

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: Fax: Website:

+86-755-26648640 +86-755-26648637 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No.: Applicant: Address of Applicant:	CQASZ20220801388E-02 Woojer LTD 1 Shenkar Street, Herzliya, Israel, 4672501
Equipment Under Test (E	UT):
Product:	Vest3
Model No.:	WJRV3-101
Test Model No.:	WJRV3-101
Brand Name:	Woojer
FCC ID:	2AQXZ-WJRV3-101
Standards:	47 CFR Part 15, Subpart C
Date of Receipt:	2022-08-10
Date of Test:	2022-08-10 to 2022-09-05
Date of Issue:	2022-11-02
Test Result:	PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:	lewis zhou
	(Lewis Zhou)
Reviewed By: _	Timo Loj
	(Timo Lei)
Approved By:	Junos
	(Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220801388E-02	Rev.01	Initial report	2022-11-02

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

Page

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.2 General Description of EUT 4.3 Additional Instructions	
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 Test Location 4.8 Test Facility	
4.8 TEST FACILITY	
4.10 Other Information Requested by the Customer	
4.11 Equipment List	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 6DB Occupy Bandwidth 5.5 Power Spectral Density	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.7 Spurious RF Conducted Emissions	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions	65
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSIONS TEST SETUP	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Woojer LTD
Address of Applicant:	1 Shenkar Street, Herzliya, Israel, 4672501
Manufacturer:	Woojer LTD
Address of Manufacturer:	1 Shenkar Street, Herzliya, Israel, 4672501
Factory:	Dongguan Zhenyuan Electronics Co., Ltd.
Address of Factory:	No.B1 Workshop, Huaxing Industrial Zone, Hongshi Road, Yantian Village, Fenggang Town, Dongguan City, Guangdong Province, P.R. China

4.2 General Description of EUT

Product Name:	Vest3
Model No.:	WJRV3-101
Test Model No.:	WJRV3-101
Trade Mark:	Woojer
Software Version:	V1.0
Hardware Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.3
Modulation Type:	GFSK
Transfer Rate:	1Mbps, 2Mbps
Number of Channel:	40
Product Type:	☐ Mobile
Test Software of EUT:	BlueTest3
Antenna Type:	PCB antenna
Antenna Gain:	0 dBi
EUT Power Supply:	Li-ion battery: DC 14.4V 3350mAh, Charge by DC 20V for adapter

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Additional Instructions

EUT Test Software Settings:				
Mode:	Special software is used.	Special software is used.		
		☐ Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*		
EUT Power level:	Class2 (Power level is built-in set par selected)	ameters and cannot be changed and		
Use test software to set the	lowest frequency, the middle frequency an	d the highest frequency keep		
transmitting of the EUT.		1		
Mode	Channel	Channel Frequency(MHz)		
	СНО	2402		
GFSK	CH19	2440		
	СН39	2480		

Run Software:

Test Commands ——		-Test Arguments		-	
CW TX CONTINUOUS TX	^	Channel (0-78)	78		Close
PACKET TX PACKET RX		Power (0-9)	9		Help
QHS RF TEST STOP		Туре	BREDR 1-PR9	-	Execute
POWER TABLE GET		Pattern bits (1-	2		1
POWER TABLE SET		Pattern (hex)	00000001		Reset
Test Results	Browse	for f)isplay : 🗭 Stand	lard	C BER
☐ Save to file _		for f j pData\Local\QTIL\Blu			C BER
Save to file C:\Users\Administr	ator\Ap = 2402 cessful	pData\Local\QTIL\Blu 2MHz 1			C BER
Save to file C:\Vsers\Administr Continuous TX suc- Channel frequency Continuous TX suc-	ator\Ap) = 2402 cessful = 2441 cessful	pData\Local\QTIL\Blu 2MHz L LMHz L			C BER
Save to file C:\Users\Administr Channel frequency Channel frequency CONTINUOUS TX suc Channel frequency CONTINUOUS TX suc Channel frequency	ator\Ap) = 2402 cessful = 2441 cessful = 2441	pData\Local\QTIL\Blu 2MHz L LMHz L LMHz L			C BER
Save to file C:\Users\Administr Channel frequency CONTINUOUS TX suc- Channel frequency Channel frequency Channel frequency Continuous TX suc- Channel St suc- Channel frequency Continuous TX suc-	ator\App = 2402 cessful = 2441 cessful = 2441 cessful	pData\Local\QTIL\Blu pData\Local\QTIL\Blu LMHz L LMHz L			C BER
Save to file C:\Vsers\Administr Continuous TX suc- channel frequency continuous TX suc- channel frequency continuous TX suc- channel frequency	ator\Ap) = 2402 cessful = 2441 cessful = 2441 cessful = 2480	pData\Local\QTIL\Blu 20MHz L LMHz L MHz L MHz J MHz			C BER
Save to file C:\Users\Administr Continuous TX suc- channel frequency CONTINUOUS TX suc- channel frequency CONTINUOUS TX suc- channel frequency Continuous TX suc- channel frequency Continuous TX suc-	ator\App = 2402 cessful = 2441 cessful = 2441 cessful = 2480 cessful	pData\Local\QTIL\Blu 2MHz L L LMHz L LMHz L DMHz L			C BER
Save to file C:\Vsers\Administr Continuous TX suc- channel frequency continuous TX suc- channel frequency continuous TX suc- channel frequency	= 2402 cessful = 2441 cessful = 2441 cessful = 2480 cessful = 2480	pData\Local\QTIL\Blu pData\Local\QTIL\Blu 2MHz L LMHz L MHz L MHz DMHz DMHz			C BER
Save to file C:\Users\Administr Channel frequency CNTINUOUS TX suc- channel frequency CNTINUOUS TX suc- channel frequency CONTINUOUS TX suc- channel frequency CONTINUOUS TX suc- channel frequency CONTINUOUS TX suc- channel frequency	ator\Ap; = 2402 cessful = 2441 cessful = 2442 cessful = 2480 cessful = 2480 cessful	pData\Local\QTIL\Blu pData\Local\QTIL\Blu MHz L MHz L DMHz L DMHz L			C BER
Save to file C:\Users\Administr Channel frequency CONTINUOUS TX suc- channel frequency CONTINUOUS TX suc-	ator\Ap; = 2402 cessful = 2441 cessful = 2480 cessful = 2480 cessful = 2480	pData\Local\QTIL\Blu MHz L MHz L MHz L MHz L MHz L OMHz D MHz L D MHz			CBER
Save to file C:\Vsers\Administr Continuous TX suc- channel frequency continuous TX suc- channel frequency	= 2402 cessful = 2441 cessful = 2442 cessful = 2480 cessful = 2480 cessful = 2480 cessful	pData\Local\QTIL\Blu pData\Local\QTIL\Blu 2MHz L MHz L MHz DMHz L DMHz L DMHz L			C BER

4.4 Test Environment

Operating Environment	Operating Environment:		
Temperature:	24.5°C		
Humidity:	59% RH		
Atmospheric Pressure:	1009mbar		
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.		

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	1	1	1
2) Cable				

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	1	/	1	1

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10Other Information Requested by the Customer

None.

4.11 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2021/9/10	2022/9/9
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2021/9/10	2022/9/9

Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

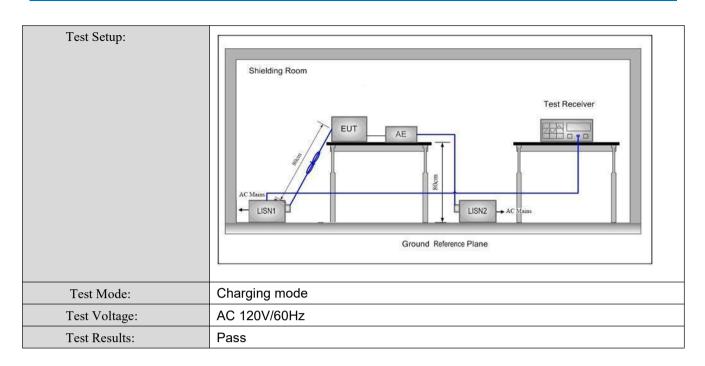
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

