 - 0.67 0.07 10.85 39.87 56.00 - 5.91 QP$ $8 0.601 30.77 - 0.64 0.04 10.77 40.94 46.00 - 5.06 Average$ $9 0.928 29.62 - 0.67 0.07 10.85 39.87 56.00 - 7.63 QP$	80 Le	evel (dBuV)							11								
$\frac{1}{1} 0.158 39.47 - 0.69 0.01 10.77 49.56 65.56 - 16.00 QP$ $\frac{1}{2} 0.307 30.38 - 0.67 0.00 10.74 40.45 50.06 - 9.61 Average$ $3 0.415 33.22 - 0.63 - 0.05 10.73 51.50 57.15 - 5.66 QP$ $5 0.452 41.55 - 0.64 - 0.01 10.74 43.27 46.80 - 3.53 Average$ $9 0.928 29.62 - 0.67 0.07 10.85 39.87 56.00 - 5.91 QP$ $8 0.601 30.77 - 0.64 0.04 10.77 40.94 46.00 - 5.06 Average$ $9 0.928 29.62 - 0.67 0.07 10.85 39.87 56.00 - 7.63 QP$	70																
$\frac{1}{10, 158, 39, 47, -0.69} 0.01 10.77 49.56 65.56 -16.00 QP \\ 2 0.307 30.38 -0.67 0.00 10.74 40.45 50.06 -9.61 Average \\ 3 0.415 33.22 -0.63 -0.05 10.73 43.27 47.85 -4.28 Average \\ 4 0.435 41.44 -0.64 -0.01 10.74 43.27 46.80 -3.53 Average \\ 7 0.527 39.95 -0.65 0.03 10.76 50.09 56.00 -5.01 QP \\ 8 0.601 30.77 -0.64 0.04 10.77 40.94 46.00 -5.06 Average \\ 9 0.928 29.62 -0.67 0.07 10.85 39.87 46.00 -6.13 Average \\ 1 0.2915 37.80 -0.65 0.03 10.72 48.37 56.00 -7.63 QP \\ 3 0.415 33.27 11 -0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 3 0.611 30.77 -0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 4 0.77 40 28.71 -0.66 0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 3 0.611 30.77 -0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 4 0.77 40 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 4 0.435 41.44 -0.64 -0.07 10.85 39.87 46.00 -6.43 Average \\ 4 0.454 33.18 -0.64 -0.07 10.85 39.87 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.72 48.37 56.00 -7.63 QP \\ 4 0.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 4 0.454 35.80 -0.65 0.03 10.72 48.37 56.00 -7.63 QP \\ 4 0.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.72 48.37 56.00 -7.63 QP \\ 4 0.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.72 48.37 56.00 -7.63 QP \\ 4 0.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.78 53.987 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.78 53.987 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.78 53.987 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.78 53.987 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.78 53.987 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.79 53.987 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.79 54.50 57.56 0.05 5.00 47.59 QP \\ 4 0.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average \\ 4 0.454 37.80 -0.65 0.03 10.76 53.987 46.00 -6.43 Average \\ 4 0.454 53.80 -0.65 0.03 10.76 53.987 46.00 -6.43 Average \\ 4 0.454 53.80 -0.65 0.03 10.76 53.987 46.00 -6.43 Average \\ 4 0.454 53.80 -0.65 0.03 10.76 5$	10																
$\frac{1}{10} + \frac{1}{10} $	60							_	FCC	PART15-B	QP						
$ \frac{40}{90} 4$	50 1		45	7		8	10		FCC	PART15-B	AV						
$ \frac{40}{90} 4$	50	Much	anna the	Walder and	Mar what	Martin P	d.	e const Portuge	An month								
$\frac{20}{10} \underbrace{10}_{0} \underbrace{15}_{2} \underbrace{2}_{5} \underbrace{1}_{5} \underbrace{1}_{2} \underbrace{2}_{1} \underbrace{1}_{5} \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{1}_{2} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{1}_{1} \underbrace{1}_{1$	40	"LVYW		y char the st	ST. Prest Co.	H. TANK	Vinter	Municipality	V WITT I								
$\frac{20}{10} \underbrace{10}_{0} \underbrace{15}_{2} \underbrace{2}_{5} \underbrace{1}_{5} \underbrace{1}_{2} \underbrace{2}_{1} \underbrace{1}_{5} \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{1}_{2} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{2}_{1} \underbrace{1}_{1} \underbrace{1}_{1$		MUMAN	MAN	A. M. W. Walk	and the second second	But way to	W	ma	my	Not Marine							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	1 TUW					X			W. Mag I	Wind						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20									Man Mark							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20										and the second second						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10																
Frequency (MHz)Frequency (MHz)Aux CableLimit Over LineImit Over Level Factor FactorLevelLimit Over LineMHzdBuVdBuVdBuVdBuV10.15839.47-0.690.0110.7749.5665.56-16.00QP20.30730.38-0.670.0010.7440.4550.06-9.61Average30.41533.22-0.63-0.0510.7343.2747.55-4.28Average30.41533.22-0.63-0.0510.7343.2747.55-4.28Average30.41533.22-0.63-0.0510.7343.2747.55-4.28Average30.45241.64-0.0310.7343.2746.85-5.21QP6 <th <="" colspan="6" td=""><td></td><td></td><td colspan="4"></td><td></td><td></td><td colspan="3"></td></th>	<td></td> <td></td> <td colspan="4"></td> <td></td> <td></td> <td colspan="3"></td>																
Frequency (MHz)Frequency (MHz) $Freq$ ReadLISNAuxCableLimitLimitOverFreqLevelFactorFactorLossLevelLineLimitRemark MHz $dBuV$ dB dB dB dB $dBuV$ $dBuV$ dB 10.15839.47-0.690.0110.7749.5665.56-16.00QP20.30730.38-0.670.0010.7440.4550.06-9.61Average30.41533.22-0.63-0.0510.7343.2747.55-4.28Average40.43541.44-0.64-0.0310.7351.5057.15-5.65QP50.45241.55-0.64-0.0110.7443.2746.80-3.53Average70.52739.95-0.650.0310.7740.9446.00-5.06Average90.92829.62-0.670.0710.8539.8746.00-6.13Average90.92829.62-0.670.3010.9248.3756.00-7.63QP102.91537.80-0.650.3010.9248.3756.00-7.63QP114.74628.71-0.640.6410.8639.5746.00-6.43Average	10																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5 2			1	2		5	10	20	30						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1	5 A855	.5	j		-		5	10	20	30						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1	5 A855	.5			-		5	10	20	30						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1		Read	LISN	Fre	equency (M Cable	Hz)	Limit	Over								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1		Read	LISN	Fre	equency (M Cable	Hz)	Limit	Over								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	Freq	Read Level	LISN Factor	Aux Factor	equency (M Cable Loss	Hz) Level	Limit Line	Over Limit								
6 0.454 33.18 -0.64 -0.01 10.74 43.27 46.80 -3.53 Average 7 0.527 39.95 -0.65 0.03 10.76 50.09 56.00 -5.91 QP 8 0.601 30.77 -0.64 0.04 10.77 40.94 46.00 -5.06 Average 9 0.928 29.62 -0.67 0.07 10.85 39.87 46.00 -6.13 Average 10 2.915 37.80 -0.65 0.30 10.92 48.37 56.00 -7.63 QP 11 4.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average	0.19 Trace: 19	Freq MHz	Read Level dBuV	LISN Factor dB	Aux Factor dB	Cable Loss dB	Hz) Level 	Limit Line dBuV	Over Limit dB	Remark							
6 0.454 33.18 -0.64 -0.01 10.74 43.27 46.80 -3.53 Average 7 0.527 39.95 -0.65 0.03 10.76 50.09 56.00 -5.91 QP 8 0.601 30.77 -0.64 0.04 10.77 40.94 46.00 -5.06 Average 9 0.928 29.62 -0.67 0.07 10.85 39.87 46.00 -6.13 Average 10 2.915 37.80 -0.65 0.30 10.92 48.37 56.00 -7.63 QP 11 4.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average	0.19 Trace: 19	Freq MHz 0.158	Read Level dBuV 39.47	LISN Factor dB -0.69	Aux Factor dB 0.01	Cable Loss dB 10.77	Hz) Level dBuV 49.56	Limit Line dBuV 65.56	Over Limit dB -16.00	Remark							
