

Bundesnetzagentur

TEST REPORT

Test report no.: 1-6563/18-01-04-A

Testing laboratory

CTC advanced GmbH

BNetzA-CAB-02/21-102

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.ctcadvanced.com</u> e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Hamilton Bonaduz AG Via Crusch 8 7402 Bonaduz / SWITZERLAND Phone: -/-Contact: Petra Netter e-mail: <u>pnetter@hamilton.ch</u> Phone: +41 58 610 25 87

Manufacturer

Hamilton Bonaduz AG Via Crusch 8 7402 Bonaduz / SWITZERLAND

Test standard/s

FCC - Title 47 CFR Part 15	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices
For further applied test sta	indards please refer to section 3 of this test report.

	Test Item
Kind of test item:	Optical oxygen sensor
Model name:	VisiPro DO / VisiTrace DO
FCC ID:	2AQYJVISIDO
IC:	24225-VISIDO
Frequency:	DTS band 2400 MHz to 2483.5 MHz
Technology tested:	Bluetooth [®] LE
Antenna:	Integrated PCB antenna
Power supply:	24.0 V DC by external power supply
Temperature range:	-20°C to +140°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino
Lab Manager
Radio Communications

Test performed:

Mihail Dorongovskij Lab Manager Radio Communications

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	
	2.2	Application details	
	2.3	Test laboratories sub-contracted	3
3	Test s	standard/s, references and accreditations	4
4	Test e	nvironment	5
5	Test i	tem	5
	5.1	General description	5
	5.2	Additional information	5
6	Seque	ence of testing	6
	6.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	6
	6.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	7
	6.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	
	6.4	Sequence of testing radiated spurious above 18 GHz	9
7	Descr	iption of the test setup	10
	7.1	Shielded semi anechoic chamber	11
	7.2	Shielded fully anechoic chamber	12
	7.3	Radiated measurements > 18 GHz	13
	7.4	Conducted measurements Bluetooth system	14
	7.5	Shielded fully anechoic chamber	15
8	Meas	urement uncertainty	16
9	Sumn	nary of measurement results	17
10	Α	dditional comments	18
11	Ν	leasurement results	19
	11.1	System gain	19
	11.2	Power spectral density	
	11.3	DTS bandwidth – 6 dB bandwidth	21
	11.4	Occupied bandwidth – 99% emission bandwidth	22
	11.5	Maximum output power	
	11.6	Detailed spurious emissions @ the band edge - conducted	
	11.7	Band edge compliance conducted	
	11.8	TX spurious emissions conducted	
	11.9	Spurious emissions radiated below 30 MHz	
	11.10		
	11.11	Spurious emissions radiated above 1 GHz	
Anr	nex A	Glossary	46
Anr	nex B	Document history	47
Anr	nex C	Accreditation Certificate - D-PL-12076-01-04	47
Anr	nex D	Accreditation Certificate – D-PL-12076-01-05	
© (CTC adv	anced GmbH	Page 2 of 48

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-6563/18-01-04 and dated 2020-07-13.

2.2 Application details

Date of receipt of order:	2018-07-16
Date of receipt of test item:	2020-01-20
Start of test:	2020-02-17
End of test:	2020-03-05
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description				
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices				
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus				
Guidance	Version	Description				
KDB 558074 D01 ANSI C63.4-2014 ANSI C63.10-2013	v05r02 -/- -/-	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices				
Accreditation	Description	n				
D-PL-12076-01-04	https://www.	unication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04.pdf				
D-PL-12076-01-05		unication FCC requirements dakks.de/as/ast/d/D-PL-12076-01-05.pdf				

4 **Test environment**

		T _{nom}	+22 °C during room temperature tests
Temperature	:	T_{max}	No tests under extreme environmental conditions required.
		T_{min}	No tests under extreme environmental conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V_{nom}	24.0 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme environmental conditions required.
		V_{min}	No tests under extreme environmental conditions required.

5 **Test item**

General description 5.1

Kind of test item :	Optical oxygen sensor
Model name :	VisiPro DO / VisiTrace DO
HMN :	n/a
PMN :	VisiPro DO
	VisiTrace DO
HVIN :	243667
	24356X
FVIN :	n/a
S/N serial number :	Not available
Hardware status :	-
Software status :	-
Firmware status :	-
Frequency band :	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission :	DSSS
Use of frequency spectrum :	0333
Type of modulation :	GFSK
Number of channels :	40
Antenna :	Integrated PCB antenna
Power supply :	24.0 V DC by external power supply
Temperature range :	-20°C to +140°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-6563/18-01-04_AnnexA 1-6563/18-01-04_AnnexD

6 Sequence of testing

6.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

6.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

6.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

6.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

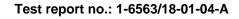
Premeasurement

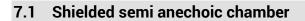
• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

