

1 COVER PAGE			<u>1</u>
2 CONTENT			2
3 VERSION			
4 TEST SUMMARY			
5 GENERAL INFORMATION	\sim		5
 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (959) 	% CONFIDENCE LEVELS, K=	=2)	
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASUREME	ENT DATA	<u> </u>	
 7.1 ANTENNA REQUIREMENT 7.2 MAXIMUM CONDUCTED OUTPUT PC 7.3 DTS BANDWIDTH 7.4 MAXIMUM POWER SPECTRAL DENS 7.5 BAND EDGE MEASUREMENTS AND C 7.6 RADIATED SPURIOUS EMISSION & I 	OWER SITY CONDUCTED SPURIOUS EN	MISSION.	

Page 3 of 40

3 Version

	Version No.		Date	(\mathcal{A})	Descripti	on	
_	00	Fe	eb. 24, 2021	\bigcirc	Original	\bigcirc	
A		Ø			Ì		

Page 4 of 40

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	N/A	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	JOYTECH HEALTHCARE CO., LTD
Address of Applicant:	No.365,Wuzhou Road, Yuhang Economic Development Zone, Hangzhou , China
Manufacturer:	JOYTECH HEALTHCARE CO., LTD
Address of Manufacturer:	No.365,Wuzhou Road, Yuhang Economic Development Zone, Hangzhou , China
Factory:	JOYTECH HEALTHCARE CO., LTD
Address of Factory:	No.365,Wuzhou Road, Yuhang Economic Development Zone, Hangzhou , China

Page 5 of 40

5.2 General Description of EUT

Product Name:	Infrared Forehead Thermometer	
Model No.:	DET-3012b	
Add Model No.:	N/A	1
Trade mark:	Joytech	6
Product Type:	Mobile Portable Fix Location	
Hardware Version:	V1.0	
Software Version:	V1.0	
Bluetooth Version:	V5.0	
Operation Frequency:	2402MHz~2480MHz	
Modulation Type:	GFSK	
Transfer Rate:	⊠ 1Mbps □ 2Mbps	13
Number of Channel:	40	6
Antenna Type:	integral antenna	U
Antenna Gain:	0dBi	
25	DC 3.0V 2*AAA battery	
Test Voltage:	DC 3.0V	
Sample Received Date:	Dec. 29, 2020	
Sample tested Date:	Dec. 29, 2020 to Jan. 15, 2021	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Channel	Frequency
	The lowest channel (CH0)	2402MHz
	The middle channel (CH19)	2440MHz
<u></u>	The highest channel (CH39)	2480MHz

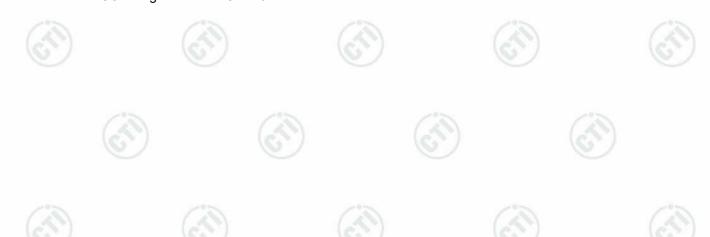
5.3 Test Configuration

Software:	PhyPlusKit	PhyPlusKit (manufacturer declare)			
EUT Power Grade:	Default(mar	nufacturer declare)	\mathcal{O}		
Use test software to transmitting of the E	set the lowest frequency UT.	r, the middle freque	ncy and the highest f	requency keep	
Test Mode	Modulation	Rate	Channel	Frequency(MHz)	
Mode a	GFSK	1Mbps	СН0	2402	
Mode b	GFSK	1Mbps	CH19	2440	

5.4 Test Environment

Operating Environment	:					
Radiated Spurious Emi	ssions:					
Temperature:	22~25.0 °C	S)				(2)
Humidity:	50~55 % RH	Ś		J		V
Atmospheric Pressure:	1010mbar					
Conducted Emissions:	_					
Temperature:	22~25.0 °C					
Humidity:	50~55 % RH		S		S.	
Atmospheric Pressure:	1010mbar					
RF Conducted:						
Temperature:	22~25.0 °C					
Humidity:	50~55 % RH	S		(C)		67
Atmospheric Pressure:	1010mbar					

