

TEST REPORT

Product

Trade mark Model/Type reference

Serial Number

Report Number

FCC ID

Date of Issue

Test Standards

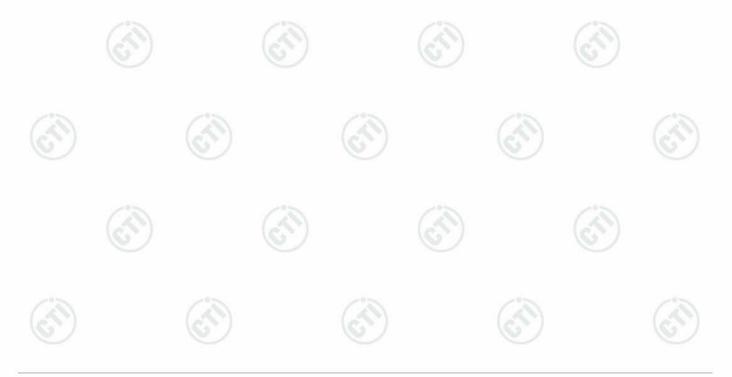
Test result

- : Arm-Type Fully Automatic Digital Blood Pressure Monitor
- : N/A
- DBP-6281B, DBP-6282B, DBP-6285B, DBP-6286B
- : N/A
- : EED32N00017501
- : 2AQVU0018
- : May 27, 2021
- : 47 CFR Part 15 Subpart C

Prepared for:

PASS

JOYTECH Healthcare Co., Ltd. No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 311100 Zhejiang P.R. China


		e Testing Inte wei Industrial Shenzhen, C TEL: +86	epared by: rnational Grou Zone, Bao'an Guangdong, Cl -755-3368 3668 -755-3368 338	70 District, nina 8	
E TES	ompiled by:	Vita. he Vito he David Wang	Reviewed by: Date:	Aaron Ma May 27, 2021	
12	Report Seal	David Wang		Check No.:45380	41742

1 COVER PAGE	
2 CONTENT	
3 VERSION	
4 TEST SUMMARY	
5 GENERAL INFORMATION	
 5.1 CLIENT INFORMATION	
6 EQUIPMENT LIST	
7 TEST RESULTS AND MEASUREMENT DATA	
 7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS	12 13 14 16 10 17 17
8 APPENDIX A	
PHOTOGRAPHS OF TEST SETUP	3

Page 3 of 42

3 Version

	Version No.		Date		(\mathcal{A})	Descripti	on	
-	00	M	ay 27, 2021			Original		
S)				S		I		

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. Model No.: DBP-6281B, DBP-6282B, DBP-6285B, DBP-6286B

Only model DBP-6281B was tested, because the circuit design, layout, component use and internal wiring of the above models are the same, but the shell size and model name are different.

5 General Information

5.1 Client Information

YTECH Healthcare Co., Ltd. .365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou
.365. Wuzhou Road, Yuhang Economic Development Zone, Hangzhou
y, 311100 Zhejiang P.R. China
YTECH Healthcare Co., Ltd.
.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou y, 311100 Zhejiang P.R. China
YTECH Healthcare Co., Ltd.
.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou
y N

Page 5 of 42

5.2 General Description of EUT

Product Name:	Arm-Type Fully Automatic Digital Blood Pressure Monitor
Mode No.(EUT):	DBP-6281B,DBP-6282B,DBP-6285B, DBP-6286B
Test model:	DBP-6281B
Trade mark:	N/A
Product Type:	☐ Mobile
Bluetooth Version:	V5.0
Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK
Transfer Rate:	⊠ 1Mbps □ 2Mbps
Number of Channel:	40
Antenna Type:	PCB antenna
Antenna Gain:	0.5dBi
Power Supply:	3X1.5V Batteries; size AAA
Test Voltage:	DC 4.5V
Sample Received Date:	Mar. 16, 2021
Sample tested Date:	Mar. 16, 2021 to Apr. 26, 2021

Operation Frequency each of channel Channel Frequency Channel Frequency Channel Frequency Channel Frequency 0 2402MHz 2422MHz 10 20 2442MHz 30 2462MHz 1 2404MHz 11 2424MHz 21 2444MHz 31 2464MHz 2 2406MHz 12 2426MHz 22 2446MHz 32 2466MHz 3 2408MHz 13 2428MHz 23 2448MHz 33 2468MHz 4 24 2410MHz 14 2430MHz 2450MHz 34 2470MHz 5 2412MHz 15 2432MHz 25 2452MHz 35 2472MHz 6 2414MHz 16 2434MHz 26 2454MHz 36 2474MHz 7 27 2416MHz 17 2436MHz 2456MHz 37 2476MHz 8 2418MHz 18 28 2458MHz 2438MHz 38 2478MHz 9 2420MHz 19 2440MHz 29 2460MHz 39 2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

