

FCC Test Report

Product Name	WC Subsystem Qi. 1.3 Gen.4 3-Coil
Model No.	240000-01-200; 240000-01-201
FCC ID	2AQWT24000001200

Applicant	acv GmbH
Address	Strassburger Allee 10-12, Erkelenz 41812 Germany

Date of Receipt	May 16, 2022
Issued Date	Aug. 19, 2022
Report No.	2250430R-RFUSOTHV03-A
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Report No.: 2250430R-RFUSOTHV03-A

Test Report

Issued Date: Aug. 19, 2022

Report No.: 2250430R-RFUSOTHV03-A

Product Name	WC Subsystem Qi. 1.3 Gen.4 3-Coil	
Applicant	acv GmbH	
Address	Strassburger Allee 10-12, Erkelenz 41812 Germany	
Manufacturer	Santek Overseas Corp.	
Model No.	240000-01-200; 240000-01-201	
FCC ID.	2AQWT24000001200	
EUT Rated Voltage DC 12V by battery		
EUT Test Voltage DC 12V by battery		
Trade Name	Inbay	
Applicable Standard FCC CFR Title 47 Part 15 Subpart C		
	ANSI C63.4: 2014, ANSI C63.10: 2013	
Test Result	Complied	

Documented By	:	Gente Chang
		(Senior Project Specialist / Genie Chang)
Tested By	:	Bill Lin
		(Senior Engineer / Bill Lin)
Approved By	:	Jack Usu
		(Senior Engineer / Jack Hsu)

TABLE OF CONTENTS

Des	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Tested System Datails	6
1.3.	Configuration of tested System	6
1.4.	EUT Exercise Software	6
1.5.	Test Facility	7
1.6.	List of Test Equipment	8
1.7.	Uncertainty	9
2.	Conducted Emission	10
2.1.	Test Setup	10
2.2.	Limits	10
2.3.	Test Procedure	10
2.4.	Test Result of Conducted Emission	11
3.	Radiated Emission	12
3.1.	Test Setup	12
3.2.	Limits	13
3.3.	Test Procedure	14
3.4.	Test Result of Radiated Emission	15
4.	Band Edge	17
4.1.	Test Setup	17
4.2.	Limits	17
4.3.	Test Procedure	17
4.4.	Test Result of Band Edge	18
5.	Frequency Tolerance	19
5.1.	Test Setup	19
5.2.	Limits	19
5.3.	Test Procedure	19
5.4.	Test Result of Frequency Stability	20
Appendix	1: EUT Test Photographs	
Appendix	2: Product Photos-Please refer to the file: 2250430R-Product Phot	os

Revision History

Report No.	Version	Description	Issued Date
2250430R-RFUSOTHV03-A	V1.0	Initial issue of report.	Aug. 19, 2022

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	WC Subsystem Qi. 1.3 Gen.4 3-Coil
Trade Name	Inbay
Model No.	240000-01-200; 240000-01-201
FCC ID	2AQWT24000001200
Frequency Range	13.56MHz
Modulation	FSK
Antenna Type	Loop

Antenna List

No.	Manufacturer	Part No.	Antenna Type
1	Santek Overseas Corp.	LB91902-4TH-3	Loop

Frequency of Each Channel:

Channel 1: Frequency
Channel 1: 13.56 MHz

Note:

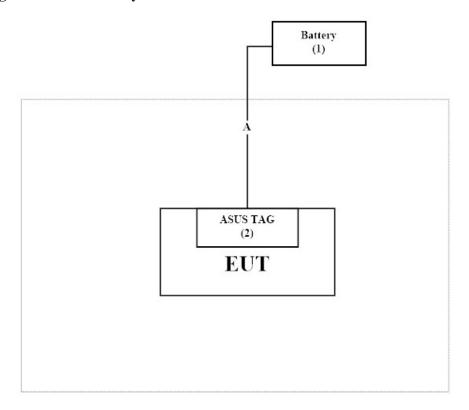
1. This device is a WC Subsystem Qi. 1.3 Gen.4 3-Coil with a built-in 13.56MHz transceiver.

