FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No. GTS20190528005-1-1 FCC ID. : 2AQXY-IAEB19

Compiled by

(position+printed name+signature) .: File administrators Tracy Hu

may bu

Supervised by

(position+printed name+signature) .: Tes

Test Engineer Migo

Moon Jan

Approved by

(position+printed name+signature) .:

Manager Jaso

JasonHu

Date of issue Aug. 12, 2019

Representative Laboratory Name.: Shenzhen Global Test Service Co.,Ltd.

Pinghu Street, Longgang District, Shenzhen, Guangdong, China

Applicant's name...... Shantou City Chaoyang District Gurao Storm Electronic Factory

g District, Shantou, GD, China

Test specification.....:

Address:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz

Four Lane two, Jiangjunyang Xianbo Village, Gurao Town, Chaoyan

TRF Originator...... Shenzhen Global Test Service Co.,Ltd.

Master TRF Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description WIRELESS STEREO NECKBAND HEADSET

Trade Mark Wireless Neckband Headset

Manufacturer Shantou City Chaoyang District Gurao Storm Electronic Factory

Model/Type reference: IAEB19

Listed Models FB-KX,FB-8XX,FB6XX,FB82XX

Modulation Type...... GFSK,Π/4-DQPSK,8DPSK

Operation Frequency From 2402MHz to 2480MHz

Hardware Version N/A
Software Version N/A

Rating DC 3.7V form battery

Result PASS

Report No.: GTS20190528005-1-1 Page 2 of 50

TEST REPORT

Test Report No. :	GTS20190528005-1-1	Aug. 12, 2019
rest Report No	G1320190320003-1-1	Date of issue

Equipment under Test : WIRELESS STEREO NECKBAND HEADSET

Model /Type : IAEB19

Listed Models : FB-KX,FB-8XX,FB6XX,FB82XX

Applicant : Shantou City Chaoyang District Gurao Storm Electronic Factory

Address : Four Lane two, Jiangjunyang Xianbo Village, Gurao Town,

Chaoyang District, Shantou, GD, China

Manufacturer : Shantou City Chaoyang District Gurao Storm Electronic Factory

Address : Four Lane two, Jiangjunyang Xianbo Village, Gurao Town,

Chaoyang District, Shantou, GD, China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: GTS20190528005-1-1

Page 3 of 50

Contents

<u>1.</u>	IEST STANDARDS	<u> 4</u>
<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment Under Test	6
2.4.	Short description of the Equipment under Test (EUT)	6
2.5.	EUT operation mode	6
2.6.	Block Diagram of Test Setup	6
2.7.	Related Submittal(s) / Grant (s)	6
2.8.	Special Accessories	6
2.9.	Modifications	6
<u>3.</u>	TEST ENVIRONMENT	7
		_
3.1.	Address of the test laboratory	7
3.2.	Test Facility	7
3.3.	Environmental conditions	7
3.4.	Summary of measurement results	8
3.5.	Statement of the measurement uncertainty	9
3.6.	Equipments Used during the Test	10
<u>4.</u>	TEST CONDITIONS AND RESULTS	11
4.1.	AC Power Conducted Emission	11
4.2.	Radiated Emission	14
4.3.	Maximum Peak Output Power	18
4.4.	20dB Bandwidth	19
4.5.	Frequency Separation	25
4.6.	Band Edge Compliance of RF Emission	31
4.7.	Number of hopping frequency	39
4.8.	Time Of Occupancy(Dwell Time)	41
4.9.	Pseudorandom Frequency Hopping Sequence	48
4.10.	Antenna Requirement	49
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	50
6.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	5.0
~ .		

Report No.: GTS20190528005-1-1 Page 4 of 50

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

Report No.: GTS20190528005-1-1 Page 5 of 50

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Aug. 02, 2019
Testing commenced on	:	Aug. 12, 2019
Testing concluded on	:	Aug. 12, 2019

2.2. Product Description

Product Name:	WIRELESS STEREO NECKBAND HEADSET
Trade Mark:	Wireless Neckband Headset
Model/Type reference:	IAEB19
List Model:	FB-KX,FB-8XX,FB6XX,FB82XX
Model Declaration	PCB board, structure and internal of these model(s) are the same, So no additional models were tested.
Power supply:	DC 3.7V form battery
ВТ	
Operation frequency	2402-2480MHz
Channel Number	79 channels for Bluetooth (DSS)
Channel Spacing	1MHz for Bluetooth (DSS)
Modulation Type	GFSK, π/4DQPSK, 8DPSK for Bluetooth (DSS)
Antenna Description	PCB Antenna,-0.68dBi(Max.)

Report No.: GTS20190528005-1-1 Page 6 of 50

2.3. Equipment Under Test

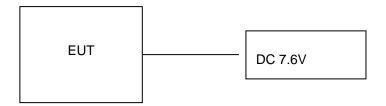
Power supply system utilised

Power supply voltage	••	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow))

DC 3.7V form battery

2.4. Short description of the Equipment under Test (EUT)

This is a WIRELESS STEREO NECKBAND HEADSET


For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT. Channel 00/38/78 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
			-
			-
38	2440	78	2480
39	2441		

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AQXY-IAEB19** filling to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen Jihongda Power Co.,Ltd.	Adapter	JHD-AP036U- 050300AA-A	-	SDOC

2.9. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20190528005-1-1 Page 7 of 50

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China, China.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

Report No.: GTS20190528005-1-1 Page 8 of 50

3.4. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	\boxtimes				complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-			\boxtimes		Not applicable for FHSS
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4-DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4-DQPSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4-DQPSK 8DPSK	⊠ Full	GFSK Π/4-DQPSK 8DPSK	⊠ Full					complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4-DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4-DQPSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK П/4-DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4-DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest					complies
§15.247(b)(1)	Maximum output power	GFSK Π/4-DQPSK 8DPSK	 Lowest Middle Highest	GFSK Π/4-DQPSK 8DPSK		\boxtimes				complies
§15.247(d)	Band edge compliance conducted	GFSK Π/4-DQPSK 8DPSK	Lowest	GFSK Π/4-DQPSK 8DPSK		\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK Π/4-DQPSK 8DPSK		GFSK						complies
§15.247(d)	TX spurious emissions conducted	-/-	-/-	-/-	-/-					complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	 Lowest Middle Highest	GFSK						complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-			\boxtimes		complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	-/-	-/-	-/-	-/-					complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes				complies

Remark:

- The measurement uncertainty is not included in the test result.
- NA = Not Applicable; NP = Not Performed
 We tested all test mode and recorded worst case in report
- For $\pi/4$ -DQPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worse case 8-DPSK and GFSK.

