

FCC Test Report

FCC ID	:	2AQYEFMP169
Equipment	:	Mobile Phone
Model No.	:	F-02L
Brand Name	:	FUJITSU
Applicant	:	FUJITSU CONNECTED TECHNOLOGIES Ltd.
Address	:	1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki 211-8588, Japan
Standard	:	47 CFR FCC Part 24 Subpart E
Received Date	:	Feb. 12, 2019
Tested Date	:	Feb. 15 ~ Feb. 23, 2019

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

ong Cher

Flory Cla

Along Cher / Assistant Manager

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Deviation from Test Standard and Measurement Procedure	9
1.7	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Condition and Location Information	10
2.2	The Worst Test Modes and Channel Details	10
3	TEST RESULTS	11
3.1	Equivalent Isotropically Radiated Power	11
3.2	Radiated Emissions	13
3.3	Conducted Emissions & Band Edge	17
3.4	Occupied and 26 dB Bandwidth	20
3.5	Peak to Average Ratio	23
3.6	Frequency Stability	25
4	TEST LABORATORY INFORMATION	27

Release Record

Report No.	Version	Description	Issued Date
FG8D1403P24	Rev. 01	Initial issue	Mar. 22, 2019

Summary of Test Results

FCC Rules	Test Items	Measured	Result
2.1046 / 24.232(c)	Equivalent Isotropically Radiated Power	Power[dBm] : 25.17	Pass
2.1053 / 24.238(a)	Radiated Emissions	Meet the requirement of limit	Pass
2.1051 / 24.238(a)	Conducted Emissions	Meet the requirement of limit	Pass
2.1051 / 24.238(a)	Band Edge	Meet the requirement of limit	Pass
2.1049	Occupied Bandwidth	Meet the requirement of limit	Pass
24.232(d)	Peak to Average Ratio	Meet the requirement of limit	Pass
2.1055 / 24.235	Frequency Stability	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared values of gain for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of the gain.

1 General Description

1.1 Information

1.1.1 Product Details

Product Name	Mobile Phone	
Brand Name	d Name FUJITSU	
Model Name	F-02L	
IMEI Code 353323100015584 / 353323100015543		
H/W Version	v2.1.0	
S/W Version	R016.5e	

1.1.2 Specification of the Equipment under Test (EUT)

Operating Band (MHz) GSM: 1850.2-1909.8		
Modulation GSM / GPRS: GMSK		
Multislot Class	33 for GPRS	

1.1.3 Antenna Details

Ant. No.	Туре	Connector	Gain (dBi)	Remark
1	Monopole	No	-4.6	

1.1.4 EUT Operational Condition

	3.8Vdc from battery: 9Vdc,1.5A from adapter (No bundle, support unit only)		
Operational Climatic	Tnom (20°C)	🖾 Tmax (55°C)	Tmin (-10°C)

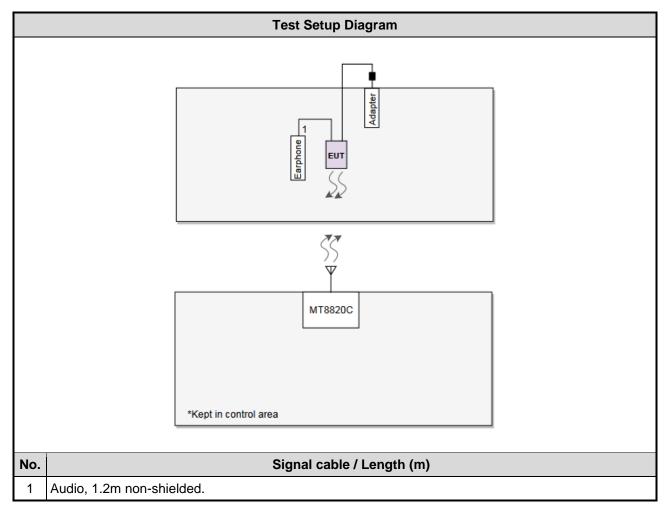
1.1.5 Accessories

No.	Equipment	Description
1	Battery	Brand: FUJITSU CONNECTED TECHNOLOGIES LIMITED Model Name: CA54310-0074 Power Rating: 3.8Vdc, 2,780mAh, 10.6Wh