2. The different of each model is shown as below:

Model Name	Description	
240000-01-200	Subsystem With Can/NFC Function	
240000-01-201	Subsystem With NFC Function	

- 3. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.225.
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode Mode 1: Transmit


1.2. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	oduct	Manufacturer	Model No.	Serial No.	Power Cord
1	Battery	YUASA	55B24L-CMF II	N/A	N/A
2	ASUS TAG	ASUS	TAG	N/A	N/A

Signal Cable Type		Signal cable Description	
A	Power Cable	Shielded, 1.8m	

1.3. Configuration of tested System

1.4. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.3.
- (2) Turn on the power of all equipment.
- (3) Start the continuous receiver.
- (4) Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
D 11 / 1E 11	Temperature (°C)	10~40 °C	23.5 °C
Radiated Emission	Humidity (%RH)	10~90 %	55.1 %
C 1 ··	Temperature (°C)	10~40 °C	25°C
Conductive	Humidity (%RH)	10~90 %	50%

USA : FCC Registration Number: TW0023

Canada: IC Registration Number: 25880

Site Description : Accredited by TAF

Accredited Number: 3023

Test Laboratory : DEKRA Testing and Certification Co., Ltd Address : No.159, Sec. 2, Wenhua 1st Rd., Linkou Dist.,

New Taipei City 24457, Taiwan, R.O.C.

Phone number : 886-2-2602-7968

Fax number : 886-2-2602-3286

Email address : info.tw@dekra.com

Website : http://www.dekra.com.tw

1.6. List of Test Equipment

For Conduction measurements / HY-SR01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	EMI Test Receiver	R&S	ESR7	101601	2022.06.23	2023.06.22
X	Two-Line V-Network	R&S	ENV216	101306	2022.05.23	2023.05.22
X	Two-Line V-Network	R&S	ENV216	101307	2022.07.04	2023.07.03
X	Coaxial Cable	SUHNER	RG400 BNC	RF001	2022.05.24	2023.05.23

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: E3 210616 dekra V9.

For Radiated measurements /HY-CB03

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	Loop Antenna	AMETEK	HLA6121	49611	2022.03.18	2023.03.17
X	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2021.08.11	2023.08.10
	Horn Antenna	ETS-Lindgren	3117	00201259	2021.11.09	2022.11.08
	Horn Antenna	Com-Power	AH-840	101087	2022.06.16	2023.06.15
X	Pre-Amplifier	SGH	SGH0301-9	20211007-10	2022.02.22	2023.02.21
	Pre-Amplifier	EMCI	EMC051835SE	980313	2021.11.24	2022.11.23
	Pre-Amplifier	EMCI	EMC05820SE	980310	2021.07.07	2022.07.06
	Pre-Amplifier	EMCI	EMC184045SE	980369		
	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2022.05.12	2023.05.11
	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242		
	Filter	MICRO TRONICS	BRM50702	G251	2021.09.16	2022.09.15
	Filter	MICRO TRONICS	BRM50716	G188	2021.09.16	2022.09.15
X	EMI Test Receiver	R&S	ESR	102793	2021.12.15	2022.12.14
X	Spectrum Analyzer	R&S	FSV3044	101113	2022.01.25	2023.02.24
	Coaxial Cable	SGH	SGH18	2021005-1		
X	Coaxial Cable	SGH	SGH18	202108-4	2022 02 18	2023.03.17
A	Coaxial Cable	SGH	SGH18	GD20110223-1	2022.03.18	
	Coaxial Cable	SGH	HA800	GD20110222-3		

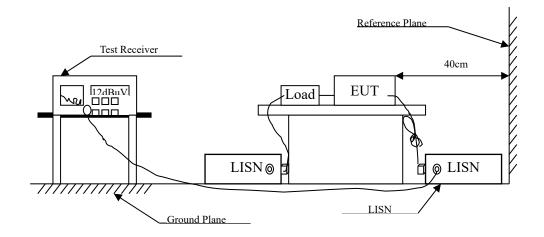
Note:

- 1. Bi-Log Antenna is calibrated every two years, the other equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: E3 210616 dekra V9.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document, and is described in each test chapter of this report.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.


Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test item	Uncertainty		
D. P. A. I. Faring	Under 1GHz	Above 1GHz	
Radiated Emission	±4.05 dB	±4.10 dB	
D 1F1	Under 1GHz	Above 1GHz	
Band Edge	±4.05 dB	±4.10 dB	
Frequency Tolerance	±1544.74 Hz		

2. Conducted Emission

2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit						
Frequency	Limits					
MHz	QP	AV				
0.15 - 0.50	66-56(±)	56-46 _(\$\text{tr})				
0.50-5.0	56	46				
5.0 - 30	60	50				

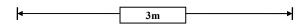
2.3. Test Procedure

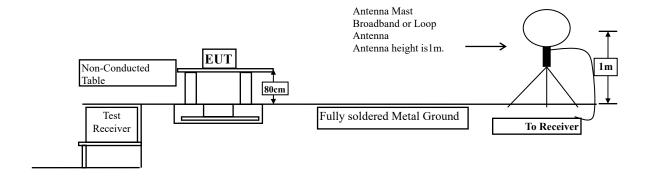
The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

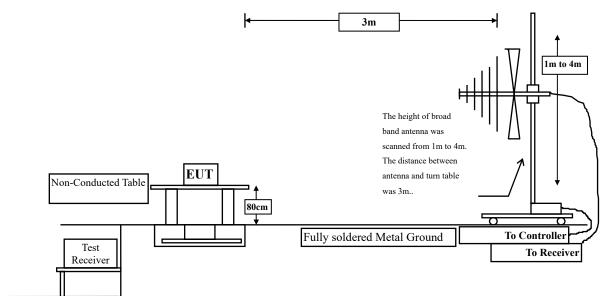
Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.4. Test Result of Conducted Emission


Owing to the EUT use battery supply voltage, this test item is not performed.



3. Radiated Emission


3.1. Test Setup

Radiated Emission Under 30MHz

Radiated Emission Below 1GHz

3.2. Limits

➤ Fundamental electric field strength Limit

FCC Part 15 Subpart C Paragraph 15.225 Limits						
Euro do mondo l Euro euro eu	Field strength of fundamental					
Fundamental Frequency MHz	uV/m	Distance (meter)	dBuV/m	Distance (meter)		
13.553 – 13.567	15848	30	124	3		
13.410 – 13.553 and 13.567 – 13.710	334	30	90.47	3		
13.110 – 13.410 and 13.710 – 14.010	106	30	80.50	3		
Outside of the 13.110 – 14.010 See 15.209 Limits						

Remarks:

- 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an quasi-peak detector.

> Spurious electric field strength Limit

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	Field strength	Measurement distance				
IVIII	(microvolts/meter)	(meter)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

Remarks:

- 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.3. Test Procedure

Fundamental electric field strength:

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum electric field strength.

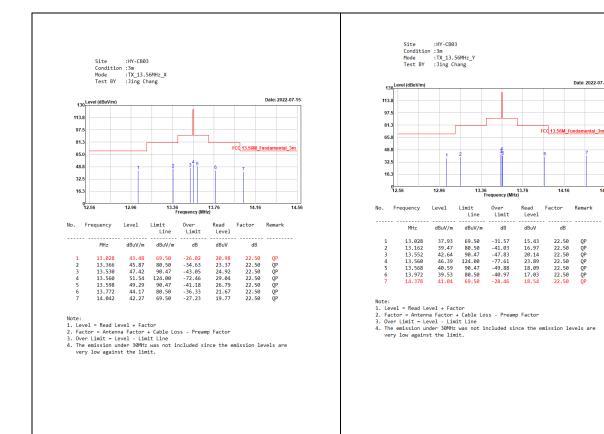
The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