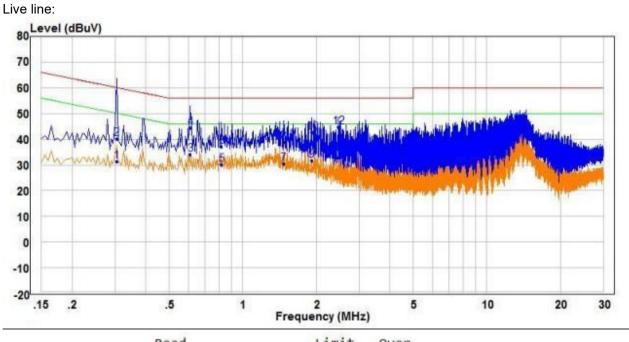
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

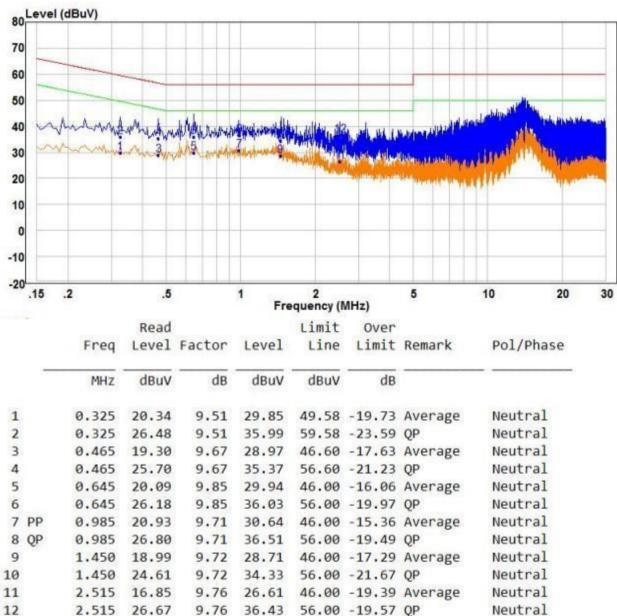
EUT Antenna:



The antenna is PCB antenna. ANT1/ANT2 gain is 0 dBi.


Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
Limit:		Limit (d	lBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm o	f the frequency.			
Test Procedure:	room.	-			
	 The mains terminal disturbance voltage test was conducted in a shielde room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 				

Measurement Data

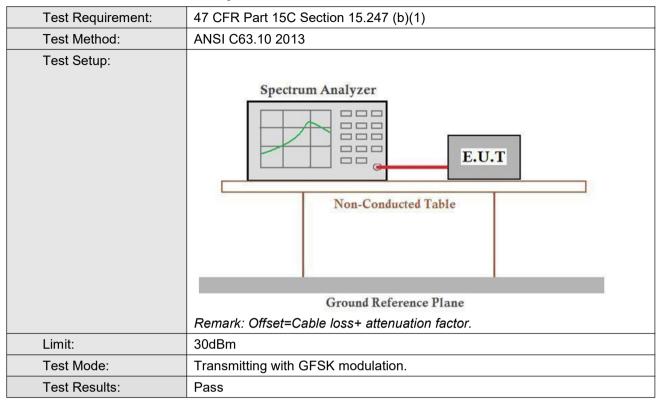

			Read			Limit	Over		
		Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	_	MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.305	21.81	9.50	31.31	50.11	-18.80	Average	Line
1 2 3		0.305	30.73	9.50	40.23	60.11	-19.88	QP	Line
3	AV	0.610	24.42	9.81	34.23	46.00	-11.77	Average	Line
4		0.610	34.56	9.81	44.37	56.00	-11.63	QP	Line
4		0.820	20.31	9.82	30.13	46.00	-15.87	Average	Line
6 7 8 9		0.820	27.24	9.82	37.06	56.00	-18.94	QP	Line
7		1.470	19.72	10.78	30.50	46.00	-15.50	Average	Line
8		1.470	28.12	10.78	38.90	56.00	-17.10	QP	Line
9		1.915	20.26	11.53	31.79	46.00	-14.21	Average	Line
10		1.915	31.01	11.53	42.54	56.00	-13.46	QP	Line
11		2.465	21.74	11.20	32.94	46.00	-13.06	Average	Line
12	PP	2.465	33.52	11.20	44.72	56.00	-11.28	QP	Line

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Conducted Peak Output Power

Measurement Data

Ant1:

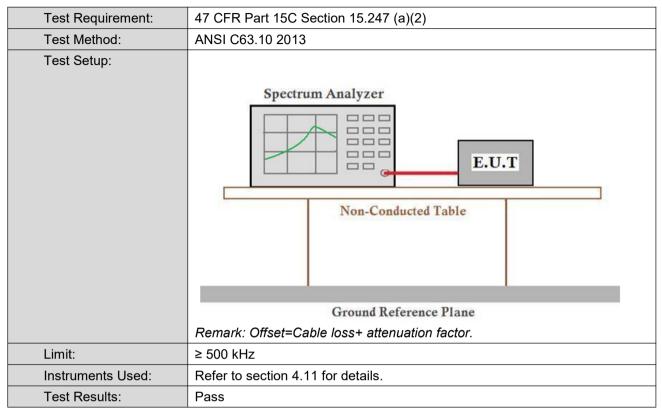
	GFSK mode (1Mbps)				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-1.99	30.00	Pass		
Middle	-1.48	30.00	Pass		
Highest	-1.76	30.00	Pass		
	GFSK mode (21	Mbps)			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.06	30.00	Pass		
Middle	-1.65	30.00	Pass		
Highest	-1.92	30.00	Pass		

Ant?	•
AIIIL	•

	GFSK mode (1Mbps)				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.05	30.00	Pass		
Middle	-1.48	30.00	Pass		
Highest	-1.82	30.00	Pass		
	GFSK mode (2M	1bps)			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.3	30.00	Pass		
Middle	-1.48	30.00	Pass		
Highest	-1.93	30.00	Pass		

Ant1+Ant2:

	GFSK mode (1Mbps)				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.99	30.00	Pass		
Middle	1.53	30.00	Pass		
Highest	1.22	30.00	Pass		
	GFSK mode (21	Mbps)			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.83	30.00	Pass		
Middle	1.45	30.00	Pass		
Highest	1.09	30.00	Pass		



5.4 6dB Occupy Bandwidth

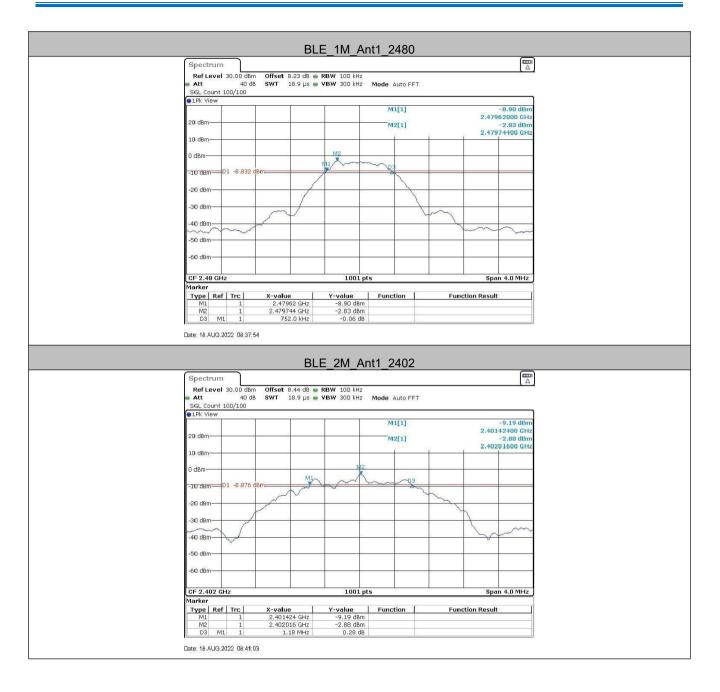
Measurement Data

Ant1:

GFSK mode (1Mbps)					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	0.728	≥500	Pass		
Middle	0.684	≥500	Pass		
Highest	0.752 ≥500		Pass		
	GFSK mode (2Mbps)				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	1.180	≥500	Pass		
Middle	1.288	≥500	Pass		
Highest	1.292	≥500	Pass		

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20220801388E-02


Ant2:

Amz.			
GFSK mode (1Mbps)			
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.728	≥500	Pass
Middle	0.716	≥500	Pass
Highest	0.724	≥500	Pass
GFSK mode (2Mbps)			
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	1.172	≥500	Pass
Middle	1.348	≥500	Pass
Highest	1.252	≥500	Pass

