

Product

Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result

- : Wrist-Type Fully Automatic Digital Blood Pressure Monitor
- : N/A
- : DBP-8276H
- : N/A
- : EED32N00018101
- : 2AQVU0022
- : May 27, 2021
- : 47 CFR Part 15 Subpart C
- S

PASS

Prepared for: JOYTECH Healthcare Co., Ltd. No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 311100 Zhejiang P.R. China

	• • • • • • • • • • • • • • • • • • • •		•••••
2 CONTENT			
3 VERSION			
4 TEST SUMMARY			
5 GENERAL INFORMATION	<u> </u>		
 5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (95%) 	6 CONFIDENCE LEVELS, K=2)	<u>)</u>
6 EQUIPMENT LIST	<u></u>	<u></u>	
7 TEST RESULTS AND MEASUREME	NT DATA		
7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS			
 7.3 MAXIMUM CONDUCTED OUTPUT PC 7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL DENS 7.6 BAND EDGE MEASUREMENTS AND C 7.7 RADIATED SPURIOUS EMISSION & F 	ITY CONDUCTED SPURIOUS EMIS	SSION	9
7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL DENS 7.6 BAND EDGE MEASUREMENTS AND C	ITY CONDUCTED SPURIOUS EMIS RESTRICTED BANDS	SSION	2

Page 3 of 44

3 Version

	Version No.		Date		Description	on	
-	00	M	lay 27, 2021		Original	\sim	
					(F)		(S)

(F)

Page 4 of 44

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power			
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	JOYTECH Healthcare Co., Ltd.
Address of Applicant:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 311100 Zhejiang P.R. China
Manufacturer:	JOYTECH Healthcare Co., Ltd.
Address of Manufacturer:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 311100 Zhejiang P.R. China
Factory:	JOYTECH Healthcare Co., Ltd.
Address of Factory:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 311100 Zhejiang P.R. China

Page 5 of 44

5.2 General Description of EUT

Product Name:	Wrist-Type Full	y Automatic	Digital Bloo	d Pressure Monito	or
Mode No.(EUT):	DBP-8276H	25		2°2	100
Test model:	DBP-8276H	(3)		(25)	(25)
Trade mark:	N/A	U		U	U
Product Type:	🗌 Mobile 🛛 🖂	Portable	Fix Loc	ation	
Bluetooth Version:	5.0		23		25
Operation Frequency:	2402MHz~2480	OMHz	(\mathcal{A})	(*	<u>(</u>)
Modulation Type:	GFSK		V	1	J
Transfer Rate:	⊠1Mbps □2	Mbps			
Number of Channel:	40				-0-
Antenna Type:	PCB antenna	(\mathcal{A})			(2)
Antenna Gain:	0.5dBi	U		Ś	e
Power Supply:	Lithium battery:	3.7V			
	AC/DC ADAPTOR	INPUT	L:MPSUL050 :100-240V~ JT:5V100	50/60HZ 0.25A	R)
Test Voltage:	AC 120V		\sim		
Sample Received Date:	Mar. 16, 2021				
Sample tested Date:	Mar. 16, 2021 t	o Apr. 23, 2	021	200	100

Operation Frequency each of channel Channel Frequency Channel Frequency Channel Frequency Channel Frequency 0 2402MHz 2422MHz 10 20 2442MHz 30 2462MHz 1 2404MHz 11 2424MHz 21 2444MHz 31 2464MHz 2 2406MHz 12 2426MHz 22 2446MHz 32 2466MHz 3 2408MHz 13 2428MHz 23 2448MHz 33 2468MHz 4 24 2410MHz 14 2430MHz 2450MHz 34 2470MHz 5 2412MHz 15 2432MHz 25 2452MHz 35 2472MHz 6 2414MHz 16 2434MHz 26 2454MHz 36 2474MHz 7 27 2416MHz 17 2436MHz 2456MHz 37 2476MHz 8 2418MHz 18 28 2458MHz 2438MHz 38 2478MHz 9 2420MHz 19 2440MHz 29 2460MHz 39 2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	Settings:					
Software:	ftware: PhyPlusKit.exe					
EUT Power Grade:	Class2 (Po selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to transmitting of the El	set the lowest frequency UT	y, the middle freque	ncy and the highest t	frequency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	СН0	2402		
Mode b	GFSK	1Mbps	CH19	2440		
Mode c	GFSK	1Mbps	CH39	2480		

5.4 Test Environment

221				1.3		1.20
	Operating Environment	t:				
	Radiated Spurious Emi	ssions:				
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH				
	Atmospheric Pressure:	1010mbar	G		(3)	
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
10	Humidity:	50~55 % RH		13		13
(\mathbb{S})	Atmospheric Pressure:	1010mbar		(\mathcal{E})		63
	RF Conducted:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	1000		215	
	Atmospheric Pressure:	1010mbar				
L			0			

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
57		3.3dB (9kHz-30MHz)
3	Dedicted Source emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

		Conducted dist	urbance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-28-2020 04-15-2021	04-27-2021 04-14-2022
Temperature/ Humidity Indicator	Defu	TH128	1		
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022
Barometer	changchun	DYM3	1188	/	

		RF test s	ystem			
Equipment	Equipment Manufacturer	Mode No. Serial Number		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy	
Spectrum Analyzer	R&S	FSV40	101200	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(A)	(5)	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4				
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
PC-1	Lenovo	R4960d		(2)	(8	
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		- 6	0	

3M Semi/full-anechoic Chamber										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022					
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020 05-16-2021	05-15-2021 05-15-2022					
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018 04-15-2021	04-24-2021 04-14-2024					
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021					
Multi device Controller	maturo	NCD/070/10711 112								
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021					
Cable line	Fulai(7M)	SF106	5219/6A		(
Cable line	Fulai(6M)	SF106	5220/6A	(G*+	\G					
Cable line	Fulai(3M)	SF106	5216/6A							
Cable line	Fulai(3M)	SF106	5217/6A							

Page 10 of 44

		3M full-anechoi			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018 04-15-2021	04-24-2021 04-14-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018 04-15-2021	04-24-2021 04-14-2024
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020 04-15-2021	04-21-2021 04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020 04-16-2021	04-26-2021 04-15-2022
Fully Anechoic Chamber	ТДК	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		<u>ا</u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	(3)	- 0
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	\odot	- @
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	- /	- 62
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(6	5) -
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

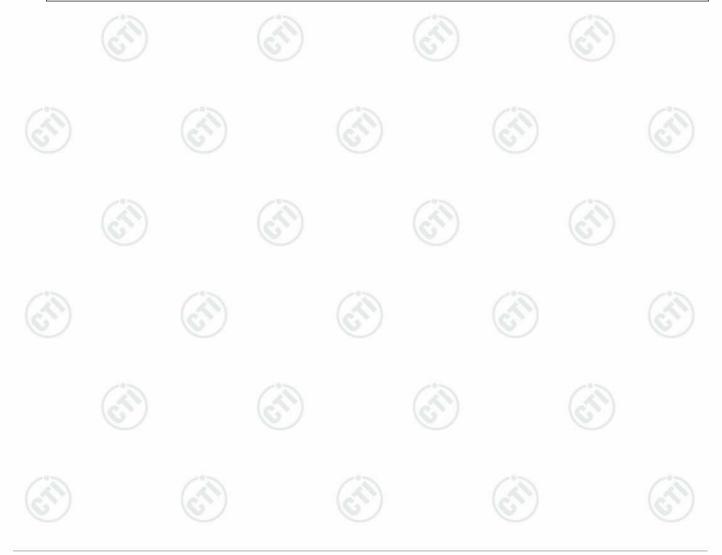
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

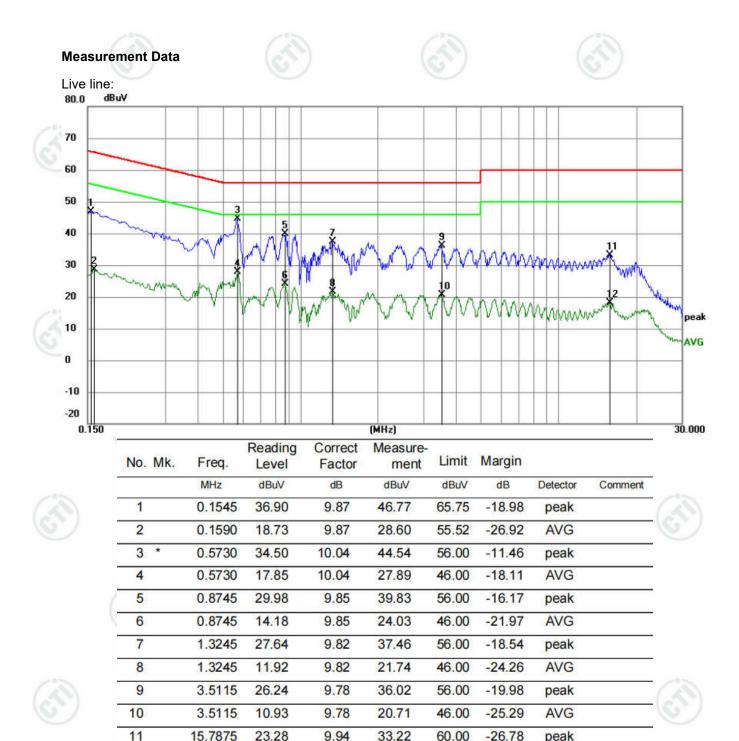

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos
The enternal's DOD enterna	

The antenna is PCB antenna. The best case gain of the antenna is 0.5dBi.


7.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	.07						
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:								
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
Limit:	Frequency range (MHz)							
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm	of the frequency.						
Test Setup:	Shielding Room	AE						
Test Procedure:	 The mains terminal disturbation. The EUT was connected Impedance Stabilization Netimpedance. The power of connected to a second LIS plane in the same way a multiple socket outlet stription single LISN provided the rational structure on the horizontal ground reference plane. Arrighted on the horizontal ground reference plane. Arrighted on the horizontal ground reference plane. The LISN unit under test and bond mounted on top of the grout the closest points of the L and associated equipment In order to find the maximutian and all of the interface cab ANSI C63.10: 2013 on context of the closest points of the context of the closest points p	to AC power source etwork) which provides cables of all other N 2, which was bonde s the LISN 1 for the was used to connect r ating of the LISN was r ced upon a non-meta nd for floor-standing al ound reference plane. h a vertical ground ref from the vertical ground plane was bonded I 1 was placed 0.8 m ded to a ground ref ind reference plane. T ISN 1 and the EUT. was at least 0.8 m from im emission, the relationed and the source of	through a LISN 1 (Lin s a $50\Omega/50\mu$ H + 5Ω line units of the EUT we do to the ground reference unit being measured. multiple power cables to not exceeded. Illic table 0.8m above the rrangement, the EUT was ference plane. The rear and reference plane. The to the horizontal groun from the boundary of the ference plane for LISM his distance was betweed All other units of the EU m the LISN 2. ve positions of equipme					
Test Mode:	All modes were tested, only the report.		vas recorded in the					
Test Results:	Pass							

Remark:

12

1. The following Quasi-Peak and Average measurements were performed on the EUT:

9.94

9.94

18.15

50.00

-31.85

peak

AVG

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

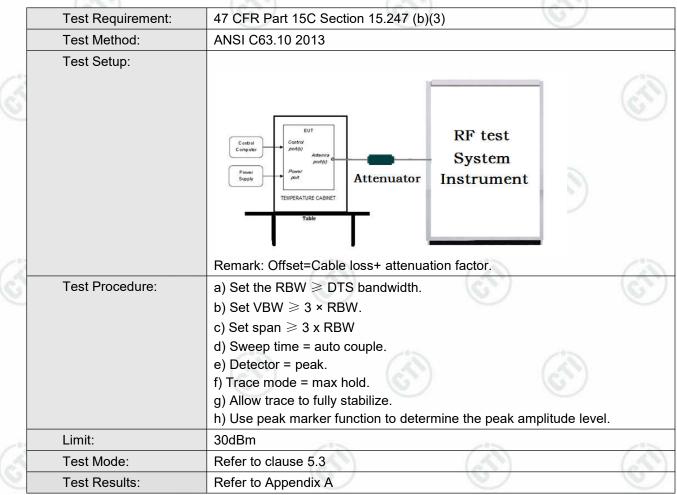
8.21

15.7875

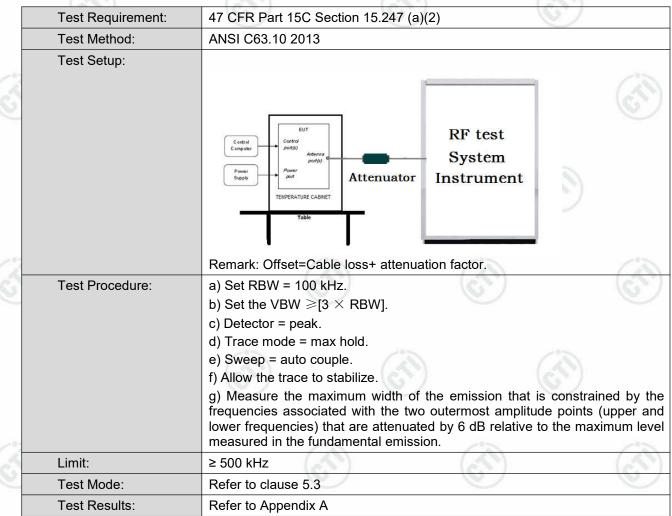
3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line: dBu∀ 80.0 70 60 50 10 40 Ĵ1 30 20 peak 10 AVG 0 -10 -20 0.150 (MHz) 30.000 Reading Correct Measure-No. Mk. Freq. Limit Margin Level Factor ment dBuV MHz dB dBuV dBuV dB Detector Comment 0.1500 1 35.98 9.87 45.85 66.00 -20.15 peak 2 0.1590 17.20 9.87 27.07 55.52 -28.45 AVG 3 0.5685 16.58 10.03 26.61 -19.39AVG 46.00 44.22 4 0.5775 34.18 10.04 56.00 -11.78 peak 5 0.8700 32.70 9.85 42.55 56.00 -13.45 peak 6 0.8700 14.97 9.85 24.82 46.00 -21.18 AVG 7 1.3200 12.60 9.82 22.42 46.00 -23.58AVG 8 1.3965 29.66 39.47 56.00 -16.53 9.81 peak 9 2.4045 12.10 9.79 21.89 46.00 -24.11 AVG 10 29.24 2.9805 9.79 39.03 56.00 -16.97peak 11 15.8370 24.94 9.94 34.88 -25.12 60.00 peak 12 7.12 17.06 -32.94 AVG 15.8370 9.94 50.00

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

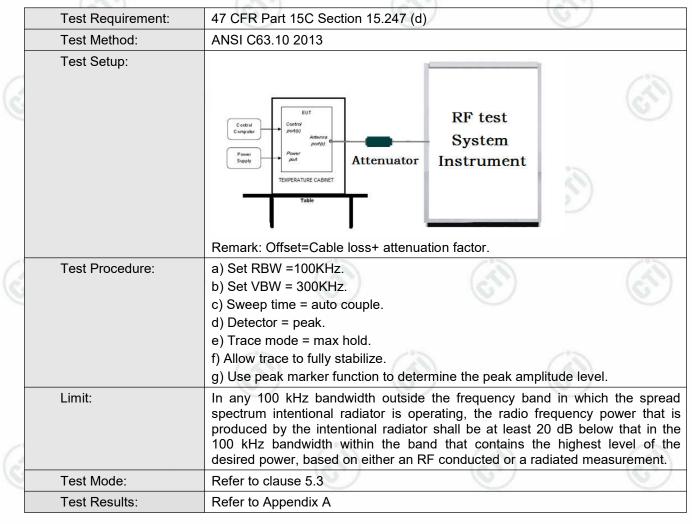
7.3 Maximum Conducted Output Power



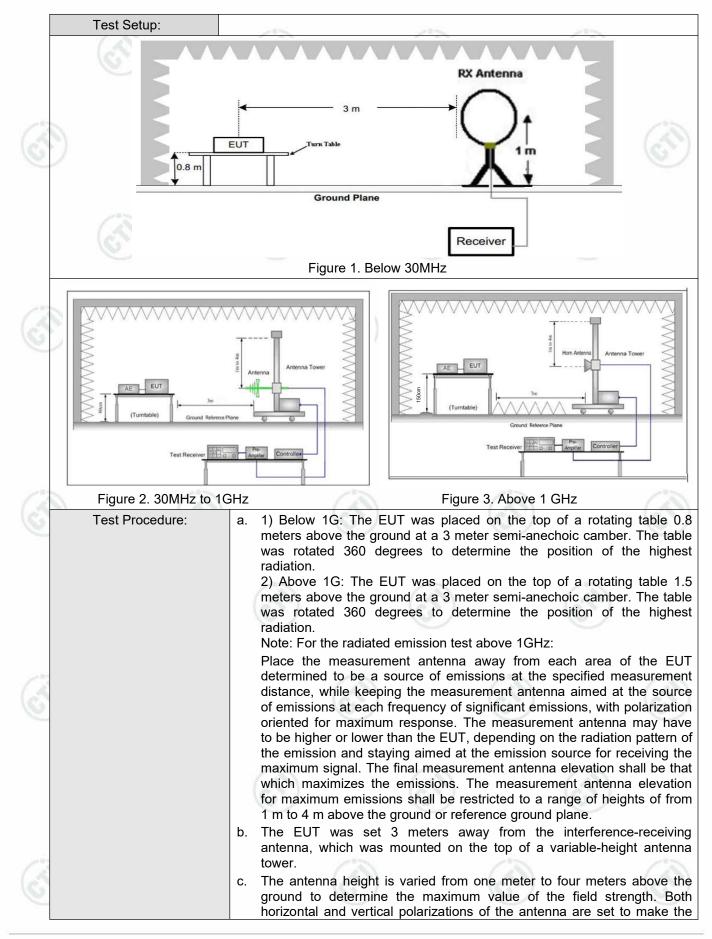
7.4 DTS Bandwidth

7.5 Maximum Power Spectral Density

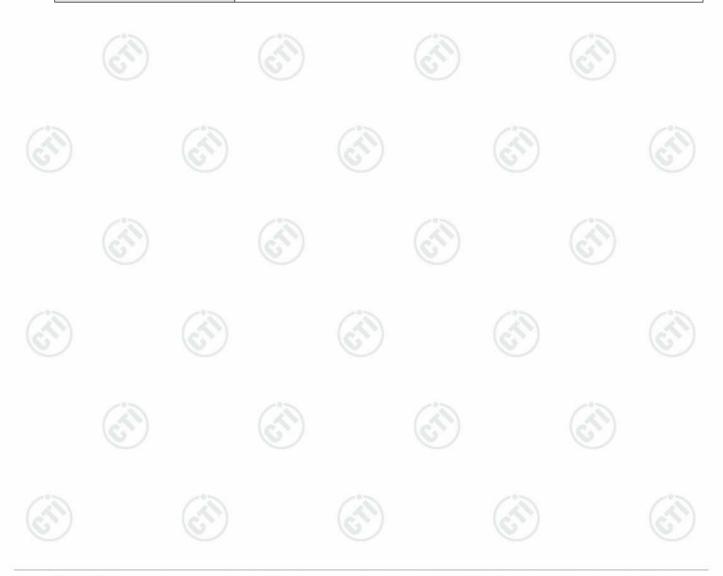
Te	est Requirement:	47 CFR Part 15C Section 15.247 (e)					
T€	est Method:	ANSI C63.10 2013					
Τe	est Setup:						
		Control Computer Supply Tele Table					
		Remark: Offset=Cable loss+ attenuation factor.					
Τe	est Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude lever within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat. 					
Lii	mit:	≤8.00dBm/3kHz					
Te	est Mode:	Refer to clause 5.3					
Т	est Results:	Refer to Appendix A					



7.6 Band Edge measurements and Conducted Spurious Emission


7.7 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Section	on 15.209 and 15	.205	101	/		
	Test Method:	ANSI C63.10 2013	\sim		\sim			
	Test Site:	Measurement Distance	: 3m (Semi-Anecl	noic Cham	ber)			
	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
		0.009MHz-0.090MH	z Peak	10kHz	30kHz	Peak		
4		0.009MHz-0.090MH	z Average	10kHz	30kHz	Average		
2		0.090MHz-0.110MH		10kHz	: 30kHz	Quasi-peak		
-		0.110MHz-0.490MH	z Peak	10kHz	: 30kHz	Peak		
		0.110MHz-0.490MH	z Average	10kHz	: 30kHz	Average		
		0.490MHz -30MHz	Quasi-peak	10kHz	: 30kHz	Quasi-peak		
		30MHz-1GHz	Quasi-peak	100 kH	z 300kHz	Quasi-peak		
		Above 1GHz	Peak	1MHz	3MHz	Peak		
		Above IGHZ	Peak	1MHz	10kHz	Average		
	Limit:	Frequency	Field strength	Limit	Remark	Measurem		
			(microvolt/meter)	(dBuV/m)	rtomant	distance (I		
		0.009MHz-0.490MHz	2400/F(kHz)	- 0-	-	300		
		0.490MHz-1.705MHz	24000/F(kHz)	6.43		30		
		1.705MHz-30MHz	30	- Co -	/ -	30		
-		30MHz-88MHz	100	40.0	Quasi-peak			
		88MHz-216MHz	150	43.5	Quasi-peak	3		
		216MHz-960MHz	200	46.0	Quasi-peak			
		960MHz-1GHz	500	54.0	Quasi-peak	3		
		Above 1GHz	500	54.0	Average	3		
~*;		Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the tota peak emission level radiated by the device.						



Ì

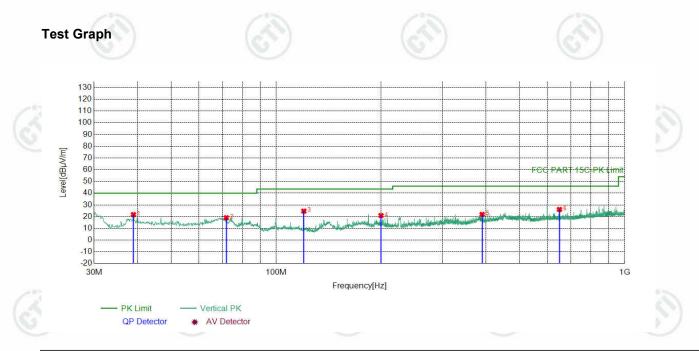
		measurement.
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
12		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6)		 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning
		for Transmitting mode, and found the X axis positioning which it is the worst case.
13		i. Repeat above procedures until all frequencies measured was complete.
G	Test Mode:	Refer to clause 5.3
1	Test Results:	Pass

Report No. : EED32N00018101

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode b was recorded in the report.

Test Graph


Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	72.0052	-21.15	43.89	22.74	40.00	17.26	PASS	Horizontal	PK
2	120.025	-20.08	37.12	17.04	43.50	26.46	PASS	Horizontal	PK
3	182.984	-19.50	43.91	24.41	43.50	19.09	PASS	Horizontal	PK
4	255.547	-16.45	38.99	22.54	46.00	23.46	PASS	Horizontal	PK
5	380.593	-13.36	39.18	25.82	46.00	20.18	PASS	Horizontal	PK
6	600.029	-8.63	38.82	30.19	46.00	15.81	PASS	Horizontal	PK
	67		67		0			ST.	

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	38.9249	-18.37	40.09	21.72	40.00	18.28	PASS	Vertical	PK
	2	71.9082	-21.14	40.20	19.06	40.00	20.94	PASS	Vertical	PK
	3	120.025	-20.08	44.79	24.71	43.50	18.79	PASS	Vertical	PK
2	4	199.961	-17.84	38.78	20.94	43.50	22.56	PASS	Vertical	PK
6	5	390.003	-13.20	35.12	21.92	46.00	24.08	PASS	Vertical	PK
	6	649.989	-8.25	34.39	26.14	46.00	19.86	PASS	Vertical	PK

Page 24 of 44

Radiated Spurious Emission above 1GHz:

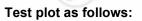
Mode	:	BLE G	BLE GFSK Transmitting					2402MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1599.2599	2.28	41.60	43.88	74.00	30.12	PASS	Horizontal	PK
2	2129.7130	4.56	45.30	49.86	74.00	24.14	PASS	Horizontal	PK
3	3988.0659	-18.92	61.33	42.41	74.00	31.59	PASS	Horizontal	PK
4	4804.1203	-16.23	67.79	51.56	74.00	22.44	PASS	Horizontal	PK
5	7205.2804	-11.83	59.22	47.39	74.00	26.61	PASS	Horizontal	PK
6	9609.4406	-7.37	55.47	48.10	74.00	25.90	PASS	Horizontal	PK
7	1591.8592	2.22	41.71	43.93	74.00	30.07	PASS	Horizontal	PK
8	2129.7130	4.56	45.45	50.01	74.00	23.99	PASS	Vertical	PK
9	3994.0663	-18.90	62.95	44.05	74.00	29.95	PASS	Vertical	PK
10	4805.1203	-16.23	66.59	50.36	74.00	23.64	PASS	Vertical	PK
11	7206.2804	-11.83	58.87	47.04	74.00	26.96	PASS	Vertical	PK
12	8525.3684	-10.50	57.34	46.84	74.00	27.16	PASS	Vertical	PK
							1	200	

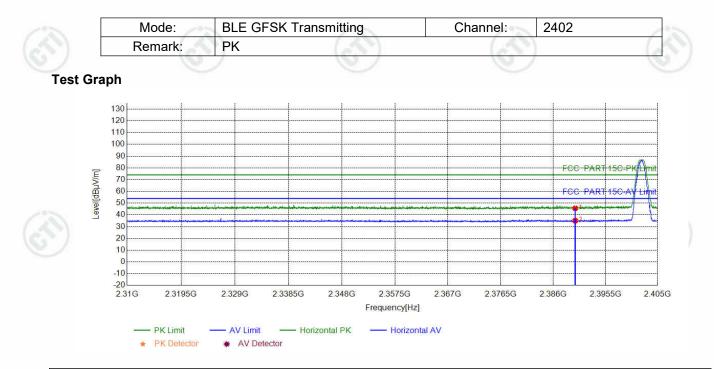
Mode	:	BLE G	SK Transmi	ransmitting			nannel:	2440MHz	2440MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1425.4425	1.41	42.20	43.61	74.00	30.39	PASS	Horizontal	PK	
2	2131.9132	4.53	45.15	49.68	74.00	24.32	PASS	Horizontal	PK	
3	3989.0659	-18.91	58.60	39.69	74.00	34.31	PASS	Horizontal	PK	
4	4880.1253	-16.21	66.22	50.01	74.00	23.99	PASS	Horizontal	PK	
5	7321.2881	-11.65	58.70	47.05	74.00	26.95	PASS	Horizontal	PK	
6	11152.5435	-6.32	53.09	46.77	74.00	27.23	PASS	Horizontal	PK	
7	1569.6570	2.04	42.42	44.46	74.00	29.54	PASS	Horizontal	PK	
8	2131.3131	4.54	46.47	51.01	74.00	22.99	PASS	Vertical	PK	
9	4256.0837	-17.58	65.12	47.54	74.00	26.46	PASS	Vertical	PK	
10	4880.1253	-16.21	65.80	49.59	74.00	24.41	PASS	Vertical	PK	
11	7321.2881	-11.65	57.40	45.75	74.00	28.25	PASS	Vertical	PK	
12	8505.3670	-10.54	56.26	45.72	74.00	28.28	PASS	Vertical	PK	
12	8505.3670	-10.54	56.26	45.72	74.00	28.28	PASS	Vertical	Pł	

Mode	:	BLE GF	SK Transmi	tting		С	hannel:	2480MHz	:
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1430.0430	1.41	43.71	45.12	74.00	28.88	PASS	Horizontal	PK
2	2129.9130	4.55	44.09	48.64	74.00	25.36	PASS	Horizontal	PK
3	4549.1033	-16.83	63.03	46.20	74.00	27.80	PASS	Horizontal	PK
4	4960.1307	-15.97	72.24	56.27	74.00	17.73	PASS	Horizontal	PK
5	4961.1307	-15.97	63.64	47.67	54.00	6.33	PASS	Horizontal	AV
6	7439.2960	-11.34	58.80	47.46	74.00	26.54	PASS	Horizontal	PK
7	11970.5980	-5.42	53.23	47.81	74.00	26.19	PASS	Vertical	PK
8	1428.2428	1.41	43.29	44.70	74.00	29.30	PASS	Vertical	PK
9	2129.1129	4.56	44.71	49.27	74.00	24.73	PASS	Vertical	PK
10	3998.0665	-18.89	63.48	44.59	74.00	29.41	PASS	Vertical	PK
11	4960.1307	-15.97	68.36	52.39	74.00	21.61	PASS	Vertical	PK
12	7439.2960	-11.34	61.31	49.97	74.00	24.03	PASS	Vertical	PK
13	13741.7161	-1.71	51.10	49.39	74.00	24.61	PASS	Vertical	PK

Remark:

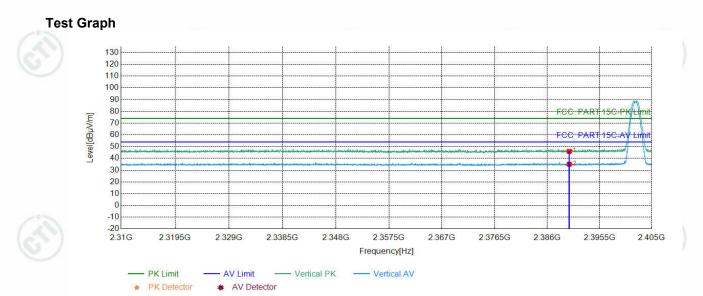
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

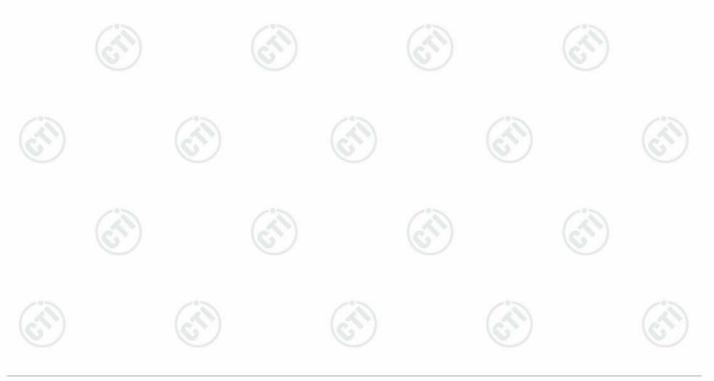




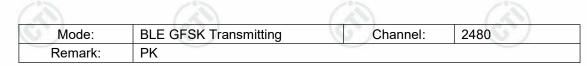
Restricted bands:

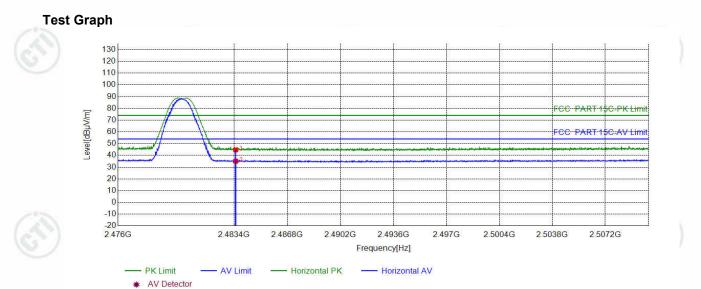
Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390.00	5.77	39.84	45.61	74.00	28.39	PASS	Horizontal	PK	
2	2390.00	5.77	29.31	35.08	54.00	18.92	PASS	Horizontal	AV	
6	S)		67)		67)			S)		

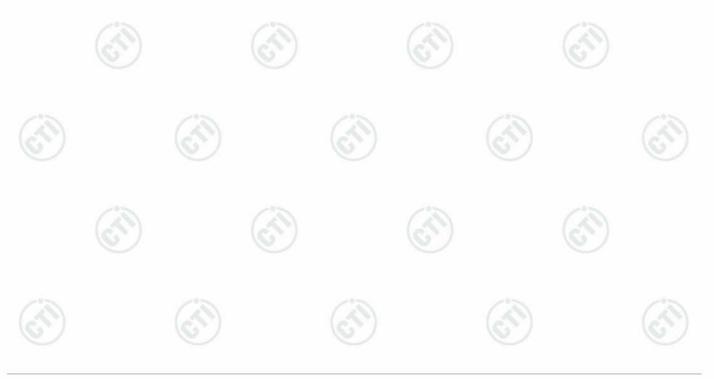


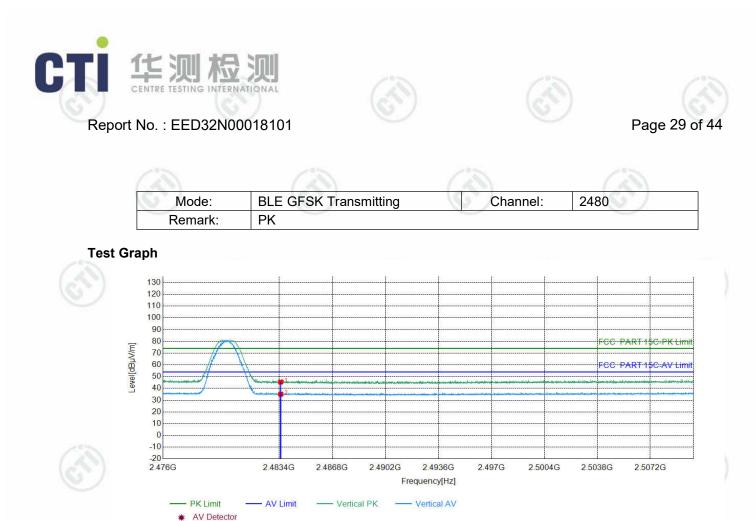


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		


	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
i,	1	2390.00	5.77	40.17	45.94	74.00	28.06	PASS	Vertical	PK
	2	2390.00	5.77	29.28	35.05	54.00	18.95	PASS	Vertical	AV







	Suspecte	d List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
ri)	1	2483.50	6.57	38.23	44.80	74.00	29.20	PASS	Horizontal	PK		
Ć	2	2483.50	6.57	28.53	35.10	54.00	18.90	PASS	Horizontal	AV		

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.50	6.57	38.92	45.49	74.00	28.51	PASS	Vertical	PK	
2	2483.50	6.57	28.49	35.06	54.00	18.94	PASS	Vertical	AV	
									Contraction of the second s	

Note:

Suspected List

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