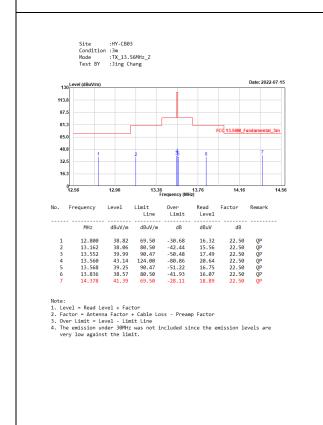
The antenna which is 1 meter above ground. All X-axis, Y-axis and Z-axis polarization of the antenna are set on measurement.

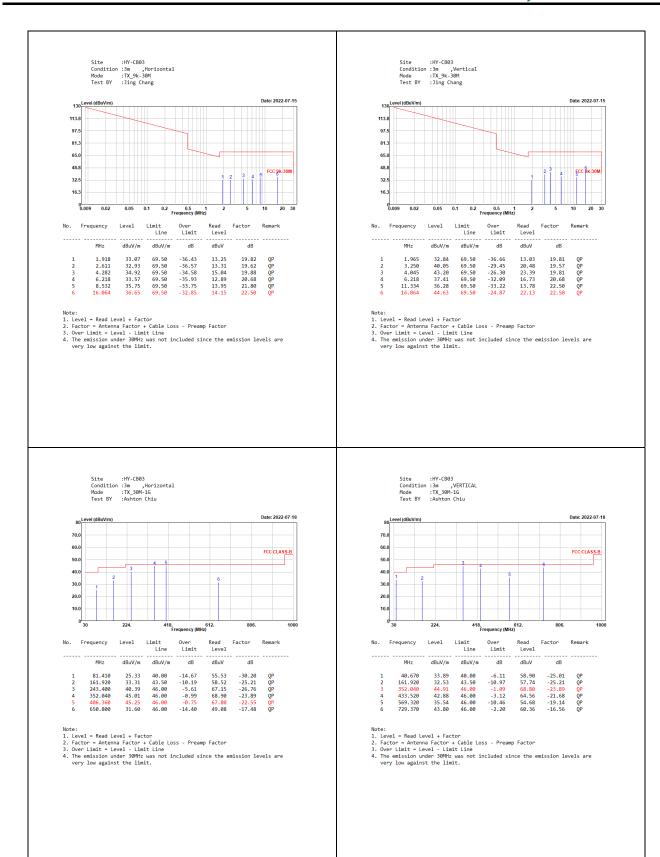
Spurious electric field strength:

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level.

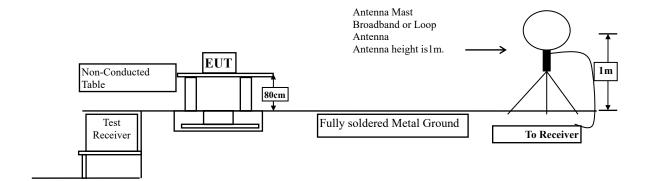
The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.


Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.


The bandwidth below 30MHz setting on the field strength meter is 9kHz and above 30MHz is 120kHz. The frequency range from 9kHz to 10th harmonics is checked.


Date: 2022-07-15

Test Result of Radiated Emission 3.4.



4. Band Edge

4.1. Test Setup

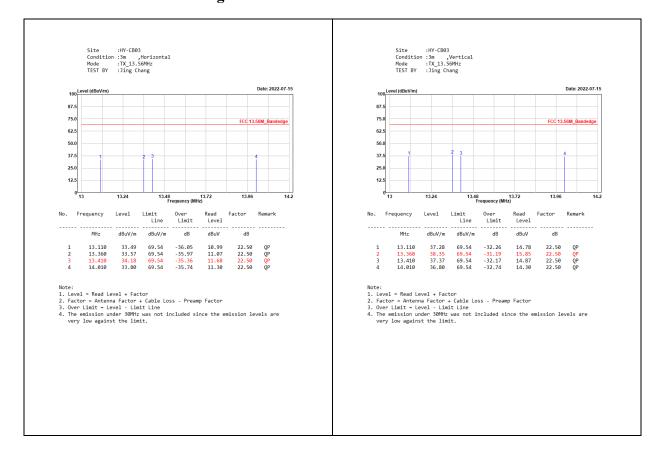
Radiated Emission Under 30MHz

4.2. Limits

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in Section 15.209. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209

4.3. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level.


The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

The bandwidth below 30MHz setting on the field strength meter is 9kHz and above 30MHz is 120kHz.

4.4. Test Result of Band Edge

5. Frequency Tolerance

5.1. Test Setup

5.2. Limits

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency.

5.3. Test Procedure

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.4. Test Result of Frequency Stability

Product : WC Subsystem Qi. 1.3 Gen.4 3-Coil

Test Item : Frequency Tolerance Test Mode : Mode 1: Transmit

Test date : 2022/07/12

Temperature	Voltage	Observe	Declared	Read	Tolerance	Limit
(°C)	(V)	Time	Frequency	Frequency	(%)	(%)
			(MHz)	(MHz)		
		start	13.56	13.55970	-0.002212	
20	12	2mins	13.56	13.55970	-0.002212	10010/
20	12	5mins	13.56	13.55970	-0.002212	±0.01%
		10mins	13.56	13.55970	-0.002212	
		start	13.56	13.55968	-0.002360	
20	12.2	2mins	13.56	13.55968	-0.002360	± 0, 01, 0/
20	13.2	5mins	13.56	13.55968	-0.002360	±0.01%
		10mins	13.56	13.55968	-0.002360	
		start	13.56	13.55968	-0.002360	
20	10.8	2mins	13.56	13.55968	-0.002360	± 0 01 0/
20		5mins	13.56	13.55968	-0.002360	±0.01%
		10mins	13.56	13.55968	-0.002360	
		start	13.56	13.55968	-0.002360	
50	10	2mins	13.56	13.55968	-0.002360	10010/
30	12	5mins	13.56	13.55967	-0.002434	±0.01%
		10mins	13.56	13.55967	-0.002434	
		start	13.56	13.55968	-0.002360	
40	12	2mins	13.56	13.55968	-0.002360	
40	12	5mins	13.56	13.55968	-0.002360	±0.01%
		10mins	13.56	13.55967	-0.002434	
		start	13.56	13.55969	-0.002286	
30	12	2mins	13.56	13.55969	-0.002286	±0.01%
30		5mins	13.56	13.55969	-0.002286	± 0.01 %
		10mins	13.56	13.55968	-0.002360	

		I	T			
		start	13.56	13.55970	-0.002212	
10		2mins	13.56	13.55970	-0.002212	10010/
10	12	5mins	13.56	13.55970	-0.002212	± 0.01 %
		10mins	13.56	13.55970	-0.002212	
		start	13.56	13.55970	-0.002212	
0	10	2mins	13.56	13.55970	-0.002212	± 0.01 %
0	12	5mins	13.56	13.55969	-0.002286	
		10mins	13.56	13.55969	-0.002286	
	12	start	13.56	13.55969	-0.002286	
10		2mins	13.56	13.55968	-0.002360	±0.01 %
-10		5mins	13.56	13.55968	-0.002360	
		10mins	13.56	13.55968	-0.002360	
		start	13.56	13.55968	-0.002360	
20	12	2mins	13.56	13.55968	-0.002360	
-20		5mins	13.56	13.55968	-0.002360	± 0.01 %
		10mins	13.56	13.55967	-0.002434	