6 0.454 33.18 -0.64 -0.01 10.74 43.27 46.80 -3.53 Average 7 0.527 39.95 -0.65 0.03 10.76 50.09 56.00 -5.91 QP 8 0.601 30.77 -0.64 0.04 10.77 40.94 46.00 -5.06 Average 9 0.928 29.62 -0.67 0.07 10.85 39.87 46.00 -6.13 Average 10 2.915 37.80 -0.65 0.30 10.92 48.37 56.00 -7.63 QP 11 4.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average	0.19 Trace: 19	Freq MHz 0.158 0.307	Read Level dBuV 39.47 30.38	LISN Factor dB 0.69 0.67	Aux Factor dB 0.01 0.00	Cable Loss dB 10.77 10.74	Hz) Level dBuV 49.56 40.45	Limit Line dBuV 65.56 50.06	Over Limit dB -16.00 -9.61	Remark QP Averag	 e						
6 0.454 33.18 -0.64 -0.01 10.74 43.27 46.80 -3.53 Average 7 0.527 39.95 -0.65 0.03 10.76 50.09 56.00 -5.91 QP 8 0.601 30.77 -0.64 0.04 10.77 40.94 46.00 -5.06 Average 9 0.928 29.62 -0.67 0.07 10.85 39.87 46.00 -6.13 Average 10 2.915 37.80 -0.65 0.30 10.92 48.37 56.00 -7.63 QP 11 4.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average	0.19 Trace: 19	Freq MHz 0.158 0.307 0.415	Read Level dBuV 39.47 30.38 33.22	LISN Factor dB -0.69 -0.67 -0.63	Aux Factor dB 0.01 0.00 -0.05	Cable Loss dB 10.77 10.74 10.73	Hz) Level dBuV 49.56 40.45 43.27	Limit Line dBuV 65.56 50.06 47.55	Over Limit -16.00 -9.61 -4.28	Remark QP Averag Averag	 e						
7 0.527 39.95 -0.65 0.03 10.76 50.09 56.00 -5.91 QP 8 0.601 30.77 -0.64 0.04 10.77 40.94 46.00 -5.06 Average 9 0.928 29.62 -0.67 0.07 10.85 39.87 46.00 -6.13 Average 10 2.915 37.80 -0.65 0.30 10.92 48.37 56.00 -7.63 QP 11 4.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average	0.19 Trace: 19	Freq MHz 0.158 0.307 0.415 0.435	Read Level dBuV 39.47 30.38 33.22 41.44	LISN Factor dB -0.69 -0.67 -0.63 -0.64	Aux Factor dB 0.01 0.00 -0.05 -0.03	Cable Loss dB 10.77 10.74 10.73 10.73	Hz) Level dBuV 49.56 40.45 43.27 51.50	Limit Line dBuV 65.56 50.06 47.55 57.15	Over Limit -16.00 -9.61 -4.28 -5.65	QP Averag QP	 e						
8 0.601 30.77 -0.64 0.04 10.77 40.94 46.00 -5.06 Average 9 0.928 29.62 -0.67 0.07 10.85 39.87 46.00 -6.13 Average 10 2.915 37.80 -0.65 0.30 10.92 48.37 56.00 -7.63 QP 11 4.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average	0.14 Trace: 19 1 2 3 4 5	Freq MHz 0.158 0.307 0.415 0.435 0.452	Read Level dBuV 39.47 30.38 33.22 41.44 41.55	LISN Factor -0.69 -0.67 -0.63 -0.64 -0.64	Aux Factor dB 0.01 0.00 -0.05 -0.03 -0.01	Cable Loss dB 10.77 10.74 10.73 10.73 10.73	Hz) Level dBuV 49.56 40.45 43.27 51.50 51.64	Limit Line dBuV 65.56 50.06 47.55 57.15 56.85	Over Limit -16.00 -9.61 -4.28 -5.65 -5.21	QP Averag QP QP QP QP	e e						
9 0.928 29.62 -0.67 0.07 10.85 39.87 46.00 -6.13 Average 10 2.915 37.80 -0.65 0.30 10.92 48.37 56.00 -7.63 QP 11 4.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average	0.1 Trace: 19 1 2 3 4 5 6	Freq MHz 0.158 0.307 0.415 0.435 0.452 0.452 0.454	Read Level dBuV 39.47 30.38 33.22 41.44 41.55 33.18	LISN Factor dB -0.69 -0.67 -0.63 -0.64 -0.64 -0.64 -0.64	Aux Factor dB 0.01 0.00 -0.05 -0.03 -0.01 -0.01	Cable Loss dB 10.77 10.74 10.73 10.73 10.74 10.74	Hz) Level dBuV 49.56 40.45 43.27 51.50 51.64 43.27	Limit Line dBuV 65.56 50.06 47.55 57.15 56.85 46.80	Over Limit -16.00 -9.61 -4.28 -5.65 -5.21 -3.53	Remark QP Averag Averag QP QP Averag	e e						
10 2.915 37.80 -0.65 0.30 10.92 48.37 56.00 -7.63 QP 11 4.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average	0.19 Trace: 19 1 2 3 4 5 6 7	Freq MHz 0.158 0.307 0.415 0.435 0.452 0.452 0.454 0.527	Read Level dBuV 39.47 30.38 33.22 41.44 41.55 33.18 39.95	LISN Factor dB -0.69 -0.67 -0.63 -0.64 -0.64 -0.64 -0.64 -0.65	Free Aux Factor dB 0.01 0.00 -0.05 -0.03 -0.01 -0.01 0.03	Cable Loss dB 10.77 10.74 10.73 10.73 10.74 10.74 10.74 10.74	Hz) Level dBuV 49.56 40.45 43.27 51.50 51.64 43.27 50.09	Limit Line dBuV 65.56 50.06 47.55 57.15 56.85 46.80 56.00	Over Limit -16.00 -9.61 -4.28 -5.65 -5.21 -3.53 -5.91	QP Averag QP QP QP Averag QP Averag QP	е е						
11 4.746 28.71 -0.64 0.64 10.86 39.57 46.00 -6.43 Average	0.19 Trace: 19 1 2 3 4 5 6 7 8	Freq MHz 0.158 0.307 0.415 0.435 0.452 0.454 0.527 0.601	Read Level dBuV 39.47 30.38 33.22 41.44 41.55 33.18 39.95 30.77	LISN Factor dB -0.69 -0.67 -0.63 -0.64 -0.64 -0.64 -0.65 -0.64	Free Aux Factor dB 0.01 0.00 -0.05 -0.03 -0.01 -0.01 0.03 0.04	Cable Loss dB 10.77 10.74 10.73 10.73 10.74 10.74 10.74 10.76 10.77	Hz) Level dBuV 49.56 40.45 43.27 51.50 51.64 43.27 50.09 40.94	Limit Line dBuV 65.56 50.06 47.55 57.15 56.85 46.80 56.00 46.00	Over Limit -16.00 -9.61 -4.28 -5.65 -5.21 -3.53 -5.91 -5.06	QP Averag QP QP QP Averag QP Averag QP Averag	e e e						
12 13.479 34.75 -0.80 2.64 10.91 47.50 60.00 -12.50 QP	0.19 Trace: 19 1 2 3 4 5 6 7 8 9	Freq MHz 0.158 0.307 0.415 0.435 0.452 0.454 0.527 0.601 0.928	Read Level dBuV 39.47 30.38 33.22 41.44 41.55 33.18 39.95 30.77 29.62 37.80	LISN Factor dB -0.69 -0.67 -0.63 -0.64 -0.64 -0.64 -0.65 -0.64 -0.65 -0.64 -0.67	Free Aux Factor dB 0.01 0.00 -0.05 -0.03 -0.01 -0.01 0.03 0.04 0.07	Cable Loss dB 10.77 10.74 10.73 10.73 10.74 10.74 10.74 10.76 10.77 10.85	Hz) Level dBuV 49.56 40.45 43.27 51.50 51.64 43.27 50.09 40.94 39.87	Limit Line dBuV 65.56 50.06 47.55 57.15 56.85 46.80 56.00 46.00 46.00	Over Limit dB -16.00 -9.61 -4.28 -5.65 -5.21 -3.53 -5.91 -5.06 -6.13	QP Averag QP QP Averag QP Averag QP Averag Averag	e e e						
	0.19 Trace: 19 1 2 3 4 5 6 7 8 9 10 11	Freq MHz 0.158 0.307 0.415 0.435 0.452 0.454 0.527 0.601 0.928 2.915 4.746	Read Level dBuV 39.47 30.38 33.22 41.44 41.55 33.18 39.95 30.77 29.62 37.80 28.71	LISN Factor dB -0.69 -0.63 -0.63 -0.64 -0.64 -0.64 -0.65 -0.64 -0.65 -0.64 -0.65 -0.64	Free Aux Factor dB 0.01 0.00 -0.05 -0.03 -0.01 -0.01 0.03 0.04 0.07 0.30 0.64	Cable Loss dB 10.77 10.74 10.73 10.73 10.74 10.74 10.76 10.77 10.85 10.92 10.86	Hz) Level dBuV 49.56 40.45 43.27 51.50 51.64 43.27 50.09 40.94 39.87 48.37 39.57	Limit Line dBuV 65.56 50.06 47.55 57.15 56.85 46.80 56.00 46.00 46.00 56.00 46.00	Over Limit dB -16.00 -9.61 -4.28 -5.65 -5.21 -3.53 -5.91 -5.06 -6.13 -7.63 -6.43	Remark QP Averag QP QP Averag QP Averag QP Averag QP Averag QP	e e e						
	0.19 Trace: 19 1 2 3 4 5 6 7 8 9 10 11	Freq MHz 0.158 0.307 0.415 0.435 0.452 0.454 0.527 0.601 0.928 2.915 4.746	Read Level dBuV 39.47 30.38 33.22 41.44 41.55 33.18 39.95 30.77 29.62 37.80 28.71	LISN Factor dB -0.69 -0.63 -0.63 -0.64 -0.64 -0.64 -0.65 -0.64 -0.65 -0.64 -0.65 -0.64	Free Aux Factor dB 0.01 0.00 -0.05 -0.03 -0.01 -0.01 0.03 0.04 0.07 0.30 0.64	Cable Loss dB 10.77 10.74 10.73 10.73 10.74 10.74 10.76 10.77 10.85 10.92 10.86	Hz) Level dBuV 49.56 40.45 43.27 51.50 51.64 43.27 50.09 40.94 39.87 48.37 39.57	Limit Line dBuV 65.56 50.06 47.55 57.15 56.85 46.80 56.00 46.00 46.00 56.00 46.00	Over Limit dB -16.00 -9.61 -4.28 -5.65 -5.21 -3.53 -5.91 -5.06 -6.13 -7.63 -6.43	Remark QP Averag QP QP Averag QP Averag QP Averag QP Averag QP	e e e						
	0.19 Trace: 19 1 2 3 4 5 6 7 8 9 10 11	Freq MHz 0.158 0.307 0.415 0.435 0.452 0.454 0.527 0.601 0.928 2.915 4.746	Read Level dBuV 39.47 30.38 33.22 41.44 41.55 33.18 39.95 30.77 29.62 37.80 28.71	LISN Factor dB -0.69 -0.63 -0.63 -0.64 -0.64 -0.64 -0.65 -0.64 -0.65 -0.64 -0.65 -0.64	Free Aux Factor dB 0.01 0.00 -0.05 -0.03 -0.01 -0.01 0.03 0.04 0.07 0.30 0.64	Cable Loss dB 10.77 10.74 10.73 10.73 10.74 10.74 10.76 10.77 10.85 10.92 10.86	Hz) Level dBuV 49.56 40.45 43.27 51.50 51.64 43.27 50.09 40.94 39.87 48.37 39.57	Limit Line dBuV 65.56 50.06 47.55 57.15 56.85 46.80 56.00 46.00 46.00 56.00 46.00	Over Limit dB -16.00 -9.61 -4.28 -5.65 -5.21 -3.53 -5.91 -5.06 -6.13 -7.63 -6.43	Remark QP Averag QP QP Averag QP Averag QP Averag QP Averag QP	e e e						