Report No.: GTS20190528005-1-1 Page 9 of 50

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

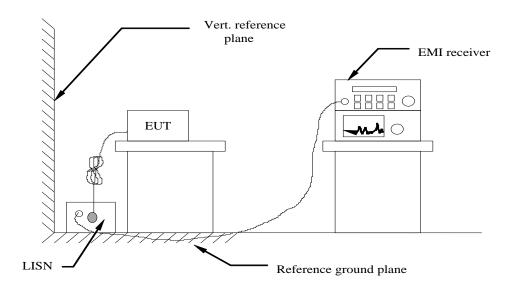
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: GTS20190528005-1-1 Page 10 of 50

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2018/09/28	2019/09/27
LISN	R&S	ESH2-Z5	893606/008	2018/09/27	2019/09/26
By-log Antenna	SCHWARZBECK	VULB9163	000976	2018/09/29	2019/09/28
EMI Test Receiver	R&S	ESCI	101102	2018/09/26	2019/09/25
Spectrum Analyzer	Agilent	N9020A	MY48010425	2018/09/17	2019/09/16
Spectrum Analyzer	R&S	FSV40-N	101800	2018/09/17	2019/09/16
Controller	EM Electronics	Controller EM 1000	N/A	2018/09/21	2019/09/20
Double Ridged Horn Antenna (1~18GHz)	SCHWARZBECK	BBHA 9120D	01622	2018/09/19	2019/09/18
Double Ridged Horn Antenna	Rohde&Schwarz	HF907	100265	2018/09/19	2019/09/18
Active Loop Antenna	SCHWARZBECK	FMZB1519	1519-037	2018/09/19	2019/09/18
Horn Antenna (18GHz~40GHz)	ETS	3116	00086467	2018/12/29	2019/12/28
Amplifier (26.5GHz~40GHz)	EMCI	EMC2654045	980028	2018/09/18	2019/09/17
Amplifier (0.1GHz~26.5GHz)	EMCI	EMC012645SE	980355	2018/09/19	2019/09/18
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2018/09/20	2019/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	N/A	2018/09/20	2019/09/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	N/A	2018/09/20	2019/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2018/09/20	2019/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2018/09/20	2019/09/19
RF Cable	HUBER+SUHNER	RG214	N/A	2018/09/20	2019/09/19
Broadband Antenna	SCHWARZBECK	VULB 9163	00976	2018/09/29	2019/09/28
Conducted Emission	ES-K1	V1.71	N/A	N/A	N/A
Radiated Emission	JS32-RE	V2.5.0.9	N/A	N/A	N/A


Note: The Cal.Interval was one year.

Report No.: GTS20190528005-1-1 Page 11 of 50

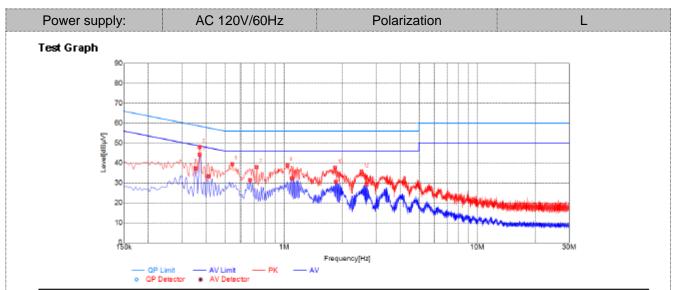
4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

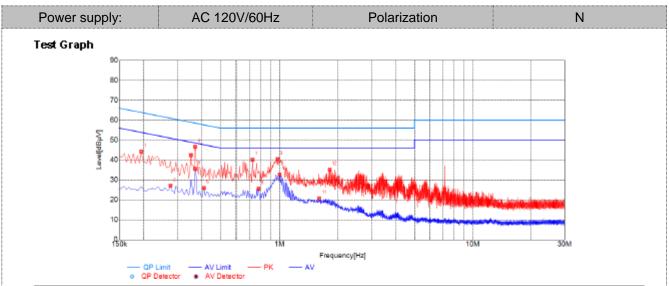
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013.
- 4 The EUT received DC 5V power, the Adapter received AC120V/60Hz or AC 240V/50Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.


AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)				
r requericy rarige (Miriz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the freque	ncy.				

TEST RESULTS

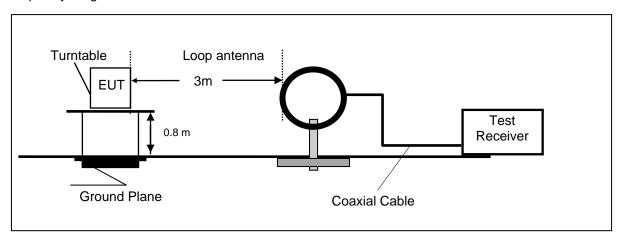

Remark: We measured Conducted Emission at GFSK, $\pi/4$ -DQPSK and 8DPSK mode in AC 120V/60Hz and AC 240V/50Hz, the worst case was recorded .