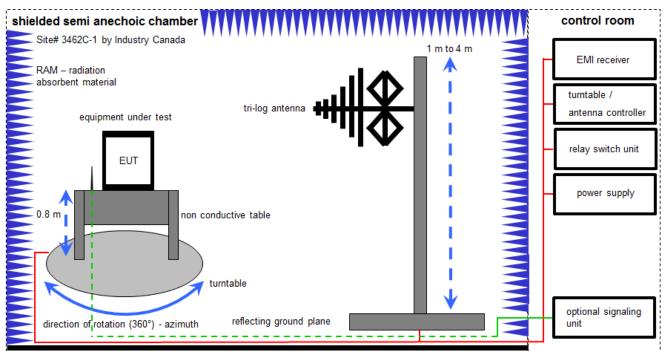
7 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

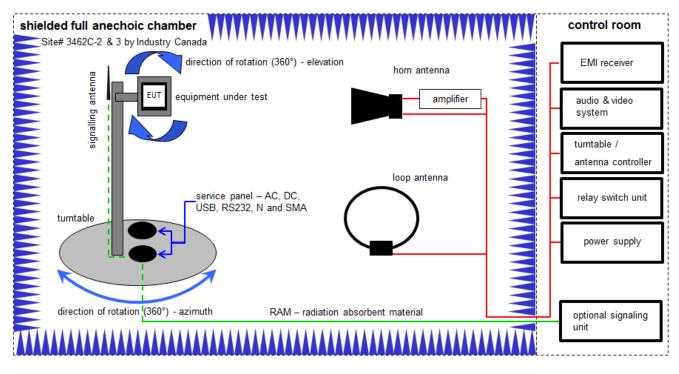
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter, EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKl!	24.11.2017	23.11.2020
7	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.11.2020
8	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-

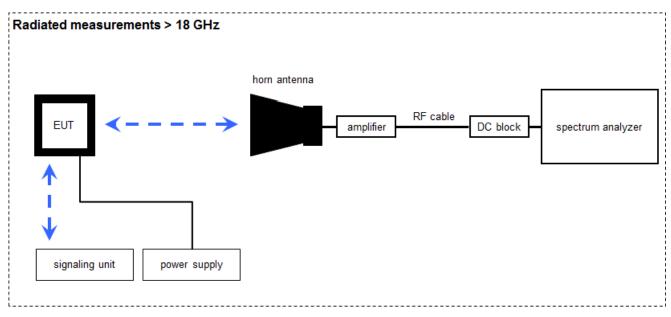
7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

<u>Example calculation</u>: FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

Equipment table:


No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	13.06.2019	12.06.2021
2	A, B, C	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
3	A, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	27.02.2019	26.02.2021
4	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	А	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
6	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.03.2021
7	A, C	Highpass Filter	WHKX2.6/18G-10SS	Wainwright	12	300004651	ne	-/-	-/-
8	A, C	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
9	A, C	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
10	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
11	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
12	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
13	A, B, C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	12.12.2017	11.12.2020

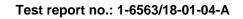
CTC || advanced

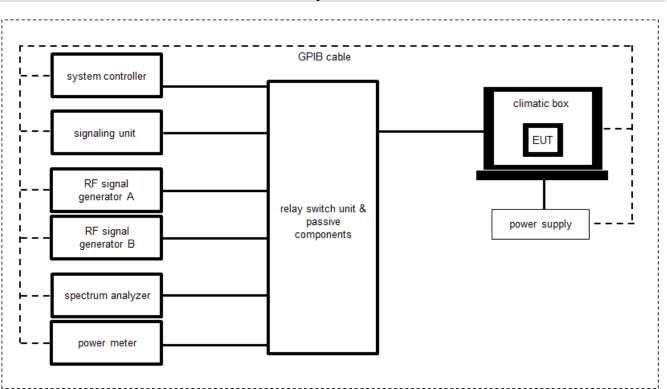
member of RWTÜV group

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF


(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

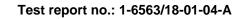

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

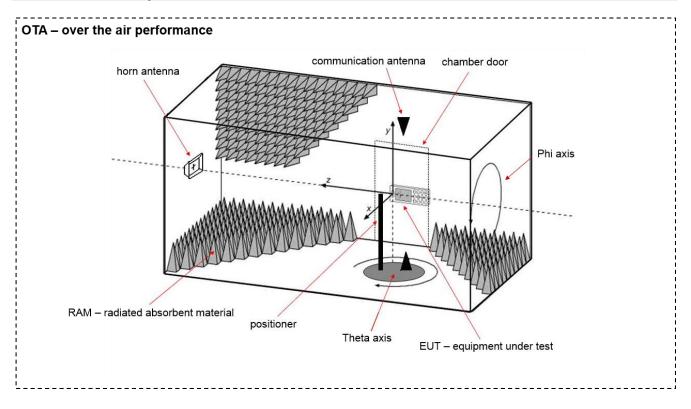
Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2019	16.12.2020
3	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
4	А	Horn Antenna 18.0- 40.0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vlKI!	18.02.2019	17.02.2022
5	Α	Power Supply DC	HMP2020	Rohde & Schwarz	102123	300005235	vlKl!	11.12.2018	10.12.2020

