

Page 1 of 43

TEST REPORT

- Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result
- : Infrared Ear Thermometer
- : N/A
- : DET-1026b
- : N/A
- : EED32P81026701
- : 2AQVU0043
- : Aug. 29, 2023
- : 47 CFR Part 15 Subpart C
- : PASS

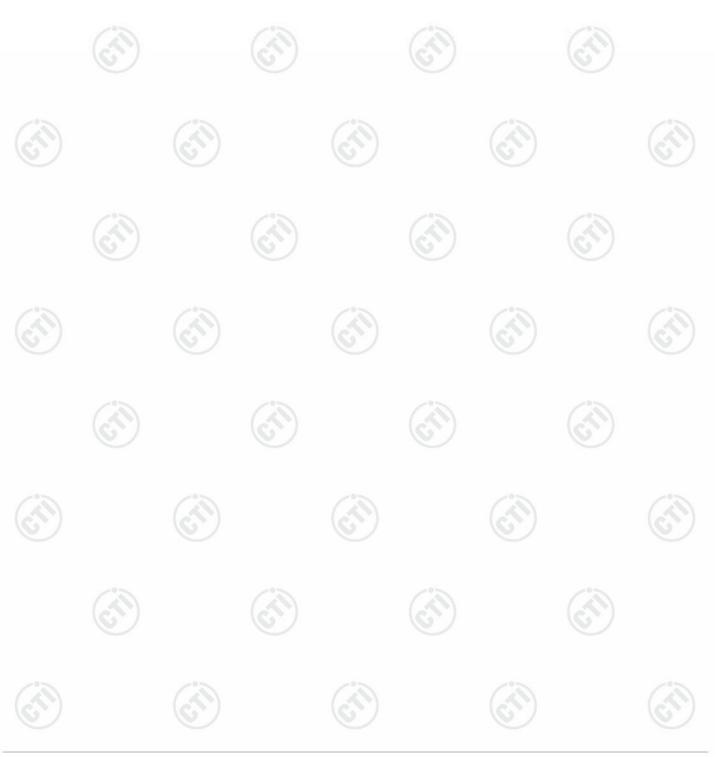
Prepared for:

JOYTECH Healthcare Co., Ltd. No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 31100 Zhejiang, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Page 2 of 43


1 COVER PAGE	••••••	••••••	
2 CONTENT			
3 VERSION			
4 TEST SUMMARY		<u> </u>	
5 GENERAL INFORMATION			
5.1 CLIENT INFORMATION			
5.2 GENERAL DESCRIPTION OF EUT.			
5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT			
5.5 DESCRIPTION OF SUPPORT UNITS			
5.6 TEST LOCATION			
5.7 MEASUREMENT UNCERTAINTY (95	5% CONFIDENCE LEVELS, K	=2)	
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASUREM	ENT DATA	<u> </u>	
7.1 ANTENNA REQUIREMENT			
7.2 MAXIMUM CONDUCTED OUTPUT F			
7.3 DTS BANDWIDTH			
7.4 MAXIMUM POWER SPECTRAL DEN			
7.5 BAND EDGE MEASUREMENTS AND 7.6 RADIATED SPURIOUS EMISSION &			

3 Version

	Version No.	Date	1	Description	/
	00	Aug. 29, 2023		Original	
2	/	1	1	(°)	12
	(S*)	(d^{n})	(35)	(65)

Tost Summary

Page 4 of 43

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS N/A	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207		
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

N/A:Only battery supply is supported and this item is not considered. Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

General Information 5

5.1 Client Information

JOYTECH Healthcare Co., Ltd.	
No. 365, Wuzhou Road, Yuhang Economic Development Zone,	
Hangzhou City, 31100 Zhejiang, China	100
JOYTECH Healthcare Co., Ltd.	A
No. 365, Wuzhou Road, Yuhang Economic Development Zone,	C
Hangzhou City, 31100 Zhejiang, China	
JOYTECH Healthcare Co., Ltd.	
No. 365, Wuzhou Road, Yuhang Economic Development Zone,	
Hangzhou City, 31100 Zhejiang, China	
	 No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 31100 Zhejiang, China JOYTECH Healthcare Co., Ltd. No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 31100 Zhejiang, China JOYTECH Healthcare Co., Ltd. No. 365, Wuzhou Road, Yuhang Economic Development Zone,

5.2 General Description of EUT

Product Name:	Infrared Ear Thermometer	
Model No.(EUT):	DET-1026b	
Trade mark:	N/A	(A)
Product Type:	Mobile Portable Fix Location	S
Operation Frequency:	2402MHz~2480MHz	
Modulation Type:	GFSK	
Transfer Rate:	1Mbps, 2Mbps	
Number of Channel:	40	
Antenna Type:	PCB Antenna	
Antenna Gain:	-1.37612dBi	10.1
Power Supply:	Battery DC 3V	
Test Voltage:	DC 3V	6
Sample Received Date:	Jul. 06, 2023	
Sample tested Date:	Jul. 06, 2023 to Aug. 01, 2023	
200		

Page 5 of 43

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	Settings:			
Test Software of EL	JT: PhyPlu	ısKit	$\langle c \rangle$	(25)
EUT Power Grade:	Defaul selecte	t(Power level is built-in seed)	et parameters and c	annot be changed and
Use test software to transmitting of the E	•	ency, the middle frequer	ncy and the highest f	frequency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	CH0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	CH39	2480
Mode d	GFSK	2Mbps	CH0	2402
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH39	2480