5.5 Description of Support Units


1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	D245DX2	DELL
	1	10	13	13

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

Page 8 of 40

Measurement Uncertainty (95% confidence levels, k=2) 5.7

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)
3 Radiated	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
		3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
		- 10 -

Hotline: 400-6788-333

6 Equipment List

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021	
Temperature/ Humidity Indicator	Defu	TH128	/	<u>()</u>		
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021	
Barometer	changchun	DYM3	1188			

		RF test s	ystem				
Equipment	Manufacturer	acturer Mode No.		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021		
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		(2)			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			2		
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021		
PC-1	Lenovo	R4960d		135	/		
Power unit	R&S	OSP120	101374	02-17-2020	02-16-2021		
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3					

		3M Semi/full-anec	hoic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	05-24-2019		05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	33 9163-618 05-16-2020		05-15-2021	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021	
Receiver	R&S	ESCI7	100938-003	10-16-2020 🖉	10-15-2021	
Multi device Controller	maturo	NCD/070/10711 112	(A)	(6	5) -	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	HM10 1804298		06-28-2021	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A	200	>0	
Cable line	Fulai(3M)	SF106	5216/6A	- Calif	()	
Cable line	Fulai(3M)	SF106	5217/6A	103-	8	

		3M full-anecho				
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		s)	
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021	
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021	
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021	
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021	
Fully Anechoic Chamber	ток	FAC-3		01-17-2018	01-16-2021 04-09-2021 	
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	(6		
Cable line	Times SFT205-NMSM- 2.50M 394812-0003					
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001			
Cable line	Times	EMC104-NMNM- 1000	SN160710		- (2	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001			
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001			
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	- 6	- 6	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		9	

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integral antenna. The best case gain of the antenna is 0dBi.

7.2 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
	Test Method:	ANSI C63.10 2013
6	Test Setup:	
		Control Computer Power Supply Table RF test System Instrument
6		Remark: Offset=Cable loss+ attenuation factor.
~	Test Procedure:	a) Set the RBW \geq DTS bandwidth.
		b) Set VBW \geq 3 × RBW.
		c) Set span ≥ 3 x RBW
		d) Sweep time = auto couple.
		e) Detector = peak.
		f) Trace mode = max hold.
		g) Allow trace to fully stabilize.
100		h) Use peak marker function to determine the peak amplitude level.
63	Limit:	30dBm
2	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A

7.3 DTS Bandwidth

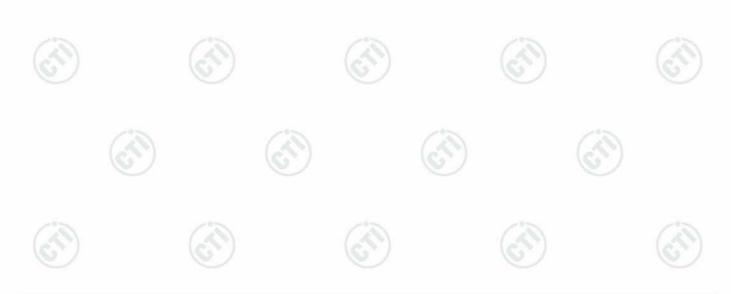
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
	Test Method:	ANSI C63.10 2013
Ś	Test Setup:	
		Central Congular Cong
		Remark: Offset=Cable loss+ attenuation factor.
G	Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
N.	Limit:	≥ 500 kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A