7.4 Conducted measurements Bluetooth system


OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	PC Laboratory	Exone	Fröhlich + Walter	S2642279-03 / 10	300004179	ne	-/-	-/-
2	Α	Wireless Connectivity Tester	CMW270	Rohde & Schwarz	100683	300005133	k	11.12.2019	10.12.2021
3	Α	Spectrum Analyzer	FSV30	Rohde & Schwarz	103809	300005359	vlKI!	17.12.2018	16.12.2020
4	А	Relay Switch Matrix	RSM-1	CTC advanced GmbH	0001	400001355	ev	07.01.2020	06.01.2021
5	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-
6	Α	Power Supply DC	HMP2020	Rohde & Schwarz	102123	300005235	vlKl!	11.12.2018	10.12.2020

CTC I advanced

7.5 Shielded fully anechoic chamber

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	CTIA-Chamber	CTIA-Chamber AMS 8500	ETS-Lindgren Finnland	-/-	300003327	ne	-/-	-/-
2	А	CTIA-Chamber - Positioning Equipment	CTIA-Chamber - Positioning Equipment	EMCO/2	-/-	300003328	ne	-/-	-/-
3	Α	CTIA-Chamber - Software	CTIA-Chamber - Software	EMCO/2	-/-	300003328	ne	-/-	-/-
4	Α	CTIA-Chamber - Antenna	3164-04	EMCO/2	00041915	300003328	ne	-/-	-/-
5	Α	Spectrum Analyzer 9kHz - 30 GHz	FSP30	R&S	100623	300003464	vlKI!	13.12.2018	12.12.2020
	Α	Power Supply DC	HMP2020	Rohde & Schwarz	102123	300005235	vlKI!	11.12.2018	10.12.2020

CTC I advanced

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Band edge compliance conducted	± 1.5 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

9 Summary of measurement results

\boxtimes										
		There were deviations from the technical specifications ascertained								
		This test report is only a partial test report. The content and verdict of the performed test cases are listed below.								
TC Identifie	r	Descriptio	n		Verdict Date Remar			emark		
RF-Testing	1	CFR Part T RSS - 247, Iss			See table!	2020-07-17		-/-		
Test specification clause	Test case	Guideline	Temperature conditions	Power source voltage	e Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	System gain	-/-	Nominal	Nomina	al 1 Msps					-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 8.4	Nominal	Nomina	al 1 Msps					-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth – 6 dB bandwidth	KDB 558074 DTS clause: 8.2	Nominal	Nomina	al 1 Msps					-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nomina	al 1 Msps	\boxtimes				-/-
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output power	KDB 558074 DTS clause: 8.3.1.1	Nominal	Nomina	al 1 Msps	×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	KDB 558074 DTS clause: 8.5	Nominal	Nomina	al 1 Msps					-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance cond. & rad.	KDB 558074 DTS clause: 8.7.2 or 8.7.3	Nominal	Nomina	al 1 Msps					-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 8.5	Nominal	Nomina	al 1 Msps					-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	-/-	Nominal	Nomina	al 1 Msps					-/-
15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nomina	al 1 Msps RX mode					-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	-/-	Nominal	Nomina	al 1 Msps RX mode					-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	-/-	Nominal	Nomina	al 1 Msps					-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH

10 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents: 1-6563_18-01-04_log1_conducted.pdf

Special test descriptions: None

Configuration descriptions:

Bluetooth Low Energy	
Longest Supported payload (37 – 255 Byte)	Tx: 37, RX: 37
LE 1M PHY supported	Yes
LE 2M PHY supported	No
Stable Modulation Index supported (SMI)	No
LE Coded PHY supported (S=2)	No
LE Coded PHY supported (S=8)	No

Test mode:	\boxtimes	Bluetooth LE Test mode enabled (EUT is controlled by CMW)
		Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit	\boxtimes	Operating mode 1 (single antenna)
operating modes:		 Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		 Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		 Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

11 Measurement results

11.1 System gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the EUT.

Measurement parameters (radiated)				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.5 A			
Measurement uncertainty	See sub clause 8			

Measurement parameters (conducted)				
	1-6563_18-01-04_log1_conducted.pdf			
External result file	Common2G4 Peak Output Power conducted			
	3MHz_3MHz			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC		
6 dBi / > 6 dBi output power and power density reduction required			

T _{nom}	V _{nom}	2402 MHz	2440 MHz	2480 MHz
Conducted power [dBm] Measured with GFSK modulation (1 Msps)		-11.1	-11.2	-12.7
Radiated power [dBm] Measured with GFSK modulation (1 Msps)		-6.3	-6.4	-6.4
Gain [dBi] Calculated		4.8	4.8	6.3

11.2 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system.

Measurement parameters				
External result file	1-6563_18-01-04_log1_conducted.pdf			
	FCC Part 15.247 Peak Power Spectral Density DTS			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 8			

<u>Limits:</u>

FCC	IC			
Power spectral density				
shall not be greater than 8 dBm in any 3 kHz band during	ctral density conducted from the transmitter to the antenna any time interval of continuous transmission or over 1.0 exceeds 1.0-second duration.			

