

Global United Technology Services Co., Ltd.

Report No.: GTSL2023060387F05

TEST REPORT

Applicant: KONKA GROUP CO., LTD.

Address of Applicant: No. 28 Keji South 12th Road, Nanshan District. Shenzhen

Guangdong China

Manufacturer: KONKA GROUP CO., LTD.

Address of No. 28 Keji South 12th Road, Nanshan District. Shenzhen

Manufacturer: **Guangdong China**

Factory: Dongguan Konka Electronic Co., Ltd

Address of Factory: No.5 Konka Road, Fenggang Town, Dongguan, Guangdong,

China.

Equipment Under Test (EUT)

Product Name: 60 ULTRA HD SMART TV(ATSC TUNER)

Model No.: UDZ60NR556UN, RWOSU6054、RWOSU6052、

RWOSU6047、RXXXX60YY(X is 0-9, Y is A-Z)、

PXXXX60YY(X is 0-9, Y is A-Z)

Trade Mark: RCA, PROSCAN

FCC ID: 2AQX7-RWOSU6054

FCC CFR Title 47 Part 15 Subpart E Section 15.407 **Applicable standards:**

Date of sample receipt: April 13, 2023

Date of Test: April 13~ May 17, 2023

Date of report issued: May 19, 2023

PASS * Test Result:

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 31

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	May 19, 2023	Original

Prepared By:	Jasantlu	Date:	May 19, 2023
Check By:	Project Engineer Admiros Lux Reviewer	Date:	May 19, 2023

GTS

Report No.: GTSL2023060387F05

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4	TES	ST SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	
5		NERAL INFORMATION	
၁			
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST FACILITY	
	5.5 5.6	TEST LOCATIONADDITIONAL INSTRUCTIONS	
6	TES	ST INSTRUMENTS LIST	8
7	TES	ST RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	AUTOMATICALLY DISCONTINUE TRANSMISSION:	
	7.3	CONDUCTED EMISSIONS	11
	7.4	MAXIMUM CONDUCTED OUTPUT POWER	14
	7.5	CHANNEL BANDWIDTH AND 99% OCCUPIED BANDWIDTH	15
	7.6	Power Spectral Density	16
	7.7	BAND EDGE	17
	7.7.	1 Radiated Emission Method	17
	7.8	Spurious Emission	22
	7.8.	1 Radiated Emission Method	22
	7.9	FREQUENCY STABILITY	30
8	TES	ST SETUP PHOTO	31
9	E117	CONSTRUCTIONAL DETAILS	31
4		LUNAIRU. HUNAL DETAILA	51

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Maximum Conducted Output Power	FCC part 15.407(a)(3)	Pass
Channel Bandwidth and 99% Occupied Bandwidth	FCC part 15.407(e)	Pass
Power Spectral Density	FCC part 15.407(a)(3)	Pass
Band Edge	FCC part 15.407(b)(4)	Pass
Spurious Emission	FCC part 15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	FCC part 15.407(g)	Pass
Non-Transmit & Software Protection	FCC part 15.407(c)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz 3.8039dB		(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted 0.15MHz ~ 30MHz 3.44dB		(1)	
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of	95%.

5 General Information

5.1 General Description of EUT

Product Name:	60 ULTRA HD SMART TV(ATSC TUNER)		
Model No.:	UDZ60NR556UN, RWOSU6054、RWOSU6052、RWOSU6047、		
	RXXXX60YY(X is 0-9, Y is A-Z) \ PXXXX60YY(X is 0-9, Y is A-Z)		
Test Model No.:	Test Model No.: UDZ60NR556UN		
Remark:All above models	are identical in the same PCB layout, interior structure and electrical circuits.		
The differences are appear	arance color and model name for commercial purpose.		
Test sample(s) ID:	GTSL2023060387-1		
Sample(s) Status:	Engineer sample		
S/N:	N/A		
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20): 5745MHz ~ 5825MHz		
	802.11n(HT40)/ 802.11ac(HT40): 5755MHz ~ 5795MHz		
	802.11ac(HT80): 5775MHz		
Channel numbers:	802.11a/802.11n(HT20)/802.11ac(HT20): 5		
	802.11n(HT40)/ 802.11ac(HT40): 2		
	802.11ac(HT80): 1		
Channel bandwidth:	802.11a/802.11n(HT20)/802.11ac(HT20): 20MHz		
	802.11n(HT40)/802.11ac(HT40): 40MHz		
	802.11ac(HT80): 80MHz		
Modulation technology:	OFDM		
	MIMO: 802.11n/ac		
	SISO: 802.11a		
Antenna Type:	IPEX		
Antenna gain:	2dBi		
Power supply:	AC 120V, 50/60Hz		