1.1.6 Maximum EIRP and Emission Designator

Mode	Modulation	Maximum EIRP (W)	Emission Designator
GSM 1900	GMSK	0.329	250KGXW

1.1.7 Operating Channel List


GSM & GPRS				
Channel Frequency (MHz)				
Low	512	1850.2		
Middle	661	1880.0		
High	810	1909.8		

1.2 Local Support Equipment List

	Support Equipment List						
No.	No. Equipment Brand Model S/N Remarks						
1	Earphone	APPLE	MD827FE/A	6			
2	Adapter	NTT docomo	AC Adapter 06		Provided by applicant.		

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03Cl	⊣01-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101498	Dec. 27, 2018	Dec. 26, 2019
Receiver	R&S	ESR3	101658	Dec. 11, 2018	Dec. 10, 2019
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 18, 2018	Jul. 17, 2019
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 18, 2018	Dec. 17, 2019
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2018	Nov. 14, 2019
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 09, 2018	Nov. 08, 2019
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 08, 2018	Oct. 07, 2019
Preamplifier	EMC	EMC02325	980225	Jul. 20, 2018	Jul. 19, 2019
Preamplifier	Agilent	83017A	MY39501308	Oct. 04, 2018	Oct. 03, 2019
Preamplifier	EMC	EMC184045B	980192	Aug. 09, 2018	Aug. 08, 2019
RF Cable	EMC	EMC104-SM-SM-80 00	181106	Oct. 08, 2018	Oct. 07, 2019
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 08, 2018	Oct. 07, 2019
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Oct. 08, 2018	Oct. 07, 2019
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 08, 2018	Oct. 07, 2019
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 08, 2018	Oct. 07, 2019
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Oct. 08, 2018	Oct. 07, 2019
Measurement Software	AUDIX	e3	6.120210g	NA	NA
Note: Calibration Inter	val of instruments liste	d above is one year.			·

RF Conducted				
(TH01-WS)				
Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
R&S	FSV40	101063	Apr. 16, 2018	Apr. 15, 2019
Keysight	N9010A	MY54510374	Jun. 21, 2018	Jun. 20, 2019
GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 05, 2018	Dec. 04, 2019
Anritsu	ML2495A	1241002	Oct. 09, 2018	Oct. 08, 2019
Anritsu	MA2411B	1207366	Oct. 09, 2018	Oct. 08, 2019
Anritsu	MT8820C	6201240341	Apr. 08, 2018	Apr. 07, 2019
APC	AFC-500W	F312060012	Nov. 29, 2018	Nov. 28, 2019
Sporton	SENSE-15407_NII	V5.9	NA	NA
	(TH01-WS) Manufacturer R&S Keysight GIANT FORCE Anritsu Anritsu Anritsu APC	ManufacturerModel No.R&SFSV40KeysightN9010AGIANT FORCEGCT-225-40-SP-SDAnritsuML2495AAnritsuMA2411BAnritsuMT8820CAPCAFC-500W	Manufacturer Model No. Serial No. R&S FSV40 101063 Keysight N9010A MY54510374 GIANT FORCE GCT-225-40-SP-SD MAF1212-002 Anritsu ML2495A 1241002 Anritsu MA2411B 1207366 Anritsu MT8820C 6201240341 APC AFC-500W F312060012	Manufacturer Model No. Serial No. Calibration Date R&S FSV40 101063 Apr. 16, 2018 Keysight N9010A MY54510374 Jun. 21, 2018 GIANT FORCE GCT-225-40-SP-SD MAF1212-002 Dec. 05, 2018 Anritsu ML2495A 1241002 Oct. 09, 2018 Anritsu MA2411B 1207366 Oct. 09, 2018 Anritsu MT8820C 6201240341 Apr. 08, 2018 APC AFC-500W F312060012 Nov. 29, 2018

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards.