	Frequency 2402 MHz 2440 MHz 2480 MHz				
Power spectral density [dBm / 3kHz] 1 Msps	-24.7	-24.7	-25.8		

11.3 DTS bandwidth - 6 dB bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement parameters		
External result file1-6563_18-01-04_log1_conducted.pdfFCC Part 15.247 Bandwidth 6dB DTS		
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

<u>Limits:</u>

FCC	IC	
DTS bandwidth – 6 dB bandwidth		
Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.		

<u>Results:</u>

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
6 dB bandwidth [kHz] 1 Msps	685	682	688

11.4 Occupied bandwidth – 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement parameters		
External result file1-6563_18-01-04_log1_conducted.pdfFCC Part 15.247 Bandwidth 99PCT		
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

<u>Usage:</u>

-/-	IC	
Occupied bandwidth – 99% emission bandwidth		
OBW is necessary for emission designator		

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
99% bandwidth [kHz] 1 Msps	1012	1007	1010

11.5 Maximum output power

Description:

Measurement of the maximum output power conducted. EUT in single channel mode.

Measurement parameters		
	1-6563_18-01-04_log1_conducted.pdf	
External result file	FCC Part 15.247 Maximum Peak Conducted Output	
	Power DTS	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC	
Maximum output power		
Conducted: 1.0 W – antenna gain max. 6 dBi		

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
Maximum output power conducted [dBm] 1 Msps	-11.4	-11.5	-13.0

11.6 Detailed spurious emissions @ the band edge - conducted

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel.

Measurement parameters		
External result file	1-6563_18-01-04_log1_conducted.pdf	
	FCC Part 15.247 TX Spurious Conduced	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 8	

<u>Limits:</u>

FCC	IC	
radiator is operating, the radio frequency power that is producted that in the 100 kHz bandwidth within the band that contain	hich the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 20 dB below is the highest level of the desired power, based on either an low the general limits specified in Section 15.209(a) is not	
required.		

Scenario	Spurious band edge conducted [dB]
Data rate	1 Msps
Lower band edge	> 20 dB
Upper band edge	> 20 dB

11.7 Band edge compliance conducted

Description:

Measurement of the radiated band edge compliance with a conducted test setup.

Measurement parameters			
I-6563_18-01-04_log1_conducted.pdfExternal result fileFCC Part 15.247 Restricted Band Edge Conducted Peak DTS			
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

<u>Limits:</u>

FCC	IC
-41.20	6 dBm

	band edge compliance / dBm (gain calculation)
Data rate	1 Msps
Max. lower band edge power conducted	-79.9
Antenna gain / dBi	4.8
Max. lower band edge power radiated	-75.1
Max. upper band edge power conducted	-75.5
Antenna gain / dBi	6.3
Max. upper band edge power radiated	-69.2

11.8 TX spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz.

Measurement parameters			
External result file	1-6563_18-01-04_log1_conducted.pdf		
External result file	FCC Part 15.247 TX Spurious Conduced		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

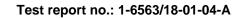
FCC	IC			
TX spurious emissions conducted				
radiator is operating, the radio frequency power that is producted in the 100 kHz bandwidth within the band that contain RF conducted or a radiated measurement. Attenuation be	hich the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 20 dB below s the highest level of the desired power, based on either an low the general limits specified in Section 15.209(a) is not uired			

Results: 1 Msps

	TX spurious emissions conducted							
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results			
2402		-12.2	30 dBm		Operating frequency			
All detected e	missions are com dBc limit!	pliant with the -20	-20 dBc		compliant			
2440		-11.6	30 dBm		Operating frequency			
All detected emissions are compliant with the -20 dBc limit!		-20 dBc		compliant				
2480		-14.3	30 dBm		Operating frequency			
All detected emissions are compliant with the -20 dBc limit!		-20 dBc		compliant				

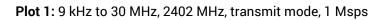
11.9 Spurious emissions radiated below 30 MHz

Description:

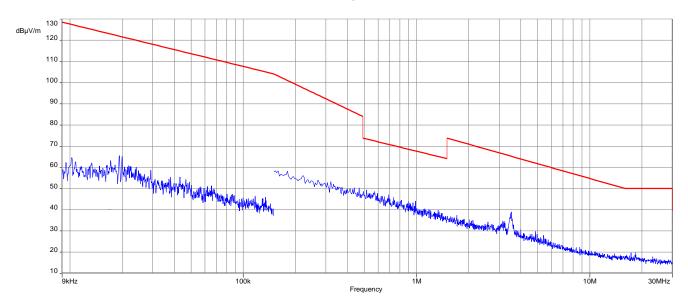

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

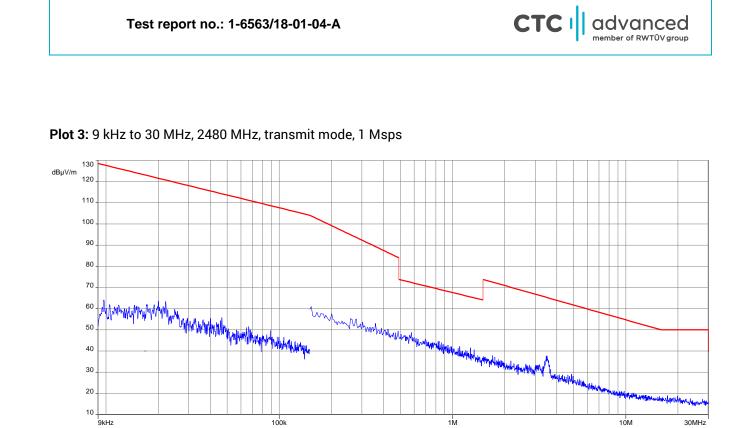
Measurement parameters			
Detector	Peak / Quasi peak		
Sweep time	Auto		
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 30 kHz		
Span	9 kHz to 30 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 B		
Measurement uncertainty	See sub clause 8		

Limits:


FCC		IC		
TX spurious emissions radiated below 30 MHz				
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance	
0.009 - 0.490	2400/F(kHz)		300	
0.490 - 1.705	24000/F(kHz)		30	
1.705 - 30.0	30		30	


TX spurious emissions radiated below 30 MHz [dBµV/m]						
F [MHz] Detector Level [dBµV/m]						
All detected emissions are more than 20 dB below the limit.						




Plots:

Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode, 1 Msps

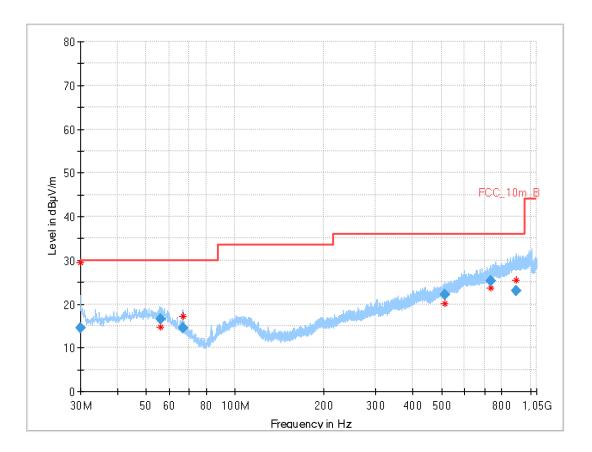
Frequency

11.10 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz.

Measurement parameters			
Detector Peak / Quasi Peak			
Sweep time	Auto		
Resolution bandwidth	120 kHz		
Video bandwidth	3 x RBW		
Span	30 MHz to 1 GHz		
Trace mode	Max hold		
Measured modulation	GFSK		
Test setup	See sub clause 7.1 A		
Measurement uncertainty	See sub clause 8		


Limits:

FCC		IC				
	TX spurious emissions radiated					
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
	§15	.209				
Frequency (MHz)	Frequency (MHz) Field strength (dBµV/m) Measurement distance					
30 - 88	10					
88 – 216	10					
216 - 960	216 - 960 36.0					
Above 960	54	l.0	3			

Plots: Transmit mode

Plot 1: 30 MHz to 1 GHz, TX mode, 2402 MHz, vertical & horizontal polarization, 1 Msps

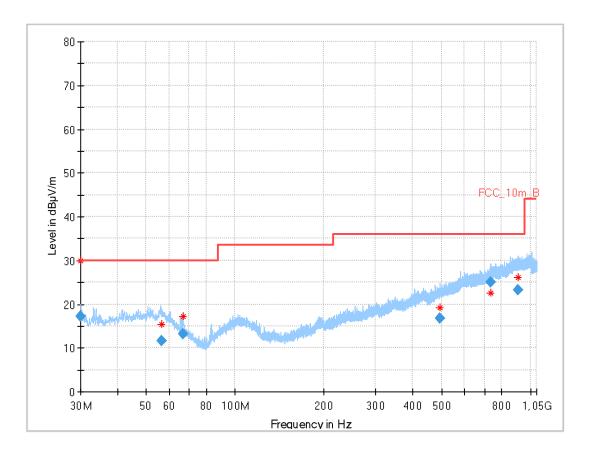
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.014	14.47	30.0	15.5	1000	120	118.0	V	158	12
56.050	16.54	30.0	13.5	1000	120	170.0	V	247	15
66.543	14.51	30.0	15.5	1000	120	101.0	Н	247	11
512.546	22.23	36.0	13.8	1000	120	170.0	V	0	19
735.265	25.19	36.0	10.8	1000	120	170.0	Н	67	22
896.996	23.10	36.0	12.9	1000	120	170.0	v	-17	24

80· 70 60· 50 Level in dBµV/m FCC_10m_B 40 30 THE REAL 20 سا ساحلهان ۵ * 10 0. 50 60 80 100M 200 300 400 500 800 1,05G 30 M Frequency in Hz

Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 1 Msps

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.065	17.10	30.0	12.9	1000	120	121.0	Н	190	12
43.092	17.78	30.0	12.2	1000	120	150.0	V	67	14
66.548	14.82	30.0	15.2	1000	120	101.0	н	67	11
496.960	21.85	36.0	14.2	1000	120	170.0	н	13	18
729.287	26.12	36.0	9.9	1000	120	170.0	н	247	21
957.667	23.28	36.0	12.7	1000	120	170.0	V	-22	24

80· 70 60· 50 Level in dBµV/m FCC_10m_B 40 30 pila. 20 10 0. 50 60 80 100M 200 300 400 500 800 1,05G 30 M Frequency in Hz


Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 1 Msps

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.032	16.93	30.0	13.1	1000	120	118.0	V	22	12
56.949	11.33	30.0	18.7	1000	120	170.0	Н	105	15
66.537	14.71	30.0	15.3	1000	120	98.0	Н	67	11
513.548	22.10	36.0	13.9	1000	120	170.0	н	22	19
735.242	25.19	36.0	10.8	1000	120	170.0	н	67	22
830.537	26.58	36.0	9.4	1000	120	170.0	v	247	23

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.105	17.10	30.0	12.9	1000	120	117.0	V	67	12
56.434	11.52	30.0	18.5	1000	120	170.0	Н	-14	15
66.551	13.19	30.0	16.8	1000	120	98.0	Н	-22	11
492.713	16.85	36.0	19.2	1000	120	170.0	Н	157	18
733.457	24.95	36.0	11.1	1000	120	170.0	Н	-22	22
907.941	23.19	36.0	12.8	1000	120	170.0	Н	260	24

11.11 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz.

Measurement parameters				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 26 GHz			
Trace mode	Max hold			
Measured modulation	GFSK			
Test setup	See sub clause 7.2 A (1 GHz - 18 GHz) for TX tests See sub clause 7.2 C (1 GHz - 18 GHz) for RX tests See sub clause 7.3 A (18 GHz - 26 GHz)			
Measurement uncertainty	See sub clause 8			

<u>Limits:</u>

FCC			IC		
TX spurious emissions radiated					
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).					
Frequency (MHz)	Field streng		Measurement distance		
Above 960 54.0 (A		verage)	3		
Above 960 74.0 (Peak)	3		

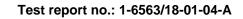
Results: Transmitter mode, 1 Msps

TX spurious emissions radiated [dBµV/m]								
2402 MHz			2440 MHz			2480 MHz		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
1593	Peak	54.3	1600	Peak	55.3	1598	Peak	54.6
1593	AVG	35.1	1600	AVG	35.4		AVG	34.6
4804	Peak	64.5	4990	Peak	62.0	1000	Peak	59.4
4604	AVG	18.6*	4880	AVG	16.1*	4960	AVG	13.5*
	Peak		7220	Peak	58.1	7440	Peak	54.6
	AVG		7320	AVG	12.2*	7440	AVG	9.7*

*) Average emission adjusting factor:

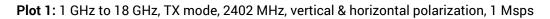
F = 20 * log (DC / 100 ms)

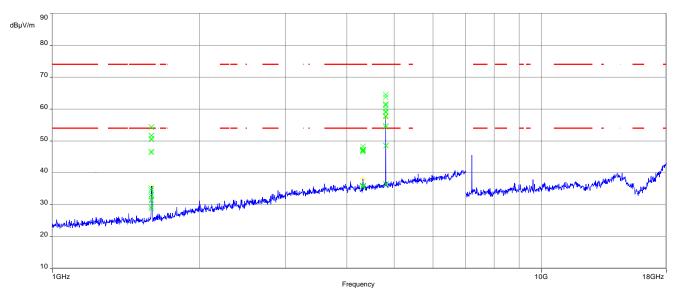
The customer maximum duty cycle in 100 ms to 0.507 ms:

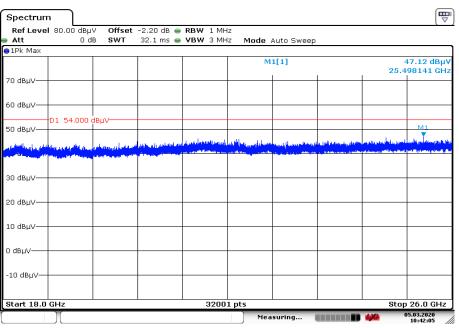

F = 20 * log (0.507 ms / 100 ms) = -45.9 dB

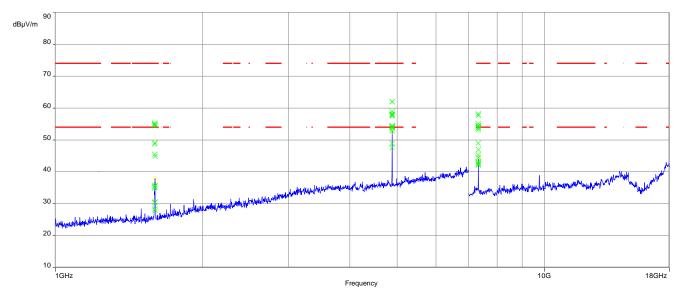
Please see plots below in this chapter. The tests were performed with a VisiPro DO connected to a Arc Wireless Converter BT and the duty cycle was evaluated on three different frequencies.

