

Report No. : EED32M00349201 Page 1 of 41



**Product** : Infrared Ear Thermometer

Trade mark : Joytech

Model/Type reference : DET-1015b

Serial Number : N/A

Report Number : EED32M00349201

FCC ID : 2AQVU0013

Date of Issue : Feb. 24, 2021

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

JOYTECH HEALTHCARE CO., LTD No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385



Check No.:4538094119





### Page 2 of 41

## 2 Content

| 1 COVER PAGE                                 |       | 1  |
|----------------------------------------------|-------|----|
| 2 CONTENT                                    |       | 2  |
| 3 VERSION                                    |       | 3  |
| 4 TEST SUMMARY                               |       | 4  |
| 5 GENERAL INFORMATION                        |       | 5  |
| 5.1 CLIENT INFORMATION                       |       |    |
| 6 EQUIPMENT LIST                             | ••••• | 9  |
| 7 TEST RESULTS AND MEASUREMENT DATA          |       | 11 |
| 7.1 ANTENNA REQUIREMENT                      | SION  |    |
| 8 APPENDIX A                                 | ••••• | 31 |
| 9 PHOTOGRAPHS OF TEST SETUP                  |       | 32 |
| 10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS |       | 34 |













































## 3 Version

| Version No. | Date          | Description    |
|-------------|---------------|----------------|
| 00          | Feb. 24, 2021 | Original       |
|             |               |                |
|             |               | (25) (25) (27) |











































































Report No. : EED32M00349201 Page 4 of 41

## **4 Test Summary**

| Test Item                                     | Test Requirement                                      | Result              |  |
|-----------------------------------------------|-------------------------------------------------------|---------------------|--|
| Antenna Requirement                           | 47 CFR Part 15 Subpart C Section<br>15.203/15.247 (c) | PASS<br>N/A<br>PASS |  |
| AC Power Line Conducted Emission              | 47 CFR Part 15 Subpart C Section<br>15.207            |                     |  |
| DTS Bandwidth                                 | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(2)     |                     |  |
| Maximum Conducted Output Power                | 47 CFR Part 15 Subpart C Section<br>15.247 (b)(3)     | PASS                |  |
| Maximum Power Spectral<br>Density             | 47 CFR Part 15 Subpart C Section 15.247 (e)           | PASS                |  |
| Band Edge Measurements                        | 47 CFR Part 15 Subpart C Section<br>15.247(d)         | PASS                |  |
| Conducted Spurious<br>Emissions               | 47 CFR Part 15 Subpart C Section<br>15.247(d)         | PASS                |  |
| Radiated Spurious Emission & Restricted bands | 47 CFR Part 15 Subpart C Section<br>15.205/15.209     | PASS                |  |

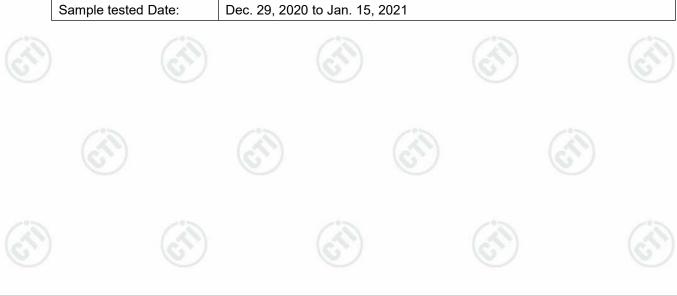
#### Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.





Report No. : EED32M00349201 Page 5 of 41


## **5** General Information

## **5.1 Client Information**

| Applicant:               | JOYTECH HEALTHCARE CO., LTD                                               |
|--------------------------|---------------------------------------------------------------------------|
| Address of Applicant:    | No.365,Wuzhou Road, Yuhang Economic Development Zone, Hangzhou ,<br>China |
| Manufacturer:            | JOYTECH HEALTHCARE CO., LTD                                               |
| Address of Manufacturer: | No.365,Wuzhou Road, Yuhang Economic Development Zone, Hangzhou ,<br>China |
| Factory:                 | JOYTECH HEALTHCARE CO., LTD                                               |
| Address of Factory:      | No.365,Wuzhou Road, Yuhang Economic Development Zone, Hangzhou ,<br>China |

## 5.2 General Description of EUT

| Product Name:         | Infrared Ear Thermometer           |
|-----------------------|------------------------------------|
| Model No.:            | DET-1015b                          |
| Add Model No.:        | N/A                                |
| Trade mark:           | Joytech                            |
| Product Type:         | ☐ Mobile ☐ Portable ☐ Fix Location |
| Hardware Version:     | V1.0                               |
| Software Version:     | V1.0                               |
| Bluetooth Version:    | V5.0                               |
| Operation Frequency:  | 2402MHz~2480MHz                    |
| Modulation Type:      | GFSK                               |
| Transfer Rate:        | ⊠1Mbps □2Mbps                      |
| Number of Channel:    | 40                                 |
| Antenna Type:         | integral antenna                   |
| Antenna Gain:         | 0dBi                               |
| Power Supply:         | DC 3.0V 2*AA battery               |
| Test Voltage:         | DC 3.0V                            |
| Sample Received Date: | Dec. 29, 2020                      |
| Sample tested Date:   | Dec. 29, 2020 to Jan. 15, 2021     |
|                       |                                    |







| Operation r | requency eac | n or channe |           |         | )         | (6)     | )         |
|-------------|--------------|-------------|-----------|---------|-----------|---------|-----------|
| Channel     | Frequency    | Channel     | Frequency | Channel | Frequency | Channel | Frequency |
| 0           | 2402MHz      | 10          | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |
| 1           | 2404MHz      | 11          | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |
| 2           | 2406MHz      | 12          | 2426MHz   | 22      | 2446MHz   | 32      | 2466MHz   |
| 3           | 2408MHz      | 13          | 2428MHz   | 23      | 2448MHz   | 33      | 2468MHz   |
| 4           | 2410MHz      | 14          | 2430MHz   | 24      | 2450MHz   | 34      | 2470MHz   |
| 5           | 2412MHz      | 15          | 2432MHz   | 25      | 2452MHz   | 35      | 2472MHz   |
| 6           | 2414MHz      | 16          | 2434MHz   | 26      | 2454MHz   | 36      | 2474MHz   |
| 7           | 2416MHz      | 17          | 2436MHz   | 27      | 2456MHz   | 37      | 2476MHz   |
| 8           | 2418MHz      | 18          | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |
| 9           | 2420MHz      | 19          | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |

#### Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel                    | Frequency |
|----------------------------|-----------|
| The lowest channel (CH0)   | 2402MHz   |
| The middle channel (CH19)  | 2440MHz   |
| The highest channel (CH39) | 2480MHz   |

## 5.3 Test Configuration

| EUT Test Software Settings:                                                                                                 |                                             |                         |                 |                |      |      |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------|-----------------|----------------|------|------|
| Software:                                                                                                                   | oftware: PhyPlusKit (manufacturer declare ) |                         | (55)            |                |      |      |
| EUT Power Grade:                                                                                                            | Default                                     | (manufacturer declare ) |                 |                |      |      |
| Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT. |                                             |                         |                 |                |      |      |
| Test Mode                                                                                                                   | Modulation                                  | Rate                    | Channel         | Frequency(MHz) |      |      |
| Mode a                                                                                                                      | GFSK                                        | 1Mbps                   | CH0             | 2402           |      |      |
| Mode b                                                                                                                      | Mode b GFSK                                 |                         | GFSK 1Mbps CH19 |                | CH19 | 2440 |
| Mode c                                                                                                                      | Mode c GFSK                                 |                         | CH39            | 2480           |      |      |













Report No. : EED32M00349201 Page 7 of 41



| Operating Environment | ::         |      |     |        |     |       |
|-----------------------|------------|------|-----|--------|-----|-------|
| Radiated Spurious Emi | ssions:    |      |     |        |     |       |
| Temperature:          | 22~25.0 °C | (85) |     | (6.50) |     | (c.5) |
| Humidity:             | 50~55 % RH |      |     |        |     |       |
| Atmospheric Pressure: | 1010mbar   |      |     |        |     |       |
| Conducted Emissions:  | ·          |      |     |        |     |       |
| Temperature:          | 22~25.0 °C |      | (2) |        | (4) |       |
| Humidity:             | 50~55 % RH |      | (6) |        | (6) |       |
| Atmospheric Pressure: | 1010mbar   |      |     |        |     |       |
| RF Conducted:         |            |      |     |        |     |       |
| Temperature:          | 22~25.0 °C | (20) |     | (20)   |     | (20)  |
| Humidity:             | 50~55 % RH | (0,) |     | (6.)   |     | (0.)  |
| Atmospheric Pressure: | 1010mbar   |      |     |        |     |       |

### 5.5 Description of Support Units

1) support equipment

| Description Manufacture |                                         | Model No. | Certification | Supplied by |
|-------------------------|-----------------------------------------|-----------|---------------|-------------|
| Notebook                | DELL                                    | DELL 3490 | D245DX2       | DELL        |
|                         | _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 75        | 75            | _°S         |

### 5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164







# 5.7 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                            | Measurement Uncertainty |
|-----|---------------------------------|-------------------------|
| 1   | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |
| 2   | DC navvar conducted             | 0.46dB (30MHz-1GHz)     |
| 2   | RF power, conducted             | 0.55dB (1GHz-18GHz)     |
| 3   | Dadiated Spurious emission test | 4.3dB (30MHz-1GHz)      |
| 3   | Radiated Spurious emission test | 4.5dB (1GHz-12.75GHz)   |
| 4   | Conduction emission             | 3.5dB (9kHz to 150kHz)  |
|     | Conduction emission             | 3.1dB (150kHz to 30MHz) |
| 5   | Temperature test                | 0.64°C                  |
| 6   | Humidity test                   | 3.8%                    |
| 7   | DC power voltages               | 0.026%                  |





Report No.: EED32M00349201 Page 9 of 41

# 6 Equipment List

| Conducted disturbance Test         |              |           |                  |                           |                               |  |
|------------------------------------|--------------|-----------|------------------|---------------------------|-------------------------------|--|
| Equipment                          | Manufacturer | Model No. | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |
| Receiver                           | R&S          | ESCI      | 100435           | 04-28-2020                | 04-27-2021                    |  |
| Temperature/<br>Humidity Indicator | Defu         | TH128     | /                | (C.)                      | G                             |  |
| LISN                               | R&S          | ENV216    | 100098           | 03-05-2020                | 03-04-2021                    |  |
| Barometer                          | changchun    | DYM3      | 1188             |                           |                               |  |

|                                        | 1,000                         | RF test s     | ystem            |                           |                               |  |
|----------------------------------------|-------------------------------|---------------|------------------|---------------------------|-------------------------------|--|
| Equipment                              | Manufacturer                  | Mode No.      | Serial<br>Number | Cal. Date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |
| Spectrum<br>Analyzer                   | Keysight                      | N9010A        | MY54510339       | 02-17-2020                | 02-16-2021                    |  |
| Signal Generator                       | Keysight                      | N5182B        | MY53051549       | 02-17-2020                | 02-16-2021                    |  |
| Temperature/<br>Humidity Indicator     | dity Indicator DIAOZNI FINITO |               | 1804186          | 06-29-2020                | 06-28-2021                    |  |
| High-pass filter                       |                               |               | ( <del>3</del> ) | - 6                       | <u> </u>                      |  |
| High-pass filter                       | MICRO-<br>TRONICS             | SPA-F-63029-4 |                  |                           | ٠                             |  |
| DC Power                               | Keysight                      | E3642A        | MY56376072       | 02-17-2020                | 02-16-2021                    |  |
| PC-1                                   | Lenovo                        | R4960d        |                  | / is-                     | /3                            |  |
| Power unit                             | R&S                           | OSP120        | 101374           | 02-17-2020                | 02-16-2021                    |  |
| RF control unit                        | JS Tonscend                   | JS0806-2      | 158060006        | 02-17-2020                | 02-16-2021                    |  |
| BT&WI-FI<br>Automatic test<br>software | JS Tonscend                   | JS1120-3      |                  |                           |                               |  |

| 3M Semi/full-anechoic Chamber          |                     |                      |                  |                           |                            |  |  |  |  |
|----------------------------------------|---------------------|----------------------|------------------|---------------------------|----------------------------|--|--|--|--|
| Equipment                              | Manufacturer        | Model No.            | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date (mm-dd-yyyy) |  |  |  |  |
| 3M Chamber &<br>Accessory<br>Equipment | TDK                 | SAC-3                |                  | 05-24-2019                | 05-23-2022                 |  |  |  |  |
| TRILOG<br>Broadband<br>Antenna         | Schwarzbeck         | VULB9163             | 9163-618         | 05-16-2020                | 05-15-2021                 |  |  |  |  |
| Loop Antenna                           | Schwarzbeck         | FMZB 1519B           | 1519B-076        | 04-25-2018                | 04-24-2021                 |  |  |  |  |
| Receiver                               | R&S                 | ESCI7                | 100938-003       | 10-16-2020                | 10-15-2021                 |  |  |  |  |
| Multi device<br>Controller             | maturo              | NCD/070/10711<br>112 | (C2)             | (6                        | S)                         |  |  |  |  |
| Temperature/<br>Humidity Indicator     | Shanghai<br>qixiang | HM10                 | 1804298          | 06-29-2020                | 06-28-2021                 |  |  |  |  |
| Cable line                             | Fulai(7M)           | SF106                | 5219/6A          |                           |                            |  |  |  |  |
| Cable line                             | Fulai(6M)           | SF106                | 5220/6A          | _6~ <del></del>           |                            |  |  |  |  |
| Cable line                             | Fulai(3M)           | SF106                | 5216/6A          | / ZNA                     | / 2                        |  |  |  |  |
| Cable line                             | Fulai(3M)           | SF106                | 5217/6A          | (C) -                     | \( \( \text{C} \)          |  |  |  |  |





|                                       |                                       | 3M full-anecho        | c Chamber        |                           |                               |
|---------------------------------------|---------------------------------------|-----------------------|------------------|---------------------------|-------------------------------|
| Equipment                             | Manufacturer                          | Model No.             | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| RSE Automatic test software           | I I I I I I I I I I I I I I I I I I I |                       | 10166            |                           | ٠ ا                           |
| Receiver                              | Keysight                              | N9038A                | MY57290136       | 03-05-2020                | 03-04-2021                    |
| Spectrum<br>Analyzer                  | Keysight                              | N9020B                | MY57111112       | 03-05-2020                | 03-04-2021                    |
| Spectrum<br>Analyzer                  | Keysight                              | N9030B                | MY57140871       | 03-05-2020                | 03-04-2021                    |
| TRILOG<br>Broadband<br>Antenna        | Schwarzbeck                           | VULB 9163             | 9163-1148        | 04-25-2018                | 04-24-2021                    |
| Horn Antenna                          | Schwarzbeck                           | BBHA 9170             | 9170-832         | 04-25-2018                | 04-24-2021                    |
| Horn Antenna                          | ETS-<br>LINDGREN                      | 3117                  | 00057407         | 07-10-2018                | 07-09-2021                    |
| Preamplifier                          | EMCI                                  | EMC184055SE           | 980596           | 05-20-2020                | 05-19-2021                    |
| Preamplifier                          | EMCI                                  | EMC001330             | 980563           | 04-22-2020                | 04-21-2021                    |
| Preamplifier                          | JS Tonscend                           | 980380                | EMC051845<br>SE  | 12-31-2020                | 12-30-2021                    |
| Temperature/<br>Humidity<br>Indicator | biaozhi                               | GM1360                | EE1186631        | 04-27-2020                | 04-26-2021                    |
| Fully Anechoic<br>Chamber             | TDK                                   | FAC-3                 |                  | 01-17-2018                | 01-16-2021                    |
| Filter bank                           | JS Tonscend                           | JS0806-F              | 188060094        | 04-10-2018                | 04-09-2021                    |
| Cable line                            | Times                                 | SFT205-NMSM-<br>2.50M | 394812-0001      |                           |                               |
| Cable line                            | Times                                 | SFT205-NMSM-<br>2.50M | 394812-0002      | (6                        | §~)                           |
| Cable line                            | Times                                 | SFT205-NMSM-<br>2.50M | 394812-0003      |                           |                               |
| Cable line                            | Times                                 | SFT205-NMSM-<br>2.50M | 393495-0001      |                           |                               |
| Cable line                            | Times                                 | EMC104-NMNM-<br>1000  | SN160710         |                           | (3                            |
| Cable line                            | Times                                 | SFT205-NMSM-<br>3.00M | 394813-0001      | <u></u>                   | @                             |
| Cable line                            | Times                                 | SFT205-NMNM-<br>1.50M | 381964-0001      |                           |                               |
| Cable line                            | Times                                 | SFT205-NMSM-<br>7.00M | 394815-0001      | 6                         | (6)                           |
| Cable line                            | Times                                 | HF160-KMKM-<br>3.00M  | 393493-0001      | (                         | 5)                            |

































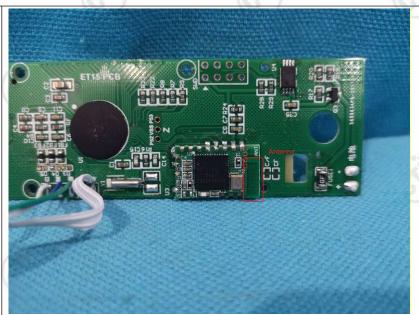


Report No.: EED32M00349201 Page 11 of 41

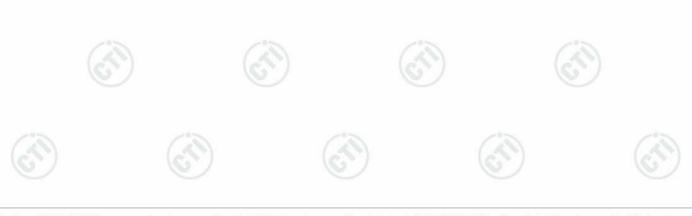
### 7 Test results and Measurement Data

### 7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

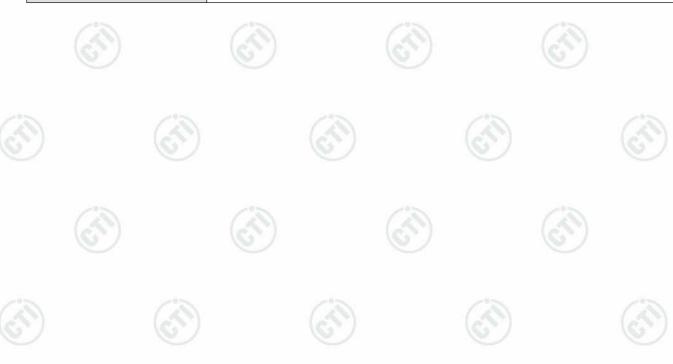

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**



The antenna is integral antenna. The best case gain of the antenna is 0dBi.

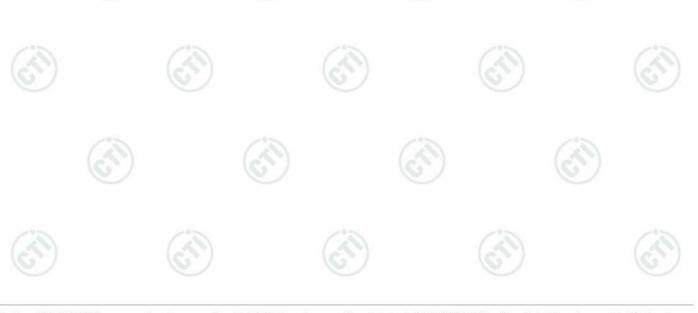







# 7.2 Maximum Conducted Output Power

| Test Requirement: | 47 CFR Part 15C Section 15.247 (b)(3)                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10 2013                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Setup:       |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Control Computer Power Supply Ardenia port(s)  Power Supply Table  RF test System System Instrument                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Remark: Offset=Cable loss+ attenuation factor.                                                                                                  | (62)                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Procedure:   | a) Set the RBW ≥ DTS bandwidth.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | <ul> <li>c) Set span ≥ 3 x RBW</li> <li>d) Sweep time = auto couple.</li> <li>e) Detector = peak.</li> <li>f) Trace mode = max hold.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | h) Use peak marker function to determine the peak amplitude level.                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Limit:            | 30dBm                                                                                                                                           | (2/2)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Mode:        | Refer to clause 5.3                                                                                                                             | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Results:     | Refer to Appendix A                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Test Method: Test Setup:  Test Procedure:  Limit: Test Mode:                                                                                    | Test Method:  ANSI C63.10 2013  RF test System Instrument  Remark: Offset=Cable loss+ attenuation factor.  Test Procedure:  a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.  Limit: 30dBm  Test Mode:  Refer to clause 5.3 |

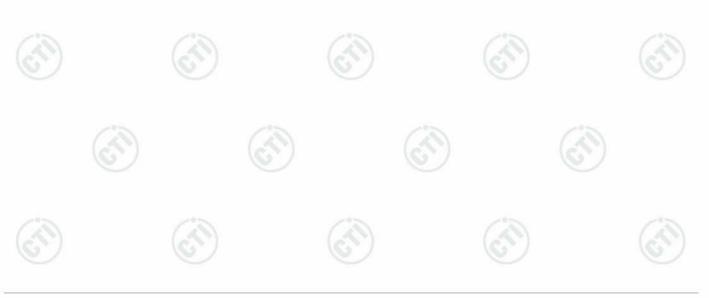





Report No. : EED32M00349201 Page 13 of 41

## 7.3 DTS Bandwidth

|   | The same of the sa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Test Requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47 CFR Part 15C Section 15.247 (a)(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | Test Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANSI C63.10 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Test Setup:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control Control Control Control Control Control Power |
| 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remark: Offset=Cable loss+ attenuation factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Test Procedure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>a) Set RBW = 100 kHz.</li> <li>b) Set the VBW ≥[3 × RBW].</li> <li>c) Detector = peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Sweep = auto couple.</li> <li>f) Allow the trace to stabilize.</li> <li>g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | Limit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≥ 500 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Test Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Refer to clause 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Test Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Refer to Appendix A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

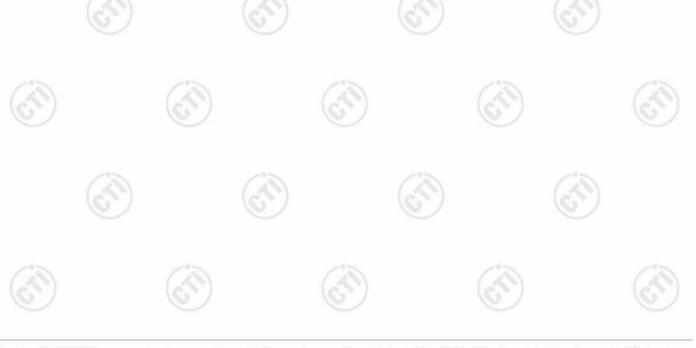





Report No. : EED32M00349201 Page 14 of 41

# 7.4 Maximum Power Spectral Density

|   | Test Requirement: | 47 CFR Part 15C Section 15.247 (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Test Method:      | ANSI C63.10 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                   | Control Control Control Power Poole Power Pool Table  RF test System System Instrument  Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |                   | Remark: Offset=Cable loss+ attenuation factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | Test Procedure:   | <ul> <li>a) Set analyzer center frequency to DTS channel center frequency.</li> <li>b) Set the span to 1.5 times the DTS bandwidth.</li> <li>c) Set the RBW to 3 kHz &lt; RBW &lt; 100 kHz.</li> <li>d) Set the VBW &gt; [3 × RBW].</li> <li>e) Detector = peak.</li> <li>f) Sweep time = auto couple.</li> <li>g) Trace mode = max hold.</li> <li>h) Allow trace to fully stabilize.</li> <li>i) Use the peak marker function to determine the maximum amplitude level within the RBW.</li> <li>j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.</li> </ul> |
| l | Limit:            | ≤8.00dBm/3kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Test Mode:        | Refer to clause 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | Test Results:     | Refer to Appendix A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

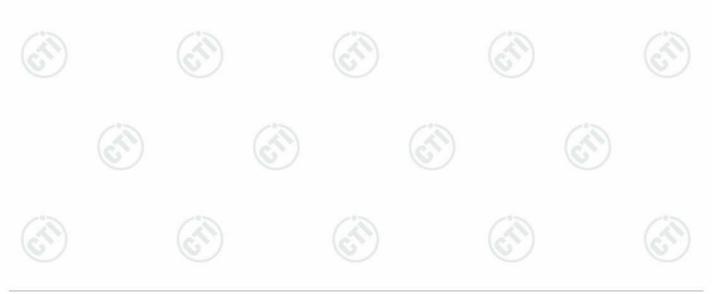






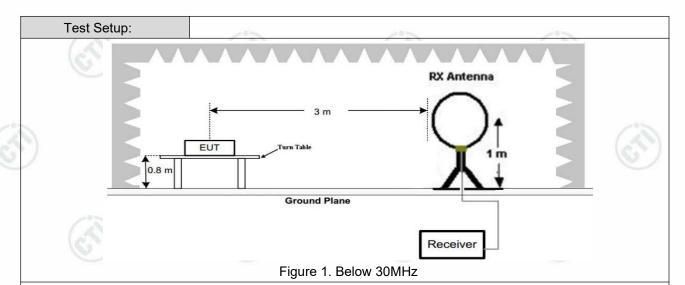

# 7.5 Band Edge measurements and Conducted Spurious Emission

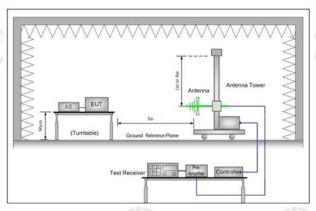
| 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANSI C63.10 2013                                                                                                                                                                                                                                                                                                                                                                        |
| Control Computer Supply  Power Supply  Table  RF test  System  Instrument  Instrument                                                                                                                                                                                                                                                                                                   |
| Remark: Offset=Cable loss+ attenuation factor.                                                                                                                                                                                                                                                                                                                                          |
| a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.                                                                                                                                                               |
| In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Refer to clause 5.3                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |






Report No. : EED32M00349201 Page 16 of 41


## 7.6 Radiated Spurious Emission & Restricted bands


| Test Requirement: | 47 CFR Part 15C Section                                                                  | on 1        | 5.209 and 15                   | .205                   | 6.           | /                          |  |  |
|-------------------|------------------------------------------------------------------------------------------|-------------|--------------------------------|------------------------|--------------|----------------------------|--|--|
| Test Method:      | ANSI C63.10 2013                                                                         |             |                                |                        |              |                            |  |  |
| Test Site:        | Measurement Distance                                                                     | : 3m        | n (Semi-Anech                  | noic Cham              | ber)         |                            |  |  |
| Receiver Setup:   | Frequency                                                                                | 0           | Detector                       | RBW                    | VBW          | Remark                     |  |  |
|                   | 0.009MHz-0.090MH                                                                         | z           | Peak                           | 10kHz                  | 30kHz        | Peak                       |  |  |
|                   | 0.009MHz-0.090MH                                                                         | Z           | Average                        | 10kHz                  | 30kHz        | Average                    |  |  |
|                   | 0.090MHz-0.110MH                                                                         | Z           | Quasi-peak                     | 10kHz                  | 30kHz        | Quasi-peak                 |  |  |
|                   | 0.110MHz-0.490MH                                                                         | Z           | Peak                           | 10kHz                  | 30kHz        | Peak                       |  |  |
|                   | 0.110MHz-0.490MH                                                                         | z           | Average                        | 10kHz                  | 30kHz        | Average                    |  |  |
|                   | 0.490MHz -30MHz                                                                          |             | Quasi-peak                     | 10kHz                  | 30kHz        | Quasi-peak                 |  |  |
|                   | 30MHz-1GHz                                                                               |             | Quasi-peak                     | 100 kH                 | z 300kHz     | Quasi-peak                 |  |  |
|                   | Above 4011                                                                               | Peak        | 1MHz                           | 3MHz                   | Peak         |                            |  |  |
|                   | Above IGHZ                                                                               | Above 1GHz  |                                |                        | 10Hz         | Average                    |  |  |
| Limit:            | Frequency                                                                                |             | eld strength<br>crovolt/meter) | Limit<br>(dBuV/m)      | Remark       | Measuremen<br>distance (m) |  |  |
|                   | 0.009MHz-0.490MHz 24                                                                     |             | 400/F(kHz)                     | -                      | -745         | 300                        |  |  |
|                   | 0.490MHz-1.705MHz                                                                        | 24          | 1000/F(kHz)                    | -                      | (A)          | 30                         |  |  |
|                   | 1.705MHz-30MHz                                                                           |             | 30                             | -                      | 100          | 30                         |  |  |
|                   | 30MHz-88MHz                                                                              | 30MHz-88MHz |                                | 40.0                   | Quasi-peak   | 3                          |  |  |
|                   | 88MHz-216MHz                                                                             |             | 150                            | 43.5                   | Quasi-peak   | 3                          |  |  |
|                   | 216MHz-960MHz                                                                            | 10          | 200                            | 46.0                   | Quasi-peak   | 3                          |  |  |
|                   | 960MHz-1GHz                                                                              | 1           | 500                            | 54.0                   | Quasi-peak   | 3                          |  |  |
|                   | Above 1GHz                                                                               |             | 500                            | 54.0                   | Average      | 3                          |  |  |
|                   | Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac | 20c<br>quip | IB above the oment under t     | maximum<br>est. This p | permitted av | erage emission             |  |  |





Report No.: EED32M00349201 Page 17 of 41





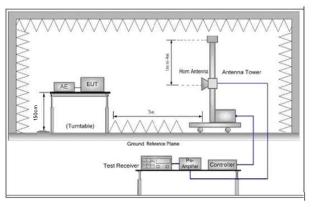


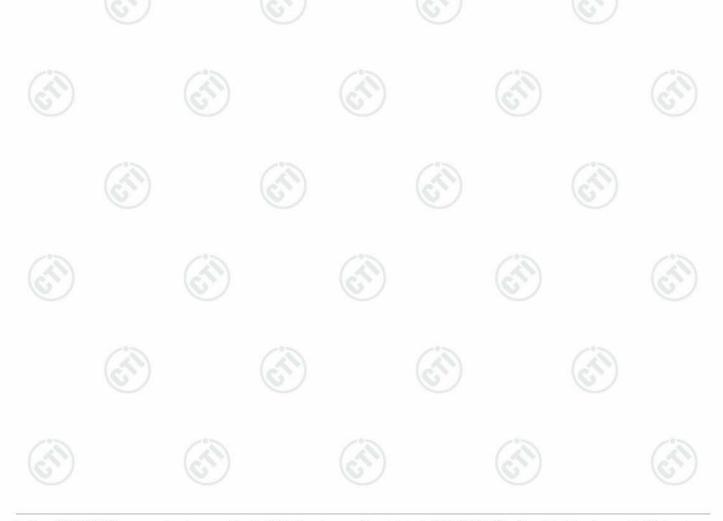

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

#### Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
  - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

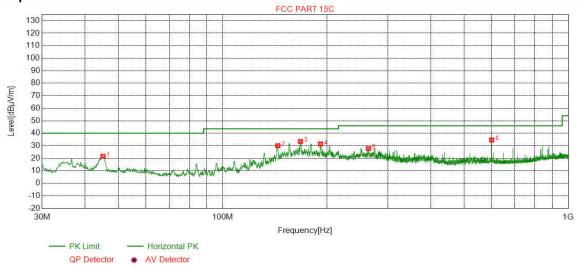
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both



| Page | 18 | of 41 |  |
|------|----|-------|--|
|------|----|-------|--|

|               | horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                                                                                                                                                                  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.                              |
|               | e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                            |
|               | f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
|               | g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)                                                                                                                                                                                                                                             |
|               | h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.                                                                                                                                                                                            |
|               | i. Repeat above procedures until all frequencies measured was complete.                                                                                                                                                                                                                                                                                |
| Test Mode:    | Refer to clause 5.3                                                                                                                                                                                                                                                                                                                                    |
| Test Results: | Pass                                                                                                                                                                                                                                                                                                                                                   |
| Z**           |                                                                                                                                                                                                                                                                                                                                                        |





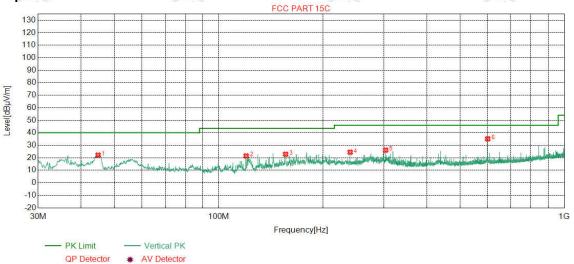

Report No.: EED32M00349201 Page 19 of 41

### Radiated Spurious Emission below 1GHz:

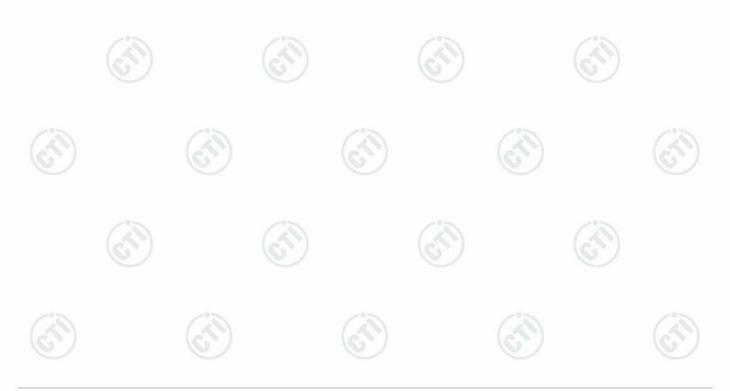
During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worse case mode a was recorded in the report.

#### **Test Graph**




| Mode | e:             |                       | BLE GFSK Transmitting |                       |                   |                   |                   | Channel:       |        | 2402     |        |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB]       | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1    | 45.0365        | 13.20                 | 0.75                  | -31.71                | 39.33             | 21.57             | 40.00             | 18.43          | Pass   | Н        | PK     |
| 2    | 144.2774       | 7.35                  | 1.42                  | -32.00                | 53.32             | 30.09             | 43.50             | 13.41          | Pass   | Н        | PK     |
| 3    | 167.8508       | 8.33                  | 1.52                  | -31.97                | 55.57             | 33.45             | 43.50             | 10.05          | Pass   | Н        | PK     |
| 4    | 191.8122       | 10.12                 | 1.62                  | -31.95                | 51.69             | 31.48             | 43.50             | 12.02          | Pass   | Н        | PK     |
| 5    | 264.0844       | 12.48                 | 1.94                  | -31.88                | 45.20             | 27.74             | 46.00             | 18.26          | Pass   | Н        | PK     |
| 6    | 600.0290       | 19.00                 | 2.96                  | -31.50                | 44.18             | 34.64             | 46.00             | 11.36          | Pass   | Н        | PK     |






Report No.: EED32M00349201 Page 20 of 41

### **Test Graph**



| Mode | э:             |                       | BLE GFSK Transmitting |                       |                   |                   |                   | Channel:       |        | 2402     |        |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1    | 44.7455        | 13.15                 | 0.75                  | -31.69                | 39.93             | 22.14             | 40.00             | 17.86          | Pass   | V        | PK     |
| 2    | 120.0250       | 9.20                  | 1.30                  | -32.07                | 43.05             | 21.48             | 43.50             | 22.02          | Pass   | V        | PK     |
| 3    | 156.1126       | 7.76                  | 1.46                  | -31.99                | 45.60             | 22.83             | 43.50             | 20.67          | Pass   | V        | PK     |
| 4    | 240.0260       | 11.94                 | 1.84                  | -31.90                | 42.58             | 24.46             | 46.00             | 21.54          | Pass   | V        | PK     |
| 5    | 304.0524       | 13.29                 | 2.07                  | -31.60                | 42.36             | 26.12             | 46.00             | 19.88          | Pass   | V        | PK     |
| 6    | 600.0290       | 19.00                 | 2.96                  | -31.50                | 44.68             | 35.14             | 46.00             | 10.86          | Pass   | V        | PK     |









## Radiated Spurious Emission above 1GHz:

| Mode | :              |                       | BLE GFS               | SK Transm             | itting            |                   |                   | Channel:       |        | 2402     |        |  |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|--|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |  |
| 1    | 1278.8279      | 28.18                 | 2.72                  | -42.81                | 49.55             | 37.64             | 74.00             | 36.36          | Pass   | Н        | PK     |  |
| 2    | 1921.2921      | 31.18                 | 3.42                  | -43.01                | 49.83             | 41.42             | 74.00             | 32.58          | Pass   | Н        | PK     |  |
| 3    | 2547.7548      | 32.48                 | 4.09                  | -43.11                | 50.59             | 44.05             | 74.00             | 29.95          | Pass   | Н        | PK     |  |
| 4    | 3708.0472      | 33.57                 | 4.26                  | -43.06                | 50.18             | 44.95             | 74.00             | 29.05          | Pass   | Н        | PK     |  |
| 5    | 5011.1341      | 34.51                 | 4.83                  | -42.79                | 50.55             | 47.10             | 74.00             | 26.90          | Pass   | Н        | PK     |  |
| 6    | 6970.2647      | 36.09                 | 5.76                  | -42.22                | 49.71             | 49.34             | 74.00             | 24.66          | Pass   | Н        | PK     |  |
| 7    | 1165.8166      | 28.07                 | 2.68                  | -42.93                | 49.90             | 37.72             | 74.00             | 36.28          | Pass   | V        | PK     |  |
| 8    | 2196.7197      | 31.98                 | 3.65                  | -43.17                | 51.36             | 43.82             | 74.00             | 30.18          | Pass   | V        | PK     |  |
| 9    | 2402.3402      | 32.26                 | 3.92                  | -43.12                | 51.28             | 44.34             | 74.00             | 29.66          | Pass   | V        | PK     |  |
| 10   | 3464.0309      | 33.39                 | 4.45                  | -43.11                | 48.93             | 43.66             | 74.00             | 30.34          | Pass   | V        | PK     |  |
| 11   | 4804.1203      | 34.50                 | 4.55                  | -42.80                | 51.94             | 48.19             | 74.00             | 25.81          | Pass   | V        | PK     |  |
| 12   | 6459.2306      | 35.89                 | 5.51                  | -42.51                | 49.58             | 48.47             | 74.00             | 25.53          | Pass   | V        | PK     |  |

| Mode | :              |                       | BLE GF          | SK Transr             | nitting           |                   |                   | Channel:       |        | 2440     |        |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1    | 1147.6148      | 28.05                 | 2.68            | -42.94                | 50.38             | 38.17             | 74.00             | 35.83          | Pass   | Н        | PK     |
| 2    | 1668.4668      | 29.51                 | 3.16            | -42.73                | 50.03             | 39.97             | 74.00             | 34.03          | Pass   | Н        | PK     |
| 3    | 2442.3442      | 32.32                 | 3.97            | -43.12                | 50.71             | 43.88             | 74.00             | 30.12          | Pass   | Н        | PK     |
| 4    | 3374.0249      | 33.35                 | 4.54            | -43.10                | 49.44             | 44.23             | 74.00             | 29.77          | Pass   | Н        | PK     |
| 5    | 5004.1336      | 34.50                 | 4.82            | -42.79                | 51.67             | 48.20             | 74.00             | 25.80          | Pass   | Н        | PK     |
| 6    | 7597.3065      | 36.56                 | 6.09            | -42.12                | 49.22             | 49.75             | 74.00             | 24.25          | Pass   | Н        | PK     |
| 7    | 1401.6402      | 28.30                 | 2.90            | -42.68                | 50.37             | 38.89             | 74.00             | 35.11          | Pass   | V        | PK     |
| 8    | 2070.5071      | 31.80                 | 3.57            | -43.19                | 49.83             | 42.01             | 74.00             | 31.99          | Pass   | V        | PK     |
| 9    | 2475.5476      | 32.37                 | 4.00            | -43.11                | 51.47             | 44.73             | 74.00             | 29.27          | Pass   | V        | PK     |
| 10   | 3809.0539      | 33.65                 | 4.37            | -43.04                | 50.25             | 45.23             | 74.00             | 28.77          | Pass   | V        | PK     |
| 11   | 4880.1253      | 34.50                 | 4.80            | -42.80                | 51.10             | 47.60             | 74.00             | 26.40          | Pass   | V        | PK     |
| 12   | 6356.2237      | 35.87                 | 5.44            | -42.53                | 48.98             | 47.76             | 74.00             | 26.24          | Pass   | V        | PK     |





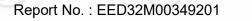








| _    | ~~ | 1    |    |
|------|----|------|----|
| Page | 22 | of 4 | 41 |


| Mode | :              |                       | BLE GF          | SK Transm             | nitting           |                   |                   | Channel:       |        | 2480     |        |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1    | 1213.0213      | 28.11                 | 2.67            | -42.88                | 49.92             | 37.82             | 74.00             | 36.18          | Pass   | Н        | PK     |
| 2    | 2168.5169      | 31.94                 | 3.65            | -43.17                | 49.31             | 41.73             | 74.00             | 32.27          | Pass   | Н        | PK     |
| 3    | 2924.7925      | 33.08                 | 4.39            | -43.10                | 50.05             | 44.42             | 74.00             | 29.58          | Pass   | Н        | PK     |
| 4    | 5006.1337      | 34.51                 | 4.83            | -42.80                | 50.56             | 47.10             | 74.00             | 26.90          | Pass   | Н        | PK     |
| 5    | 6101.2067      | 35.82                 | 5.26            | -42.58                | 50.25             | 48.75             | 74.00             | 25.25          | Pass   | Н        | PK     |
| 6    | 7443.2962      | 36.54                 | 5.85            | -42.11                | 49.08             | 49.36             | 74.00             | 24.64          | Pass   | Н        | PK     |
| 7    | 1204.4204      | 28.10                 | 2.66            | -42.88                | 49.65             | 37.53             | 74.00             | 36.47          | Pass   | V        | PK     |
| 8    | 1794.4794      | 30.34                 | 3.31            | -42.70                | 51.79             | 42.74             | 74.00             | 31.26          | Pass   | V        | PK     |
| 9    | 2589.7590      | 32.54                 | 4.10            | -43.10                | 50.36             | 43.90             | 74.00             | 30.10          | Pass   | V        | PK     |
| 10   | 4962.1308      | 34.50                 | 4.82            | -42.80                | 54.24             | 50.76             | 74.00             | 23.24          | Pass   | V        | PK     |
| 11   | 6212.2141      | 35.84                 | 5.25            | -42.55                | 50.26             | 48.80             | 74.00             | 25.20          | Pass   | V        | PK     |
| 12   | 7607.3072      | 36.56                 | 6.11            | -42.13                | 49.01             | 49.55             | 74.00             | 24.45          | Pass   | V        | PK     |

#### Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
  - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

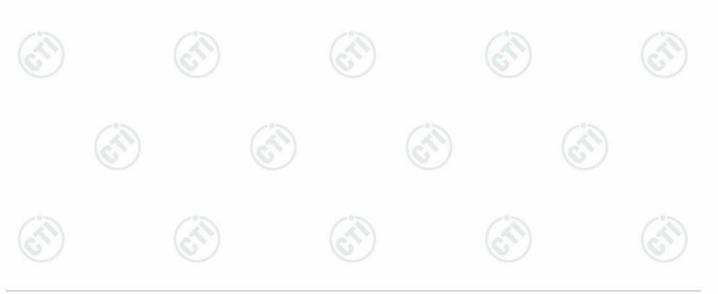






Page 23 of 41

### **Restricted bands:**


### Test plot as follows:

| Mode:   | BLE GFSK Transmitting | Channel: | 2402 | (6 |
|---------|-----------------------|----------|------|----|
| Remark: | PK                    |          |      | 17 |

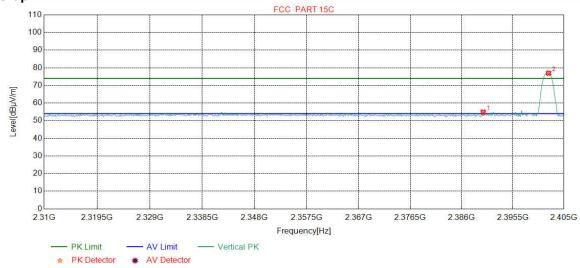
#### **Test Graph**



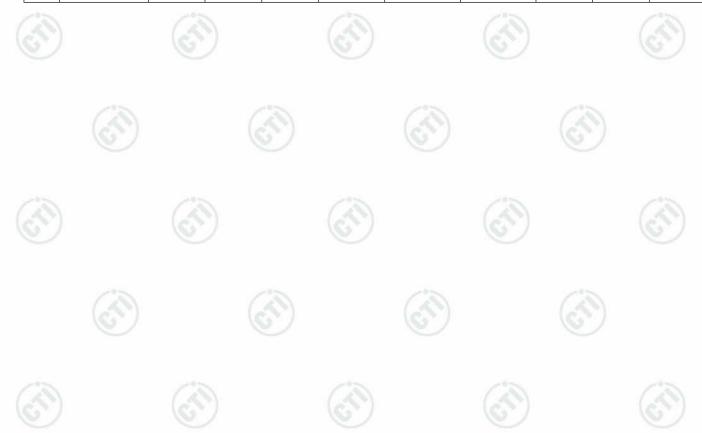
| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 49.49             | 52.67             | 74.00             | 21.33          | Pass   | Horizontal |
| 2  | 2402.1464      | 32.26                 | 13.31                 | -42.43                | 79.99             | 83.13             | 74.00             | -9.13          | Pass   | Horizontal |







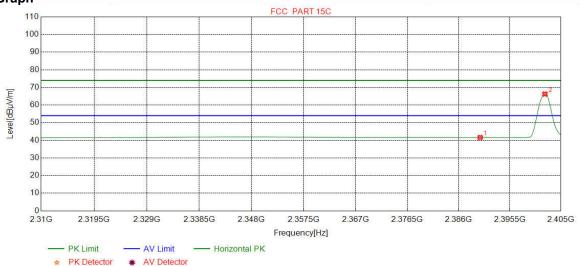


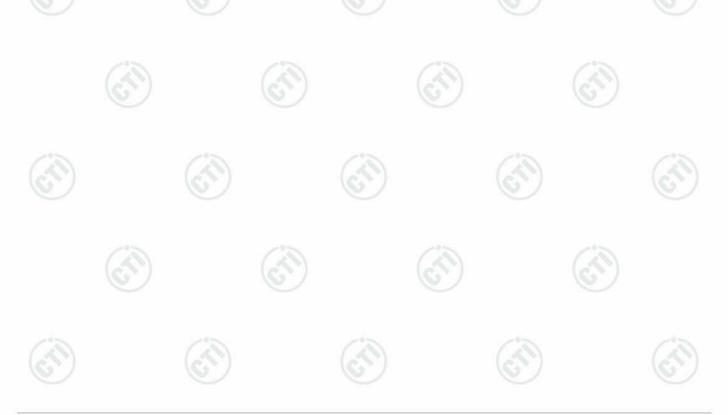

|         |                       | 21070    |      |
|---------|-----------------------|----------|------|
| Mode:   | BLE GFSK Transmitting | Channel: | 2402 |
| Remark: | PK                    |          | (0.) |

### **Test Graph**




| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 51.67             | 54.85             | 74.00             | 19.15          | Pass   | Vertical |
| 2  | 2402.1464      | 32.26                 | 13.31                 | -42.43                | 73.81             | 76.95             | 74.00             | -2.95          | Pass   | Vertical |



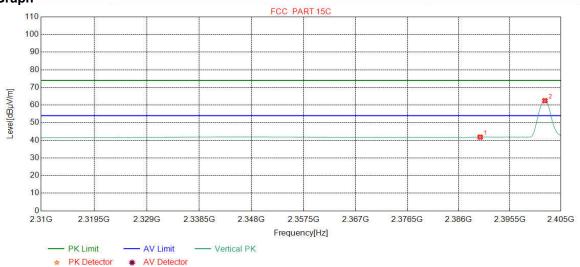



| Mode:   | BLE GFSK Transmitting | Channel: | 2402 |
|---------|-----------------------|----------|------|
| Remark: | AV                    |          |      |

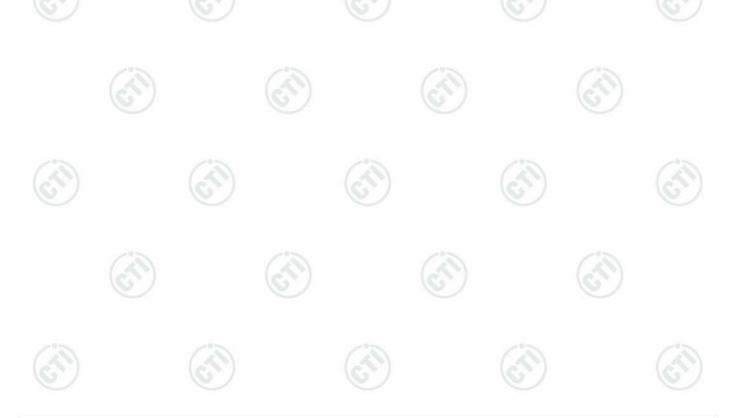
### **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 38.42             | 41.60             | 54.00             | 12.40          | Pass   | Horizontal |
| 2  | 2402.0275      | 32.26                 | 13.31                 | -42.43                | 63.10             | 66.24             | 54.00             | -12.24         | Pass   | Horizontal |





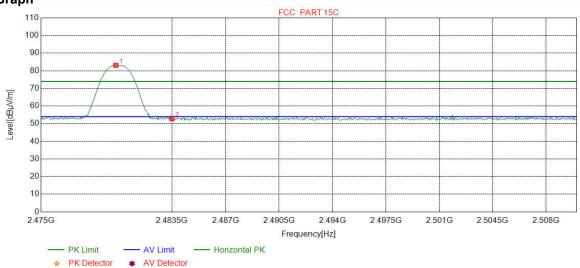


| Page | 26 | of 41 |  |
|------|----|-------|--|
|------|----|-------|--|

| Mode:   | Mode: BLE GFSK Transmitting |  | 2402 |  |
|---------|-----------------------------|--|------|--|
| Remark: | AV                          |  |      |  |

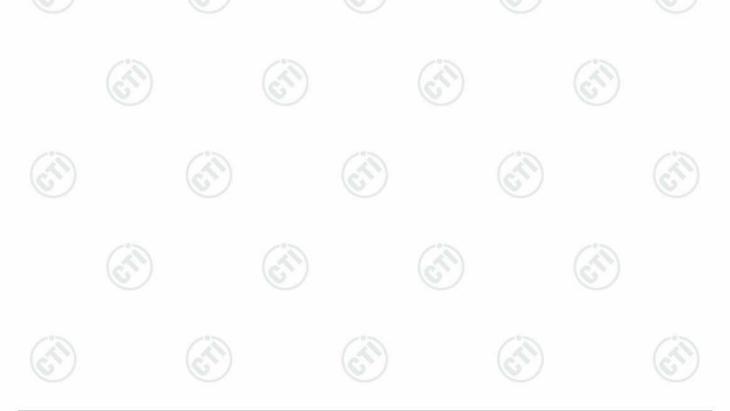
### **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -42.44                | 38.62             | 41.80             | 54.00             | 12.20          | Pass   | Vertical |
| 2  | 2402.0275      | 32.26                 | 13.31                 | -42.43                | 59.34             | 62.48             | 54.00             | -8.48          | Pass   | Vertical |



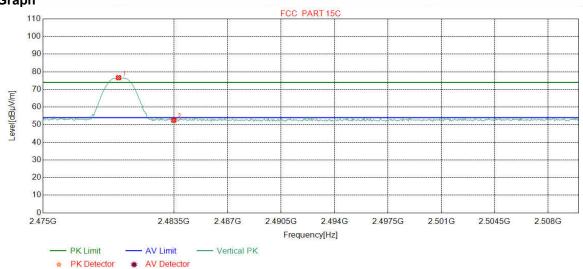




| Page 27 of 41 |  |
|---------------|--|
|---------------|--|

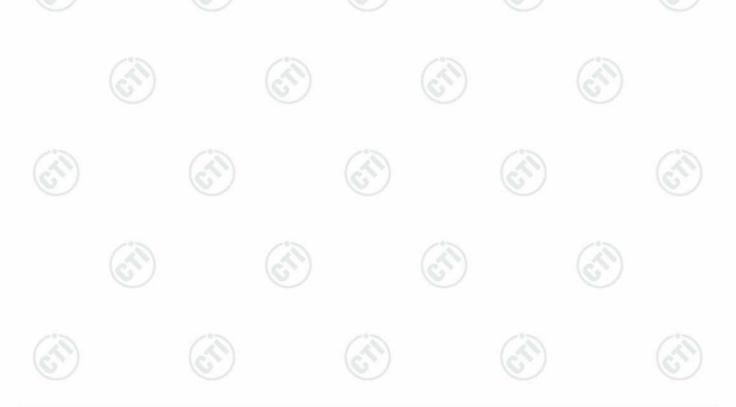
| Mode:   | BLE GFSK Transmitting | Channel: | 2480 |
|---------|-----------------------|----------|------|
| Remark: | PK                    |          |      |

### **Test Graph**




| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1  | 2479.8623      | 32.37                 | 13.39                 | -42.39                | 79.71             | 83.08             | 74.00             | -9.08          | Pass   | Horizontal |
| 2  | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 49.47             | 52.83             | 74.00             | 21.17          | Pass   | Horizontal |



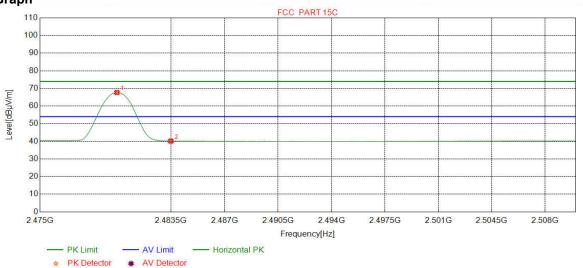



| Mode:   | BLE GFSK Transmitting | Channel: | 2480 |
|---------|-----------------------|----------|------|
| Remark: | PK                    |          |      |

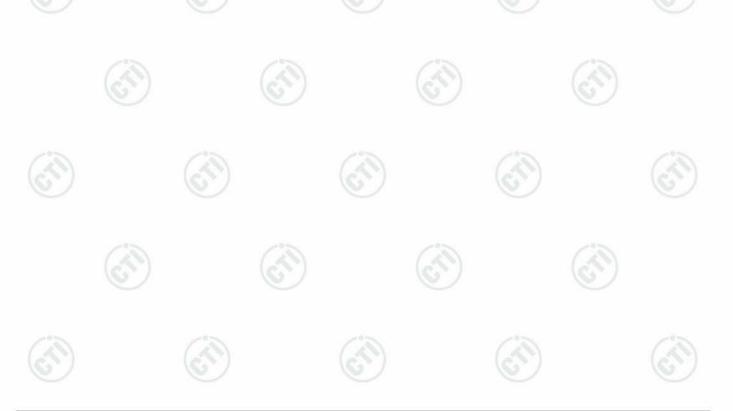
### **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1  | 2479.9061      | 32.37                 | 13.39                 | -42.39                | 73.27             | 76.64             | 74.00             | -2.64          | Pass   | Vertical |
| 2  | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 49.21             | 52.57             | 74.00             | 21.43          | Pass   | Vertical |



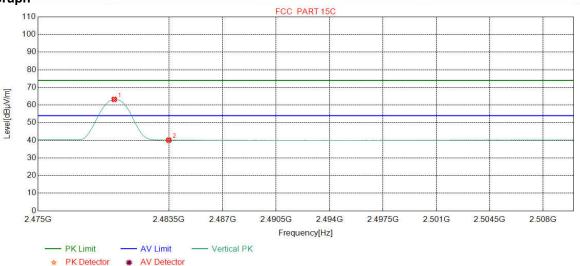




| Page | 29 | of 4° | 1 |
|------|----|-------|---|
|------|----|-------|---|

| Mode:   | BLE GFSK Transmitting | Channel: | 2480 |
|---------|-----------------------|----------|------|
| Remark: | AV                    |          |      |

### **Test Graph**




| NC | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1  | 2479.9937      | 32.37                 | 13.39                 | -42.39                | 64.33             | 67.70             | 54.00             | -13.70         | Pass   | Horizontal |
| 2  | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 36.76             | 40.12             | 54.00             | 13.88          | Pass   | Horizontal |

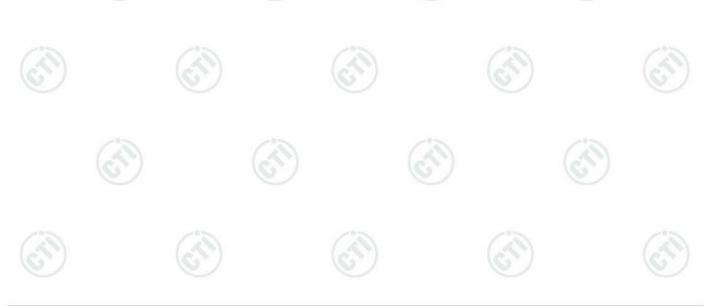




| Mode:   | BLE GFSK Transmitting | Channel: | 2480 |
|---------|-----------------------|----------|------|
| Remark: | AV                    |          |      |

#### **Test Graph**




| N | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|---|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1 | 2479.9499      | 32.37                 | 13.39                 | -42.39                | 59.86             | 63.23             | 54.00             | -9.23          | Pass   | Vertical |
| 2 | 2483.5000      | 32.38                 | 13.38                 | -42.40                | 36.74             | 40.10             | 54.00             | 13.90          | Pass   | Vertical |

#### Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor









Page 31 of 41

# Appendix A









Refer to Appendix: Bluetooth LE of EED32M00349201

















































