Page 7 of 43

5.4 Test Environment

Operating Environment	:			
Radiated Spurious Emis	sions:			
Temperature:	22~25.0 °C	6		(2)
Humidity:	50~55 % RH		(e)	S
Atmospheric Pressure:	1010mbar			
RF Conducted:				
Temperature:	22~25.0 °C		C	0
Humidity:	50~55 % RH	$\langle \mathcal{O} \rangle$	G	9
Atmospheric Pressure:	1010mbar			

5.5 Description of Support Units

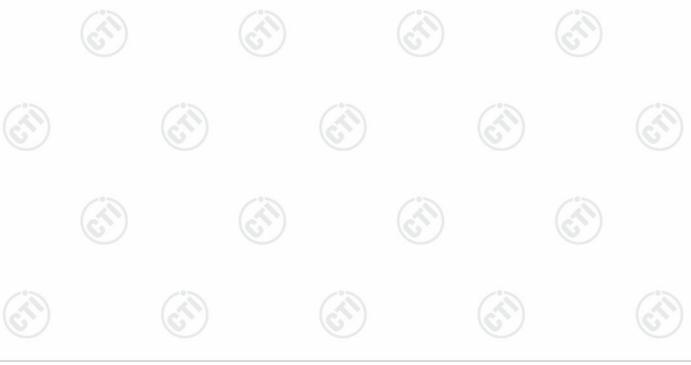
The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	CTI

5.6 Test Location

All tests were performed at:

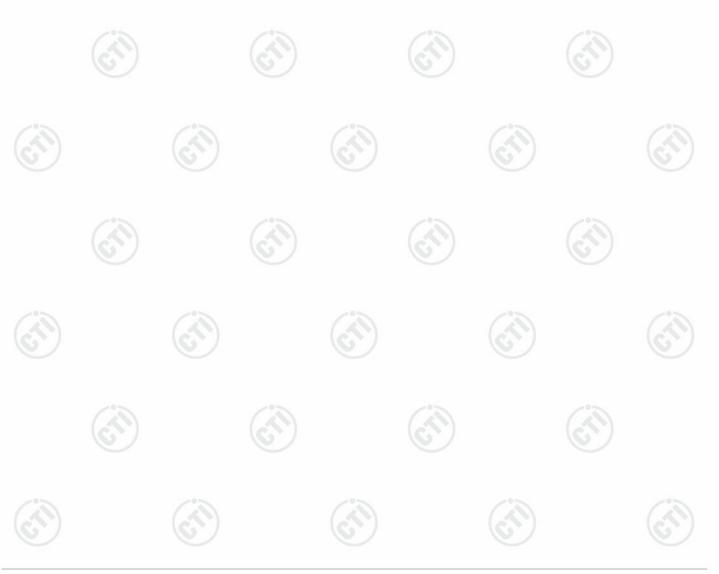

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164



Page 8 of 43

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE power conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Padiated Spurious amission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

Page 9 of 43

		RF test s				
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-23-2022	12-22-2023	
Signal Generator	Keysight	N5182B	MY53051549	12-19-2022	12-18-2023	
Signal Generator	Agilent	N5181A	MY46240094	12-19-2022	12-18-2023	
DC Power	Keysight	E3642A	MY56376072	12-19-2022	12-18-2023	
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	06-09-2023	06-08-2024	
RF control unit	JS Tonscend	JS0806-2	158060006	12-23-2022	12-22-2023 12-22-2023	
Communication test	R&S	CMW500	120765	12-23-2022		
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023	05-31-2024	
BT&WI-FI Automatic test JS Tonscend software		JS1120-3	2.6.77.0518		(d)	

Page 10 of 43

Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	TDK	SAC-3	9	05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024	
Multi device Controller	maturo	NCD/070/10711112)	S		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023	06/19/2024	
Test software	Fara	EZ-EMC	EMEC-3A1-Pre			

Page 11 of 43

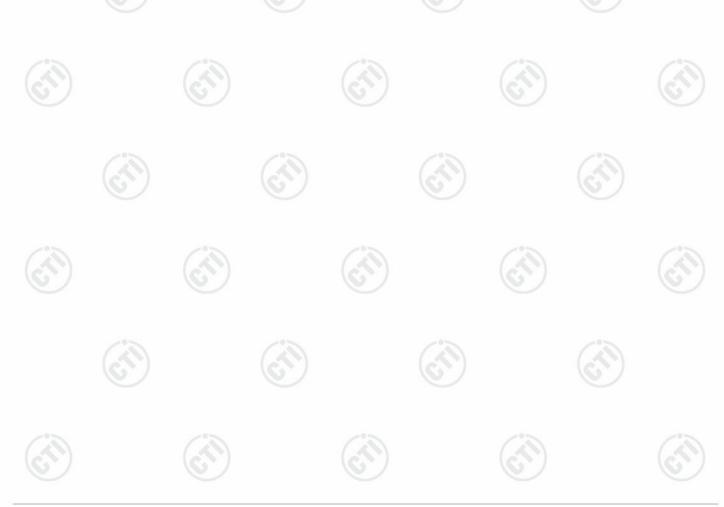
		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date y) (mm-dd-yyyy) 	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	(A)		
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024	
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023 07-24-2024 12-22-2023	
Communication test set	R&S	CMW500	102898	12-23-2022		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	1 01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		(ć	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	<u> </u>		
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(st)	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	~~~~		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	$(\overset{\frown}{})$		