(S)	Channel	Frequency	
The lowe	est channel (CH0)	2402MHz	
The midd	le channel (CH19)	2440MHz	
The highe	st channel (CH39)	2480MHz	(2)

5.3 Test Configuration

EUT Test Software	Settings:				
Software:	PhyPlus	Kit.exe			
EUT Power Grade: Class2 (Power level is built-in set parameters and cannot be changed selected)					
Use test software to transmitting of the El		ncy, the middle freque	ncy and the highest t	frequency keep	
Test Mode	Modulation	Rate	Channel	Frequency(MHz)	
Mode a	GFSK	1Mbps	СН0	2402	
Mode b	GFSK	1Mbps	CH19	2440	
Mode c	GFSK	1Mbps	CH39	2480	

5.4 Test Environment

	Operating Environmen	t:				
	Radiated Spurious Emi	ssions:				
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH				
	Atmospheric Pressure:	1010mbar	6		(3)	
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
1	Humidity:	50~55 % RH		13		13
	Atmospheric Pressure:	1010mbar)	(35)		$(c^{(n)})$
	RF Conducted:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	100		245	
	Atmospheric Pressure:	1010mbar			(2)	
. <u> </u>						

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	model	S/N serial number	Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
57		3.3dB (9kHz-30MHz)
3	Dedicted Source emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-28-2020 04-15-2021	04-27-2021 04-14-2022		
Temperature/ Humidity Indicator	Defu	TH128	1				
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022		
Barometer	changchun	DYM3	1188	/			

		RF test s	ystem			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy) 12-27-2021	
Spectrum Analyzer	R&S	FSV40	101200	12-28-2020		
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(A)	(s)	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			 12-27-2021 12-27-2021	
DC Power	Keysight	E3642A	MY56376072	12-28-2020		
PC-1	Lenovo	R4960d		(2)		
Power unit	R&S	OSP120	101374	12-28-2020		
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		- 6	0	

3M Semi/full-anechoic Chamber										
Equipment	Manufacturer	nufacturer Model No. Serial Number			Cal. Due date (mm-dd-yyyy)					
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022					
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020 05-16-2021	05-15-2021 05-15-2022					
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018 04-15-2021	04-24-2021 04-14-2024					
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021					
Multi device Controller	maturo	NCD/070/10711 112								
Temperature/ Humidity Indicator	Shanghai qixiang			06-29-2020	06-28-2021					
Cable line	Fulai(7M)	SF106	5219/6A		(&					
Cable line	Fulai(6M)	SF106	5220/6A	(G*+	\G					
Cable line	Fulai(3M)	SF106	5216/6A							
Cable line	Fulai(3M)	SF106	5217/6A							

Page 10 of 42

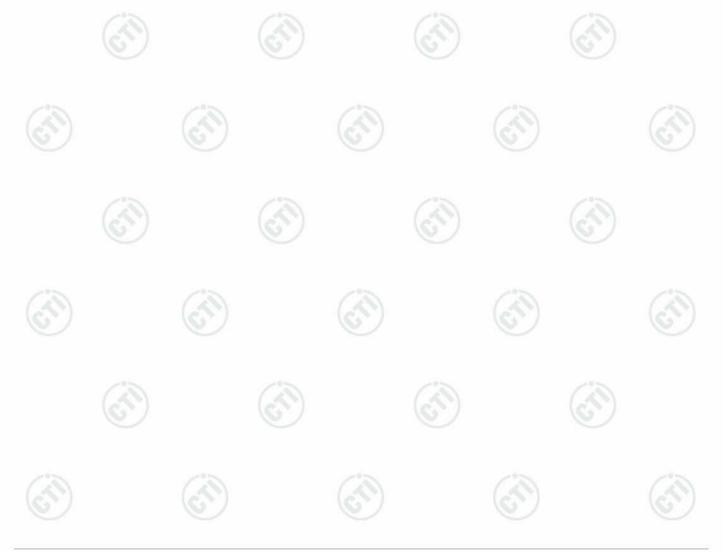
		3M full-anechoi				
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018 04-15-2021	04-24-2021 04-14-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018 04-15-2021	04-24-2021 04-14-2024	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021	
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021	
Preamplifier	EMCI	EMC001330	980563	04-22-2020 04-15-2021	04-21-2021 04-14-2022	
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020 04-16-2021	04-26-2021 04-15-2022	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		2	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		- 0	
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	S -	- 0	
Cable line	Times	EMC104-NMNM- 1000	SN160710			
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	- /	- 20	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(6	5) -	
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001			
Cable line	Times	HF160-KMKM- 3.00M	393493-0001			