47 CFR FCC Part 24 Subpart E ANSI C63.4-2014 ANSI C63.26-2015 FCC KDB 971168 D01 Power Meas License Digital Systems v03r01 FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.6 Deviation from Test Standard and Measurement Procedure

None

1.7 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

Measurement Uncertainty							
Parameters	Uncertainty						
Bandwidth	±34.139 Hz						
Conducted power	±0.808 dB						
Frequency error	±1x10 ⁻⁹						
Conducted emission	±2.680 dB						
Radiated emission \leq 1GHz	±3.41 dB						
Radiated emission > 1GHz	±4.59 dB						
Time	±0.1%						
Temperature	±0.8°C						

2 Test Configuration

2.1 Testing Condition and Location Information

Test Item	Test Item Test Site		Tested By
Radiated Emissions	03CH01-WS	22-24°C / 63-65%	Akun Chung
RF Conducted	TH01-WS	20-22°C / 63-66%	Aska Huang

➢ FCC Designation No.: TW2732

FCC site registration No.: 181692

IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

	GSM 850 / WCDMA V	
Test item	Mode	Test channel
E.I.R.P	GPRS	512, 661, 810
Radiated Emission ≤ 1GHz	GPRS	810
Radiated Emission > 1GHz	GPRS	512, 661, 810
Conducted Emissions	GPRS	512, 661, 810
Band Edge	GPRS	512, 810
Occupied Bandwidth	GPRS	512, 661, 810
Peak to Average Ratio	GPRS	512, 661, 810
Frequency Stability	GPRS	661
		•

NOTE:

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.

3 Test Results

3.1 Equivalent Isotropically Radiated Power

3.1.1 Limit of Equivalent Isotropically Radiated Power

Mobile and portable stations are limited to 2 watts EIRP.

3.1.2 Test Procedures

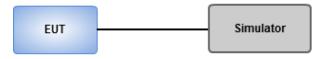
For E.I.R.P measurement

EIPR can be calculated by below formula from KDB 412172 D01.

1. EIRP = $P_T + G_T - L_C$

 P_T = transmitter output power, in dBm.

 G_T = gain of the transmitting antenna, in dBi (EIRP).


 L_C = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For Conducted power measurement

- 1. The EUT links up with simulator and is set to maximum output power level at low / middel / high channel.
- 2. Measure the output power of low / middle / high channel of the EUT

3.1.3 Test Setup

Conducted Power Measurement

3.1.4 Test Result of Conducted power (dBm)

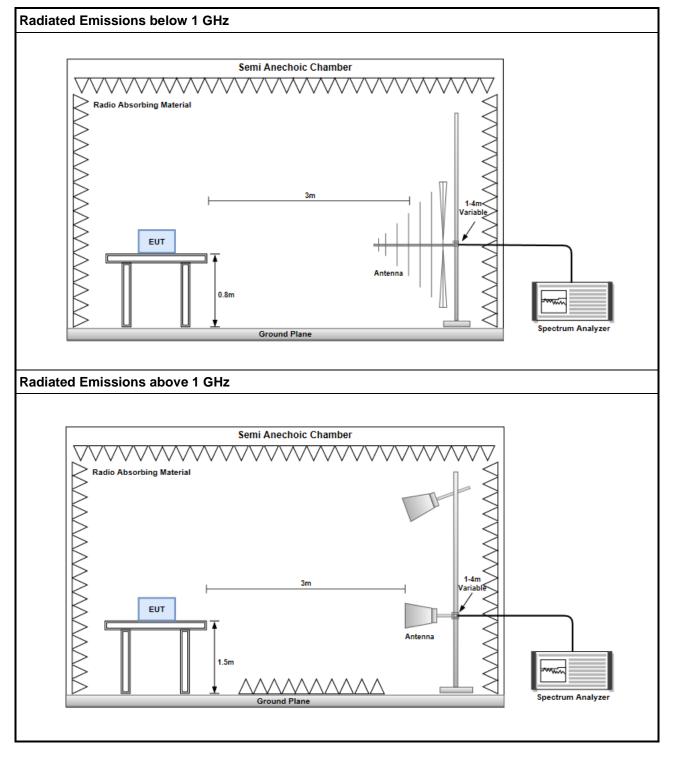
Band		GSM 1900							
Channel	512	810							
Frequency (MHz)	1850.2	1880.0	1909.8						
GSM	29.49	29.71	29.76						
GPRS 8 (GMSK, 1 slot)	29.49	29.73	29.77						
GPRS 10 (GMSK, 2 slots)	27.12	27.42	27.31						
GPRS 11 (GMSK, 3 slots)	25.34	25.43	25.55						
GPRS 12 (GMSK, 4 slots)	24.14	24.13	24.34						

3.1.5 Test Result of Equivalent Isotropically Radiated Power (dBm)

Mode	GPRS										
Channel	Frequency (MHz)	Conducted Output Power (dBm)	Max Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Limit (W)					
512	1850.2	29.49	-4.6	24.89	0.308	2					
661	1880.0	29.73	-4.6	25.13	0.326	2					
810	1909.8	29.77	-4.6	25.17	0.329	2					

3.2 Radiated Emissions

3.2.1 Limit of Radiated Emissions


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$ equal to -13 dBm.

3.2.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
- 4. After finding the max radiated emission, substitution method will be used for getting effective radiated power. EUT will be removed and substitution antenna will be placed at same position. Signal generator will output CW signal to substitution antenna through a RF cable. Rotate turntable and move antenna to find maximum radiated emission. Adjust output power of signal generator to let the maximum radiated emission is same as step 3. Record the output power level.
- 5. E.I.R.P = output power of step 4 + gain of substitution antenna cable loss of RF cable.

3.2.3 Test Setup

Mode	GPRS 8 (GMS	K, 1 slot), Cha	nnel : 810				
Frequency (MHz)	Antenna Polarity	E.I.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)
30.00	Н	-66.41	-13.00	-53.41	-76.15	-46.44	-19.97
90.14	Н	-69.30	-13.00	-56.30	-67.86	-64.17	-5.13
198.78	Н	-65.14	-13.00	-52.14	-61.11	-62.54	-2.60
217.21	Н	-63.89	-13.00	-50.89	-60.01	-61.75	-2.14
299.66	Н	-68.98	-13.00	-55.98	-67.52	-67.52	-1.46
321.00	Н	-63.47	-13.00	-50.47	-63.29	-62.06	-1.41
57.16	V	-65.40	-13.00	-52.40	-64.71	-50.71	-14.69
61.04	V	-56.91	-13.00	-43.91	-56.89	-43.21	-13.70
71.71	V	-57.37	-13.00	-44.37	-558.00	-47.12	-10.25
82.38	V	-61.39	-13.00	-48.39	-60.83	-54.50	-6.89
90.14	V	-60.34	-13.00	-47.34	-60.50	-55.21	-5.13
508.21	V	-56.18	-13.00	-43.18	-60.48	-54.75	-1.43

3.2.4 Test Result of Radiated Emissions below 1GHz

Note: EIRP = S.G Power value + Correction factor

Mode	GPRS 8 (GMS	GPRS 8 (GMSK, 1 slot), Channel : 512											
Frequency (MHz)	Antenna Polarity	E.I.R.P (dBm)	Limit (dBm)	Margin (dB)	-		Correction Factor (dB)						
3700.40	Н	-49.72	-13.00	-36.72	-63.28	-56.67	6.95						
5550.60	Н	-45.50	-13.00	-32.50	-62.27	-52.29	6.79						
7400.80	Н	-44.77	-13.00	-31.77	64.58	-48.09	3.32						
3700.40	V	-56.06	-13.00	-43.06	-69.41	-63.01	6.95						
5550.60	V	-45.50	-13.00	-32.50	-62.26	-52.29	6.79						
7400.80	V	-44.41	-13.00	-31.41	-64.68	-47.73	3.32						

3.2.5 Test Result of Radiated Emissions above 1GHz

Mode	GPRS 8 (GMS	GPRS 8 (GMSK, 1 slot), Channel : 661										
Frequency (MHz)	Antenna Polarity	E.I.R.P (dBm)	Limit Margin S. (dBm) (dB)		S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)					
3760.00	Н	-53.89	-13.00	-40.89	-67.70	-60.82	6.93					
5640.00	Н	-43.90	-13.00	-30.90	-60.88	-50.65	6.75					
7520.00	Н	-46.48	-13.00	-33.48	-65.46	-49.89	3.41					
3760.00	V	-55.11	-13.00	-42.11	-68.71	-62.04	6.93					
5640.00	V	-43.79	-13.00	-30.79	-60.76	-50.54	6.75					
7520.00	V	-45.40	-13.00	-32.40	-64.99	-48.81	3.41					

Mode	GPRS 8 (GMS	GPRS 8 (GMSK, 1 slot), Channel : 810											
Frequency (MHz)	Antenna Polarity.	E.I.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)						
3819.60	Н	-54.24	-13.00	-41.24	-68.21	-61.17	6.93						
5729.40	Н	-41.09	-13.00	-28.09	-58.27	-47.77	6.68						
7639.20	Н	-46.22	-13.00	-33.22	-64.93	-49.68	3.46						
3819.60	V	-55.39	-13.00	-42.39	-69.18	-62.32	6.93						
5729.40	V	-43.05	-13.00	-30.05	-60.28	-49.73	6.68						
7639.20	V	-45.00	-13.00	-32.00	-64.36	-48.46	3.46						

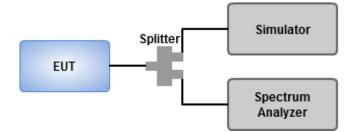
Note: EIRP = S.G Power value + Correction factor

3.3 Conducted Emissions & Band Edge

3.3.1 Limit of Conducted Emissions & Band Edge

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$ equal to -13dBm.

3.3.2 Test Procedures

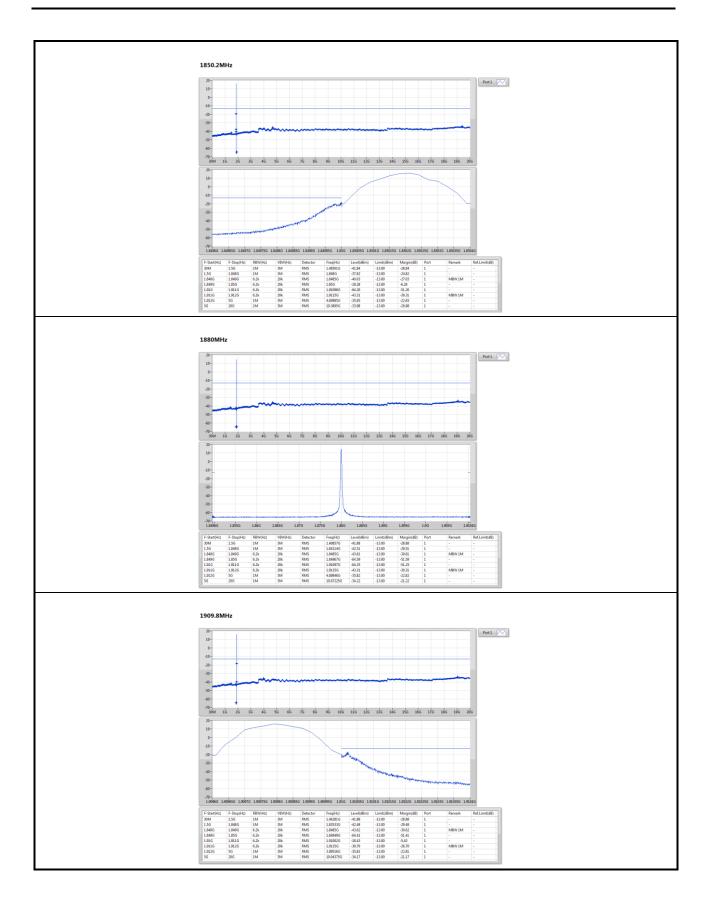

Out of band emission

- 1. Lowest, middle and highest operating channels are tested for this item.
- 2. Scan frequency range is from 30 MHz ~ 10 GHz.
- 3. Set RBW = 1 MHz, VBW = 3 MHz, detector = RMS, sweep time = auto.
- 4. Record the max trace value and capture the test plot of each sub frequency band.

Band edge

- 1. Lowest and highest operating channels are tested for this item.
- 2. Set RBW = 1% of EBW, VBW = 3 x RBW, detector = RMS, sweep time = auto.
- 3. Record the max trace value and capture the test plot of each sub frequency band.

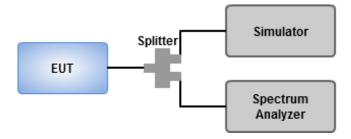
3.3.3 Test Setup



3.3.4 Test Result of Conducted Emissions & Band Edge

Summary

Mode	Result	F-Start (Hz)	F-Stop (Hz)	RBW (Hz)	VBW (Hz)	Detector	Freq (Hz)	Level (dBm)	Limit (dBm)	Margin (dB)	Port
GPRS_1900	-	-	-	-	-	-	-	-	-	- -	-
1909.8MHz	Pass	1.91G	1.911G	6.2k	20k	RMS	1.91002G	-18.43	-13.00	-5.43	1



3.4 Occupied and 26 dB Bandwidth

3.4.1 Test Procedures

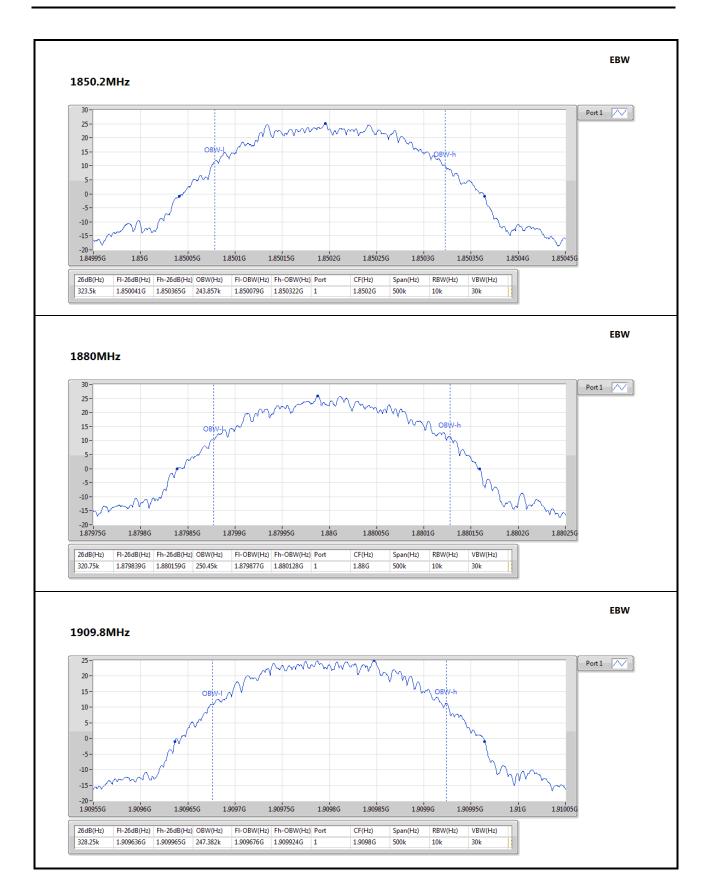
- 1. Set resolution bandwidth (RBW) = $1\% \sim 5\%$ of OBW, Video bandwidth = $3 \times RBW$
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Using occupied bandwidth measurement function of spectrum analyzer to measure occupied bandwidth
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 26dB relative to the maximum level measured in the fundamental emission.

3.4.2 Test Setup

3.4.3 Test Result of Occupied Bandwidth

Summary

ſ	Mode	Max-NdB	Max-OBW	ITU-Code	Min-NdB	Min-OBW
		(Hz)	(Hz)		(Hz)	(Hz)
	1900	-	-	-	-	-
	GSM_200kHz_Nss1_1TX	328.25k	250.45k	250KGXW	320.75k	243.857k

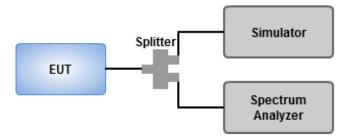

Max-N dB = Maximum 26dB down bandwidth; **Max-OBW** = Maximum 99% occupied bandwidth; **Min-N dB** = Minimum 26dB down bandwidth; **Min-OBW** = Minimum 99% occupied bandwidth;

Result

Mode	Result	Limit (Hz)	Port 1-NdB (Hz)	Port 1-OBW (Hz)
1900_GSM_200kHz_Nss1_1TX	-	-	-	-
1850.2MHz	Pass	Inf	323.5k	243.857k
1880MHz	Pass	Inf	320.75k	250.45k
1909.8MHz	Pass	Inf	328.25k	247.382k

Port X-N dB = Port X 26dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

3.5 Peak to Average Ratio


3.5.1 Limit of Peak to Average Ratio

Peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.5.2 Test Procedures

- 1. Set RBW=1MHz, RBW=3MHz, Peak detector in Trace 1
- 2. Set RBW=1MHz, RBW=3MHz, RMs detector in Trace 2
- 3. Trigger function is enabled for measuring singal at burst on time. Measure the difference between trace1 and trace 2.

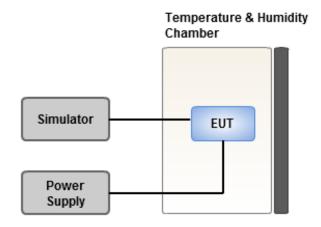
3.5.3 Test Setup

3.5.4 Test Result of Peak to Average ratio

MODE	Channel	Frequency (MHz)	Peak to Average ratio (dB)
GPRS	512	1850.2	0.01
GPRS	661	1880.0	0.01
GPRS	810	1909.8	0.01

Ref Level 40.00 dBm Offset 21.60 dB RBW 1 MHz Att 30 dB SWT 1 ms VBW 3 MHz Mode Sweep 1Pk View 2Rm View D2[1] 0.01 df 10.10 kH 0 dBm 0 dBm 1.90987630 dH 1.90987630 dH 1.90987630 dH 0 dBm 10 dBm 0 dBm <t< th=""><th colspan="5">Worst plot</th></t<>	Worst plot								
Ref Level 40.00 dBm Offset 21.60 dB RBW 1 MHz Att 30 dB SWT 1 ms VBW 3 MHz Mode Sweep 1Pk View 2Rm View D2[1] 0.01 df 10.10 kH 0 dBm 0.01 df 10.10 kH 28,79 dBn 1.90987630 dH 0 dBm 0 dBm 1.90987630 dH 1.90987630 dH 1.90987630 dH 0 dBm 10 dBm 0 dBm <	Spectrum	1							E
Att 30 db SWT 1 ms VBW 3 MHz Mode Sweep 1Pk View D2[1] 0.01 df 10.10 kH 0 dBm M22_M1[2] 28.79 dBn 1.90984630 dH 0 dBm M22_M1[2] 28.79 dBn 1.90984630 dH 0 dBm M30_MB M30_MB 1.90984630 dH 0 dBm M30_MB M30_MB M30_MB 1.90984630 dH 10 dBm M30_MB M30_MB M30_MB M30_MB M30_MB 20 dBm M30_MB M30_MB M30_MB M30_MB M30_MB M30_MB 50 dBm M30_MB M30_MB M30_MB M30_MB M30_MB M30_MB 50 dBm M30_MB <		JdBm Off:	set 21.60 dB (BRBW 1 MHz					(.
0 dBm D2[1] 0.01 df 0 dBm 28.79 dBn 1.90984630 dH 0 dBm 1.90984630 dH 1.90984630 dH 10 dBm 1.90984630 dH 1.90984630 dH 20 dBm 1.90984630 dH 1.90984630 dH 10 dBm 1.90984630 dH 1.90984630 dH 20 dBm 1.90984630 dH 1.90984630 dH 20 dBm 1.90984630 dH 1.90984630 dH 10 dBm 1.90984630 dH 1.90984630 dH 20 dBm 1.90984630 dH 1.90984630 dH 30 dBm 1.90984630 dH 1.90984630 dH 50 dBm 1.90984630 dH 1.90984630 dH 50 dBm 1.90984630 dH 1.90984630 dH 50 dBm 1.90984630 dH 1.90984630 dH					Mode Sv	veep			
0 dBm 10.10 kH 0 dBm 1.90984633 GH 10 dBm 1.90984633 GH 10 dBm 1.90984633 GH 20 dBm 1.90984634 GH 30 dBm 1.90984634 GH 40 dBm 1.90984634 GH 50 dBm 1.90986Hz 50 dBm 1.90986Hz	●1Pk View●2Rm \	/iew							
0 dBm 1.90984630 GH 10 dBm 1.90984630 GH 20 dBm 1.90984630 GH 30 dBm 1.90984630 GH 50 dBm 1.9098 GHz 691 pts					D2	[1]			
0 dBm 1.9094630 GH 0 dBm 1.9094630 GH 0 dBm 1.9094630 GH 0 dBm 1.9094630 GH 10 dBm 1.9094630 GH	00 d0				Mto Mt	[0]			
0 dBm Image: Constraint of the second of									
0 dBm									
i dBm	20 dBm								
i dBm									
10 dBm	10 dBm								
10 dBm									
20 dBm- 30 dBm- 40 dBm- 50	0 dBm								
20 dBm- 30 dBm- 40 dBm- 50									
30 dBm	-10 dBm								
30 dBm									
40 dBm	-20 dBm								
40 dBm									
40 dBm	-30 dBm								
50 dBm									
50 dBm	-40 dBm								
F 1.9098 GHz 691 pts Span 1.0 MHz	10 abiii								
F 1.9098 GHz 691 pts Span 1.0 MHz									
	-30 ubiii								
Measuring 🚺	CF 1.9098 GHz			691 p	ts			Spar	1.0 MHz
						Measurin	ig		

3.6 Frequency Stability


3.6.1 Limit of Frequency Stability

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.6.2 Test Procedures

- 1. EUT was placed at temperature chamber and connected to an external power supply.
- 2. Temperature and voltage condition shall be tested to confirm frequency stability.
- 3. The test shall be performed under normal and extreme condition for temperature and voltage.
- 4. Link up EUT and simulator. Confirm frequency drift value of simulator and record it.

3.6.3 Test Setup

3.6.4 Test Result of Frequency Stability

Temperature (°C)	Voltage (dc)	Frequency Drift (ppm)
T20°CVmax	4.29	0.0016
T20°CVmin	3.51	0.0016
T55°CVnom	3.9	0.0021
T50°CVnom	3.9	0.0021
T40°CVnom	3.9	0.0021
T30°CVnom	3.9	0.0021
T20°CVnom	3.9	0.0016
T10°CVnom	3.9	0.0011
T0°CVnom	3.9	0.0011
T-10°CVnom	3.9	-0.0005
T-20°CVnom	3.9	-0.0011
T-30°CVnom	3.9	-0.0016

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C..

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—