Sus	Suspected List								
NO.	Frequency [MHz]	Reading [dBµV]	Factor [dB]	Result [dBµV]	Limit [dBµV]	Margin [dB]	Detector	Line	Remark
1	0.3525	27.24	10.13	37.37	48.90	11.53	AV	L1	PASS
2	0.3705	37.86	10.14	48.00	58.49	10.49	PK	L1	PASS
3	0.3705	34.03	10.14	44.17	48.49	4.32	AV	L1	PASS
4	0.4110	23.17	10.18	33.35	47.63	14.28	AV	L1	PASS
5	0.5460	29.21	10.22	39.43	56.00	16.57	PK	L1	PASS
6	0.6675	21.15	1021	31.36	46.00	14.64	ΑV	L1	PASS
7	0.7215	27.66	10.23	37.89	56.00	18.11	PK	L1	PASS
8	1.0410	28.67	10.20	38.87	56.00	17.13	PK	L1	PASS
9	1.0950	22.14	1021	32.35	46.00	13.65	AV	L1	PASS
10	1.8375	27.36	10.26	37.62	56.00	18.38	PK	L1	PASS
11	1.8555	20.31	10.26	30.57	46.00	15.43	AV	L1	PASS
12	2.5170	25.31	10.31	35.62	56.00	20.38	PK	L1	PASS
13	2.6745	18.87	10.32	29.19	46.00	16.81	AV	L1	PASS

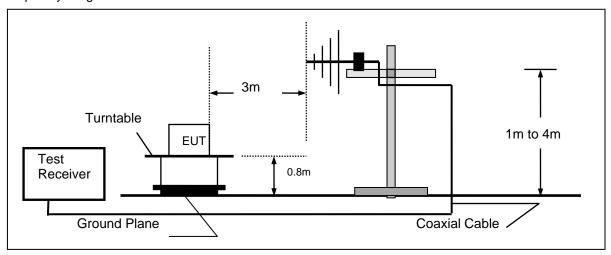
Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

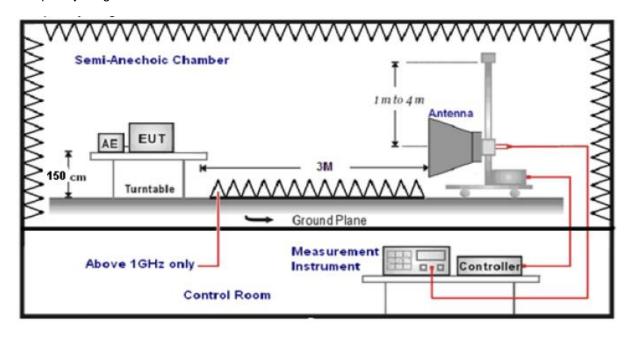
Sus	Suspected List								
NO.	Frequency [MHz]	Reading [dBµV]	Flactor [dB]	Result [dBµV]	Limit [dBµV]	Margin [dB]	Detector	Line	Remark
1	0.1950	34.03	10.16	44.19	63.82	19.63	PK	N	PASS
2	0.2760	16.92	10.11	27.03	50.94	23.91	AV	N	PASS
3	0.3525	32.24	10.13	42.37	58.90	16.53	PK	N	PASS
4	0.3705	36.47	10.14	46.61	58.49	11.88	PK	N	PASS
5	0.3705	25.40	10.14	35.54	48.49	12.95	AV	N	PASS
6	0.4110	15.73	10.18	25.91	47.63	21.72	AV	N	PASS
7	0.7260	29.87	10.23	40.10	56.00	15.90	PK	N	PASS
8	0.7800	15.29	10.25	25.54	46.00	20.46	AV	N	PASS
9	0.9780	30.19	10.19	40.38	56.00	15.62	PK	N	PASS
10	1.0005	22.40	10.20	32.60	46.00	13.40	AV	N	PASS
11	1.6035	10.42	1024	20.66	46.00	25.34	AV	N	PASS
12	1.8195	24.82	10.26	35.08	56.00	20.92	PK	N	PASS


Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GTS20190528005-1-1 Page 15 of 50

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

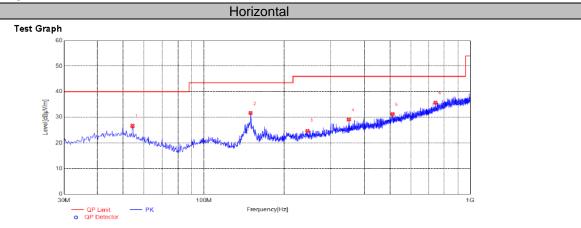
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

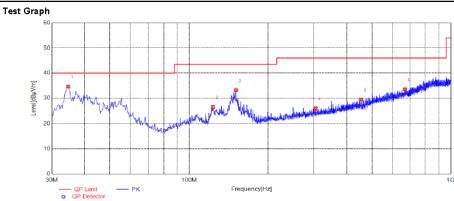
The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Report No.: GTS20190528005-1-1 Page 16 of 50

TEST RESULTS

Remark: We measured Radiated Emission at GFSK, $\pi/4$ -DQPSK and 8DPSK mode from 30MHz to 25GHz and recorded worst case at GFSK mode.


For 30MHz-1GHz

Susp	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	54.2500	42.30	-15.66	26.64	40.00	13.36	100	250	PK	Horizonta	PASS
2	149.7950	51.31	-19.69	31.62	43.50	11.88	100	226	PK	Horizonta	PASS
3	244.8550	40.09	-15.22	24.87	46.00	21.13	100	324	PK	Horizonta	PASS
4	350.1000	41.97	-12.94	29.03	46.00	16.97	100	48	PK	Horizonta	PASS
5	511.1200	40.53	-9.37	31.16	46.00	14.84	100	112	PK	Horizonta	PASS
6	741.4950	41.70	-6.00	35.70	46.00	10.30	100	284	PK	Horizonta	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB)

Vertical

Susp	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	34.6075	51.74	-17.11	34.63	40.00	5.37	100	167	PK	Vertical	PASS
2	123.1200	45.65	-19.12	26.53	43.50	16.97	100	260	PK	Vertical	PASS
3	151.0075	52.90	-19.63	33.27	43.50	10.23	100	231	PK	Vertical	PASS
4	304.0250	40.07	-14.03	26.04	46.00	19.96	100	194	PK	Vertical	PASS
5	453.8900	40.20	-10.68	29.52	46.00	16.48	100	97	PK	Vertical	PASS
6	668.2600	40.36	-6.82	33.54	46.00	12.46	100	356	PK	Vertical	PASS

Note: 1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

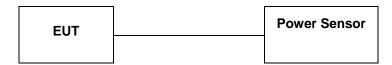
2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

^{2.} Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Report No.: GTS20190528005-1-1 Page 17 of 50

For 1GHz to 25GHz

Frequency	Meter Reading	Antenna Factor	Preamp factor	Cable loss	Emission Level	Limits	Margin	Detector Type	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/ m)	(dB)	Турс	
				TX-2	2402				
4804	48.93	32.44	30.25	7.95	59.07	74.00	-14.93	Pk	Vertical
4804	31.74	32.44	30.25	7.95	41.88	54.00	-12.12	AV	Vertical
4804	49.73	32.44	30.25	7.95	59.87	74.00	-14.13	Pk	Horizontal
4804	33.74	32.44	30.25	7.95	43.88	54.00	-10.12	AV	Horizontal
				TX-2	2441				
4882	47.87	32.52	30.31	8.12	58.20	74.00	-15.80	Pk	Vertical
4882	32.25	32.52	30.31	8.12	42.58	54.00	-11.42	AV	Vertical
4882	49.51	32.52	30.31	8.12	59.84	74.00	-14.16	Pk	Horizontal
4882	35.91	32.52	30.31	8.12	46.24	54.00	-7.76	AV	Horizontal
				TX-2	2480				
4960	48.59	32.68	30.27	7.88	58.88	74.00	-15.12	Pk	Vertical
4960	33.83	32.68	30.27	7.88	44.12	54.00	-9.88	AV	Vertical
4960	49.38	32.68	30.27	7.88	59.67	74.00	-14.33	Pk	Horizontal
4960	35.50	32.68	30.27	7.88	45.79	54.00	-8.21	AV	Horizontal


REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Report No.: GTS20190528005-1-1 Page 18 of 50

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Modulation	Channel	Peak Output power (dBm)	Limit (dBm)	Result	
	00	2.80			
GFSK	39	3.72	21	Pass	
	78	0.93			
	00	1.61			
π/4-DQPSK	39	2.64	21	Pass	
	78	0.26			
	00	1.62			
8DPSK	39	2.63	21	Pass	
	78	0.26			

Note: The test results including the cable lose.

Report No.: GTS20190528005-1-1 Page 19 of 50

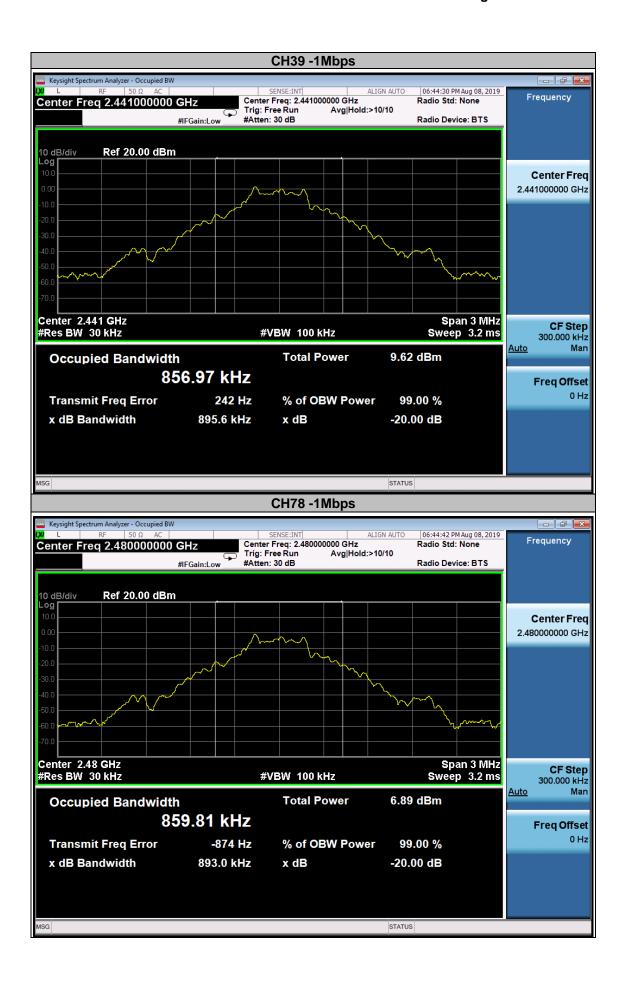
4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT


For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

Modulation	Frequency	20dB Bandwidth (MHz)	Result
	2402 MHz	0.8986	PASS
GFSK	2441 MHz	0.8956	PASS
	2480 MHz	0.8930	PASS

Test plot as follows:

Report No.: GTS20190528005-1-1 Page 21 of 50

Modulation	Frequency	20dB Bandwidth (MHz)	Result		
π/4-DQPSK	2402 MHz	1.133	PASS		
	2441 MHz	1.131	PASS		
	2480 MHz	1.125	PASS		

Test plot as follows:

Report No.: GTS20190528005-1-1 Page 23 of 50

Modulation	Frequency	20dB Bandwidth (MHz)	Result		
	2402 MHz	1.157	PASS		
8-DPSK	2441 MHz	1.157	PASS		
	2480 MHz	1.156	PASS		

Test plot as follows:

Report No.: GTS20190528005-1-1 Page 25 of 50

4.5. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Modulation	Frequency	Ch. Separation (MHz)	Limit (MHz)	Result	
GFSK	2402 MHz	1.020	0.599	Complies	
	2441 MHz	1.004	0.597	Complies	
	2480 MHz	1.006	0.595	Complies	

Ch. Separation Limits: > 2/3 of 20dB bandwidth

PNO: Wide 😱

Mrs.

#VBW 300 kHz

Marker 1 1.004000000 MHz

10 dB/div

Vuruly

Center 2.441500 GHz #Res BW 100 kHz

Ref 20.00 dBm

CH39-1Mbps

Trig: Free Run

#Atten: 30 dB

porthal Markeny

Avg Type: Log-Pwr Avg|Hold:>100/100

CH78-1Mbps

Report No.: GTS20190528005-1-1 Page 27 of 50

Modulation	Frequency	Ch. Separation (MHz)	Limit (MHz)	Result	
	2402 MHz	1.062	0.755	Complies	
π /4-DQPSK	2441 MHz	0.984	0.754	Complies	
	2480 MHz	1.022	0.750	Complies	

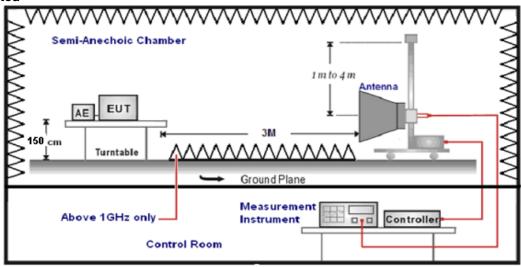
Ch. Separation Limits: >2/3 of 20dB bandwidth.