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

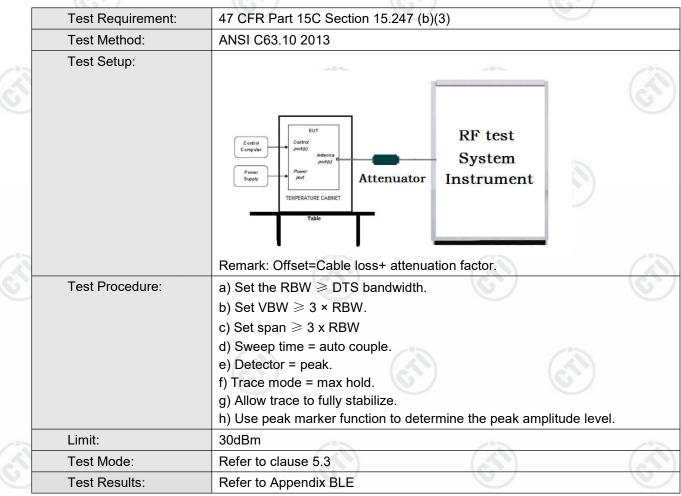

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos	\bigcirc
The antenna is PCB antenn	a The best case gain of the antenna is 1 37612dBi	

The antenna is PCB antenna. The best case gain of the antenna is -1.3/612dBi.





Page 13 of 43

7.2 Maximum Conducted Output Power

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

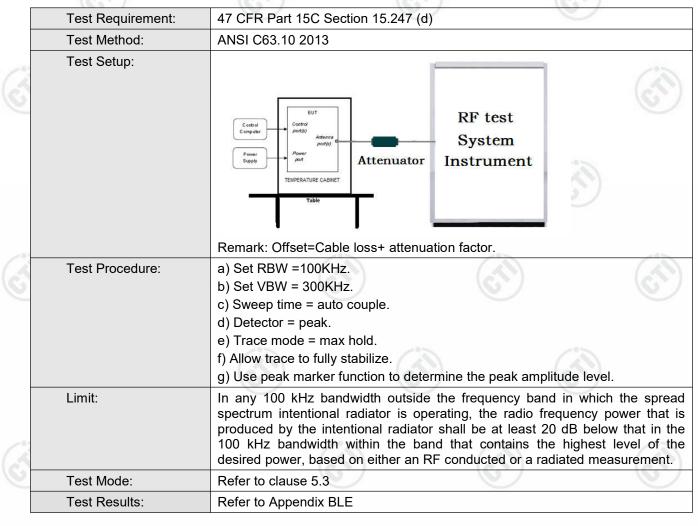
7.3 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)						
Test Method:	ANSI C63.10 2013						
Test Setup:		(A)					
	Control Computer Power Suppy TEMPERATURE CABNET Table						
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold.						
	 e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained frequencies associated with the two outermost amplitude points (upplower frequencies) that are attenuated by 6 dB relative to the maximum measured in the fundamental emission. 	per and					
Limit:	≥ 500 kHz	(\mathcal{A})					
Test Mode:	Refer to clause 5.3	J					
Test Results:	Refer to Appendix BLE						

Page 15 of 43

7.4 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)						
	Test Method:	ANSI C63.10 2013						
3	Test Setup:							
		Control Computer Comp						
		Remark: Offset=Cable loss+ attenuation factor.						
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude lew within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no lest than 3 kHz) and repeat. 						
	Limit:	≤8.00dBm/3kHz						
	Test Mode:	Refer to clause 5.3						
	Test Results:	Refer to Appendix BLE						