Note:

^{1.} Antenna gain information provided by the customer

^{2.} The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745MHz	151	5755MHz	153	5765MHz	155	5775MHz
157	5785MHz	159	5795MHz	161	5805MHz	163	5815MHz
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Took obound	Frequency (MHz)				
Test channel	802.11 a/n/ac(HT20)	802.11 n/ac(HT40)	802.11ac(HT80)		
Lowest channel	5745	5755			
Middle channel	5785		5775		
Highest channel	5825	5795			

5.2 Test mode

Transmitting mode Keep the EUT in	continuously transmitting mode
-----------------------------------	--------------------------------

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	Mode	Data rate
802.11a	6Mbps	802.11n/ac(HT40)	13Mbps
802.11n/ac(HT20)	6.5Mbps	802.11ac(HT80)	29.3Mbps

5.3 Description of Support Units

None

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383 Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

Test Software	Special test software provided by manufacturer
Power level setup	Default

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 21, 2023	April 20, 2024		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 20, 2023	March 19, 2025		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	April 21, 2023	April 20, 2024		
9	Coaxial Cable	GTS	N/A	GTS211	April 21, 2023	April 20, 2024		
10	Coaxial cable	GTS	N/A	GTS210	April 21, 2023	April 20, 2024		
11	Coaxial Cable	GTS	N/A	GTS212	April 21, 2023	April 20, 2024		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 21, 2023	April 20, 2024		
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023		
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023		
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023		
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023		
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 21, 2023	April 20, 2024		
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023		
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023		
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 21, 2023	April 20, 2024		
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 16, 2022	Oct. 15, 2023		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 16, 2022	Oct. 15, 2023		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 16, 2022	Oct. 15, 2023		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023		
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 21, 2023	April 20, 2024		

GTS

Con	Conducted Emission								
Item	Test Equipment	Manufacturer	Manufacturer Model No.		Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 23, 2023	April 22, 2024			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 21, 2023	April 20, 2024			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 27, 2023	April 26, 2024			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 14, 2023	April 13, 2024			
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 21, 2023	April 20, 2024			
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 21, 2023	April 20, 2024			

RF C	RF Conducted Test:									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 21, 2023	April 20, 2024				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 21, 2023	April 20, 2024				
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 21, 2023	April 20, 2024				
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 21, 2023	April 20, 2024				
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 21, 2023	April 20, 2024				
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 21, 2023	April 20, 2024				
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 21, 2023	April 20, 2024				
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 21, 2023	April 20, 2024				

Gei	General used equipment:								
Item	Test Equipment	Manufacturer Model No.		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 23, 2023	April 22, 2024			
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

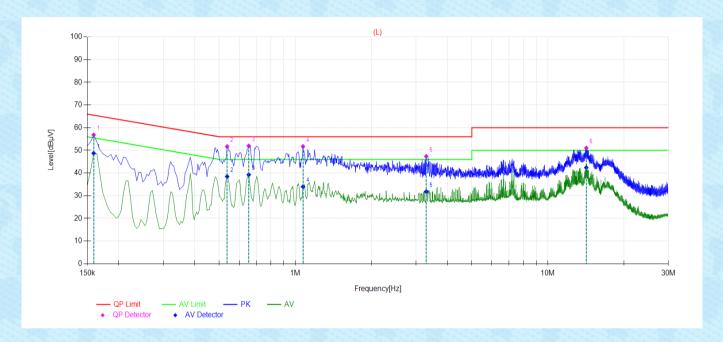
The antenna type is IPEX, reference to the appendix II for details

7.2 Automatically discontinue transmission:

Standard requirement: FCC Part 15 Subpart E Section 15.407(c)

The applicant declare that the device (FCC Part 15 Subpart E Section 15.407) shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure.