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ction 15.10)9			
Test Frequency Range:	Range 1: 30MHz t Range 2: 30MHz t					
Test site:	Measurement Dist		′Sem	i-Anechoic C	Chamber)	
	Frequency	Detecto		RBW	VBW	Remark
Receiver setup:	30MHz-1GHz	Quasi-pe			300kHz	Quasi-peak Value
		Peak		1MHz	3MHz	Peak Value
	Above 1GHz	RMS		1MHz	3MHz	Average Value
Limit:	Frequency		Lim	nit (dBuV/m (Remark
Linnt	30MHz-88M			40.0	- /	Quasi-peak Value
	88MHz-216M	1Hz		43.5		Quasi-peak Value
	216MHz-960	MHz		46.0		Quasi-peak Value
	960MHz-1G	Hz		54.0		Quasi-peak Value
	Above 1GH	1-7		54.0		Average Value
	Above TGF	12		74.0		Peak Value
Test setup:	Below 1GHz	4m		RF T Recei		
	Ground Plane —					
			3m Sund Refere	Pre	Antenna Tower	
Test Procedure:	degrees to dete 2. The EUT was s which was mou 3. The antenna he ground to deter	eter semi- rmine the p et 3 meters nted on the light is vari- mine the m	anecl positi s awa e top ed fro naxim	hoic camber on of the hig ay from the ir of a variable om one mete um value of	The table hest radiat herference height ant the field st	was rotated 360 tion. e-receiving antenna, tenna tower. neters above the