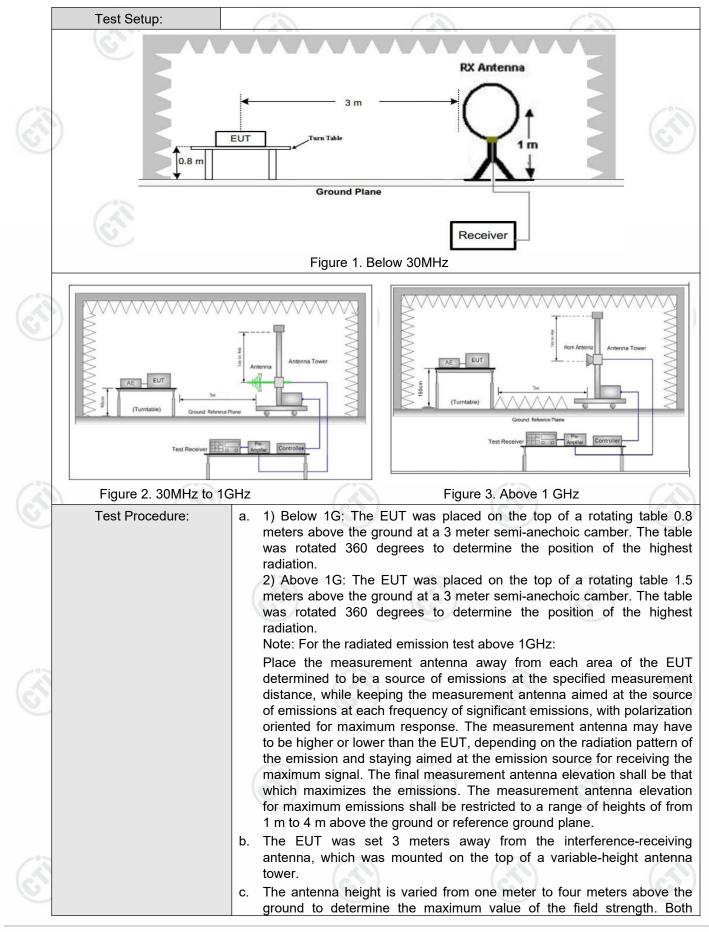


Page 16 of 43

7.5 Band Edge measurements and Conducted Spurious Emission

Page 17 of 43

7.6 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		C			
	Test Method:	ANSI C63.10 2013								
-	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Receiver Setup:	Frequency	2	Detector	RBW	1	VBW	Remark		
<u>S</u>		0.009MHz-0.090MH	z	Peak 10kHz		z 30kHz		Peak		
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average		
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak		
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak		
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average		
		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak		
		30MHz-1GHz		Quasi-peak	100 kH	lz	300kHz	Quasi-peak		
13			2	Peak	1MHz		3MHz	Peak		
6		Above 1GHz		Peak	1MHz)	10kHz	Average		
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark		Measuremer distance (m		
		0.009MHz-0.490MHz	2400/F(kHz)		-	-212		300		
		0.490MHz-1.705MHz	24	4000/F(kHz)	-			30		
		1.705MHz-30MHz		30	-	<u> </u>		30		
		30MHz-88MHz		100	40.0	G	uasi-peak	3		
		88MHz-216MHz		150	43.5	G	uasi-peak	3		
		216MHz-960MHz	9	200	46.0	G	uasi-peak	3		
<u>e</u>		960MHz-1GHz)	500	54.0	Quasi-peak		3		
		Above 1GHz		500	54.0		Average	3		
		Note: 15.35(b), Unless otherwise specified, the limit on peal frequency emissions is 20dB above the maximum permitted average er limit applicable to the equipment under test. This peak limit applies to the peak emission level radiated by the device.						erage emission		

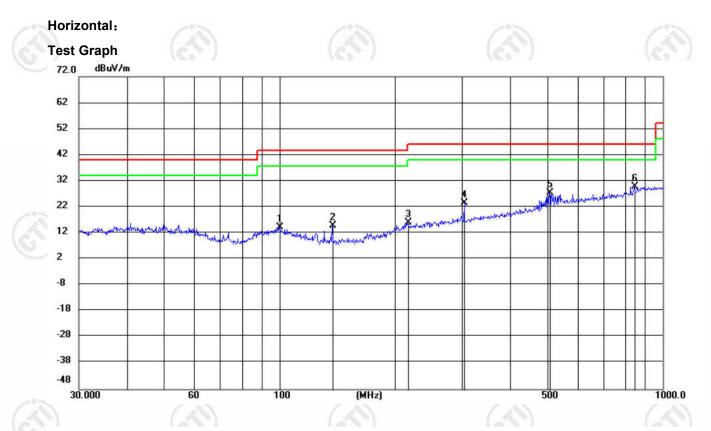
Page 18 of 43

CTI华测检测

Report No. : EED32P81026701

	Test Results:	Pass
	Test Mode:	Refer to clause 5.3
		i. Repeat above procedures until all frequencies measured was complete.
		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
3		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
		 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		horizontal and vertical polarizations of the antenna are set to make the measurement.

Page 19 of 43

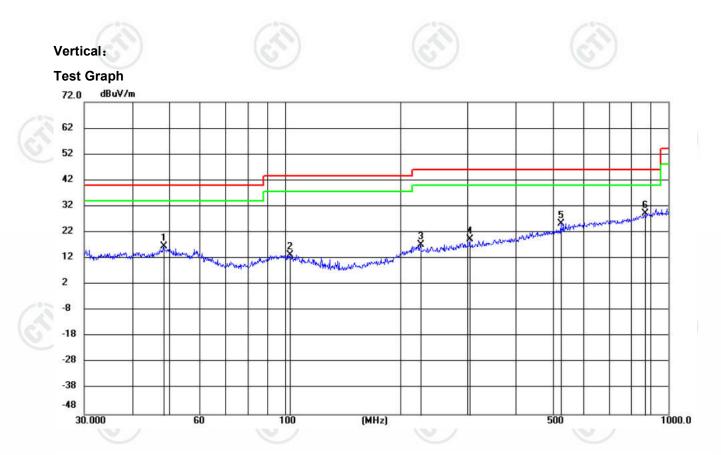


Page 20 of 43

Report No. : EED32P81026701

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel for GFSK of BLE 1M was recorded in the report.



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	99.9127	0.20	14.04	14.24	43.50	-29.26	QP	199	350	
2	137.4924	5.53	9.26	14.79	43.50	-28.71	QP	100	188	
3	216.0997	1.80	14.34	16.14	46.00	-29.86	QP	199	7	
4	304.1830	6.28	17.34	23.62	46.00	-22.38	QP	100	250	
5	507.3678	5.76	21.72	27.48	46.00	-18.52	QP	199	163	
6 *	842.7204	2.62	27.26	29.88	46.00	-16.12	QP	100	157	

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		48.3487	2.43	14.32	16.75	40.00	-23.25	QP	100	7	
-	2		103.3152	-0.25	13.58	13.33	43.50	-30.17	QP	100	7	
37	3		226.0598	2.44	14.68	17.12	46.00	-28.88	QP	200	188	
8	4		304.1830	1.93	17.34	19.27	46.00	-26.73	QP	100	7	
83	5		525.4746	3.33	22.17	25.50	46.00	-20.50	QP	200	42	
14	6	*	869.8925	1.47	27.81	29.28	46.00	-16.72	QP	200	260	

Page 22 of 43

Radiated Spurious Emission above 1GHz:

BLE 1M:

	Mode	:		BLE GFSK Trai	nsmitting		Channel:		2402 MHz		
	NO	Freq. [MHz]	Factor [dB]	- Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1396.8397	1.38	38.64	40.02	74.00	33.98	Pass	Н	PK	
Ī	2	1925.2925	4.16	37.48	41.64	74.00	32.36	Pass	Н	PK	
	3	3259.0173	-20.03	57.55	37.52	74.00	36.48	Pass	Н	PK	
Ī	4	4804.1203	-16.23	63.36	47.13	74.00	26.87	Pass	Н	PK	
ĺ	5	7205.2804	-11.83	55.85	44.02	74.00	29.98	Pass	Н	PK	
0.5	6	12542.6362	-4.52	48.80	44.28	74.00	29.72	Pass	Н	PK	
	7	1344.8345	1.20	39.48	40.68	74.00	33.32	Pass	V	PK	
2	8	2103.1103	4.84	38.05	42.89	74.00	31.11	Pass	V	PK	
	9	3425.0283	-20.15	59.24	39.09	74.00	34.91	Pass	V	PK	
Ī	10	4803.1202	-16.23	65.57	49.34	74.00	24.66	Pass	V	PK	
Ī	11	7207.2805	-11.83	56.38	44.55	74.00	29.45	Pass	V	PK	
Ī	12	10837.5225	-6.28	48.97	42.69	74.00	31.31	Pass	V	PK	

	Mode	:		BLE	E GFSK Trar	nsmitting		Channel:		2440 MHz	2	
2	NO	Freq. [MHz]	Factor [dB]	-	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1187.0187	0.81		38.98	39.79	74.00	34.21	Pass	Н	PK	
	2	1847.0847	3.63		37.65	41.28	74.00	32.72	Pass	Н	PK	
	3	3448.0299	-20.11		55.64	35.53	74.00	38.47	Pass	Н	PK	
[4	4880.1253	-16.21		64.54	48.33	74.00	25.67	Pass	Н	PK	
	5	7319.288	-11.65	;	52.43	40.78	74.00	33.22	Pass	Н	PK	
	6	12625.6417	-4.31		48.54	44.23	74.00	29.77	Pass	Н	PK	
ĺ	7	1344.2344	1.20		38.35	39.55	74.00	34.45	Pass	V	PK	
	8	1846.0846	3.62		38.07	41.69	74.00	32.31	Pass	V	PK	
3	9	3425.0283	-20.15	;	59.50	39.35	74.00	34.65	Pass	V	PK	
	10	4869.1246	-16.21		66.16	49.95	74.00	24.05	Pass	V	PK	
4	11	7319.288	-11.65	;	54.96	43.31	74.00	30.69	Pass	V	PK	
	12	12562.6375	-4.38		48.66	44.28	74.00	29.72	Pass	V	PK	

Ì

Page 23 of 43

	Mada			1.000						
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2480 MH	z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1268.4268	0.98	38.80	39.78	74.00	34.22	Pass	н	PK
0	2	1781.4781	3.22	38.09	41.31	74.00	32.69	Pass	Н	PK
	3	3346.0231	-19.98	55.37	35.39	74.00	38.61	Pass	Н	PK
	4	4960.1307	-15.97	64.97	49.00	74.00	25.00	Pass	Н	PK
	5	7441.2961	-11.34	51.74	40.40	74.00	33.60	Pass	Н	PK
	6	14409.7607	1.08	44.59	45.67	74.00	28.33	Pass	Н	PK
	7	1296.2296	1.05	39.10	40.15	74.00	33.85	Pass	V	PK
	8	1794.4794	3.26	38.72	41.98	74.00	32.02	Pass	V	PK
	9	3193.0129	-20.37	62.24	41.87	74.00	32.13	Pass	V	PK
	10	4959.1306	-15.98	65.00	49.02	74.00	24.98	Pass	V	PK
21	11	7175.2784	-11.77	53.03	41.26	74.00	32.74	Pass	V	PK
	12	14380.7587	0.90	45.03	45.93	74.00	28.07	Pass	V	PK
	1									

BLE 2M:

	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2402 MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
62	1	1416.0416	1.41	38.90	40.31	74.00	33.69	Pass	Н	PK
	2	2104.3104	4.84	37.89	42.73	74.00	31.27	Pass	Н	PK
2	3	3247.0165	-20.09	56.40	36.31	74.00	37.69	Pass	Н	PK
	4	4804.1203	-16.23	64.42	48.19	74.00	25.81	Pass	Н	PK
	5	7207.2805	-11.83	55.75	43.92	74.00	30.08	Pass	Н	PK
	6	11896.5931	-5.84	49.03	43.19	74.00	30.81	Pass	Н	PK
	7	1398.2398	1.39	38.65	40.04	74.00	33.96	Pass	V	PK
	8	1998.0998	4.54	38.72	43.26	74.00	30.74	Pass	V	PK
	9	3145.0097	-20.49	64.55	44.06	74.00	29.94	Pass	V	PK
	10	4803.1202	-16.23	65.49	49.26	74.00	24.74	Pass	V	PK
3	11	7207.2805	-11.83	56.79	44.96	74.00	29.04	Pass	V	PK
	12	14404.7603	1.15	44.62	45.77	74.00	28.23	Pass	V	PK

Page 24 of 43

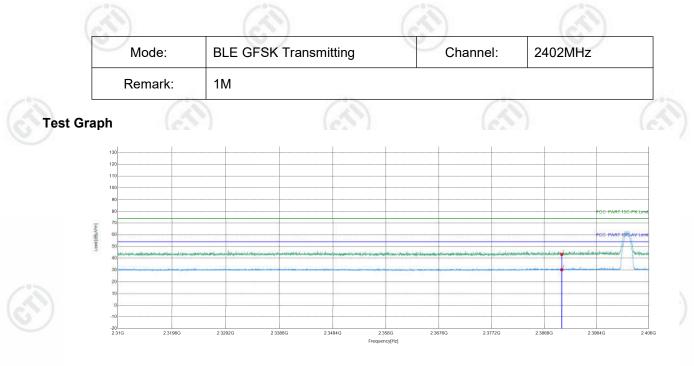
		10-		0		O *-			0.000	
	Mode	:		BLE GFSK Tra	insmitting		Channel:		2440 MHz	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1476.6477	1.45	39.01	40.46	74.00	33.54	Pass	н	PK
	2	2070.5071	4.78	38.72	43.50	74.00	30.50	Pass	Н	PK
	3	3268.0179	-19.97	7 56.09	36.12	74.00	37.88	Pass	Н	PK
	4	4880.1253	-16.21	63.44	47.23	74.00	26.77	Pass	Н	PK
	5	7318.2879	-11.66	53.78	42.12	74.00	31.88	Pass	Н	PK
	6	12805.6537	-4.19	47.98	43.79	74.00	30.21	Pass	Н	PK
	7	1276.6277	1.00	38.58	39.58	74.00	34.42	Pass	V	PK
	8	1949.695	4.29	37.44	41.73	74.00	32.27	Pass	V	PK
	9	3195.013	-20.36	58.98	38.62	74.00	35.38	Pass	V	PK
	10	4876.1251	-16.21	65.96	49.75	74.00	24.25	Pass	V	PK
3	11	7318.2879	-11.66	53.67	42.01	74.00	31.99	Pass	V	PK
	12	12348.6232	-5.22	49.69	44.47	74.00	29.53	Pass	V	PK
	1									

Mode	e:		BLE GFSK Tra	nsmitting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1332.8333	1.17	38.29	39.46	74.00	34.54	Pass	Н	PK
2	1765.6766	3.16	38.22	41.38	74.00	32.62	Pass	Н	PK
3	3397.0265	-20.19	55.77	35.58	74.00	38.42	Pass	Н	PK
4	4959.1306	-15.98	63.88	47.90	74.00	26.10	Pass	Н	PK
5	7754.317	-11.22	51.12	39.90	74.00	34.10	Pass	Н	PK
6	11876.5918	-5.90	48.84	42.94	74.00	31.06	Pass	Н	PK
7	1190.8191	0.80	39.50	40.30	74.00	33.70	Pass	V	PK
8	1739.674	3.07	38.25	41.32	74.00	32.68	Pass	V	PK
9	3286.0191	-19.88	55.66	35.78	74.00	38.22	Pass	V	PK
10	4960.1307	-15.97	65.45	49.48	74.00	24.52	Pass	V	PK
11	7439.296	-11.34	50.92	39.58	74.00	34.42	Pass	V	PK
12	12547.6365	-4.49	48.16	43.67	74.00	30.33	Pass	V	PK

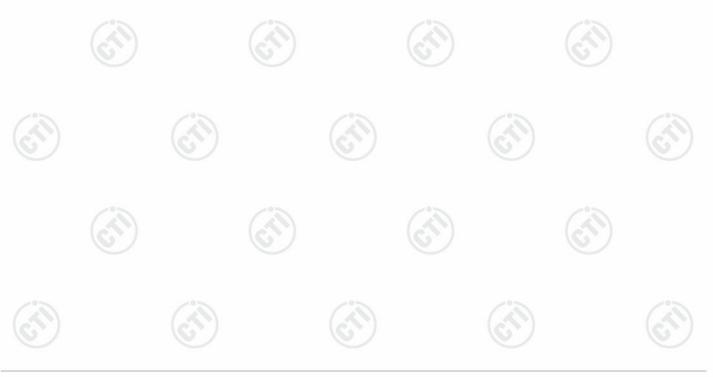
Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

