

Report No.: EED32N00004101 Page 1 of 47

Product : Arm-Type Fully Automatic Digital

Blood Pressure Monitor

Trade mark : N/A

Model/Type reference DBP-6279B, DBP-6273B

Serial Number N/A

Report Number : EED32N00004101

FCC ID : 2AQVU0014 Date of Issue Mar. 26, 2021

Test Standards 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

JOYTECH Healthcare Co., Ltd. No.365, Wuzhou Road, Yuhang **Economic Development Zone, Hangzhou** City, 311100 Zhejiang P.R. China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tom Chen

David Wang

David Wang

Reviewed by:

Date:

Aaron Ma

Mar. 26, 2021

Check No.:4538028642

2 Content

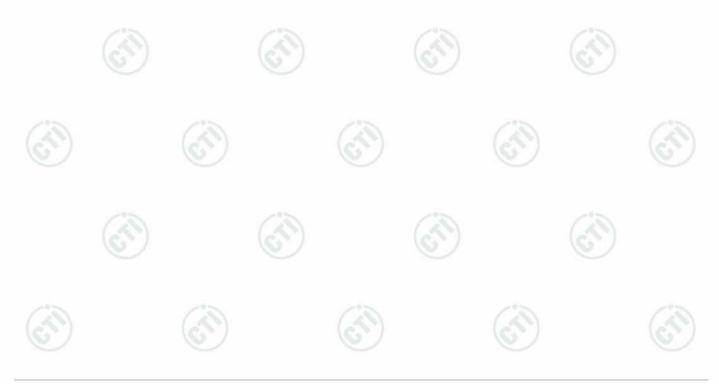
1 COVER PAGE				1
2 CONTENT			•••••	2
3 VERSION				3
4 TEST SUMMARY				4
5 GENERAL INFORMAT	TION			5
5.2 GENERAL DESCRIPT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SU 5.6 TEST LOCATION 5.7 MEASUREMENT UNG	ONON OF EUTONTION OF EUT	ELS, K=2)		
6 EQUIPMENT LIST	MEASUREMENT DATA			9
	MENT			
	IONS			
	TED OUTPUT POWER			
	SPECTRAL DENSITY			
	REMENTS AND CONDUCTED SPURIO			
	IS EMISSION & RESTRICTED BANDS			
PHOTOGRAPHS OF TE	ST SETUP			36
PHOTOGRAPHS OF EU	IT CONSTRUCTIONAL DETAILS	S	••••••	38

3 Version

Version No.	Date	(6)	Description	·)
00	Mar. 26, 2021	Original		
				-
		(35)		

Report No. : EED32N00004101 Page 4 of 47

4 Test Summary


Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.:DBP-6279B, DBP-6273B

Only the model DBP-6279B was tested, DBP-6273B compared with DBP-6279B, all parts of the product, Their electrical circuit design, layout, components used and internal wiring are identical, except only the model name and color of the appearance are different.

Report No. : EED32N00004101 Page 5 of 47

5 General Information

5.1 Client Information

Applicant:	JOYTECH Healthcare Co., Ltd.
Address of Applicant:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 311100 Zhejiang P.R. China
Manufacturer:	JOYTECH Healthcare Co., Ltd.
Address of Manufacturer:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 311100 Zhejiang P.R. China
Factory:	JOYTECH Healthcare Co., Ltd.
Address of Factory:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 311100 Zhejiang P.R. China

5.2 General Description of EUT

Product Name:	Arm-Type Fully	Arm-Type Fully Automatic Digital Blood Pressure Monitor				
Mode No.(EUT):	DBP-6279B, D	BP-6273B				-°>
Test model:	DBP-6279B	(55)		(83)		(85)
Trade mark:	N/A					
Product Type:	☐ Mobile	Portable	☐ Fix Loc	cation		
Bluetooth Version:	V5.0		73		15	
Operation Frequency:	2402MHz~248	0MHz	(21)			
Modulation Type:	GFSK					
Transfer Rate:	⊠1Mbps □2	2Mbps				
Number of Channel:	40	-0-				-0-
Antenna Type:	PCB antenna			(41)		(4)
Antenna Gain:	0.5dBi	(0)				(0)
Power Supply:	3X1.5V Batteri	es; size AAA	4			
(ii)	AC/DC ADAPTOR	INPUT	L:MPSUL050 :100-240V~ ! JT:5V100	50/60HZ 0.2	5A	
Test Voltage:	DC 4.5V					
Sample Received Date:	Jan. 19, 2021					
Sample tested Date:	Jan. 19, 2021 t	to Mar. 23, 2	.021	100		13

Page	6	of	47
------	---	----	----

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel (CH0)	2402MHz		
The middle channel (CH19)	2440MHz		
The highest channel (CH39)	2480MHz		

Report No. : EED32N00004101 Page 7 of 47

5.3 Test Configuration

EUT Test Software	Settings:						
Software:	Phy	PhyPlusKit.exe					
EUT Power Grade:		Class2 (Power level is built-in set parameters and cannot be changed an selected)					
Use test software to transmitting of the E		equency, the m	ddle frequ	ency and	the highest	requency keep	
Test Mode	Modulatio	ا ا	Rate	(Channel	Frequency(MHz)	
Mode a	GFSK	1	Mbps	(B)	CH0	2402	
Mode b	GFSK	2 1	Mbps		CH19	2440	
Mode c	GFSK	1	Mbps		CH39	2480	

5.4 Test Environment

							1 - 7
	Operating Environment	t:					
	Radiated Spurious Emi	ssions:					
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH		130		(3)	
	Atmospheric Pressure:	1010mbar		(6)		(6,0)	
	Conducted Emissions:						
	Temperature:	22~25.0 °C					
12.	Humidity:	50~55 % RH			13		13
(50)	Atmospheric Pressure:	1010mbar	(10)		(3)		(6.72)
	RF Conducted:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH		2000		24%	
	Atmospheric Pressure:	1010mbar		(47)		(4)	
	1909	1.00-9		130.11		1000	

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

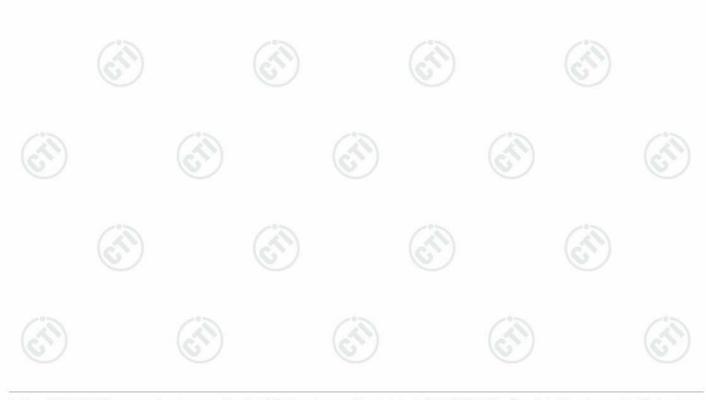
4.	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

Report No. : EED32N00004101 Page 8 of 47

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd


Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
(T)	Radio Frequency	7.9 x 10 ⁻⁸
2	DC newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3		4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
(4)	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32N00004101 Page 9 of 47

6 Equipment List

	Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021	
Temperature/ Humidity Indicator	Defu	TH128	/	(C.)	G	
LISN	R&S	ENV216	100098	03-05-2022 03-04-2021	03-04-2021 03-03-2022	
Barometer	changchun	DYM3	1188	7	08	

		RF test s	ystem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(4)	- (<u>(1)</u>
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
PC-1	Lenovo	R4960d			(1
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		((E)

3M Semi/full-anechoic Chamber						
Equipment	ment Manufacturer Model No. Serial Cal. date C Number (mm-dd-yyyy) (r					
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Schwarzbeck Antenna		VULB9163	9163-618	05-16-2020	05-15-2021	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021	
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021	
Multi device Controller	maturo	NCD/070/10711 112	(P.)	(5)	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A	/ "T	/ 32	
Cable line	Fulai(3M)	SF106	5216/6A	(202)	(65)	
Cable line	Fulai(3M)	SF106	5217/6A	(J	(

		3M full-anechoi		Cal data	Cal. Due date	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	(mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	\		
Receiver	Keysight	N9038A	MY57290136	03-05-2020 03-04-2021	03-04-2021 03-03-2022	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020 03-04-2021	03-04-2021 03-03-2022	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020 03-04-2021	03-04-2021 03-03-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021	
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021	
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021	
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	((X)	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	//	5)	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003			
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		- 7	
Cable line	Times	EMC104-NMNM- 1000	SN160710		(6)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001			
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001			
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	(<u>5</u> 5)	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001			

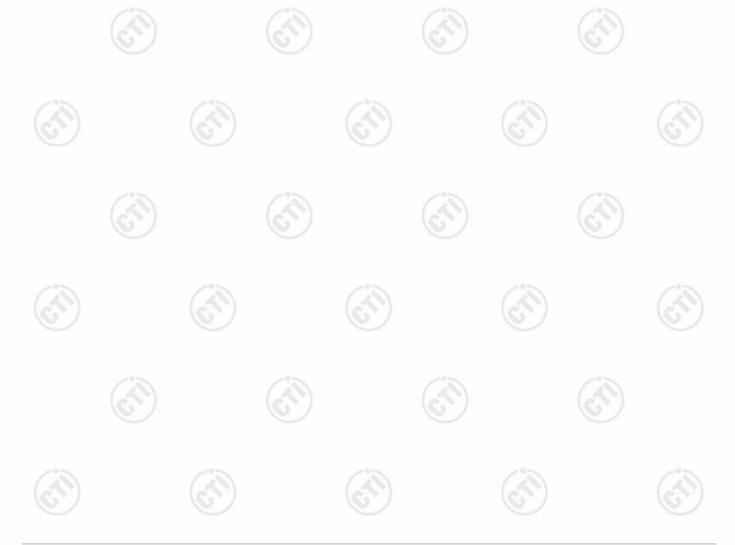
Report No. : EED32N00004101 Page 11 of 47

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

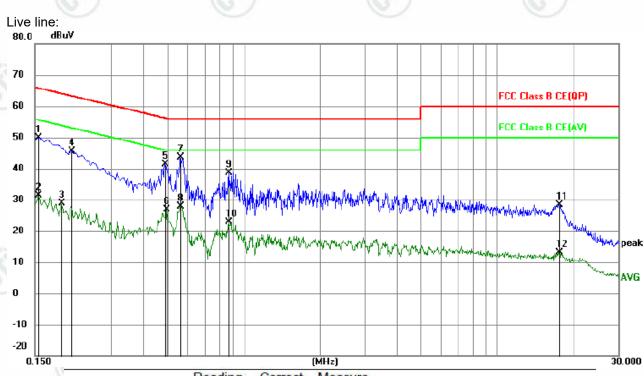
The antenna is PCB antenna. The best case gain of the antenna is 0.5dBi.

Report No.: EED32N00004101 Page 12 of 47

7.2 Conducted Emissions

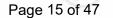
1.4	Conducted Enns	1310113	(41)	(43)				
	Test Requirement:	47 CFR Part 15C Section 15	.207	(0,)				
	Test Method:	ANSI C63.10: 2013						
	Test Frequency Range:	150kHz to 30MHz						
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
j	Limit:	Frequency range (MHz)						
		Frequency range (IIII 12)	Quasi-peak	Average				
		0.15-0.5	66 to 56*	56 to 46*				
		0.5-5	56	46				
		5-30	60	50				
		* Decreases with the logarith	m of the frequency.					
	Test Setup:							
		Shielding Room EUT AC Mains LISN1	AE LISN2 AC Ma	Test Receiver				
d d			Ground Reference Plane					
	Test Procedure:	impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the 3) The tabletop EUT was placed on the horizontal ground reference plane. At the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bo mounted on top of the ground reference provided the second reference plane.	It to AC power source Network) which provide cables of all other SN 2, which was bonders the LISN 1 for the power stating of the LISN was raced upon a non-metal and for floor-standing a ground reference plane. If the vertical ground reference of the plane was bonded N 1 was placed 0.8 m and to a ground reference plane. The LISN 1 and the EUT. It was at least 0.8 m from the vertical ground reference plane.	through a LISN 1 (Line is a 50Ω/50μH + 5Ω linear units of the EUT were ed to the ground reference is unit being measured. A multiple power cables to a not exceeded. Allic table 0.8m above the rrangement, the EUT was ference plane. The rear of and reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs. This distance was between All other units of the EUT in the LISN 2.				
		reference plane. The LIS unit under test and bo mounted on top of the growthe closest points of the and associated equipments. In order to find the maxim	N 1 was placed 0.8 m nded to a ground resound reference plane. T LISN 1 and the EUT. It was at least 0.8 m from the emission, the relational stress must be changed.	from the boundar ference plane for This distance was All other units of m the LISN 2. Twe positions of exaccording to				

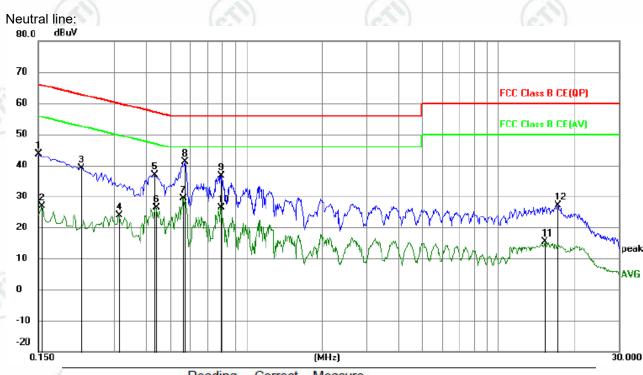
Test Mode:	All modes were tested, only the worst case mode a was recorded in the report.
Test Results:	Pass



Report No. : EED32N00004101 Page 14 of 47

Measurement Data


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.1545	40.09	9.87	49.96	65.75	-15.79	peak	
	0.1545	21.45	9.87	31.32	55.75	-24.43	AVG	
	0.1905	19.12	9.87	28.99	54.01	-25.02	AVG	
	0.2085	35.82	9.89	45.71	63.26	-17.55	peak	
	0.4875	31.39	9.95	41.34	56.21	-14.87	peak	
	0.4965	16.87	9.95	26.82	46.06	-19.24	AVG	
*	0.5639	33.71	10.03	43.74	56.00	-12.26	peak	
	0.5639	17.92	10.03	27.95	46.00	-18.05	AVG	
	0.8745	28.84	9.85	38.69	56.00	-17.31	peak	
	0.8745	12.91	9.85	22.76	46.00	-23.24	AVG	
	17.5110	18.32	9.95	28.27	60.00	-31.73	peak	
	17.5110	3.10	9.95	13.05	50.00	-36.95	AVG	
		MHz 0.1545 0.1545 0.1905 0.2085 0.4875 0.4965 * 0.5639 0.8745 0.8745 17.5110	Mk. Freq. Level MHz dBuV 0.1545 40.09 0.1545 21.45 0.1905 19.12 0.2085 35.82 0.4875 31.39 0.4965 16.87 * 0.5639 33.71 0.5639 17.92 0.8745 28.84 0.8745 12.91 17.5110 18.32	Mk. Freq. Level Factor MHz dBuV dB 0.1545 40.09 9.87 0.1545 21.45 9.87 0.1905 19.12 9.87 0.2085 35.82 9.89 0.4875 31.39 9.95 0.4965 16.87 9.95 * 0.5639 33.71 10.03 0.8745 28.84 9.85 0.8745 12.91 9.85 17.5110 18.32 9.95	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1545 40.09 9.87 49.96 0.1545 21.45 9.87 31.32 0.1905 19.12 9.87 28.99 0.2085 35.82 9.89 45.71 0.4875 31.39 9.95 41.34 0.4965 16.87 9.95 26.82 * 0.5639 33.71 10.03 43.74 0.5639 17.92 10.03 27.95 0.8745 28.84 9.85 38.69 0.8745 12.91 9.85 22.76 17.5110 18.32 9.95 28.27	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.1545 40.09 9.87 49.96 65.75 0.1545 21.45 9.87 31.32 55.75 0.1905 19.12 9.87 28.99 54.01 0.2085 35.82 9.89 45.71 63.26 0.4875 31.39 9.95 41.34 56.21 0.4965 16.87 9.95 26.82 46.06 * 0.5639 33.71 10.03 43.74 56.00 0.8745 28.84 9.85 38.69 56.00 0.8745 12.91 9.85 22.76 46.00 17.5110 18.32 9.95 28.27 60.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB 0.1545 40.09 9.87 49.96 65.75 -15.79 0.1545 21.45 9.87 31.32 55.75 -24.43 0.1905 19.12 9.87 28.99 54.01 -25.02 0.2085 35.82 9.89 45.71 63.26 -17.55 0.4875 31.39 9.95 41.34 56.21 -14.87 0.4965 16.87 9.95 26.82 46.06 -19.24 * 0.5639 33.71 10.03 43.74 56.00 -12.26 0.5639 17.92 10.03 27.95 46.00 -18.05 0.8745 28.84 9.85 38.69 56.00 -17.31 0.8745 12.91 9.85 22.76 46.00 -23.24 17.5110 18.32 9.95 28.27 60.0	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB Detector 0.1545 40.09 9.87 49.96 65.75 -15.79 peak 0.1545 21.45 9.87 31.32 55.75 -24.43 AVG 0.1905 19.12 9.87 28.99 54.01 -25.02 AVG 0.2085 35.82 9.89 45.71 63.26 -17.55 peak 0.4875 31.39 9.95 41.34 56.21 -14.87 peak 0.4965 16.87 9.95 26.82 46.06 -19.24 AVG * 0.5639 33.71 10.03 43.74 56.00 -12.26 peak 0.8745 28.84 9.85 38.69 56.00 -17.31 peak 0.8745 12.91 9.85 22.76 46.00 -23.24 AVG 17.5110 18.32


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	33.65	9.87	43.52	66.00	-22.48	peak	
2	0.1545	17.08	9.87	26.95	55.75	-28.80	AVG	
3	0.2220	29.29	9.91	39.20	62.74	-23.54	peak	
4	0.3120	13.91	10.06	23.97	49.92	-25.95	AVG	
5	0.4335	26.97	9.96	36.93	57.19	-20.26	peak	
6	0.4380	16.42	9.96	26.38	47.10	-20.72	AVG	
7	0.5639	19.27	10.03	29.30	46.00	-16.70	AVG	
8 *	0.5730	31.16	10.04	41.20	56.00	-14.80	peak	
9	0.7935	26.85	9.85	36.70	56.00	-19.30	peak	
10	0.7935	16.57	9.85	26.42	46.00	-19.58	AVG	
11	15.2610	5.55	9.93	15.48	50.00	-34.52	AVG	
12	17.1870	17.11	9.95	27.06	60.00	-32.94	peak	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32N00004101 Page 16 of 47

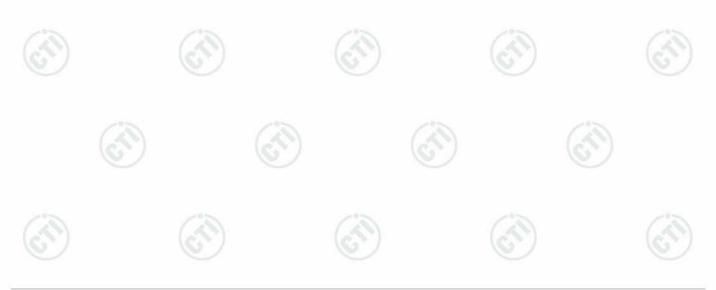
7.3 Maximum Conducted Output Power

47 CFR Part 15C Section 15.247 (b)(3)
ANSI C63.10 2013
Control Control Control Control Control Power Supply Attenuator Temperature Cabriet Table RF test System System Instrument
Remark: Offset=Cable loss+ attenuation factor.
 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
30dBm
Refer to clause 5.3
Refer to Appendix A

Report No. : EED32N00004101 Page 17 of 47

7.4 DTS Bandwidth

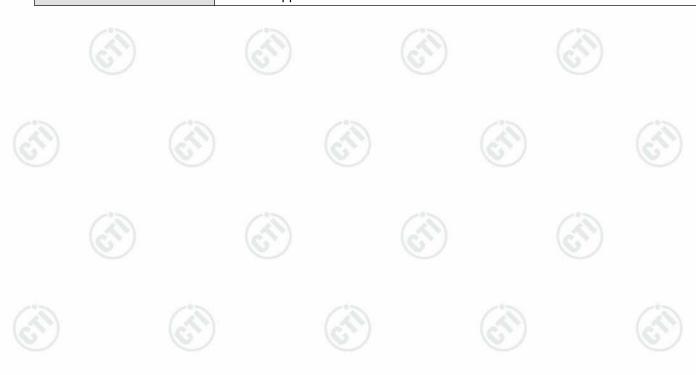
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	RF test Control Control Control Power Supply Attenuator Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A



Report No. : EED32N00004101 Page 18 of 47

7.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Computer Power Supply Power Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
Limit:	≤8.00dBm/3kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A



7.6 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Power
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

Report No. : EED32N00004101 Page 20 of 47

7.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	(0.)	/
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance	e: 3m	(Semi-Anech	oic Cham	ber)	
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	lz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MH	lz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	lz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	lz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	:	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak
	Above 4011		Peak	1MHz	3MHz	Peak
	Above 1GHz	(e.	Peak	1MHz	10kHz	Average
Limit:	Frequency	1	eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m)
	0.009MHz-0.490MHz	24	400/F(kHz)	-		300
	0.490MHz-1.705MHz	24	000/F(kHz)	-		30
	1.705MHz-30MHz		30	-	160	30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz	10	200	46.0	Quasi-peak	3
	960MHz-1GHz	1	500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3

Report No.: EED32N00004101 Page 21 of 47

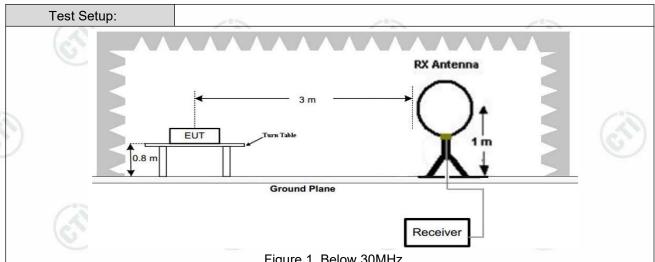
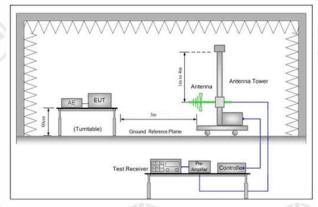



Figure 1. Below 30MHz

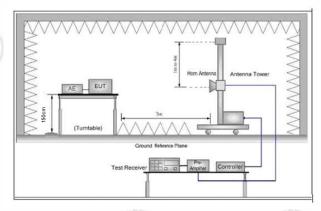


Figure 2. 30MHz to 1GHz

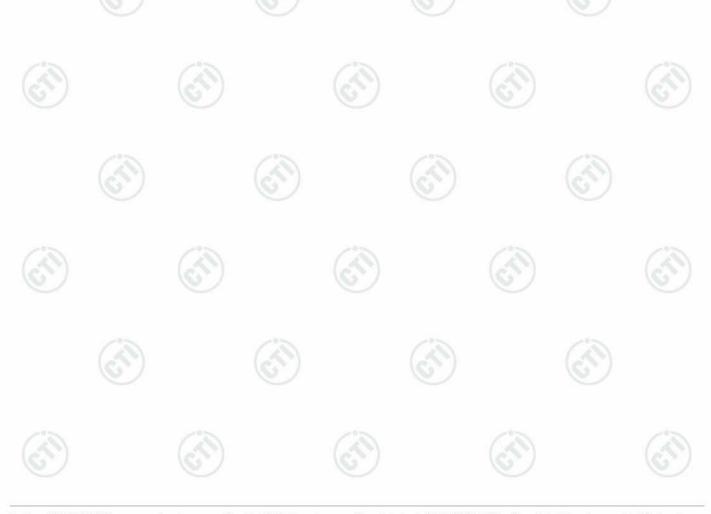
Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

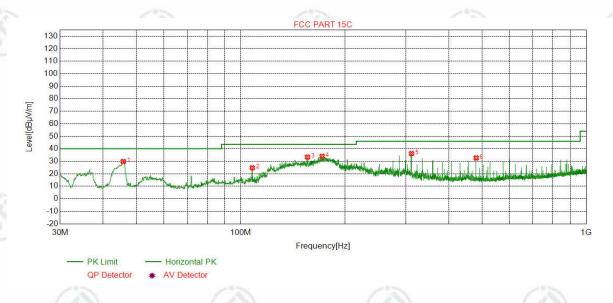
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.


- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Hotline: 400-6788-333 E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com www.cti-cert.com

Report No. : EED32N00004101 Page 22 of 47

	horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Refer to clause 5.3
Test Results:	Pass
-23%	

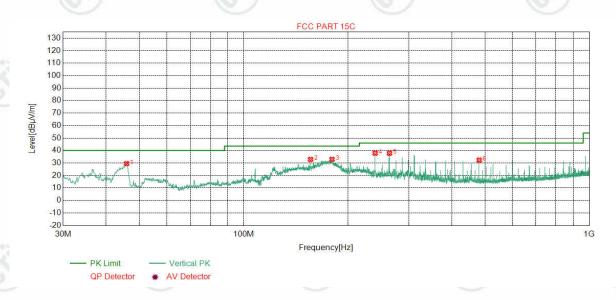


Report No.: EED32N00004101 Page 23 of 47

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode b was recorded in the report.

Test Graph


Sus	Suspected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	45.7156	13.20	0.76	-31.77	47.60	29.79	40.00	10.21	Pass	Horizontal	Peak
2	107.9958	10.92	1.23	-32.04	44.66	24.77	43.50	18.73	Pass	Horizontal	Peak
3	156.0156	7.76	1.46	-31.99	56.17	33.40	43.50	10.10	Pass	Horizontal	Peak
4	172.0222	8.56	1.54	-31.96	55.81	33.95	43.50	9.55	Pass	Horizontal	Peak
5	312.0072	13.46	2.10	-31.89	52.48	36.15	46.00	9.85	Pass	Horizontal	Peak
6	480.0280	16.68	2.61	-31.90	45.26	32.65	46.00	13.35	Pass	Horizontal	Peak

Page 24 of 47

Test Graph

Sus	Suspected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	45.8126	13.20	0.76	-31.78	47.30	29.48	40.00	10.52	Pass	Vertical	Peak
2	156.0156	7.76	1.46	-31.99	55.65	32.88	43.50	10.62	Pass	Vertical	Peak
3	180.0740	9.01	1.58	-31.99	54.33	32.93	43.50	10.57	Pass	Vertical	Peak
4	240.0260	11.94	1.84	-31.90	55.97	37.85	46.00	8.15	Pass	Vertical	Peak
5	264.0844	12.48	1.94	-31.88	55.27	37.81	46.00	8.19	Pass	Vertical	Peak
6	480.0280	16.68	2.61	-31.90	44.93	32.32	46.00	13.68	Pass	Vertical	Peak

Radiated Spurious Emission above 1GHz:

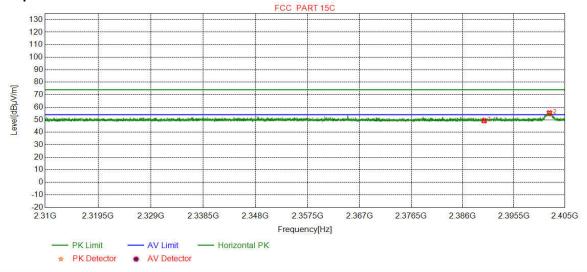
Mode	:		BLE G	FSK Tran	smitting			Channe	l:	2402MH	łz
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margi n [dB]	Resul t	Polarit y	Remar k
1	1267.226	28.17	2.70	-42.82	50.64	38.69	74.00	35.31	Pass	Н	PK
2	2024.102	31.73	3.51	-43.19	49.61	41.66	74.00	32.34	Pass	Н	PK
3	5011.134	34.51	4.83	-42.79	50.34	46.89	74.00	27.11	Pass	Н	PK
4	6322.221	35.86	5.46	-42.53	48.76	47.55	74.00	26.45	Pass	Н	PK
5	7641.309	36.54	6.14	-42.12	48.77	49.33	74.00	24.67	Pass	Н	PK
6	9221.414	37.66	6.51	-42.05	49.60	51.72	74.00	22.28	Pass	Н	PK
7	1393.039	28.29	2.89	-42.69	50.16	38.65	74.00	35.35	Pass	V	PK
8	1998.899	31.69	3.47	-43.20	52.91	44.87	74.00	29.13	Pass	V	PK
9	4951.130	34.50	4.82	-42.80	54.03	50.55	74.00	23.45	Pass	V	PK
10	6319.221	35.86	5.46	-42.53	48.25	47.04	74.00	26.96	Pass	V	PK
11	7206.280	36.31	5.81	-42.16	48.81	48.77	74.00	25.23	Pass	V	PK
12	8519.368	36.64	6.42	-41.99	48.94	50.01	74.00	23.99	Pass	V	PK

Mode	:		BLE G	FSK Tran	smitting			Channe	l:	2440MF	łz
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margi n [dB]	Resul t	Polarit y	Remar k
1	1064.006	27.96	2.52	-43.02	50.53	37.99	74.00	36.01	Pass	Н	PK
2	1347.634	28.25	2.82	-42.74	50.08	38.41	74.00	35.59	Pass	Н	PK
3	1976.497	31.54	3.45	-43.14	49.44	41.29	74.00	32.71	Pass	Н	PK
4	5007.133	34.51	4.83	-42.80	50.42	46.96	74.00	27.04	Pass	Н	PK
5	6296.219	35.86	5.45	-42.54	49.15	47.92	74.00	26.08	Pass	Н	PK
6	9705.447	37.68	6.61	-42.10	49.93	52.12	74.00	21.88	Pass	Н	PK
7	1122.012	28.02	2.62	-42.97	50.40	38.07	74.00	35.93	Pass	V	PK
8	1800.280	30.38	3.32	-42.71	50.71	41.70	74.00	32.30	Pass	V	PK
9	4951.130	34.50	4.82	-42.80	53.67	50.19	74.00	23.81	Pass	V	PK
10	6118.207	35.82	5.26	-42.58	49.04	47.54	74.00	26.46	Pass	V	PK
11	7319.288	36.42	5.85	-42.14	49.37	49.50	74.00	24.50	Pass	V	PK
12	9734.449	37.69	6.72	-42.10	49.14	51.45	74.00	22.55	Pass	V	PK

Mode	:		BLE G	FSK Tran	smitting			Channe	l:	2440MH	Ηz
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margi n [dB]	Resul t	Polarit y	Remar k
1	1172.217	28.07	2.68	-42.92	50.70	38.53	74.00	35.47	Pass	Н	PK
2	1404.840	28.30	2.90	-42.69	50.26	38.77	74.00	35.23	Pass	Н	PK
3	1697.069	29.70	3.20	-42.67	49.81	40.04	74.00	33.96	Pass	Н	PK
4	4940.129	34.50	4.83	-42.80	49.97	46.50	74.00	27.50	Pass	Н	PK
5	6260.217	35.85	5.37	-42.54	49.95	48.63	74.00	25.37	Pass	Н	PK
6	8438.362	36.58	6.38	-42.03	48.89	49.82	74.00	24.18	Pass	Н	PK
7	1261.026	28.16	2.70	-42.83	49.58	37.61	74.00	36.39	Pass	V	PK
8	1791.479	30.32	3.30	-42.70	50.40	41.32	74.00	32.68	Pass	V	PK
9	4965.131	34.50	4.82	-42.80	50.91	47.43	74.00	26.57	Pass	V	PK
10	7441.296	36.54	5.85	-42.11	50.21	50.49	74.00	23.51	Pass	V	PK
11	8852.390	37.38	6.42	-42.01	49.20	50.99	74.00	23.01	Pass	V	PK
12	10499.50	38.50	7.07	-42.00	48.44	52.01	74.00	21.99	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


Page 27 of 47

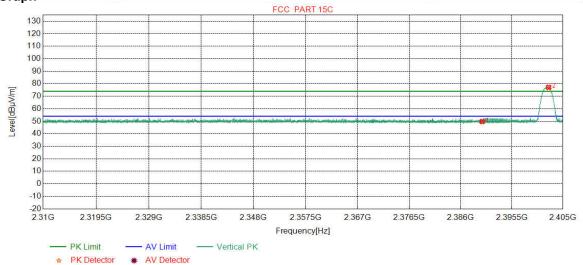
Restricted bands:

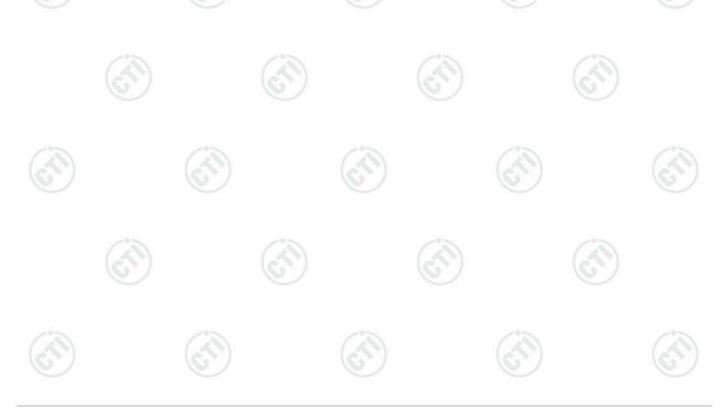
Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK	(25)	(6

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	46.69	49.19	74.00	24.81	Pass	Horizontal
2	2402.1245	32.26	13.31	-43.12	53.04	55.49	74.00	18.51	Pass	Horizontal

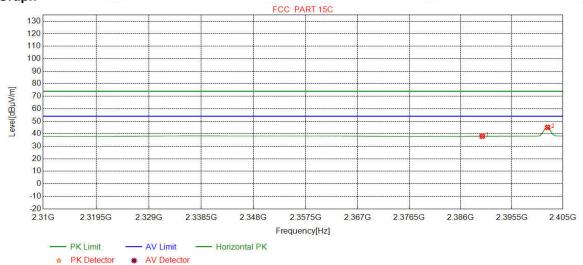


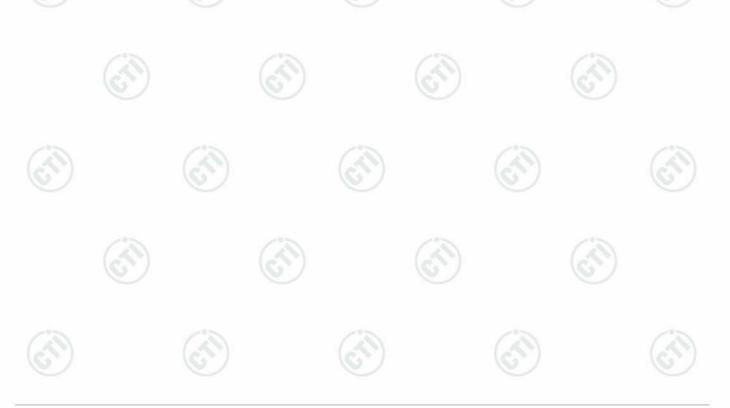

Page	28	of 47	
------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.26	49.76	74.00	24.24	Pass	Vertical
2	2402.3398	32.26	13.31	-43.12	74.67	77.12	74.00	-3.12	Pass	Vertical

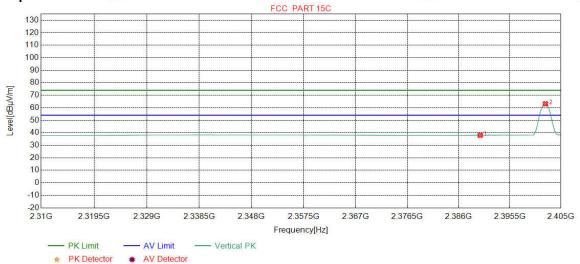


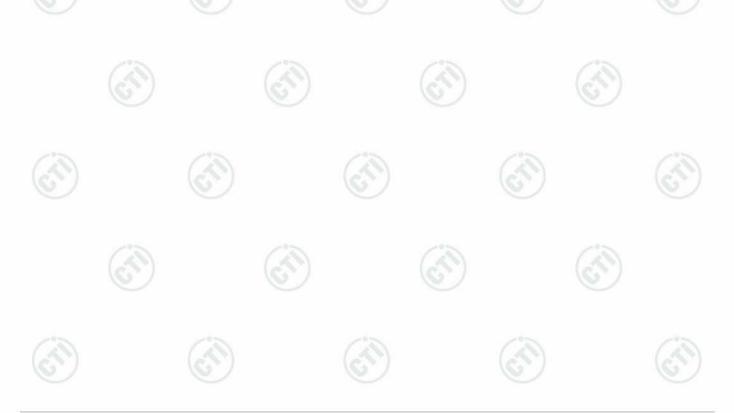

Page	29	of 47	
------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

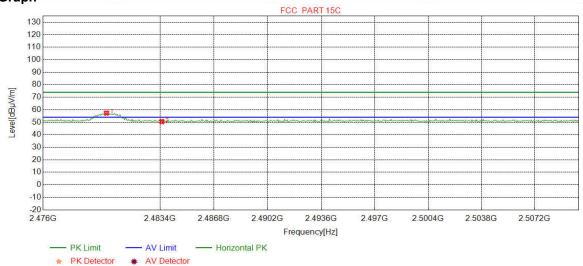
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.49	37.99	54.00	16.01	Pass	Horizontal
2	2402.1561	32.26	13.31	-43.12	42.64	45.09	54.00	8.91	Pass	Horizontal

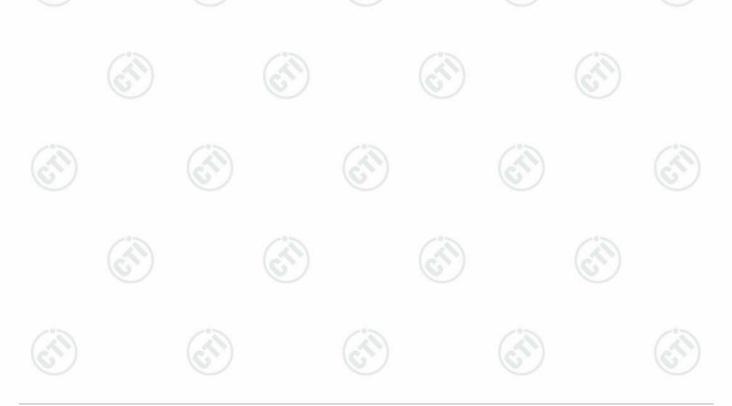



Page	30	of 47	
------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

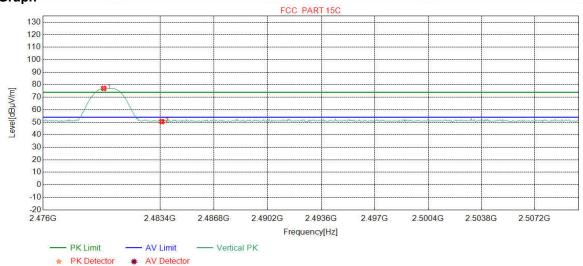

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.49	37.99	54.00	16.01	Pass	Vertical
2	2402.1181	32.26	13.31	-43.12	60.73	63.18	54.00	-9.18	Pass	Vertical

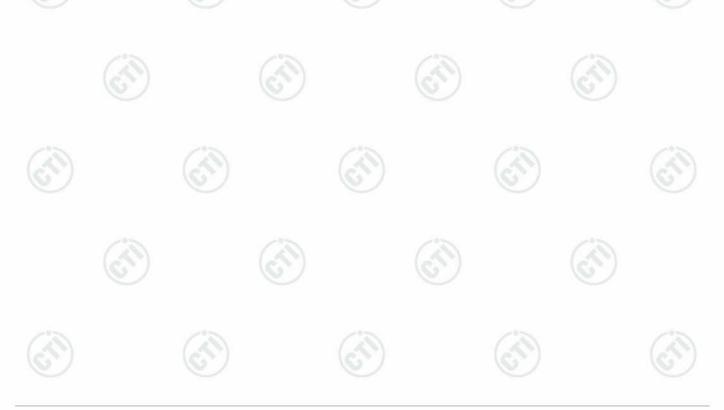


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

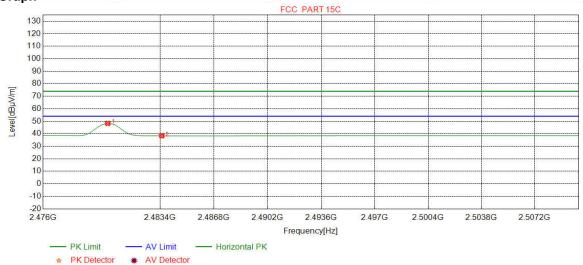
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	54.67	57.33	74.00	16.67	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	47.88	50.53	74.00	23.47	Pass	Horizontal

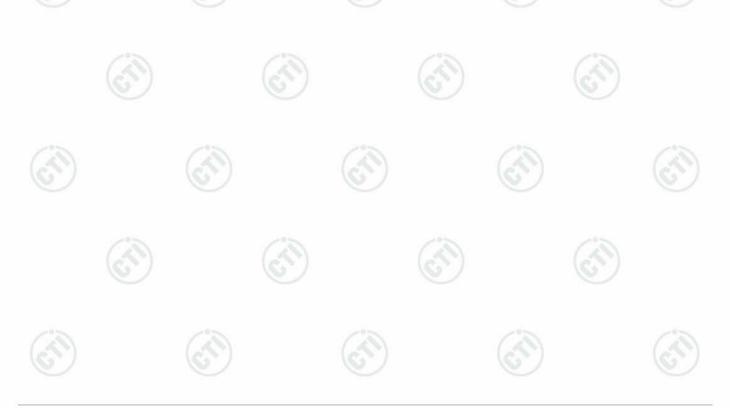



Page 3	32 of	47
--------	-------	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

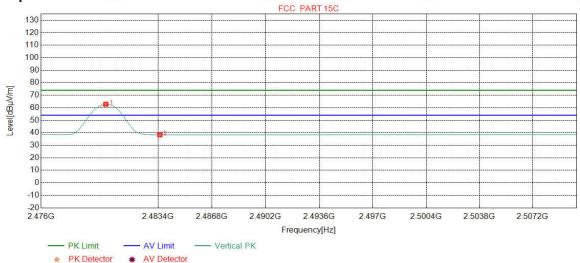
Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8298	32.37	13.39	-43.10	74.42	77.08	74.00	-3.08	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	47.88	50.53	74.00	23.47	Pass	Vertical



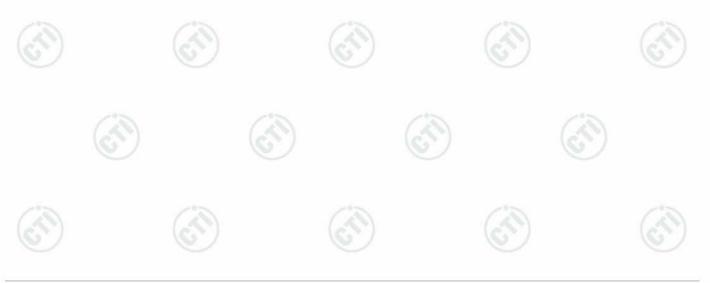
Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	AV			

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	45.62	48.28	54.00	5.72	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	35.70	38.35	54.00	15.65	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


N 0	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margi n [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	60.13	62.79	54.00	-8.79	Pass	Vertical
 2	2483.5000	32.38	13.38	-43.11	35.74	38.39	54.00	15.61	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 35 of 47

Appendix A

Refer to Appendix: Bluetooth LE of EED32N00004101.