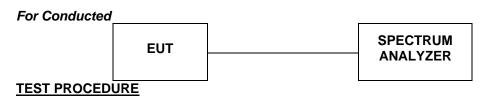
Report No.: GTS20190528005-1-1 Page 29 of 50

Modulation	Frequency	Ch. Separation (MHz)	Limit (MHz)	Result	
8-DPSK	2402 MHz	1.004	0.771	Complies	
	2441 MHz	0.986	0.771	Complies	
	2480 MHz	1.022	0.771	Complies	

Ch. Separation Limits: >2/3 of 20dB bandwidth.

Report No.: GTS20190528005-1-1 Page 31 of 50


4.6. Band Edge Compliance of RF Emission


TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST CONFIGURATION

For Radiated

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:

Setting test receiver/spectrum as following table states:

9			
Test Frequency range	Detector		
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz,		
	Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	Peak	
	Sweep time=Auto		

LIMIT

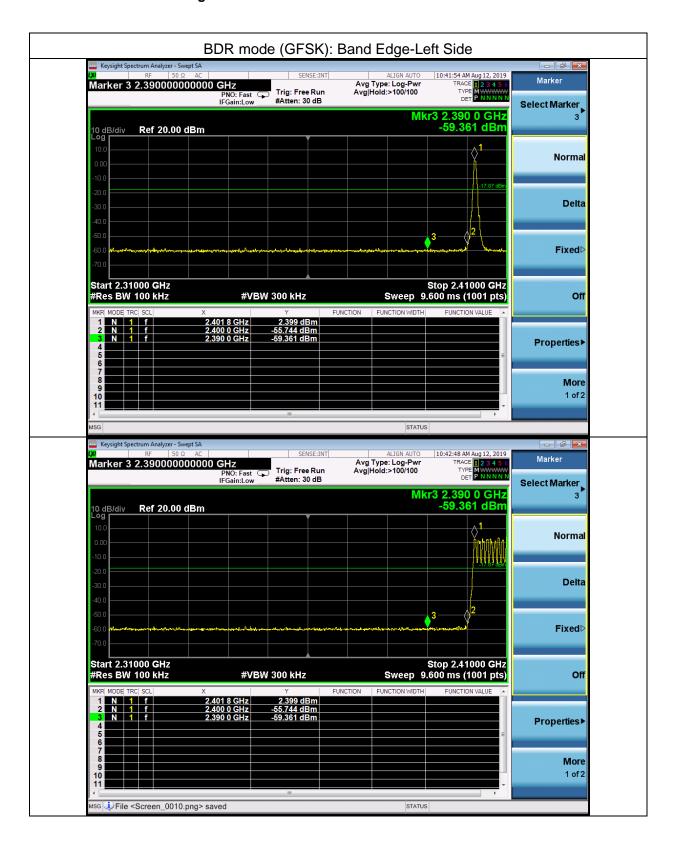
Below -20dB of the highest emission level in operating band.

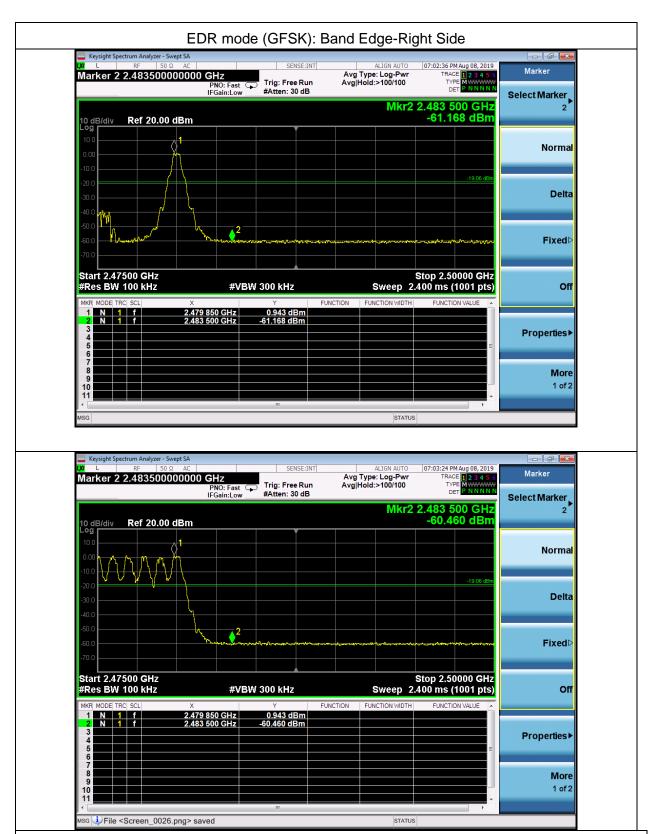
Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

Report No.: GTS20190528005-1-1 Page 32 of 50

TEST RESULTS

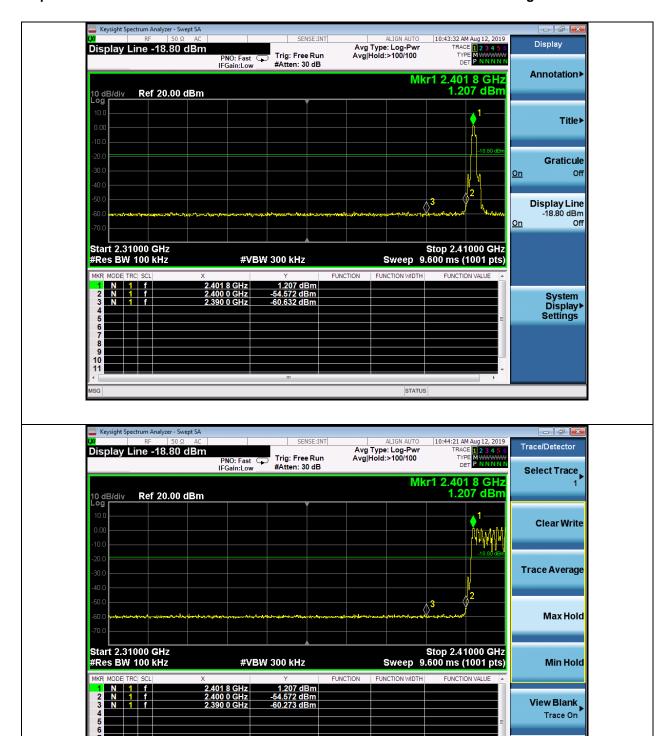
Remark: we measured all conditions(DH1,DH3,DH5) and recorded worst case at DH1.


4.6.1 For Radiated Bandedge Measurement

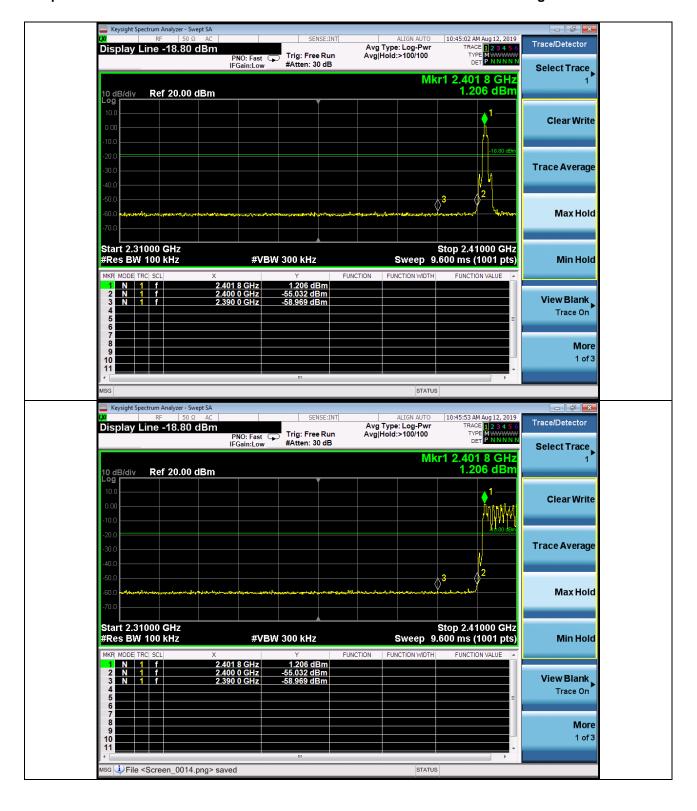

Remark: we tested radiated bandedge at both hopping and no-hopping modes,recorded worst case at no-hopping mode

GFSK

Frequency(MHz):			2402		Polarity:		HORIZONTAL				
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	41.76	PK	74	-32.24	1	109	47.07	27.49	3.32	36.12	-5.31
2390.00	27.34	AV	54	-26.66	1	109	32.65	27.49	3.32	36.12	-5.31
Frequency	Frequency(MHz):			2402		Polarity:		VERTICAL			
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	42.62	PK	74	-31.38	1	123	47.93	27.49	3.32	36.12	-5.31
2390.00	26.79	AV	54	-27.21	1	123	32.10	27.49	3.32	36.12	-5.31
Frequency	y(MHz):			2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	43.51	PK	74	-30.49	1	152	49.23	27.45	3.38	36.55	-5.72
2483.50	28.36	AV	54	-25.64	1	152	34.08	27.45	3.38	36.55	-5.72
Frequency	Frequency(MHz):			2480			Polarity:			VERTI	CAL
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	43.85	PK	74	-30.15	1	201	49.57	27.45	3.38	36.55	-5.72
2483.50	27.49	AV	54	-26.51	1	201	33.21	27.45	3.38	36.55	-5.72

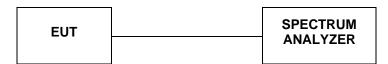

4.6.2 For Conducted Bandedge Measurement

EDR mode (π /4-DQPSK): Band Edge-Left Side


More 1 of 3

STATUS

EDR mode(8DPSK): Band Edge-Left Side

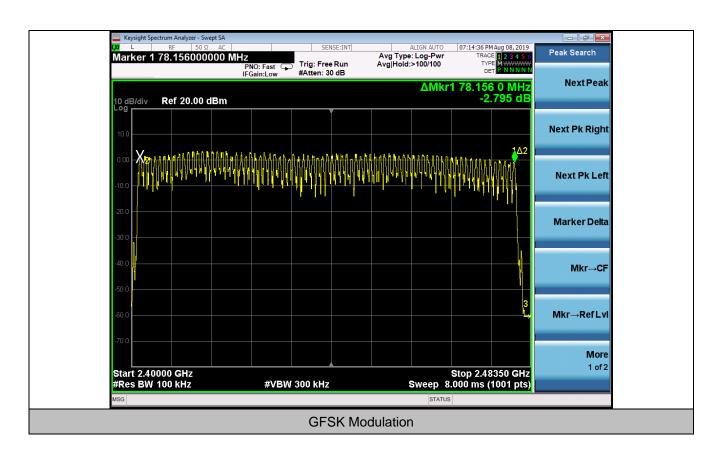


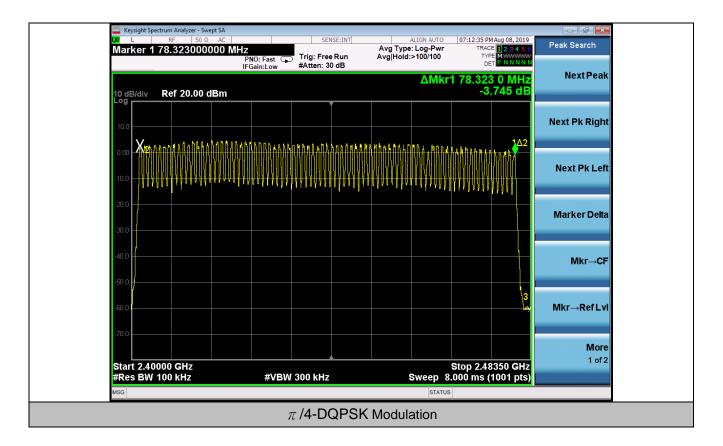
NOTE: Hopping enabled and disabled have evaluated, and the worst data was reported.