Project No.: JYTSZE2004085

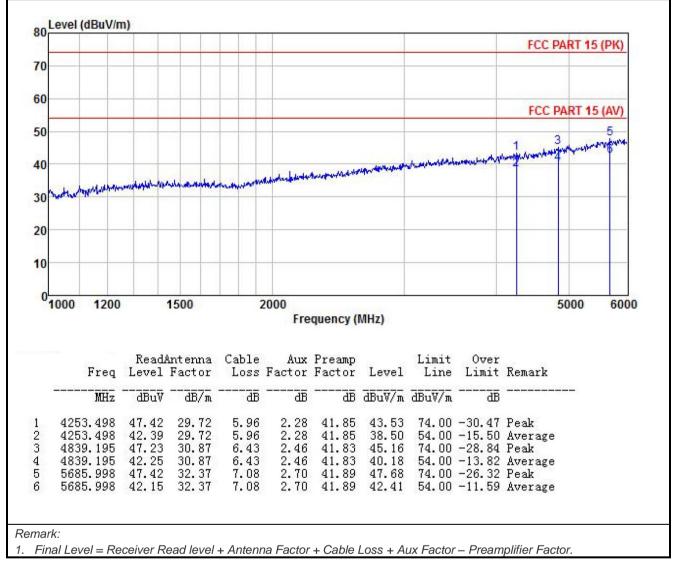
	measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor and lower than the limit 20dB , which were no recorded

Measurement Data:

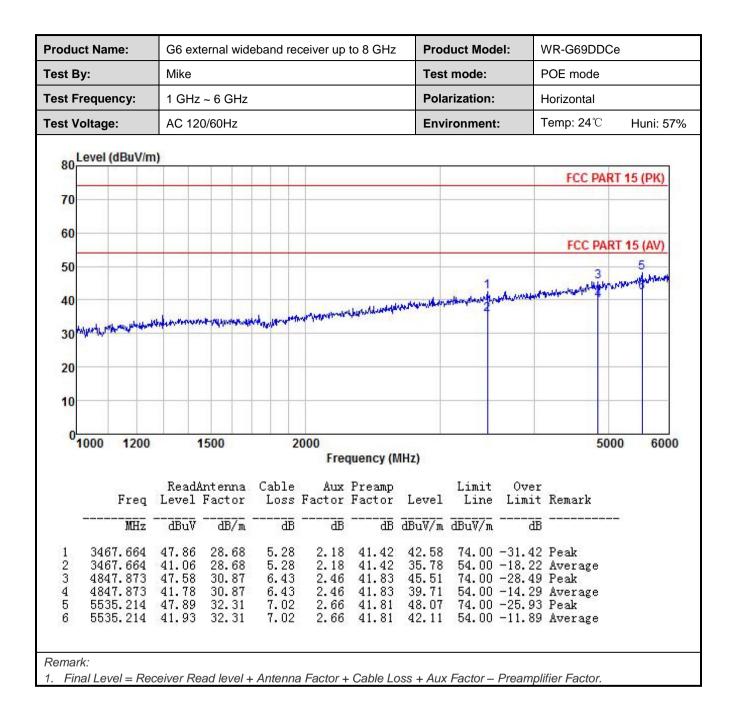
Range 1(8KHz~80MHz):

Below 1GHz:

Product Name:	G6 ex	ternal wid	eband re	ceiver up	to 8 GHz	Pro	duct Mod	el:	WR-G69DD	Ce
est By:	Mike					Tes	t mode:		POE mode	
est Frequency:	30 MH	lz ~ 1 GH	z			Pola	arization:		Vertical	
est Voltage:	AC 12	20/60Hz				Env	rironment	:	Temp: 24 ℃	Huni: 57%
80 Level (dBuV	m)									
70			_							
60	_							-	FCC PART1	5 CLASS B
50					1.50					
40							, interest	Wh		
30 20	Whenness	www.	un and	W W	NAMA	V	Myna	ment (M	howhy	Virme
10										
10 0 ₃₀	50		100			00			500	1000
	50		100	Fre	2 equency (8	500	1000
030		Antenna Factor	Cable	Aux		MHz)	Limit Line	Over Limit		1000
030	Read/		Cable	Aux	e quency (Preamp Factor	MHz) Level				1000