7.4 Maximum Power Spectral Density

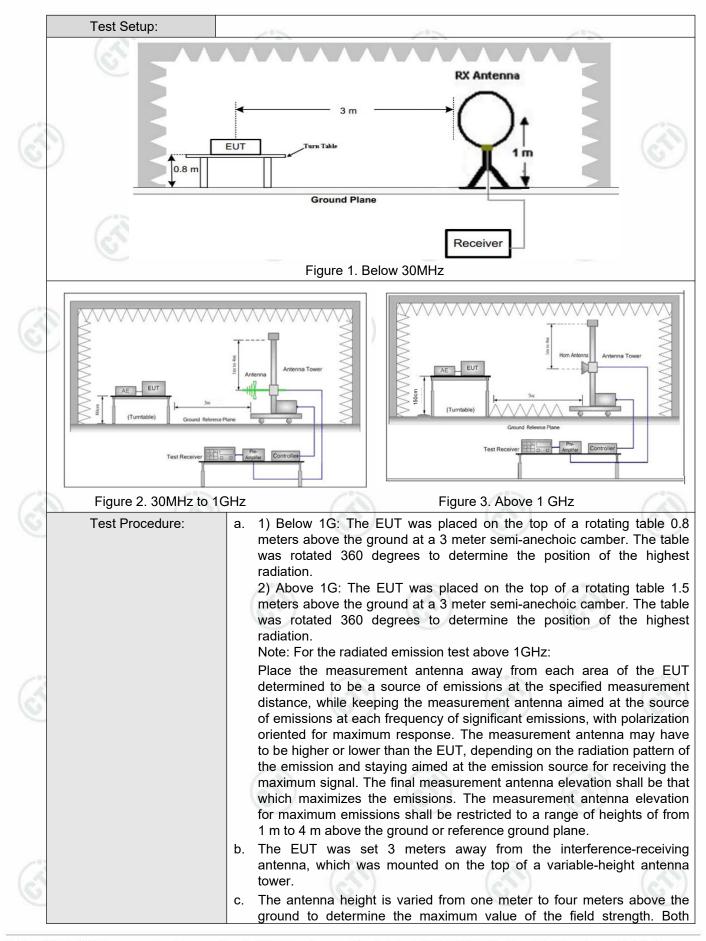
	Test Requirement:	47 CFR Part 15C Section 15.247 (e)
	Test Method:	ANSI C63.10 2013
6	Test Setup:	
		Control Control Control Power Supply Power Supply TemPERATURE CABNET Table
6		Remark: Offset=Cable loss+ attenuation factor.
6	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude lever within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
	Limit:	≤8.00dBm/3kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A

7.5 Band Edge measurements and Conducted Spurious Emission

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10 2013
	Test Setup:	Control Computer Computer Power Power Power Power Power Power Power Power Power Power Power Power Power Power Power TemPERATURE CABINET Table
		Remark: Offset=Cable loss+ attenuation factor.
2	Test Procedure:	 a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A



7.6 Radiated Spurious Emission & Restricted bands

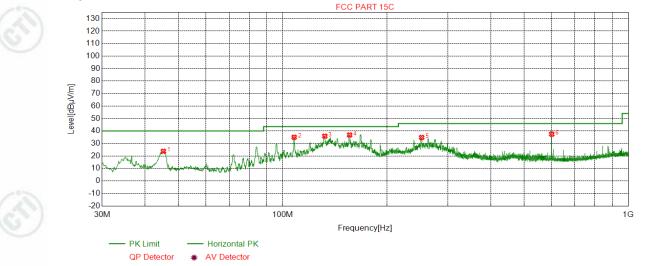

	Test Requirement:	47 CFR Part 15C Section	on ´	15.209 and 15.	205		G				
	Test Method:	ANSI C63.10 2013									
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
	Receiver Setup:	Frequency	Detector	RBW		VBW	Remark				
S		0.009MHz-0.090MH	z	Peak	10kHz	z	30kHz	Peak			
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average			
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak			
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average			
~		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		30MHz-1GHz		Quasi-peak	100 kH	łz	300kHz	Quasi-peak			
			5	Peak	1MHz	<u> </u>	3MHz	Peak			
		Above 1GHz	Peak			2)	10Hz	Average			
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)		Remark	Measureme distance (m			
		0.009MHz-0.490MHz	2	400/F(kHz)	-		-25	300			
		0.490MHz-1.705MHz	24	4000/F(kHz)	-		6	30			
		1.705MHz-30MHz		30	-		<u>e</u>	30			
		30MHz-88MHz		100	40.0	Q	uasi-peak	3			
		88MHz-216MHz		150	43.5	Q	uasi-peak	3			
2		216MHz-960MHz	1	200	46.0	Q	uasi-peak	3			
2		960MHz-1GHz	1	500	54.0	Q	uasi-peak	3			
		Above 1GHz		500	54.0		Average	3			
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20c quij	dB above the i pment under to	maximum est. This p	ре	rmitted ave	erage emissio			

Report No. : EED32M00348901

CTI 华观检测 CENTRE TESTING INTERNATIONAL

	Test Results:	Pass
Ľ	Test Mode:	 Repeat above procedures until all frequencies measured was complete. Refer to clause 5.3
Ē		 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Perpet above precedures until all frequencies measured was complete.
		g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
6		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
10		 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		horizontal and vertical polarizations of the antenna are set to make the measurement.