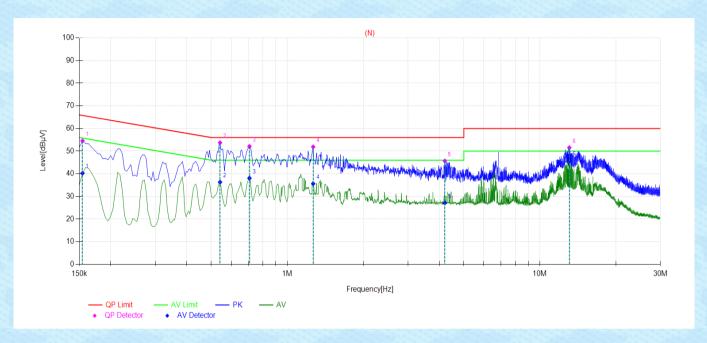
7.3 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	150KHz to 30MHz								
Receiver setup:	RBW=9KHz, VBW=30KHz, S	RBW=9KHz, VBW=30KHz, Sweep time=auto							
Limit:	Fragues ou range (MHz)	Frequency range (MHz) Limit (dBuV) Quasi-peak Average							
	A CONTRACTOR OF THE PROPERTY O								
	0.15-0.5								
	0.5-5	56	46						
	5-30	60	50						
To at a atura.	* Decreases with the logarithm								
Test procedure:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m								
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								

Measurement data

Pre-scan all test modes, found worst case at ANT 1 802.11ac(VHT80) 5775MHz, and so only show the test result of it

Line:



Final	Final Data List										
NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Value [dBμV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	Туре		
1	0.159	56.83	65.52	8.69	48.72	55.52	6.80	PASS	L1		
2	0.537	51.70	56.00	4.30	38.45	46.00	7.55	PASS	L1		
3	0.654	51.98	56.00	4.02	39.26	46.00	6.74	PASS	L1		
4	1.0725	51.71	56.00	4.29	33.98	46.00	12.02	PASS	L1		
5	3.3	47.33	56.00	8.67	31.80	46.00	14.20	PASS	L1		
6	14.199	51.03	60.00	8.97	42.38	50.00	7.62	PASS	L1		

Neutral:

Report No.: GTSL2023060387F05

Final	Final Data List									
NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	Туре	
1	0.1545	54.53	65.75	11.22	40.24	55.75	15.51	PASS	N	
2	0.5415	53.73	56.00	2.27	36.30	46.00	9.70	PASS	N	
3	0.708	52.09	56.00	3.91	38.05	46.00	7.95	PASS	N	
4	1.266	51.88	56.00	4.12	35.61	46.00	10.39	PASS	N	
5	4.2045	45.65	56.00	10.35	27.15	46.00	18.85	PASS	N	
6	13.083	51.54	60.00	8.46	46.00	50.00	4.00	PASS	N	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.4 Maximum Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)				
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	30dBm				
Duty Cycle set up:	RBW=VBW=8MHz				
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.5 Channel Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)				
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.6 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)					
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01					
Limit:	30dBm/500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.7 Band edge