roduct Name:	G6 ex	ternal wid	deband r	eceiver u	up to 8 GI	Hz Pi	roduct M	odel:	WR-G69D	DCe
est By:	Mike					Те	est mode	:	POE mode	9
est Frequency:	30 Mł	Hz ~ 1 G⊦	łz			P	olarizatio	n:	Horizontal	
est Voltage:	AC 12	20/60Hz				E	Environment: Temp: 2		Temp: 24°	C Huni: 57%
80 Level (dBuV/	m)									
70										
10										
60									FCC PART1	CLASS B
50		_	_							
40				1	2	3 4	5		6	
40				Ma	Na/Put with	41 M	MM	have atten	M Martin	M. M.
30		MM		J.		WI	WW	· V I	my flor a	"hut h
20	_	Multi and							¥	
10 metringenter	mynthe m	W	"WAY"							
030	50		100	1		200	112 T		500	1000
				Fre	equency	(MHZ)				
	ReadA	Intenna	Cable	Aux	Preamp		Limit	Over		
Freq	Level			Factor	Factor	Level		Limit	Remark	
MHz	dBu∛	dB/m	dB	dB	dB	dBuV/m	dBuV/m	dB		
1 125.007 2 171.393	57.84 51.43	11.40 16.58	0.58 0.66	0.00 0.00	29.36 29.04	40.46 39.63	43.50 43.50	-3.04 -3.87	QP QP	
2 171.393 3 204.955 4 234.168	49.38	18.32	0.73	0.00	28.80	39.63 40.32	43.50	-3.87	QP	
5 329.039 6 576.644	47.88	18.76 19.76	0.90	0.00	28.51	39.03 38.76	46.00	-6.97	QP	
0 010.044	40.02	15.10	1.19	0.00	20.01	50.10	40.00	1.24	-92 L	
Remark:										

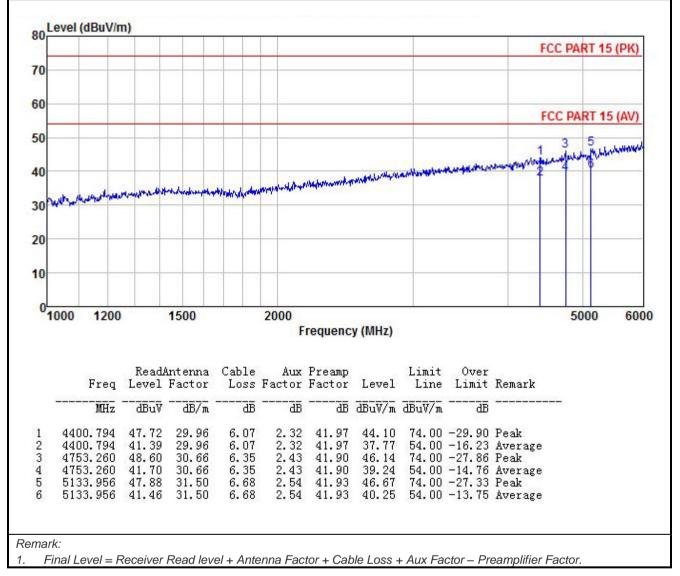


Above 1GHz:

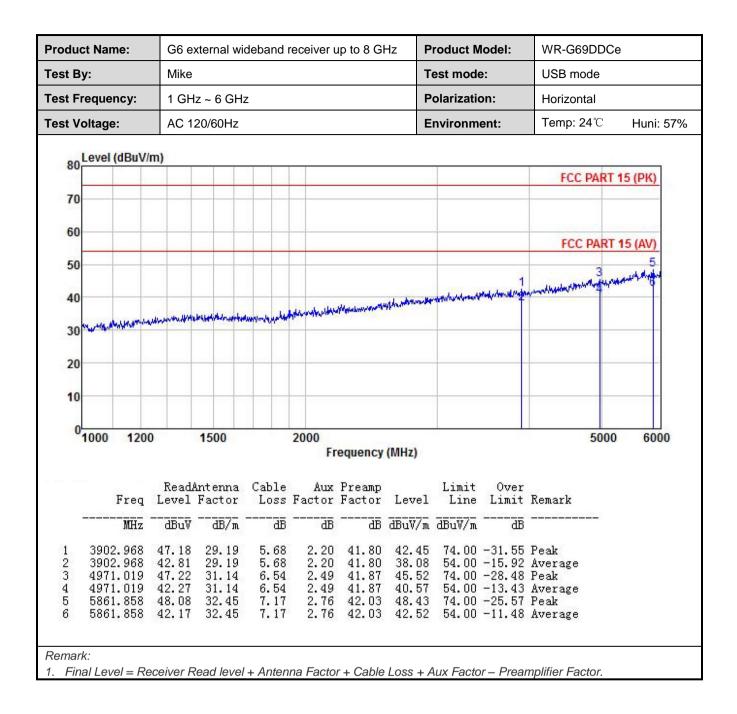
Product Name:	G6 external wideband receiver up to 8 GHz	Product Model:	WR-G69DDCe
Test By:	Mike	Test mode:	POE mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Below 1GHz:

Product Name:	G6 external wideband receiver up to 8 GHz					Product N	lodel:	WR-G	69DDCe
ſest By:	Mike	e Test mode:			e:	USB r	node		
Test Frequency:	30 MHz ~	1 GHz			1	Polarizati	on:	Vertical	
Fest Voltage:	AC 120/60Hz					Environment:		Temp: 24℃ Huni:	
Level (dBu)	V/m)								
80									
70			_						
60					_		_		
50								CC PART	15 CLASS B
50							_	Ŷ	++++
40	many		h N	he was	N	5	1. Junio	he share	n. I put
30	V L	mul	NA	www.	Martin	Monthelphine	UN AND ALANT	W WHAT	- martine
20		1			10.000				
10									
030	50		100		200			500	1000
				Frequen	cy (MHz)				
		Antenna	Cable	Aux	Preamp		Limit	Over	
Fre	eq Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Remark
M	Hz dBu∛	dB/m	dB	dB	dB	dBuV/m	dBuV/m	dB	
1 34.76		12.56	0.34	0.00		37.82	40.00	-2.18	
2 58.20 3 125.88 4 185.78 5 312.17	03 57.24 36 56.30	10.98 11.47	0.42 0.58	0.00		38.86 39.00	40.00 43.50	-1.14	
4 185.78	38 48.78	17.23	0.69	0.00	28.93	37.77	43.50	-5.73	QP
5 312.11 6 601.42		18.73 19.91	0.88	0.00			46.00	-7.71	
							100.00		(19 1 777)
									19 9 77



Product Name:	G6	G6 external wideband receiver up to 8 GHz					Product I	/lodel:	WR-0	69DDC	е
Test By:	Mil	Mike 30 MHz ~ 1 GHz					Test mod	e:	USB	mode	
Test Frequency	y: 30						Polarizati	Horizontal			
Test Voltage:	AC	AC 120/60Hz					Environment:			Temp: 24℃ Huni: 57	
Lovol	(dBuV/m)										
80	(ubu v/m)										
70						_			-	_	
60											
									FCC PART	15 CLAS	SSB
50							5	6			
40	_			1	1 3	2 3 4 A	Antich			In.	H.
30				1	Wardhard	Mar	4	wentlente	the Horage of	(Manufad	1 m
1. M	home nor	mah	Mr.	1 M							
20			1/1	where a							
10	_							_			
030	5			100		200			500		1000
50	5	U		100	Frequenc				500		1000
		Read	Intenna	Cable	Aux	Preamp		Limit	Over		
	Freq		Factor		Factor	Factor	Level		Limit		k
	MHz	dBu∛	dB/m	dB	dB	dB	dBuV/m	dBuV/m	dB		
	129.923	54.79	11.80	0.59	0.00	29.33		43.50	-5.65		
2	178.133 199.986	49.29 48.17	16.86 18.30	0.68	0.00				-5.66		
4 :	216.024	47.65	18.37	0.74	0.00	28.73	38.03	46.00	-7.97	QP	
	298.268 400.432	53.00 52.99	18.69 19.10	0.86	0.00	28.45	44.10	46.00	-1.90		
Remark:											
 Final Level The emissio 											



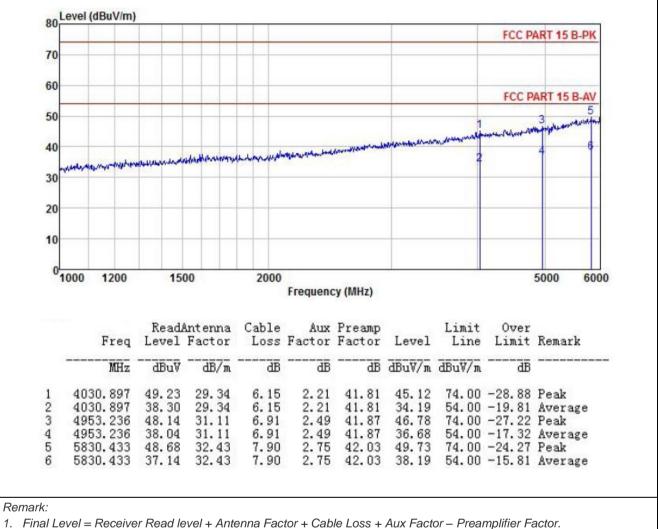
Above 1GHz:

Product Name:	G6 external wideband receiver up to 8 GHz	Product Model:	WR-G69DDCe
Test By:	Mike	Test mode:	USB mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Range 2(80MHz~8GHz): Below 1GHz:

roduct Name:	G6 externa	r up to 8 (GHz	Product M	/lodel:	WR-G	G69DDC	Ce		
est By:	Mike						e:	POE	mode	
est Frequency:	30 MHz ~ 1 GHz					Polarization:		Vertic	Vertical	
est Voltage:	AC 120/60	Hz				Environm	ent:	Temp	: 24 ℃	Huni: 57
80 Level (dBu	V/m)									
70								_		
60			_							
								FCC PAR	T15 CLA	SSB
50							5		6	
			3		4				9	
40 1 2		_	Ă	ALL.	1			1		
which	my		M	himph	May				M. 1	
30	www.m	WA washing	1.11	hunth	1mg	www.huh	u fulnilionador	and	Manual	white
with	www	M. Marine	1.11	www.	Ma	white	withdraw	mill	Many	lunu
30 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	w	ra Paurana	1.11	www.	All	whither	withdraw	nul	Manual	lwhile
30 20 10	× 1 / 1	M.M.	water	www.h		handhahn	urtile United	500	Mand	1000
30 m m m	50	M.M.	1.11	Frequence	200	lyndh pha	urfilm Univer	500	mand	1000
30		1 PAL / M	100	Frequent	200 cy (MHz)	lywh dw			Mund	1000
		Antenna	100 Cable	Frequent	200 cy (MHz) Preamp	Level	Limit	Over	Remar	1
30 20 10 0 30 F1	Read	Antenna Factor	100 Cable	Frequence Aux Factor	200 cy (MHz) Preamp Factor	Level dBuV/m	Limit Line	Over	Remar	1
	Read. req Level Hz dBuV 251 54.61	Antenna Factor dB/m - 12.61	Cable Loss dB 0.34	Frequent Aux Factor dB 0.00	200 cy (MHz) Preamp Factor dB 29.95	Level dBuV/m 37.61	Limit Line dBuV/m 40.00	Over Limit 	Remar 	1
	Read. req Level Hz dBuV 251 54.61 388 54.06 007 57.88	Antenna Factor 	Cable Loss dB 0.34 0.35 0.58	Frequent Aux Factor dB 0.00 0.00 0.00	200 cy (MHz) Preamp Factor dB 29.95 29.91 29.36	Level dBuV/m 37.61 37.26 40.50	Limit Line dBuV/m 40.00 40.00 43.50	Over Limit dB -2.39 -2.74 -3.00	QP QP QP QP	1
30 20 10 0 30 Fr 1 1 35.2 2 38.8	Read. req Level Hz dBuV 251 54.61 388 54.06 007 57.88 393 50.58	Antenna Factor 	Cable Loss dB 0.34 0.35	Frequent Aux Factor dB 0.00 0.00 0.00 0.00 0.00	200 cy (MHz) Preamp Factor dB 29.95 29.91 29.36 28.84	Level dBuV/m 37.61 37.26 40.50 40.55	Limit Line dBuV/m 40.00 40.00 43.50 43.50	Over Limit -2.39 -2.74	QP QP QP QP QP	1

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	G6 externa	GHz	Product Model:		WR-G69DDCe POE mode		9				
Test By:	Mike		Test mod	e:	POE	mode					
Test Frequency:	30 MHz ~ 7	30 MHz ~ 1 GHz					on:	Horiz	Horizontal		
Test Voltage:	AC 120/60Hz					Environment:		Temp	Temp: 24°C Huni: 57		
1			_								
80 Level (dB	uv/m)										
70							_				
60											
2005) - 10 - 10							F	CC PART	15 CLASS	B	
50				2	2		ş		6		
40			1	Mul	M June	4	1			_	
30			ANDER	Why . May	V	por myself	1. July	MI	M. Link		
			1				MAN WA	differe.	Aler.	34	
20 100	in which	1 April 1	1				_				
20 your man	wood and the	hold have been and the second	art -								
20 photomatics	wood and the	hat the here with									
10	50	holouluy pr	00		200		5	00		1000	
P.		holohology pp		Frequenc			5	00		1000	
10	50				y (MHz)					1000	
10 0 30	50 Read	Antenna Factor	Cable	Aux	y (MHz) Preamp) Level	5 Limit Line	Over	Remark		
10 0 30	50 Read	Antenna Factor	Cable	Aux	y(MHz) Preamp Factor	Level	Limit Line	Over			
10 0 30	50 Feq Level MHz dBuV 886 55.11	Antenna Factor dB/m 11.47	Cable Loss dB 0.58	Aux Factor dB 0.00	y (MHz) Preamp Factor dE 29.35	: Level dBuV/m 37.81	Limit Line dBuV/m 43.50	Over Limit 	Remark 		
10 0 30	50 50 Freq Level MHz dBuV 886 55.11 559 54.45	Antenna Factor 	Cable Loss dB 0.58 0.63	Aux Factor dB 0.00 0.00	y (MHz) Preamp Factor dE 29.35 29.15	E Level dBuV/m 37.81 40.94	Limit Line dBuV/m 43.50 43.50	Over Limit -5.69 -2.56	Remark QP QP		
10 0 30	50 50 Freq Level MHz dBuV 886 55.11 559 54.45 286 51.29 995 48.39	Antenna Factor dB/m 11.47 15.01 18.23 18.63	Cable Loss dB 0.58 0.63 0.72 0.84	Aux Factor dB 0.00 0.00 0.00 0.00 0.00	y (MHz) Preamp Factor 29.35 29.15 28.83 28.48	Level dBuV/m 37.81 40.94 41.41 39.38	Limit Line dBuV/m 43.50 43.50 43.50 43.00	Over Limit -5.69 -2.56 -2.09 -6.62	Remark QP QP QP QP		
10 0 30 1 125. 2 157. 3 199. 4 281. 5 400.	50 50 Freq Level MHz dBuV 886 55.11 559 54.45 286 51.29 995 48.39	Antenna Factor dB/m 11.47 15.01 18.23 18.63 19.10	Cable Loss dB 0.58 0.63 0.72	Aux Factor dB 0.00 0.00 0.00	y (MHz) Preamp Factor dE 29.35 29.15 28.83 28.48 28.78	E Level dBuV/m 37.81 40.94 41.41 39.38 43.54	Limit Line dBuV/m 43.50 43.50 43.50	Over Limit -5.69 -2.56 -2.09	QP QP QP QP QP QP QP		

Above 1GHz:

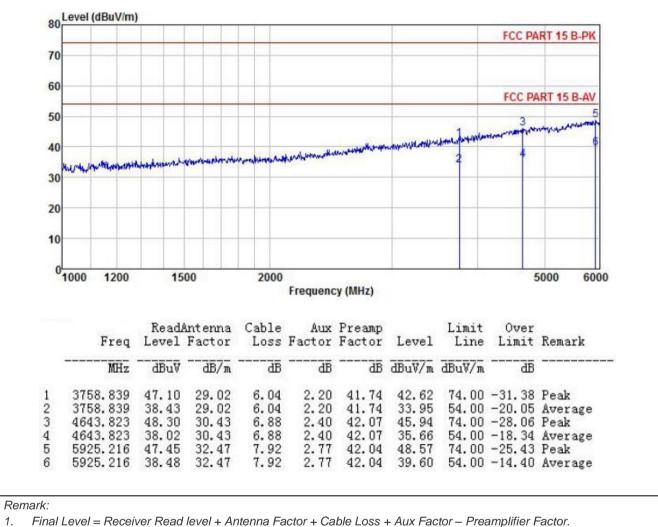
Product Name:	G6 external wideband receiver up to 8 GHz	Product Model:	WR-G69DDCe
Test By:	Mike	Test mode:	POE mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

2. The emission levels of above 6GHz ware lower than the limit 20dB and not show in test report.

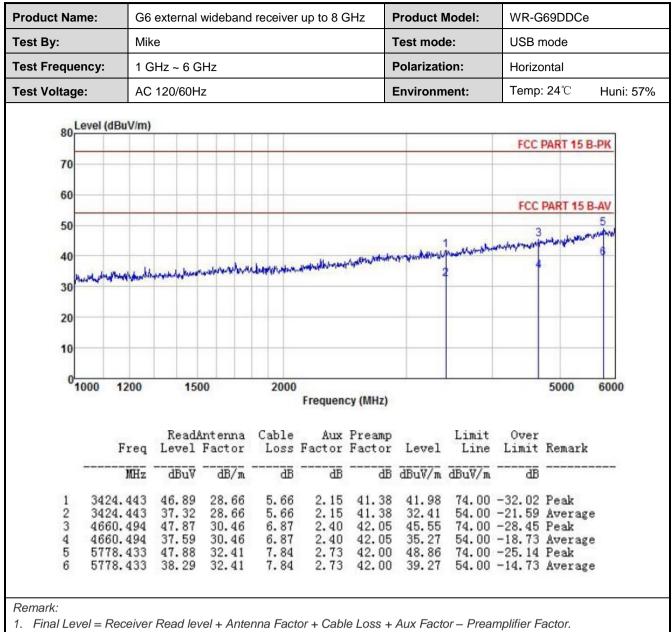
Product Name	e: G6	external	wideband	d receive	r up to 8 (GHz I	Product N	Nodel:	WR-G	69DDCe	
Test By:	Mil	ke				1	Test mode: PO			node	
Test Frequen	cy: 1 (1 GHz ~ 6 GHz				I	Polarization: Ho			rizontal	
Test Voltage:	AC	AC 120/60Hz				E	Environm	ent:	Temp: 24°C Huni: 5		Huni: 57%
80 Leve	el (dBuV/m)								FCCE	ART 15 B-	DK
70									Teer	ANT 15 04	TX .
60									FCC F	PART 15 B-	AV
50	_		_							3	5
40							non-hodolitics	mathematic	hand realized	-	6
	whiteheretrenite	mundural	weelstatistic	sprander states	kinennene	with the second		2		1	
30											
20											
10											
10											
01000	0 1200	150	0	2000	Frequence	cy (MHz)				5000	6000
		P., J.		C-11-	A	Deres		12-24	0		
	Freq		Intenna Factor	Loss	Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∛			ā	ā	dBuV/m	dBuV/m	dB		
	3854.321	47.98	29.13	6.09					-30.40		
	3854.321	37.52	29.13	6.09				54.00	-20.86	Average	
	4847.873 4847.873	47.86 37.66	30.87 30.87	6.83 6.83	2.46	41.83 41.83	46.19	74.00	-27.81	Peak Average	
	4847.873 5840.889	47.10	32.44	7.90			48.16				
		37.77	32.44	7.90						Average	
	5840.889	91111									

Below 1GHz:

Product Name:			Model:	WR-0	G69DDCe	e				
Гest By:	Mike			Test mode:		USB	mode			
Test Frequency:	30 MHz ~ ⁻			Polarization:		Vertical				
Fest Voltage:	AC 120/60	Hz				Environn	nent:	Temp	⊳: 24 ℃	Huni: 57
80 Level (dB 70 60 50 40 30	uV/m)	m	N. M.	www	Villen	w.	4	FCC PART	15 CLASS	B
20 10 0 30	50		100	Frequen	200 cy (MHz)			500		1000
10 0 30	Read	Antenna	Cable	Aux	cy (MHz) Preamp		Limit	Over		
10 0 30 F1	Read <i>i</i> req Level	Factor	Cable Loss	Aux Factor	cy (MHz) Preamp Factor	Level	Limit Line	Over Limit	Remark	
10 0 30 F1	Read		Cable	Aux	cy (MHz) Preamp Factor		Limit Line	Over	Remark	



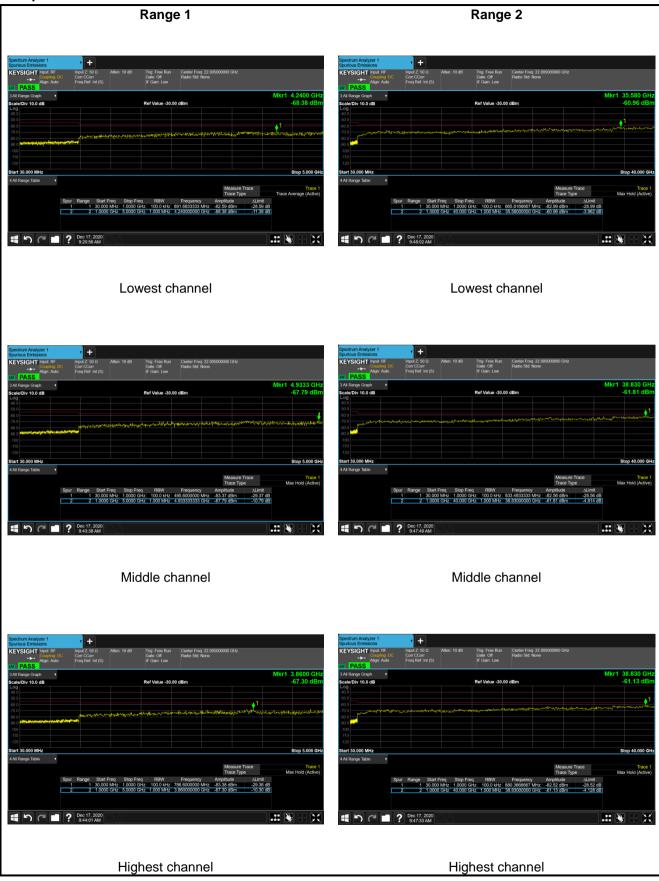
	G6 exte	G6 external wideband receiver up to 8 GHz					lodel:	WR-G69DDCe		
Test By:	Mike	Mike 30 MHz ~ 1 GHz					e:	USB	mode	
Test Frequency:	30 MHz						Polarization:		Horizontal	
Test Voltage:	AC 120/	/60Hz				Environment:			Temp: 24°C Huni: 57	
Level (dE										
80	Suv/m)									
70										
60										
00								FCC PAR	T15 CLAS	SSB
50					_	2	3		-	e
40		1			m when	want		4	u Ĭ	
				Anna Mat	AL. AMARY	IJ	And In the	Where we	MANY	1 mil
30	Mr.	I.I.K.	all and				And the second	Leady.		
and the second			ATT							
20 Marthan	NUT T	Mar 4	mystan							
20 10 10	N.W W	when	my							
10	hud *	W	maria							
100	50	MAR N	100	Fraguan	200			500		1000
10	50	WW Y	100	Frequen	200 cy (MHz)			500		1000
10		adéntenna			cy (MHz)		Limit			1000
10 0 30	Re	adAntenna rel Factor	Cable	Aux	cy(MHz) Preamp	Level	Limit Line	Over	Remark	
10 0 30	Re Freq Lev		Cable Loss	Aux Factor	cy (MHz) Preamp Factor	Level	Line	Over		
10 0 30 F 1 199.	Re Freq Lev MHz dB .986 50.	el Factor uV	Cable Loss dB 0.72	Aux Factor dB 0.00	cy (MHz) Preamp Factor dB 28.83	Level dBuV/m 40.36	Line dBuV/m 43.50	Over Limit dB -3.14	Remark	
10 0 30 F 1 199.	Re Freq Lev MHz dB 986 50. 268 53.	el Factor uV	Cable Loss dB 0.72 0.86	Aux Factor dB 0.00 0.00	cy (MHz) Preamp Factor dB 28.83 28.45	Level dBuV/m 40.36 44.45	Line dBuV/m 43.50 46.00	Over Limit -3.14 -1.55	Remark QP QP	
10 0 30 F 1 199.	Re Freq Lev MHz dB 986 50. 268 53. 432 52.	el Factor uV dB/m 17 18.30 35 18.69 86 19.10	Cable Loss dB 0.72 0.86 0.99	Aux Factor dB 0.00 0.00 0.00	cy (MHz) Preamp Factor dB 28.83 28.45 28.78	Level dBuV/m 40.36 44.45 44.17	Line dBuV/m 43.50 46.00 46.00	Over Limit -3.14 -1.55 -1.83	QP QP QP	
10 030 1 199. 2 298. 3 400. 4 601.	Re Freq Lev MHz dB 986 50. 268 53. 432 52.	el Factor uV dB/m 17 18.30 35 18.69 86 19.10 63 19.91 59 20.93	Cable Loss dB 0.72 0.86 0.99 1.21 1.40	Aux Factor dB 0.00 0.00 0.00 0.00	cy (MHz) Preamp Factor 28.83 28.45 28.78 28.93	Level dBuV/m 40.36 44.45 44.17 41.82 43.73	Line dBuV/m 43.50 46.00	Over Limit -3.14 -1.55	QP QP QP QP QP	


Above 1GHz:

Product Name:	G6 external wideband receiver up to 8 GHz	Product Model:	WR-G69DDCe
Test By:	Mike	Test mode:	USB mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

The emission levels of above 6GHz ware lower than the limit 20dB and not show in test report.

2. The emission levels of above 6GHz ware lower than the limit 20dB and not show in test report.



6.3 Receiver Conducted Power

Test Requirement:	FCC Part 15 B Section 15.111 (a) and 15.109(f)
Limit:	Below 1GHz<2nW(-57dBm) Above 1GHz<4nW(-54dBm)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Project No.: JYTSZE2004085