Page 18 of 40



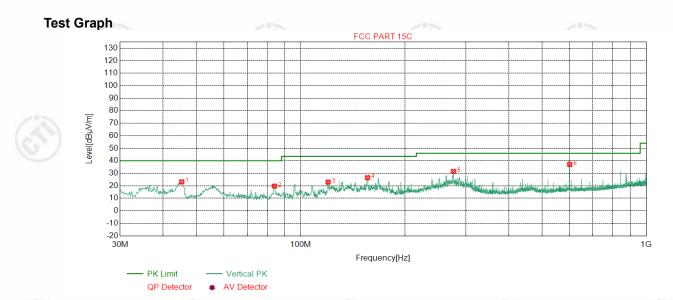
Page 19 of 40

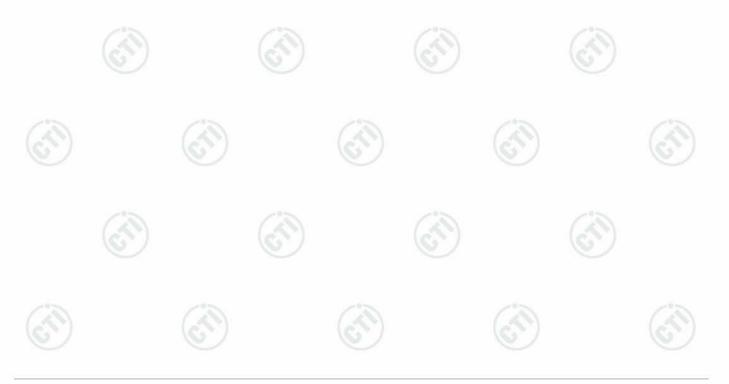
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worse case mode a was recorded in the report.

Test Graph

Mode	e:		BLE GF	SK Trans	smitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	45.1335	13.20	0.75	-31.72	41.55	23.78	40.00	16.22	Pass	Н	PK
2	107.8988	10.92	1.23	-32.04	54.91	35.02	43.50	8.48	Pass	Н	PK
3	132.3452	7.58	1.34	-32.01	59.00	35.91	43.50	7.59	Pass	Н	PK
4	156.1126	7.76	1.46	-31.99	59.62	36.85	43.50	6.65	Pass	Н	PK
5	252.3462	12.25	1.89	-31.90	52.60	34.84	46.00	11.16	Pass	Н	PK
6	600.0290	19.00	2.96	-31.50	47.04	37.50	46.00	8.50	Pass	Н	PK
	1.43	14		(6.4	100		12		





Page 20 of 40

12	2	1			6					63	8
Mode	Mode:			BLE GFSK Transmitting						2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	45.2305	13.20	0.75	-31.73	40.98	23.20	40.00	16.80	Pass	V	PK
2	83.9374	8.01	1.06	-31.98	42.63	19.72	40.00	20.28	Pass	V	PK
3	120.0250	9.20	1.30	-32.07	44.50	22.93	43.50	20.57	Pass	V	PK
4	156.0156	7.76	1.46	-31.99	49.30	26.53	43.50	16.97	Pass	V	PK
5	276.5987	12.73	1.98	-31.91	48.68	31.48	46.00	14.52	Pass	V	PK
6	600.0290	19.00	2.96	-31.50	46.63	37.09	46.00	8.91	Pass	V	PK
G)	1	S		6	9	6	5)	•	6).

Page 21 of 40

Radiated Spurious Emission above 1GHz:

Mode	:		BLE GFS	SK Transm	itting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1595.8596	29.03	3.07	-42.89	52.65	41.86	74.00	32.14	Pass	н	PK
2	2871.9872	33.00	4.30	-42.20	50.71	45.81	74.00	28.19	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	49.85	48.24	74.00	25.76	Pass	н	PK
4	7206.0000	36.31	5.81	-41.02	44.35	45.45	74.00	28.55	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	41.99	45.50	74.00	28.50	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.21	43.11	48.81	74.00	25.19	Pass	н	PK
7	1388.8389	28.29	2.88	-42.69	51.65	40.13	74.00	33.87	Pass	V	PK
8	1973.8974	31.53	3.44	-42.62	55.51	47.86	74.00	26.14	Pass	V	PK
9	2992.5993	33.19	4.53	-42.13	50.93	46.52	74.00	27.48	Pass	V	PK
10	4804.0000	34.50	4.55	-40.66	45.30	43.69	74.00	30.31	Pass	V	PK
11	7206.0000	36.31	5.81	-41.02	43.85	44.95	74.00	29.05	Pass	V	PK
12	9608.0000	37.64	6.63	-40.76	42.65	46.16	74.00	27.84	Pass	V	PK
										-	

Mode	:		BLE GF	SK Transr	nitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1598.4598	29.05	3.07	-42.90	53.42	42.64	74.00	31.36	Pass	Н	PK
2	2835.1835	32.94	4.23	-42.21	51.64	46.60	74.00	27.40	Pass	Н	PK
3	4880.0000	34.50	4.80	-40.60	44.38	43.08	74.00	30.92	Pass	Н	PK
4	7320.0000	36.42	5.85	-40.92	44.40	45.75	74.00	28.25	Pass	н	PK
5	9760.0000	37.70	6.73	-40.62	42.16	45.97	74.00	28.03	Pass	н	PK
6	12200.0000	39.42	7.67	-41.17	42.38	48.30	74.00	25.70	Pass	Н	PK
7	1405.8406	28.31	2.91	-42.69	51.38	39.91	74.00	34.09	Pass	V	PK
8	1955.8956	31.41	3.43	-42.64	53.65	45.85	74.00	28.15	Pass	V	PK
9	4880.0000	34.50	4.80	-40.60	44.26	42.96	74.00	31.04	Pass	V	PK
10	7320.0000	36.42	5.85	-40.92	43.98	45.33	74.00	28.67	Pass	V	PK
11	9760.0000	37.70	6.73	-40.62	41.95	45.76	74.00	28.24	Pass	V	PK
12	12200.0000	39.42	7.67	-41.17	42.58	48.50	74.00	25.50	Pass	V	PK

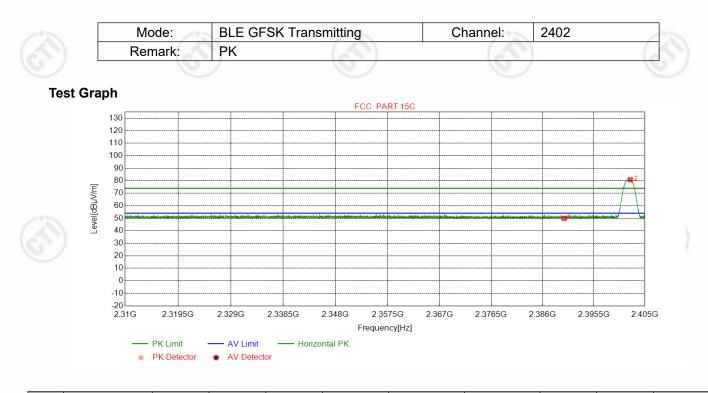
Mode	:		BLE GF	SK Transm	nitting			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1226.4226	28.13	2.67	-42.87	50.79	38.72	74.00	35.28	Pass	Н	PK
2	1597.2597	29.04	3.07	-42.89	52.07	41.29	74.00	32.71	Pass	Н	PK
3	3010.4007	33.20	4.91	-42.11	50.49	46.49	74.00	27.51	Pass	Н	PK
4	4960.0000	34.50	4.82	-40.53	44.54	43.33	74.00	30.67	Pass	Н	PK
5	7440.0000	36.54	5.85	-40.82	44.90	46.47	74.00	27.53	Pass	Н	PK
6	9920.0000	37.77	6.79	-40.48	42.04	46.12	74.00	27.88	Pass	Н	PK
7	1394.0394	28.29	2.89	-42.68	55.06	43.56	74.00	30.44	Pass	V	PK
8	1913.2913	31.13	3.42	-42.66	54.30	46.19	74.00	27.81	Pass	V	PK
9	3109.8573	33.24	4.69	-42.05	49.81	45.69	74.00	28.31	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	44.12	42.91	74.00	31.09	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	44.59	46.16	74.00	27.84	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	40.95	45.03	74.00	28.97	Pass	V	PK
0		6	21		0	1	6			0	1.