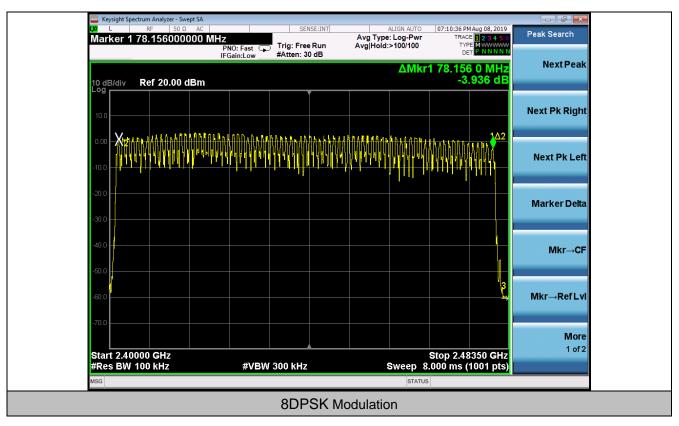
Report No.: GTS20190528005-1-1 Page 39 of 50

4.7. Number of hopping frequency

TEST CONFIGURATION


TEST PROCEDURE


The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=1MHz and VBW=3MHz.


<u>LIMIT</u>

Frequency hopping systems in the 2400–2483.5MHz band shall use at least 15 channels.

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π /4-DQPSK	79	≥15	Pass
8DPSK	79	≥15	Pass

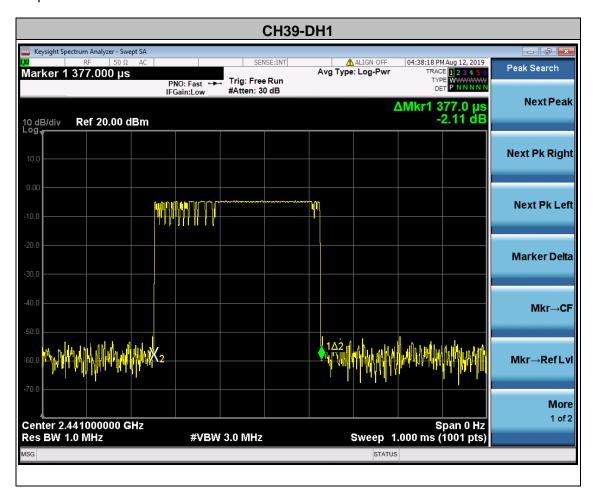
Report No.: GTS20190528005-1-1 Page 41 of 50

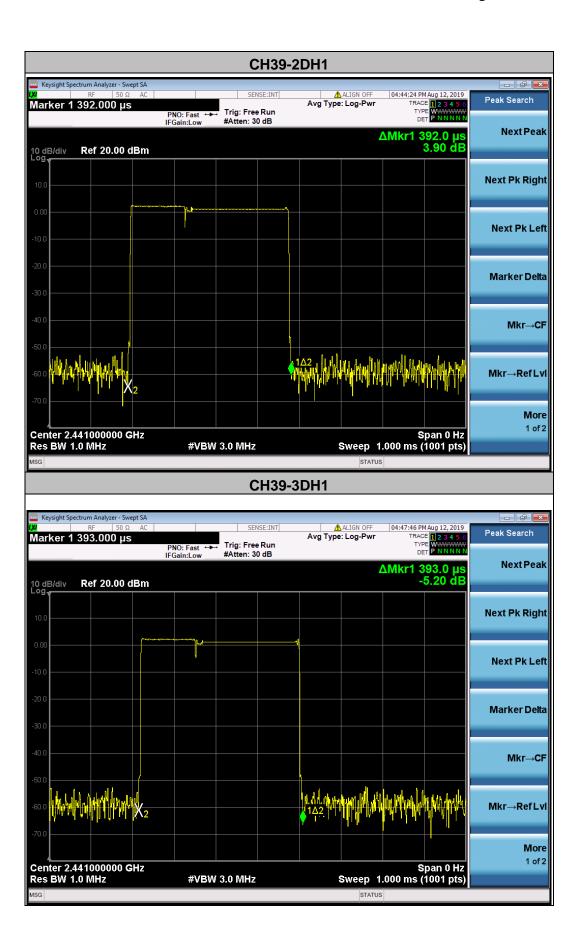
4.8. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

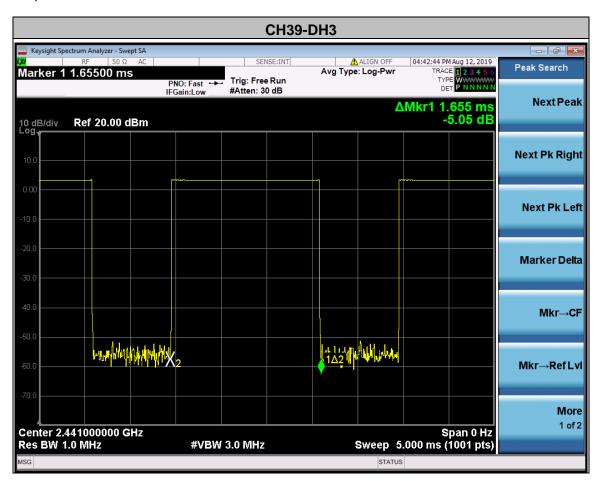

LIMIT

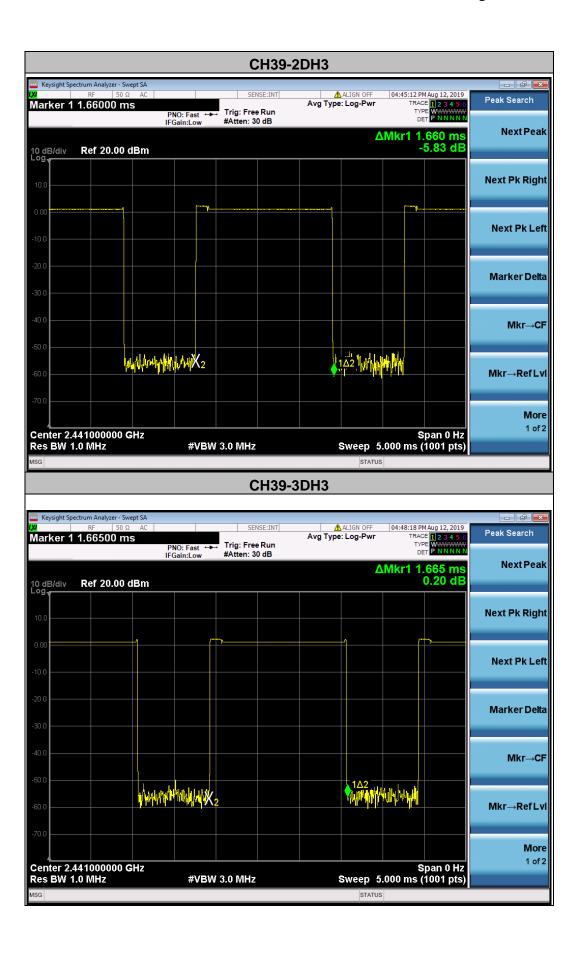

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

Modulation	Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
			(ms)	(s)	(s)
	DH1	2441 MHz	0.377	0.12	0.4
GFSK	2DH1	2441 MHz	0.392	0.13	0.4
	3DH1	2441 MHz	0.393	0.13	0.4

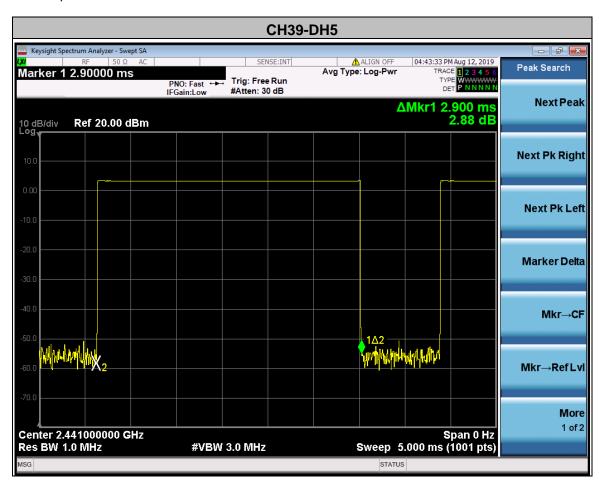
Test plot as follows:

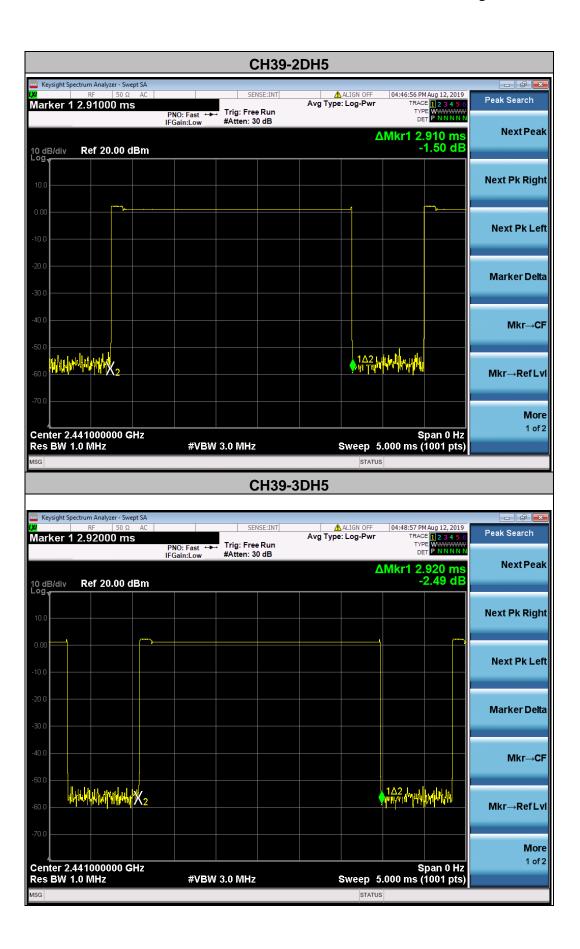




Report No.: GTS20190528005-1-1 Page 44 of 50

Modulation	Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
			(ms)	(s)	(s)
	DH3	2441 MHz	1.655	0.26	0.4
π/4-DQPSK	2DH3	2441 MHz	1.660	0.27	0.4
	3DH3	2441 MHz	1.665	0.27	0.4


Test plot as follows:



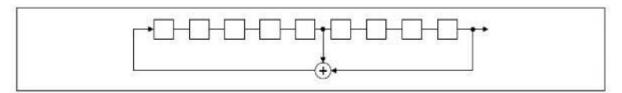
Modulation	Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
			(ms)	(s)	(s)
	DH5	2441 MHz	2.900	0.31	0.4
8-DPSK	2DH5	2441 MHz	2.910	0.31	0.4
	3DH5	2441 MHz	2.920	0.31	0.4

Test plot as follows:

Report No.: GTS20190528005-1-1 Page 48 of 50

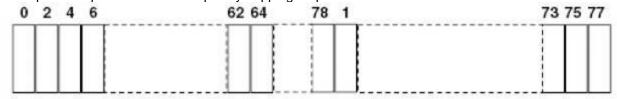
4.9. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

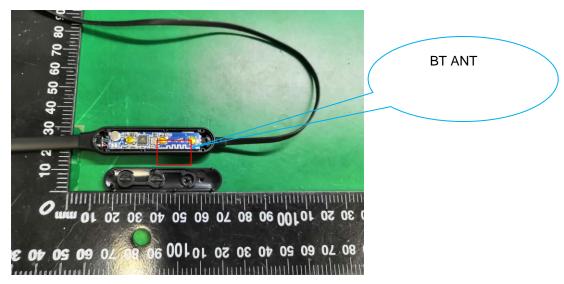
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10. Antenna Requirement


Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna used for this product is PCB Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only -0.68dBi.

Report No.: GTS20190528005-1-1 Page 50 of 50

5. Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

6. Exter	nal and	Internal	Photos	o f	the	EUT
----------	---------	----------	--------	-----	-----	-----

Please refer to separated files for External Photos & Internal Photos of the EUT.
End of Report