7.7.1 Radiated Emission Method

Test Requirement: Test Method: Test Frequency Range: Test site: Receiver setup:	9kHz to 40GHz Measurement D										
Test site:	Measurement D	, only worse cas			ANSI C63.10: 2013						
			9kHz to 40GHz, only worse case is reported								
Pacaivar catura		Measurement Distance: 3m									
neceivei setup.	Frequency Detector RBW VBW Value										
	Above 1GHz	Peak	1MHz	3MHz	Peak						
	Above 1GHZ	RMS	1MHz	3MHz	RMS						
Limit:	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.										
Test setup:	Tum Table* Tum Table*	< 3m	Test Antenna	1							
Test Procedure:	the ground a determine the determine the 2. The EUT was antenna, white tower. 3. The antennate ground to destrict horizontal and measuremer. 4. For each sus and then the and the rotathe maximum. 5. The test-recestified Ba. 6. If the emission the limit specified Ba. 6. If the emission the limit specified Ba. 7. The test-recestified Ba. 8. If the emission the limit specified Ba. 9. If the emission the limit specified Ba. 10. If the emission the limit specified Ba. 11. If the emission the limit specified Ba. 12. If the emission the limit specified Ba. 13. The antenna ground to decide the specified Ba. 14. If the emission the limit specified Ba. 15. If the emission the limit specified Ba. 16. If the emission the limit specified Ba. 17. If the emission the limit specified Ba. 18. If the emission the limit specified Ba. 19. If the emission the limit specified Ba. 19. If the emission the limit specified Ba. 20. If the emission the limit specified Ba. 21. If the emission the limit specified Ba.	t a 3 meter came e position of the set 3 meters a che was mounted termine the maximum that wertical polarizat. Spected emission antenna was turned a reading. Seiver system was not in level of the Electrical that it is not be reported and mould be reported and mould be age method as set in the position of the set in the position would be age method as set in the position of the set in the position would be age method as set in the position of the position would be age method as set in the position of the position would be age method as set in the position of the position would be age method as set in the position of the position of the position would be age method as set in the position of the position would be age method as set in the position of the position of the position of the position would be age method as set in the position of the position	ber. The tall highest rack way from the don the top from one natimum value zations of the cations of the cation	ole was rotaliation. The interference of a variable of the field one antennatives arrange of the field of the	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find function and 10dB lower than ad the peak values sions that did not ising peak, quasi-						

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Report No.: GTSL2023060387F05
	worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. All antennas were tested and passed, only worst condition(ANT 1) report
- 5. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

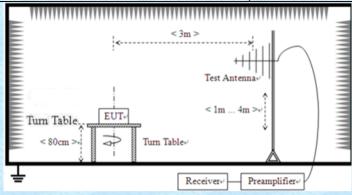
E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Measurement data:

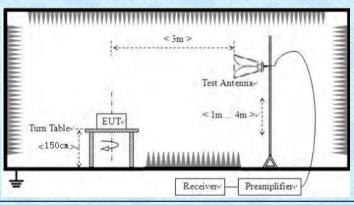
	IEEE 802.11ac HT20										
Peak value:	Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n			
5650	53.55	34.16	8.41	53.44	42.68	68.2	-25.52	Horizontal			
5700	55.66	34.28	8.45	53.42	44.97	105.2	-60.23	Horizontal			
5720	55.22	34.33	8.47	53.41	44.61	110.8	-66.19	Horizontal			
5725	55.25	34.34	8.47	53.41	44.65	122.2	-77.55	Horizontal			
5850	58.64	34.64	8.57	53.36	48.49	122.2	-73.71	Horizontal			
5855	55.68	34.65	8.57	53.36	45.54	110.8	-65.26	Horizontal			
5875	57.86	34.7	8.59	53.35	47.8	105.2	-57.4	Horizontal			
5925	58.74	34.82	8.63	53.33	48.86	68.2	-19.34	Horizontal			
5650	56.38	34.16	8.41	53.44	45.51	68.2	-22.69	Vertical			
5700	56.24	34.28	8.45	53.42	45.55	105.2	-59.65	Vertical			
5720	55.52	34.33	8.47	53.41	44.91	110.8	-65.89	Vertical			
5725	56.9	34.34	8.47	53.41	46.3	122.2	-75.9	Vertical			
5850	55.63	34.64	8.57	53.36	45.48	122.2	-76.72	Vertical			
5855	53.52	34.65	8.57	53.36	43.38	110.8	-67.42	Vertical			
5875	53.43	34.7	8.59	53.35	43.37	105.2	-61.83	Vertical			
5925	57.51	34.82	8.63	53.33	47.63	68.2	-20.57	Vertical			