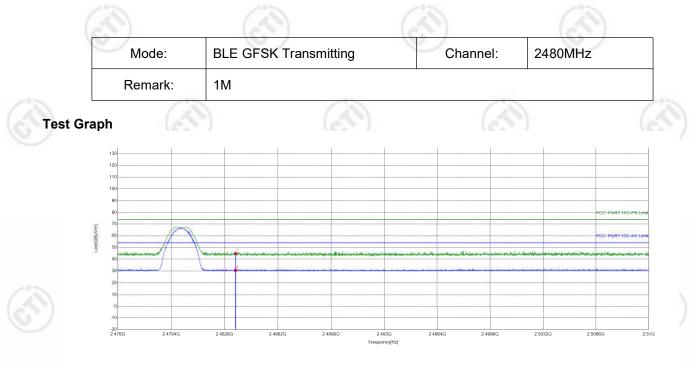
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

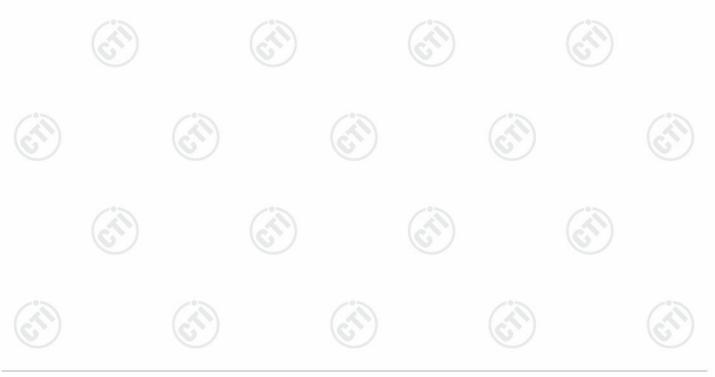
Test plot								
	as follows:							
2	Mode:	BL	_E GFSK Tra	ansmitting		Channel:	240	2MHz
	Remark:	1N	Λ					
Test Grap	bh							
	130							
	110 100 90							
	80 70 60							FCC-PART 15C-P
laver	50 40 30		lanana baarana ana baaraa	**************************************		and in the property of	والمادر فأقانون ومعرفه والمسروات	
	20							
	-10 -20 2.31G 2.3196	6G 2.325	92G 2.3388G	2.3484G	2.358G 2.3676 requency(Hz)	3G 2.3772G	2.3868G	2.3964G
	PK Limit	- AV Limit Hori	rizontal PK — Horizontal AV					
	* PK Detector *	AV Detector						
0		$\langle O \rangle$			1	1.2		
Suspector NO	ed List Freq.	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
NO 1	ed List Freq. [MHz] 2390	Factor [dB] 5.77	[dBµV] 37.09	[dBµV/m] 42.86	[dBµV/m] 74.00	[dB] 31.14	PASS	Horizontal
NO	ed List Freq. [MHz]	Factor [dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]		
NO 1	ed List Freq. [MHz] 2390	Factor [dB] 5.77	[dBµV] 37.09	[dBµV/m] 42.86	[dBµV/m] 74.00	[dB] 31.14	PASS	Horizontal
NO 1	ed List Freq. [MHz] 2390	Factor [dB] 5.77	[dBµV] 37.09	[dBµV/m] 42.86	[dBµV/m] 74.00	[dB] 31.14	PASS	Horizontal
NO 1	ed List Freq. [MHz] 2390	Factor [dB] 5.77	[dBµV] 37.09	[dBµV/m] 42.86	[dBµV/m] 74.00	[dB] 31.14	PASS	Horizontal



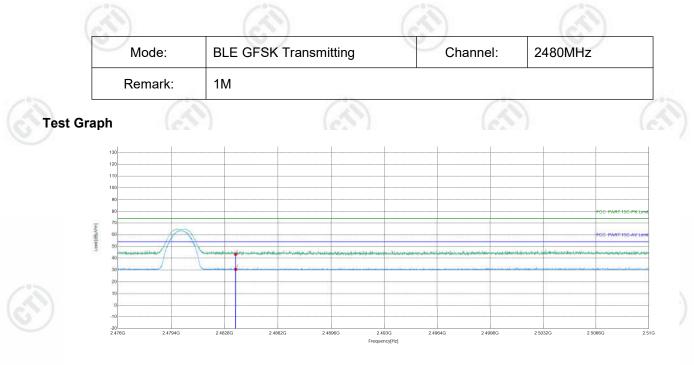
Page 26 of 43


PK Limit — AV Limit — Vertical PK — Vertical A PK Detector AV Detector

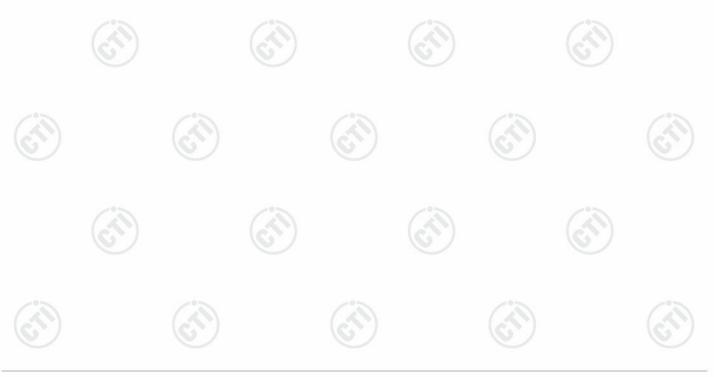
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2390	5.77	37.48	43.25	74.00	30.75	PASS	Vertical	PK
U	2	2390	5.77	24.51	30.28	54.00	23.72	PASS	Vertical	AV