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

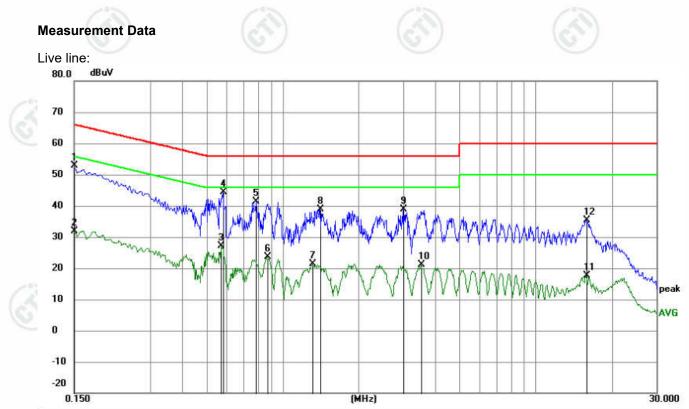

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos
TH I DOD I	

The antenna is PCB antenna. The best case gain of the antenna is 0.5dBi.

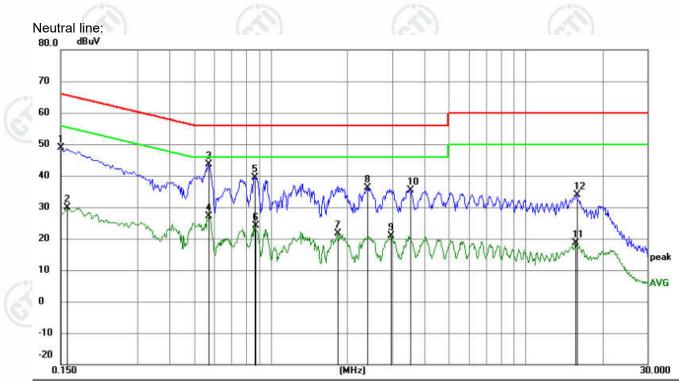

7.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	07	(2)
Test Method:	ANSI C63.10: 2013		U
Test Frequency Range:	150kHz to 30MHz		
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	veep time=auto	
Limit:	Frequency range (MHz)	Limit (d	1
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	of the frequency.	-
Test Setup:	Shielding Room	AE USN2 + AC Main Ground Reference Plane	Test Receiver
Test Procedure:	 The mains terminal disturbation. The EUT was connected Impedance Stabilization Netimpedance. The power of connected to a second LISI plane in the same way as multiple socket outlet stription single LISN provided the rational ground reference plane. An placed on the horizontal ground reference plane. The LISN unit under test and bond mounted on top of the grout the closest points of the LI and associated equipment of the interface cab ANSI C63.10: 2013 on conditional c	to AC power source etwork) which provides cables of all other N 2, which was bonde s the LISN 1 for the was used to connect r ting of the LISN was n ced upon a non-meta of floor-standing an ound reference plane. h a vertical ground ref from the vertical ground plane was bonded 1 was placed 0.8 m ded to a ground ref ind reference plane. The ISN 1 and the EUT. A was at least 0.8 m from m emission, the relative les must be changed a	through a LISN 1 (Li s a $50\Omega/50\mu$ H + 5Ω line units of the EUT we d to the ground referen unit being measured. nultiple power cables to ot exceeded. llic table 0.8m above to rangement, the EUT we erence plane. The rear nd reference plane. The to the horizontal grou from the boundary of to erence plane for LISI his distance was betwe All other units of the EU n the LISN 2. we positions of equipme
Test Mode:	All modes were tested, only the report.		vas recorded in the
	Pass		
Test Results:	Pass		

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
ni).			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
5	1		0.1500	42.95	9.87	52.82	66.00	-13.18	peak	
	2		0.1500	22.12	9.87	31.99	56.00	-24.01	AVG	
ō	3		0.5730	17.01	10.04	27.05	46.00	-18.95	AVG	
-	4	*	0.5820	34.30	10.05	44.35	56.00	-11.65	peak	
10	5		0.7845	31.58	9.85	41.43	56.00	-14.57	peak	
	6		0.8745	13.86	9.85	23.71	46.00	-22.29	AVG	
d.	7		1.3110	11.67	9.82	21.49	46.00	-24.51	AVG	
57	8		1.4055	29.10	9.81	38.91	56.00	-17.09	peak	
-	9		2.9940	29.01	9.79	38.80	56.00	-17.20	peak	
5	10		3.5250	11.29	9.78	21.07	46.00	-24.93	AVG	
1	11		15.8235	7.61	9.94	17.55	50.00	-32.45	AVG	
÷	12		15.9180	25.46	9.94	35.40	60.00	-24.60	peak	

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:


2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

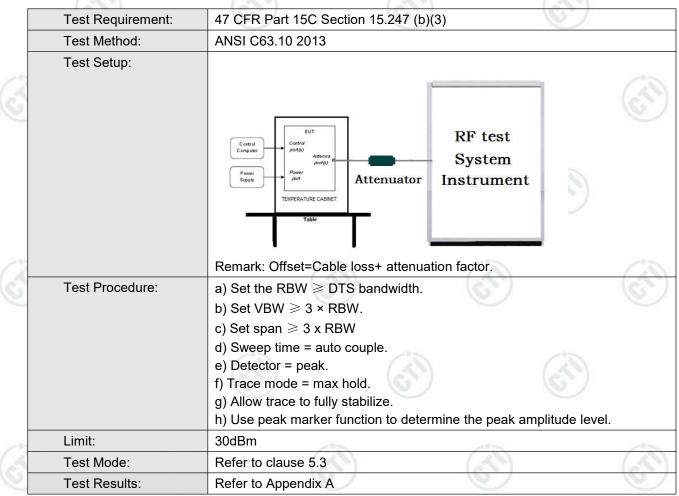
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
-			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
2 Ar	1		0.1500	39.11	9.87	48.98	66.00	-17.02	peak	
6	2		0.1590	20.01	9.87	29.88	55.52	-25.64	AVG	
0	3	*	0.5685	33.53	10.03	43.56	56.00	-12.44	peak	
	4		0.5730	16.98	10.04	27.02	46.00	-18.98	AVG	
	5		0.8655	29.59	9.85	39.44	56.00	-16.56	peak	
	6		0.8745	14.36	9.85	24.21	46.00	-21.79	AVG	
-	7		1.8375	11.95	9.80	21.75	46.00	-24.25	AVG	
\overline{a}	8		2.3865	26.41	9.79	36.20	56.00	-19.80	peak	
C	9		2.9490	11.20	9.79	20.99	46.00	-25.01	AVG	
	10		3.5250	25.60	9.78	35.38	56.00	-20.62	peak	
	11		15.7065	8.61	9.94	18.55	50.00	-31.45	AVG	
-	12		15.9225	23.88	9.94	33.82	60.00	-26.18	peak	

Remark:

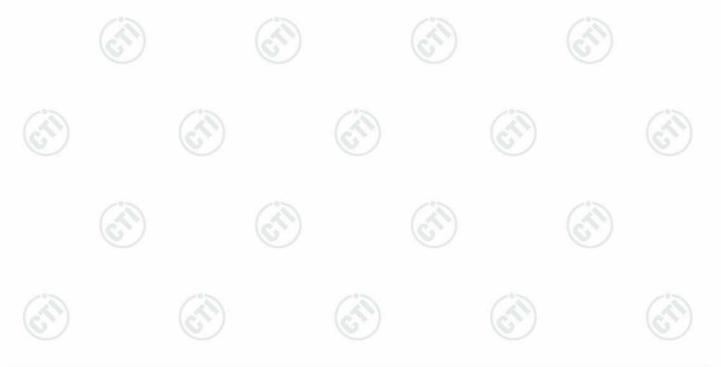
Hotline: 400-6788-333

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

www.cti-cert.com


3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

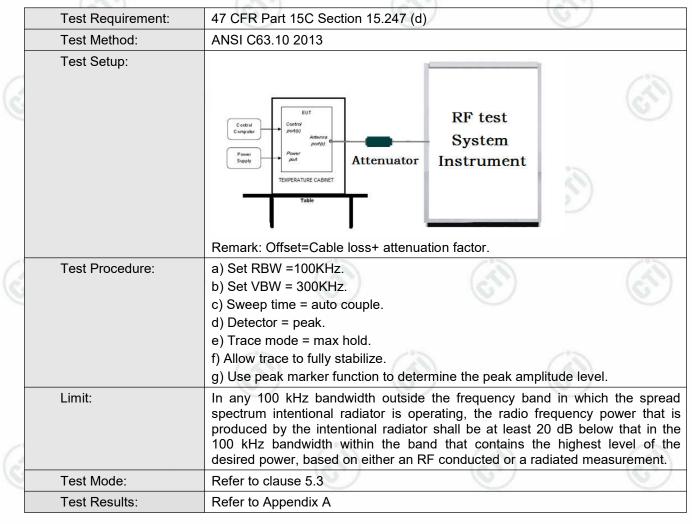


7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Power Power Power Supph TelMERATURE CABNET Table
2	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

7.5 Maximum Power Spectral Density

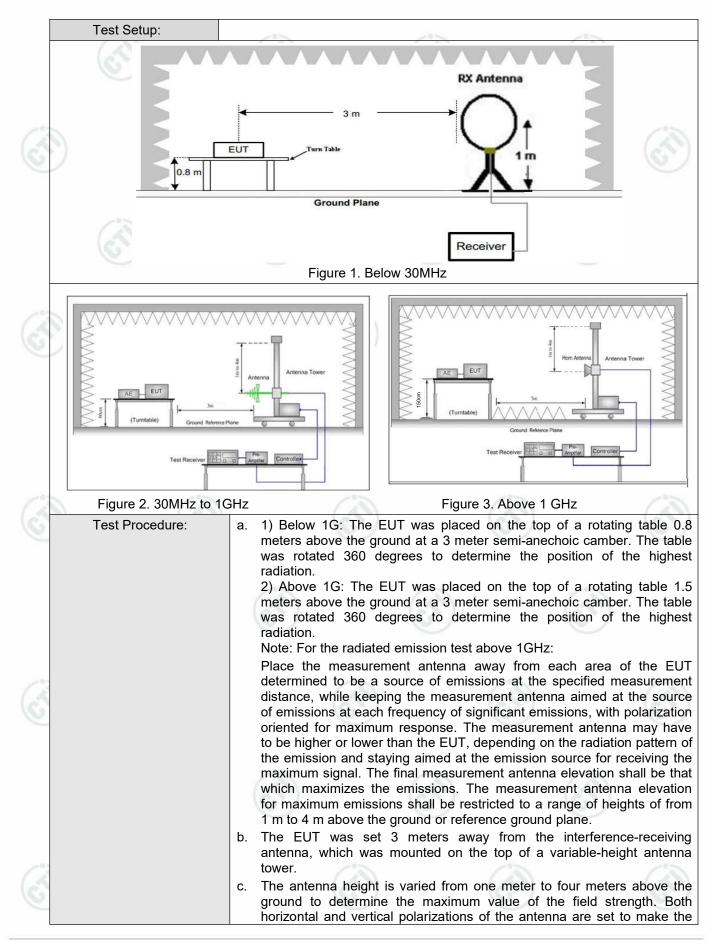
Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Supply Forwar Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
Limit:	≤8.00dBm/3kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A



7.6 Band Edge measurements and Conducted Spurious Emission

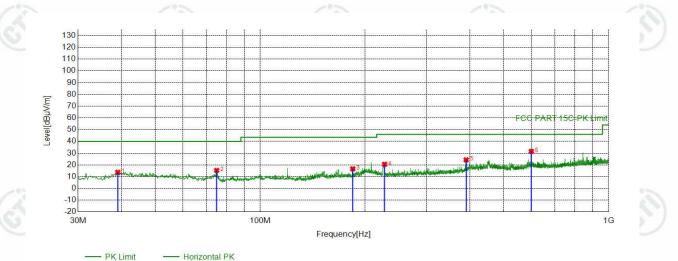


7.7 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Section	on 15	.209 and 15	.205	0)
	Test Method:	ANSI C63.10 2013					·
	Test Site:	Measurement Distance	ber)				
	Receiver Setup:	Frequency		Detector	RBW	,	Remark
Ś		0.009MHz-0.090MHz		Peak	10kHz		Peak
~		0.009MHz-0.090MH	Iz	Average	10kHz	z 30kHz	Average
		0.090MHz-0.110MH	lz	Quasi-peak	10kHz	z 30kHz	Quasi-peak
		0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak
		0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average
		0.490MHz -30MHz	:	Quasi-peak	10kHz	2 30kHz	Quasi-peak
		30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak
- 0 1		Above 1GHz		Peak	1MHz	3MHz	Peak
5				Peak	1MHz	10kHz	Average
	Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m
		0.009MHz-0.490MHz	240	00/F(kHz)	-	- 200	300
		0.490MHz-1.705MHz	240	00/F(kHz)	-	- <u>(</u> A)	30
		1.705MHz-30MHz		30	-	C	30
		30MHz-88MHz	100		40.0	Quasi-peak	3
		88MHz-216MHz		150	43.5	Quasi-peak	3
2		216MHz-960MHz		200	46.0	Quasi-peak	3
2		960MHz-1GHz		500	54.0	Quasi-peak	3
		Above 1GHz		500	54.0	Average	3
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20dB 20dB	above the nent under t	maximum est. This p	permitted av	erage emissio

Ì

	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Refer to clause 5.3
Test Results:	Pass

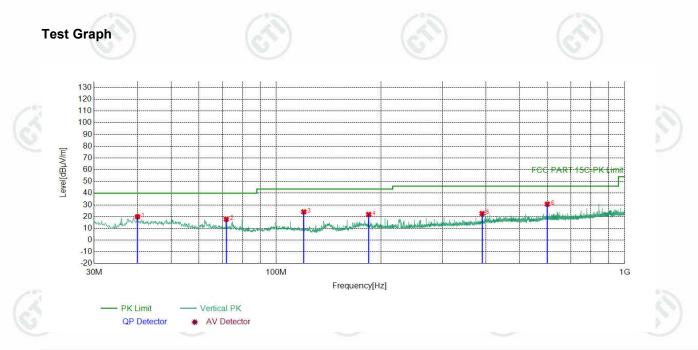


Report No. : EED32N00017501

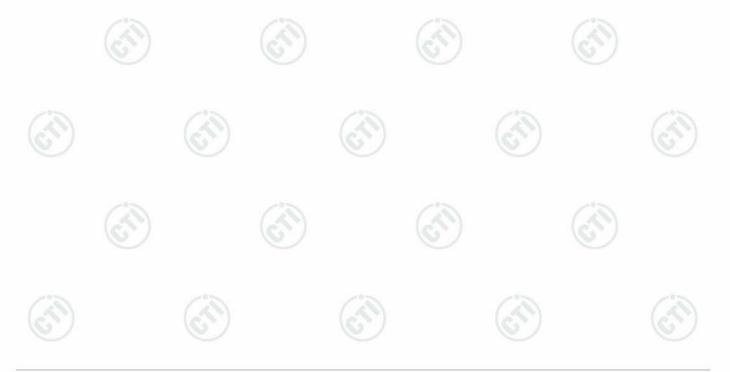
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode b was recorded in the report.

Test Graph



Susp	ecte	d List								
NC	C	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1		39.0219	-18.34	32.10	13.76	40.00	26.24	PASS	Horizontal	PK
2		75.0125	-21.68	37.02	15.34	40.00	24.66	PASS	Horizontal	PK
3		184.342	-19.36	36.04	16.68	43.50	26.82	PASS	Horizontal	PK
4		227.511	-17.07	37.64	20.57	46.00	25.43	PASS	Horizontal	PK
5		390.003	-13.20	37.51	24.31	46.00	21.69	PASS	Horizontal	PK
6		600.029	-8.63	40.13	31.50	46.00	14.50	PASS	Horizontal	PK
	10	5.1		67		07			ST.	



	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	39.9920	-18.03	37.96	19.93	40.00	20.07	PASS	Vertical	PK
	2	71.9082	-21.14	38.92	17.78	40.00	22.22	PASS	Vertical	PK
	3	120.025	-20.08	44.17	24.09	43.50	19.41	PASS	Vertical	PK
2	4	184.342	-19.36	41.25	21.89	43.50	21.61	PASS	Vertical	PK
6	5	390.003	-13.20	35.86	22.66	46.00	23.34	PASS	Vertical	PK
	6	600.029	-8.63	39.26	30.63	46.00	15.37	PASS	Vertical	PK

Radiated Spurious Emission above 1GHz:

Mode	:	BLE GF	SK Transmi	tting		(Channel:	2402MHz	<u>.</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1656.8657	2.66	42.40	45.06	74.00	28.94	PASS	Horizontal	PK
2	3985.0657	-18.92	59.20	40.28	74.00	33.72	PASS	Horizontal	PK
3	4804.1203	-16.23	71.90	55.67	74.00	18.33	PASS	Horizontal	PK
4	4805.1203	-16.23	65.02	48.79	54.00	5.21	PASS	Horizontal	AV
5	7207.2805	-11.83	59.92	48.09	74.00	25.91	PASS	Horizontal	PK
6	9607.4405	-7.37	55.25	47.88	74.00	26.12	PASS	Horizontal	PK
7	14403.7603	1.17	49.72	50.89	74.00	23.11	PASS	Horizontal	PK
8	1722.2722	3.02	42.41	45.43	74.00	28.57	PASS	Vertical	PK
9	3993.0662	-18.90	63.84	44.94	74.00	29.06	PASS	Vertical	PK
10	4803.1202	-16.23	72.78	56.55	74.00	17.45	PASS	Vertical	PK
11	4805.1203	-16.23	66.76	50.53	54.00	3.47	PASS	Vertical	AV
12	7207.2805	-11.83	64.84	53.01	74.00	20.99	PASS	Vertical	PK
13	9609.4406	-7.37	55.55	48.18	74.00	25.82	PASS	Vertical	PK
14	14365.7577	0.65	51.03	51.68	74.00	22.32	PASS	Vertical	PK

Mode:	:	BLE G	-SK Transmi	itting		С	hannel:	2440MHz	<u>.</u>	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1667.8668	2.73	41.53	44.26	74.00	29.74	PASS	Horizontal	PK	
2	2129.1129	4.56	44.76	49.32	74.00	24.68	PASS	Horizontal	PK	
3	3998.0665	-18.89	61.47	42.58	74.00	31.42	PASS	Horizontal	PK	
4	4880.1253	-16.21	71.42	55.21	74.00	18.79	PASS	Horizontal	PK	
5	4881.1254	-16.21	65.43	49.22	54.00	4.78	PASS	Horizontal	AV	
6	7321.2881	-11.65	58.53	46.88	74.00	27.12	PASS	Horizontal	PK	
7	12472.6315	-4.79	53.11	48.32	74.00	25.68	PASS	Horizontal	PK	
8	1382.0382	1.33	43.29	44.62	74.00	29.38	PASS	Vertical	PK	
9	2126.9127	4.59	43.65	48.24	74.00	25.76	PASS	Vertical	PK	
10	3999.0666	-18.89	66.05	47.16	74.00	26.84	PASS	Vertical	PK	
11	4880.1253	-16.21	73.09	56.88	74.00	17.12	PASS	Vertical	PK	
12	4881.1254	-16.21	66.89	50.68	54.00	3.32	PASS	Vertical	AV	
13	7320.2880	-11.65	62.27	50.62	74.00	23.38	PASS	Vertical	PK	
14	11953.5969	-5.52	54.40	48.88	74.00	25.12	PASS	Vertical	PK	
100		143	1	120		14	10	(102	

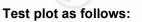
Mode	:	BLE GF	SK Transmi	tting		С	hannel:	2480MHz	<u> </u>	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1379.2379	1.32	42.78	44.10	74.00	29.90	PASS	Horizontal	PK	
2	2000.7001	4.55	41.85	46.40	74.00	27.60	PASS	Horizontal	PK	
3	3991.0661	-18.91	62.06	43.15	74.00	30.85	PASS	Horizontal	PK	
4	4960.1307	-15.97	68.96	52.99	74.00	21.01	PASS	Horizontal	PK	
5	7439.2960	-11.34	56.26	44.92	74.00	29.08	PASS	Horizontal	PK	
6	11873.5916	-5.90	54.80	48.90	74.00	25.10	PASS	Horizontal	PK	
7	1496.0496	1.47	43.02	44.49	74.00	29.51	PASS	Vertical	PK	
8	2030.1030	4.65	42.15	46.80	74.00	27.20	PASS	Vertical	PK	
9	3984.0656	-18.92	60.87	41.95	74.00	32.05	PASS	Vertical	PK	
10	4960.1307	-15.97	71.40	55.43	74.00	18.57	PASS	Vertical	PK	
11	4961.1307	-15.97	66.69	50.72	54.00	3.28	PASS	Vertical	AV	
12	7441.2961	-11.34	58.84	47.50	74.00	26.50	PASS	Vertical	PK	

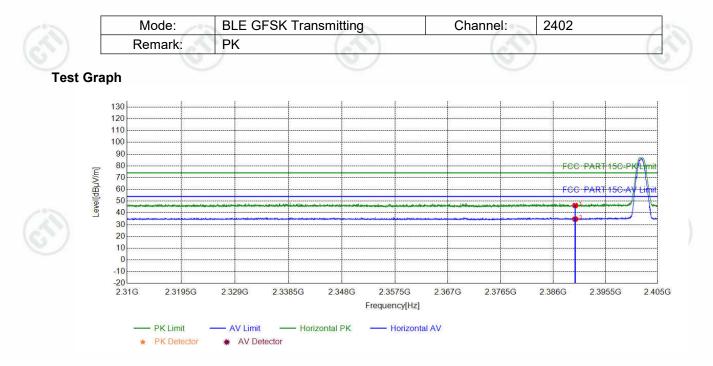
Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

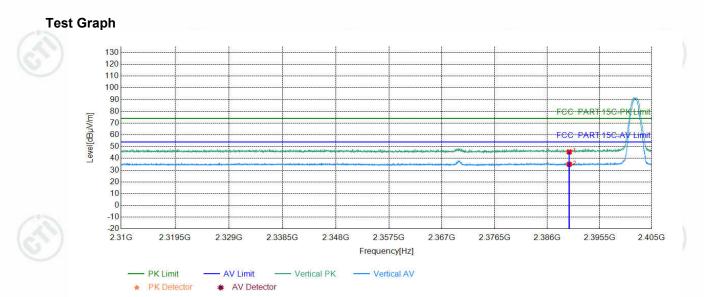
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

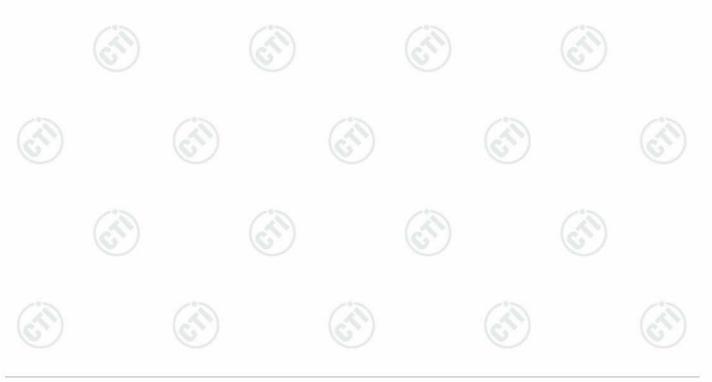




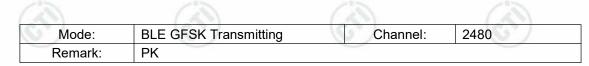
Restricted bands:

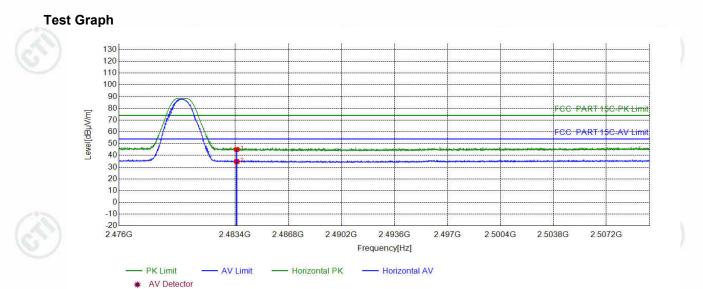
	Suspe	cted List				_				
6	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	40.52	46.29	74.00	27.71	PASS	Horizontal	PK
	2	2390.0000	5.77	28.94	34.71	54.00	19.29	PASS	Horizontal	AV
		(S)		(S)		6		H	3]

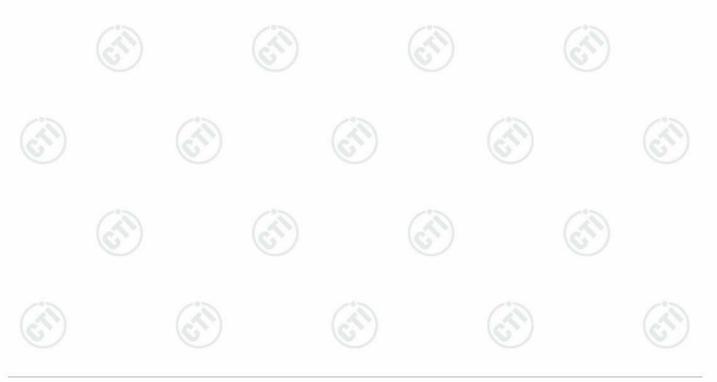


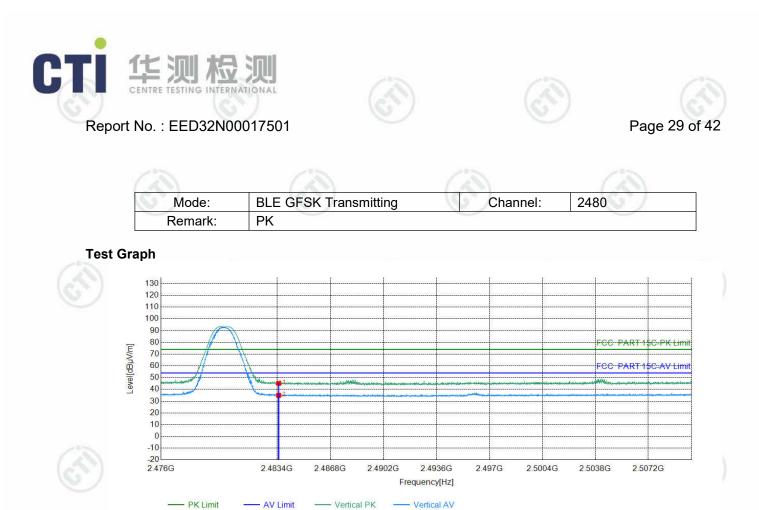


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	РК		


	Suspe	cted List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1	2390.0000	5.77	39.75	45.52	74.00	28.48	PASS	Vertical	PK	
Ś	2	2390.0000	5.77	29.23	35.00	54.00	19.00	PASS	Vertical	AV	







[Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	2483.5000	6.57	38.50	45.07	74.00	28.93	PASS	Horizontal	PK
C	2	2483.5000	6.57	28.24	34.81	54.00	19.19	PASS	Horizontal	AV

		🗰 AV Det	lector							
	Suspec	ted List				-11-5			-15	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	
1	1	2483.5000	6.57	38.63	45.20	74.00	28.80	PASS	Vertical	
é	2	2483.5000	6.57	28.36	34.93	54.00	19.07	PASS	Vertical	

Remark

ΡK

AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