Results: Receiver mode


RX spurious emissions radiated [dBµV/m]					
F [MHz]	Detector	Level [dBµV/m]			
1600	Peak	55.3			
1800	AVG	35.4			

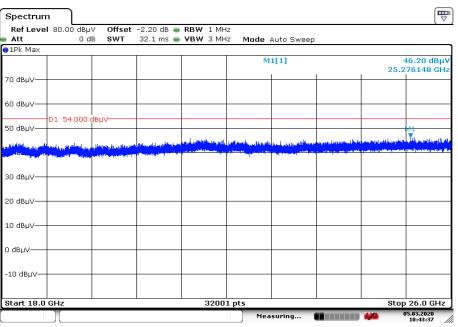

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)


Plots: Transmitter mode

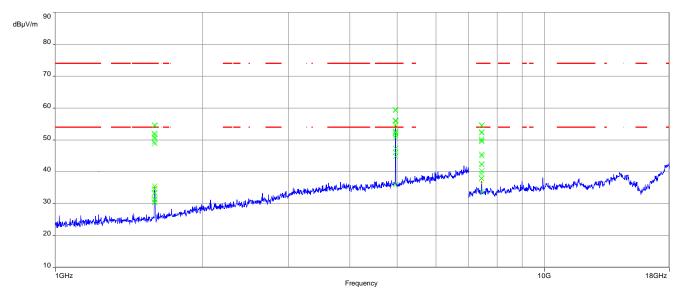

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization, 1 Msps

Date: 5 M AR .2020 10:42:06

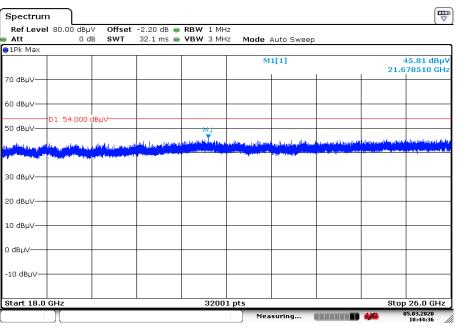


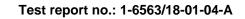
Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 1 Msps