			IEE	E 802.11ac	HT40			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
5650	54	34.16	8.41	53.44	43.13	68.2	-25.07	Horizontal
5700	58.17	34.28	8.45	53.42	47.48	105.2	-57.72	Horizontal
5720	53.21	34.33	8.47	53.41	42.6	110.8	-68.2	Horizontal
5725	55.5	34.34	8.47	53.41	44.9	122.2	-77.3	Horizontal
5850	54.44	34.64	8.57	53.36	44.29	122.2	-77.91	Horizontal
5855	53.51	34.65	8.57	53.36	43.37	110.8	-67.43	Horizontal
5875	57.32	34.7	8.59	53.35	47.26	105.2	-57.94	Horizontal
5925	56.01	34.82	8.63	53.33	46.13	68.2	-22.07	Horizontal
5650	55.98	34.16	8.41	53.44	45.11	68.2	-23.09	Vertical
5700	53.5	34.28	8.45	53.42	42.81	105.2	-62.39	Vertical
5720	58.54	34.33	8.47	53.41	47.93	110.8	-62.87	Vertical
5725	55.56	34.34	8.47	53.41	44.96	122.2	-77.24	Vertical
5850	54	34.64	8.57	53.36	43.85	122.2	-78.35	Vertical
5855	57.85	34.65	8.57	53.36	47.71	110.8	-63.09	Vertical
5875	57.59	34.7	8.59	53.35	47.53	105.2	-57.67	Vertical
5925	58.03	34.82	8.63	53.33	48.15	68.2	-20.05	Vertical

			IEE	E 802.11ac	HT80			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
5650	58.66	34.16	8.41	53.44	47.79	68.2	-20.41	Horizontal
5700	54.56	34.28	8.45	53.42	43.87	105.2	-61.33	Horizontal
5720	57.77	34.33	8.47	53.41	47.16	110.8	-63.64	Horizontal
5725	54.3	34.34	8.47	53.41	43.7	122.2	-78.5	Horizontal
5850	57.39	34.64	8.57	53.36	47.24	122.2	-74.96	Horizontal
5855	54.97	34.65	8.57	53.36	44.83	110.8	-65.97	Horizontal
5875	53.78	34.7	8.59	53.35	43.72	105.2	-61.48	Horizontal
5925	56.7	34.82	8.63	53.33	46.82	68.2	-21.38	Horizontal
5650	53.86	34.16	8.41	53.44	42.99	68.2	-25.21	Vertical
5700	53.75	34.28	8.45	53.42	43.06	105.2	-62.14	Vertical
5720	53.76	34.33	8.47	53.41	43.15	110.8	-67.65	Vertical
5725	55.55	34.34	8.47	53.41	44.95	122.2	-77.25	Vertical
5850	57.77	34.64	8.57	53.36	47.62	122.2	-74.58	Vertical
5855	58.26	34.65	8.57	53.36	48.12	110.8	-62.68	Vertical
5875	55.09	34.7	8.59	53.35	45.03	105.2	-60.17	Vertical
5925	56.59	34.82	8.63	53.33	46.71	68.2	-21.49	Vertical



7.8 Spurious Emission


7.8.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)										
·	ANSI C63.10:2013										
Test Method:		3									
Test Frequency Range:	9kHz to 40GHz										
Test site:	Measurement Dis	tance: 3m									
Receiver setup:	Frequency	Detector	RBW	VBW	Value						
	9kHz-150KHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value						
	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value						
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value						
	Ab 4011-	Peak	1MHz	3MHz	Peak Value						
	Above 1GHz	AV	1MHz	3MHz	Average Value						
	Note: For Duty cycle ≥ 98%, average detector set as above For Duty cycle < 98%, average detector set as below: VBW ≥ 1 / T										
Limit:	Evaguancy (MHz) Eigld strongth (microvolte/meter) Massurement distance (meters)										
	Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters) 0.009-0.490 2400/F(kHz) 30										
		000/F(kHz)			30						
	1.705-30.0 30	30									
		0**		3							
		0**			3						
	Above 960 50	0		3							
	The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except fo the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.										
Test setup:	For radiated em	issions from 9	9kHz to 30)MHz							
	Tum Table Tum Table Im Receiver Receiver Tum Table										

For radiated emissions above 1GHz

Test Procedure:

- The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
- 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test

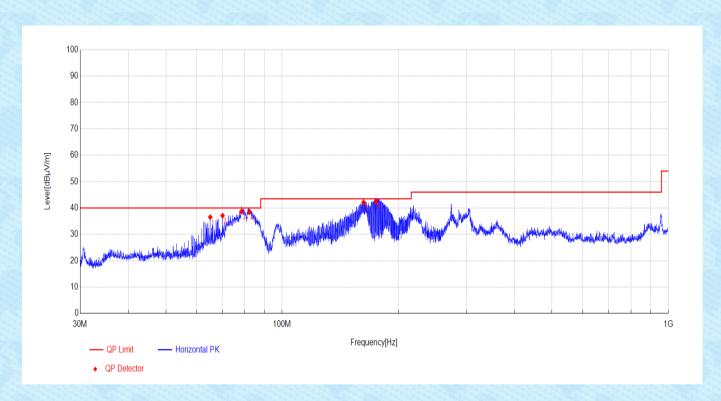
	worst ca	worst case mode is recorded in the report.							
Test Instruments:	Refer to se	Refer to section 6.0 for details							
Test mode:	Refer to se	Refer to section 5.2 for details							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

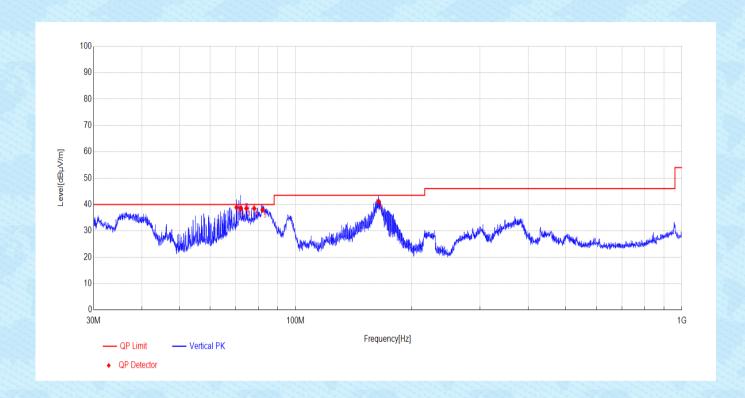
Measurement Data:

9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Below 1GHz


Pre-scan all test modes, found worst case at 802.11ac(VHT80) 5775MHz, and so only show the test result of it **Horizontal:**

100000000000000000000000000000000000000	the state of the s					The State of the S			
Final	Data List								
NO.	Freq. [MHz]	Facto r [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity	Verdic t
1	65.1589	- 18.21	36.54	40.00	3.46	100	102	Horizonta I	PASS
2	70.1369	- 19.70	37.10	40.00	2.90	100	134	Horizonta I	PASS
3	78.4633	- 20.55	38.66	40.00	1.34	100	32	Horizonta I	PASS
4	82.2659	- 20.78	38.41	40.00	1.59	100	51	Horizonta I	PASS
5	162.541 9	- 20.53	42.14	43.50	1.36	100	305	Horizonta I	PASS
6	175.113	- 19.09	42.28	43.50	1.22	100	19	Horizonta I	PASS

GTS

Vertical:

Final	Data List								
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity	Verdict
1	70.3215	-19.71	38.86	40.00	1.14	100	13	Vertical	PASS
2	72.1317	-19.89	38.56	40.00	1.44	100	347	Vertical	PASS
3	74.5745	-20.14	38.55	40.00	1.45	100	19	Vertical	PASS
4	78.1202	-20.51	38.51	40.00	1.49	100	341	Vertical	PASS
5	82.1219	-20.77	37.98	40.00	2.02	100	260	Vertical	PASS
6	164.1165	-20.41	41.16	43.50	2.34	100	278	Vertical	PASS

Above 1GHz:

	802.11	1ac(HT20)			Test Frequency: 5745MHz						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n		
11490	53.35	39.2	12.47	53.	35	51.67	68.2	-16.53	Horizontal		
17235	52.48	39.81	15.56	51.	68	56.17	68.2	-12.03	Horizontal		
11490	53.1	39.2	12.47	53.	35	51.42	68.2	-16.78	Vertical		
17235	57.06	39.81	15.56	51.	68	60.75	68.2	-7.45	Vertical		
11490	47.05	39.2	12.47	53.	35	45.37	54	-8.63	Horizontal		
17235	47.96	39.81	15.56	51.	68	51.65	54	-2.35	Horizontal		
11490	47.92	39.2	12.47	53.	35	46.24	54	-7.76	Vertical		
17235	43.23	39.81	15.56	51.	68	46.92	54	-7.08	Vertical		

	802.11	1ac(HT20)			Test Frequency: 5785MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
11570	56.96	39.53	12.51	53.	37	55.63	68.2	-12.57	Horizontal	
17355	57.71	40.12	15.61	51.	62	61.82	68.2	-6.38	Horizontal	
11570	56.44	39.53	12.51	53.	37	55.11	68.2	-13.09	Vertical	
17355	54.33	40.12	15.61	51.	62	58.44	68.2	-9.76	Vertical	
11570	45.15	39.53	12.51	53.	37	43.82	54	-10.18	Horizontal	
17355	43.4	40.12	15.61	51.	62	47.51	54	-6.49	Horizontal	
11570	44.8	39.53	12.51	53.	37	43.47	54	-10.53	Vertical	
17355	45.14	40.12	15.61	51.	62	49.25	54	-4.75	Vertical	

GTS

	802.11	1ac(HT20)			Test Frequency: 5825MHz						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n		
11650	56.45	39.56	12.55	53	3.4	55.16	68.2	-13.04	Horizontal		
17475	57	40.44	15.66	51.	56	61.54	68.2	-6.66	Horizontal		
11650	52.41	39.56	12.55	53	3.4	51.12	68.2	-17.08	Vertical		
17475	57.97	40.44	15.66	51.	56	62.51	68.2	-5.69	Vertical		
11650	47	39.56	12.55	53	3.4	45.71	54	-8.29	Horizontal		
17475	46.55	40.44	15.66	51.	56	51.09	54	-2.91	Horizontal		
11650	43.35	39.56	12.55	53	3.4	42.06	54	-11.94	Vertical		
17475	46.35	40.44	15.66	51.	56	50.89	54	-3.11	Vertical		

	802.1	1ac(HT40)			Test Frequency: 5755MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n		
11510	55.26	39.5	12.48	53.35	53.89	68.2	-14.31	Horizontal		
17265	54.84	39.89	15.58	51.67	58.64	68.2	-9.56	Horizontal		
11510	54.86	39.5	12.48	53.35	53.49	68.2	-14.71	Vertical		
17265	57.85	39.89	15.58	51.67	61.65	68.2	-6.55	Vertical		
11510	45.39	39.5	12.48	53.35	44.02	54	-9.98	Horizontal		
17265	46.34	39.89	15.58	51.67	50.14	54	-3.86	Horizontal		
11510	45.07	39.5	12.48	53.35	43.7	54	-10.3	Vertical		
17265	47.92	39.89	15.58	51.67	51.72	54	-2.28	Vertical		

	802.11	1ac(HT40)			Test Frequency: 5795MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
11590	54.64	39.54	12.52	53	.38	53.32	68.2	-14.88	Horizontal	
17385	56.57	40.2	15.62	51	.61	60.78	68.2	-7.42	Horizontal	
11590	52.33	39.54	12.52	53	.38	51.01	68.2	-17.19	Vertical	
17385	52.41	40.2	15.62	51	.61	56.62	68.2	-11.58	Vertical	
11590	45.38	39.54	12.52	53	.38	44.06	54	-9.94	Horizontal	
17385	46.52	40.2	15.62	51	.61	50.73	54	-3.27	Horizontal	
11590	45.11	39.54	12.52	53	.38	43.79	54	-10.21	Vertical	
17385	44.22	40.2	15.62	51	.61	48.43	54	-5.57	Vertical	

	802.1	1ac(HT80)			Test Frequency: 5775MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)		amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
11550	57.97	39.52	12.5	53.	.37	56.62	68.2	-11.58	Horizontal	
17325	52.54	40.05	15.6	51.	64	56.55	68.2	-11.65	Horizontal	
11550	55.06	39.52	12.5	53.	37	53.71	68.2	-14.49	Vertical	
17325	53.04	40.05	15.6	51.	64	57.05	68.2	-11.15	Vertical	
11550	47.4	39.52	12.5	53.	37	46.05	54	-7.95	Horizontal	
17325	45.37	40.05	15.6	51.	64	49.38	54	-4.62	Horizontal	
11550	44.72	39.52	12.5	53.	37	43.37	54	-10.63	Vertical	
17325	44.67	40.05	15.6	51.	64	48.68	54	-5.32	Vertical	

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. Both 2 antennas were tested and compliance, only worst condition(ANT 1) report.

7.9 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)	
Test Method:	ANSI C63.10:2013, FCC Part 2.1055	
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified	
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.	
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector
Test Instruments:	Refer to section 6 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----END-----