Page 27 of 43


PK Limit AV Limit Horizontal PK Horizontal AV AV Detector

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	38.37	44.94	74.00	29.06	PASS	Horizontal	PK
٢	2	2483.5	6.57	24.02	30.59	54.00	23.41	PASS	Horizontal	AV

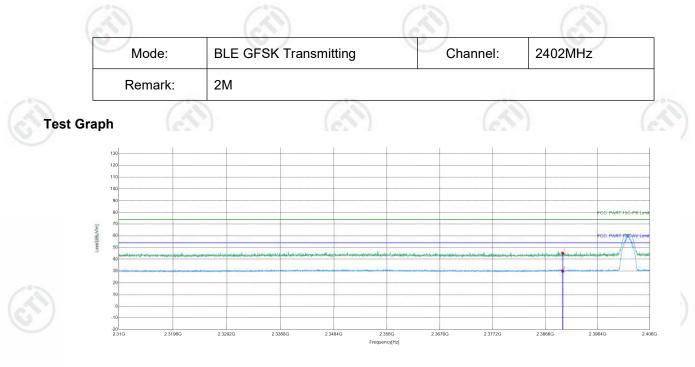


Page 28 of 43


PK Limit AV Limit Vertical PK Vertical AV AV Detector

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	36.76	43.33	74.00	30.67	PASS	Vertical	PK
U	2	2483.5	6.57	24.02	30.59	54.00	23.41	PASS	Vertical	AV

Page 29 of 43


PK Limit — AV Limit — Horizontal PK — Horizonta
 PK Detector
 AV Detector

	100	3 J		16.7 /		16.7	1.		(C. 7)	
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2390	5.77	37.14	42.91	74.00	31.09	PASS	Horizontal	PK
C	2	2390	5.77	24.49	30.26	54.00	23.74	PASS	Horizontal	AV

Page 30 of 43



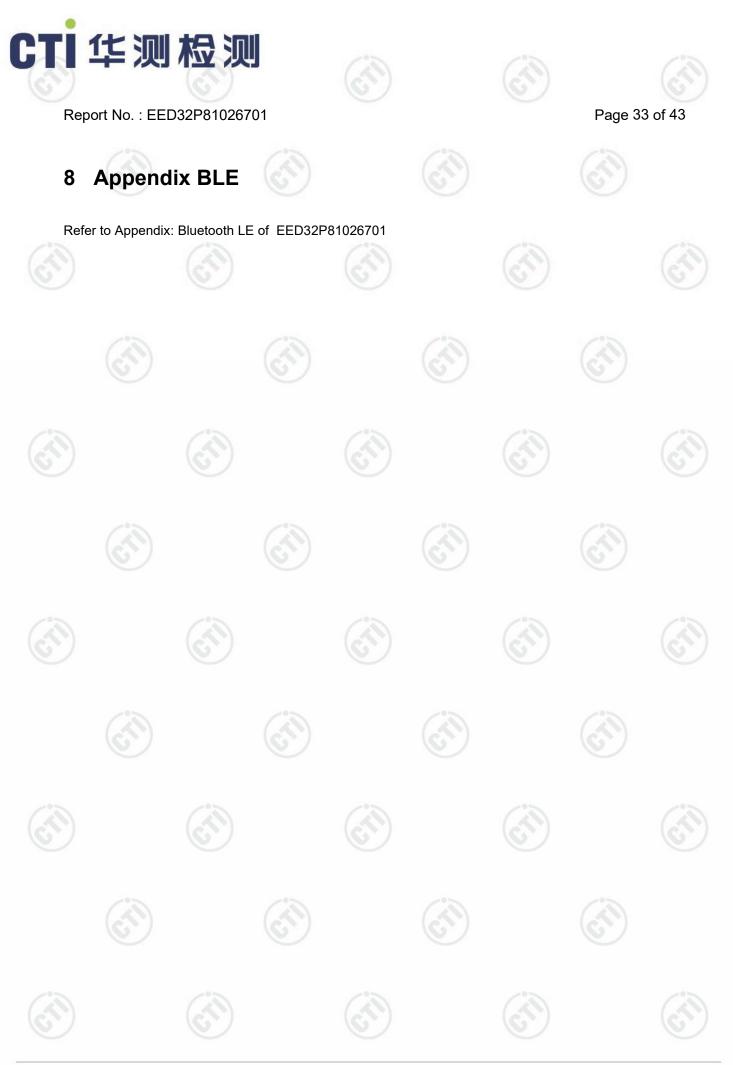
	Suspecte	d List								
207	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	39.41	45.18	74.00	28.82	PASS	Vertical	PK
C	2	2390	5.77	24.23	30.00	54.00	24.00	PASS	Vertical	AV

Page 31 of 43

PK Limit AV Limit Horizontal PK Horizontal AV AV Detector

	Suspecte	d List								
- 0 -	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
~	1	2483.5	6.57	38.74	45.31	74.00	28.69	PASS	Horizontal	PK
2	2	2483.5	6.57	23.94	30.51	54.00	23.49	PASS	Horizontal	AV

Page 32 of 43


	Ouspecie									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2483.5	6.57	37.15	43.72	74.00	30.28	PASS	Vertical	PK
C	2	2483.5	6.57	24.03	30.60	54.00	23.40	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com