The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 1 Msps

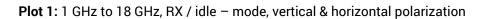
Date: 5 M AR 2020 10:43:37

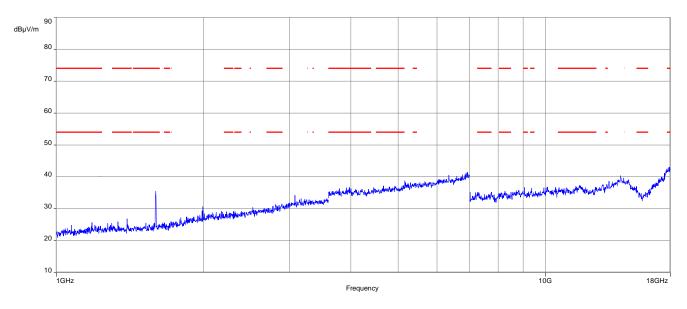


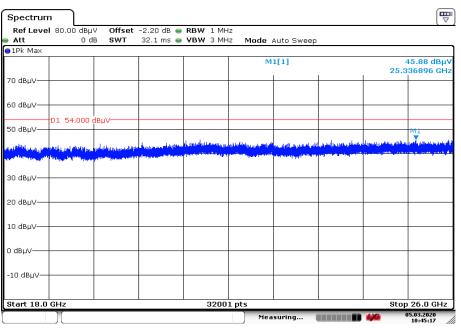

Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 1 Msps

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 1 Msps



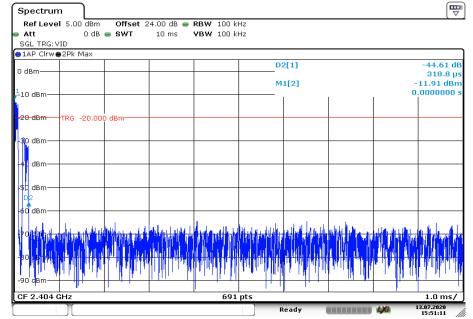

Date: 5 M AR .2020 10:44:37



Plots: Receiver mode

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

Date: 5 M AR .2020 10:45:17



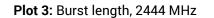
60 dbm

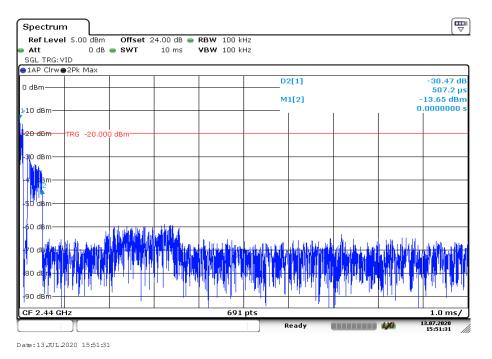
© CTC advanced GmbH

Plot 1: Burst length, 2404 MHz	

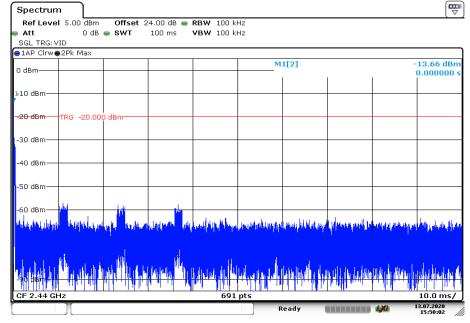
Plots: Duty cycle

Date:13.JUL.2020 15:51:11

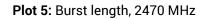

Plot 2: Number of bursts in 100 ms, 2404 MHz

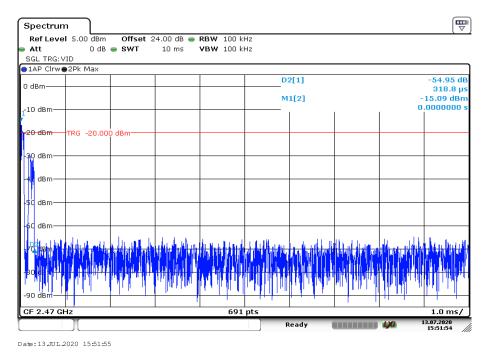

Date:13_JUL.2020 15:50:52

Spectrum


Ref Leve	Ref Level 5.00 dBm Offset 24.00 dB 🖷 RBW 100 kHz								
🗕 Att	0 dB	SWT	100 ms	VBW 100 k	Hz				
SGL TRG:\									
●1AP Clrw●	●1AP Clrw●2Pk Max								
0 dBm					M	1[2]			12.02 dBm
o ubili						1	1	1	0.000000 s
1.0.10									
-10 dBm									
-20 dBm	TRG -20.000) dBm							
-30 dBm									<u> </u>
-40 dBm—									
-50 dBm									
-60 dBm									I
فيربد والعامر ومر	and the state	. In a state	In a state of the	solution and data	باريادين بالمعيم	يريس المحارين	ALL NO DOLLAR	dura da mutat	الله المحرية الالتيان
to Holly Report	etrodies in rectand	andonan h	dan dadada da da	ar l'a transmudate	na shakara	nnon, daethan	. a tu ki ki ka a	on defension de des	sheet, of a bir sac of
r stile	field for	lation of	and a set	and during			ultin kan a	L. I. I.	Livita Inf
	A life and the second second	Line y in 1919.	(bhdu) (bh jada bh da dh	i dali shiki ani it	in all the start was been as	t litt i litt i tuk	Mit & July south & d.	al tah hii ikini ik	and also the Hills of
	l l'alle all		լելելերվ	սերակի հերհ		a des partiti		al al al al al	4 T II II II II II I
CF 2.404 (GHz			691	pts				10.0 ms/
	Π				R	teady		1,00	13.07.2020 15:50:52

Test report no.: 1-6563/18-01-04-A


Plot 4: Number of bursts in 100 ms, 2444 MHz



Date:13.JUL.2020 15:50:02

Test report no.: 1-6563/18-01-04-A

Plot 6: Number of bursts in 100 ms, 2470 MHz

SGL TRG:V 1AP Clrwe					M	1[2]	 	-15.19 dBm
0 dBm						1		0.000000 s
10 dBm								
-20 dBm	TRG -20.00) dBm						
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
regeles and a ball and an and a ball and a second and an and a second and a second a In 1912, Well a large will be a definition of the second device of the second and the second second second second								

Date:13.JUL.2020 15:50:29

Annex A Glossary

EUT	Faulia mont un deutent
EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz
0/140	

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-04-28
A	Duty cycle plots added in chapter 11.11	2020-07-17

Annex C Accreditation Certificate – D-PL-12076-01-04

first page	last page
Deutsche Assreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrustel according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGtw Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition	Office Berlin Spittelmarkt 10 10117 Berlin G68227 Frankfurt am Main Bundesallee 100 38116 Braunschweig
Accreditation Experimental Standards	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Alkareditierungsstelle GmbH (DAKS). Exempted is the unchanged form of separate
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04	disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkiStelleG) of 31 July 2009 (Friederal Law Gritter Ip. 2623) and the Regulation (EC) No 255/2006 of the European Iral/ament and of the accreditation of Difficul Journal of the European to 2006, p. 300, DAMAS to the marketing of products (Difficul Journal of the European to 2006, p. 300, DAMAS a signatory to the Multilateral Agreements for Mulual Recognition of the European co-operation for Accreditation (EA). International Accreditation formun (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EX: www.ilac.org ILAC: www.ilac.org ILAC: www.ilac.org
Frankfurt am Main, 11.01.2019 Depl-Bibl. Uwe Simmermann Head of Division	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

Annex D Accreditation Certificate – D-PL-12076-01-05

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf