

# RF EXPOSURE EVALUATION EUT Specification

| FCC ID:                | 2AQY4-019                                    |  |  |
|------------------------|----------------------------------------------|--|--|
| 70°                    |                                              |  |  |
| EUT Anbore Am          | Smart Lock With Lever                        |  |  |
| Model Name             | VE019, VE019G, TE019, TE019G                 |  |  |
| Frequency band         | ⊠BLE: 2.402GHz ~ 2.480GHz                    |  |  |
| (Operating)            | ☐WLAN: 2.412GHz ~ 2.462GHz                   |  |  |
| work Anbor An otek     | □WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz |  |  |
| otek Anbotek Anbo      | □WLAN: 5.745GHz ~ 5825GHz                    |  |  |
| Anborek Anborek        | ⊠Others(13.56MHz)                            |  |  |
| Device category        | ☐Portable (<20cm separation)                 |  |  |
| Anbores Anb            | ⊠Mobile (>20cm separation)                   |  |  |
| ek anbotek Anbot Al    | □Others                                      |  |  |
| Antenna diversity      | ⊠Single antenna                              |  |  |
| pre And Stek Anbotek   | ☐Multiple antennas                           |  |  |
| anbotek Anbo ak hotek  | ☐Tx diversity                                |  |  |
| hotek Anbote And       | ☐Rx diversity                                |  |  |
| And otek Anbotek Anbo. | ☐Tx/Rx diversity                             |  |  |
| Max. output power      | For BLE: 3.89dBm                             |  |  |
| Anbore Anti-           | For NFC:45.97 dBuV/m (-49.288dBm)            |  |  |
| Antenna gain           | OdBi Andrew Andrew Andrew                    |  |  |
| Evaluation applied     |                                              |  |  |
| hipo ok hotek Anbotes  | ☐SAR Evaluation                              |  |  |

## **Standard Requirement**

#### **Portable Device**

According to §15.247(i) and §1.1307b(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See KDB 447498 D01 General RF Exposure Guidance V6, section 4.3.1.

 a) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [ $\sqrt{f(GHz)}$ ]  $\leq 3.0$  for 1-g SAR and  $\leq 7.5$  for 10-g extremity SAR,<sup>16</sup> where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation17
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is  $\leq 50$  mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Shenzhen Anbotek Compliance Laboratory Limited







- b) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:
- 1) {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance 50 mm)·(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz
- 2) {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and  $\leq$  6 GHz
- c) For frequencies below 100 MHz, the following may be considered for SAR test exclusion:
- 1) For test separation distances > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by [1 + log(100/f(MHz))]
- 2) For test separation distances ≤ 50 mm, the power threshold determined by the equation in c)
- 1) for 50 mm and 100 MHz is multiplied by ½
- 3) SAR measurement procedures are not established below 100 MHz.

#### **Mobile Device**

(A) Limits for Occupational / Controlled Exposure

| Frequency Range | Electric Field | Magnetic Field | Power Density (S) | Averaging Time |
|-----------------|----------------|----------------|-------------------|----------------|
| 0.3-3.0         | 614            | 1.63           | (100)*            | 6              |
| 3.0-30          | 1842 / f       | 4.89 / f       | (900 / f)*        | 6              |
| 30-300          | 61.4           | 0.163          | 1.0               | 6              |
| 300-1500        |                |                | F/300             | 6              |
| 1500-100,000    |                |                | 5                 | 6              |

#### (B) Limits for General Population / Uncontrolled Exposure

| Frequ | ency Range | Electric Field | Magnetic Field | Power Density (S) | Averaging Time |
|-------|------------|----------------|----------------|-------------------|----------------|
|       | ).3-1.34   | 614            | 1.63           | (100)*            | 30             |
|       | 1.34-30    | 824/f          | 2.19/f         | (180/f)*          | 30             |
| 9     | 30-300     | 27.5           | 0.073          | 0.2               | 30             |
|       | 00-1500    |                |                | F/1500            | 30             |
| 150   | 0-100,000  |                |                | 1.0               | 30             |

Note: f = frequency in MHz; \*Plane-wave equivalent power density





#### MPE Calculation Method

$$\frac{\sqrt{30 \times P \times G}}{d}$$
E (V/m) =

$$\frac{E^2}{377}$$

Power Density: Pd (W/m²) =

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2} \theta \varphi$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained





### **Measurement Result**

| Channel   | Max Output   | Max tune-up  | Max Tune  | Power                 | Threshold Value        |
|-----------|--------------|--------------|-----------|-----------------------|------------------------|
| Frequency | power        | tolerance    | up power  | density at            | (mW/cm²)               |
| (GHz)     | (dBm)        | Output power | (dBm)     | 20cm                  | Anbo K Sotek           |
| Yupo, V   | -otek anbote | (dBm)        | abotek Ar | (mW/cm <sup>2</sup> ) | otek Anboter Anb       |
| 0.1356    | -49.288      | -49.288±1    | -48.288   | 0.000000003           | 13.27                  |
| 2.402     | 3.89         | 3.89±1       | 4.89      | 0.0006                | inbo k h. Totek Anbote |

E = EIRP - 20log D + 104.8

where:

 $E = electric field strength in dB\mu V/m$ ,

EIRP = equivalent isotropic radiated power in dBm

D =specified measurement distance in meters.

EIRP=E-104.8+20logD=45.97 -104.8+20log3= -49.288dbm simultaneous MPE Result

| BLE_1M MPE Ratio | NFC MPE Ratio | simultaneous MPE Ratio | MPE Limits ratio | Test result |
|------------------|---------------|------------------------|------------------|-------------|
| 0.0000           | 0.0000        | 0.0000                 | Vupo, by         | Arboter     |
| 0.0006           | 0.0000        | 0.0006                 | Anbore 1 Ans     | Pass        |

The SAR measurement is not necessary.