Remark:

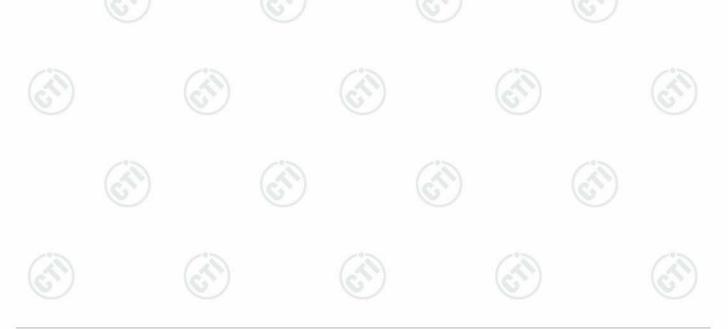
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

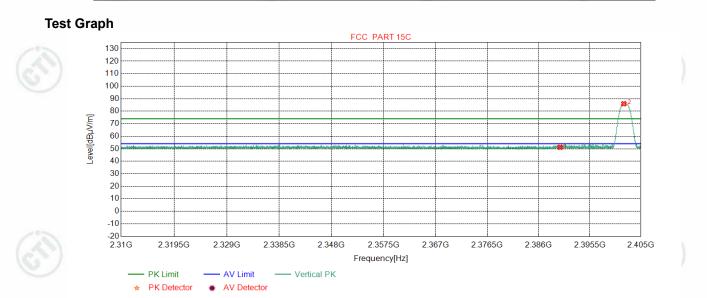


Restricted bands:



Test plot as follows:

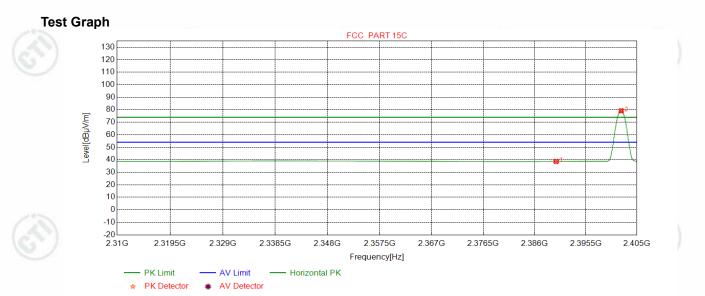
(NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	47.37	49.87	74.00	24.13	Pass	Horizontal
	2	2402.2892	32.26	13.31	-43.12	78.30	80.75	74.00	-6.75	Pass	Horizontal



 Mode:
 BLE GFSK Transmitting
 Channel:
 2402

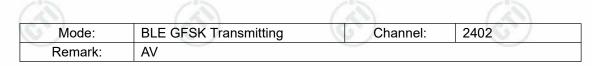
 Remark:
 PK

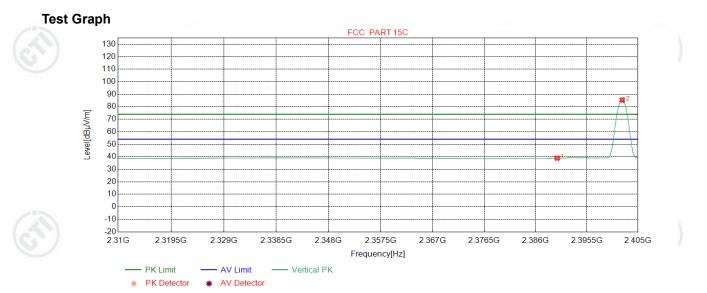
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.68	51.18	74.00	22.82	Pass	Vertical
2	2401.8205	32.26	13.31	-43.12	83.56	86.01	74.00	-12.01	Pass	Vertical

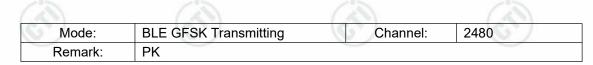


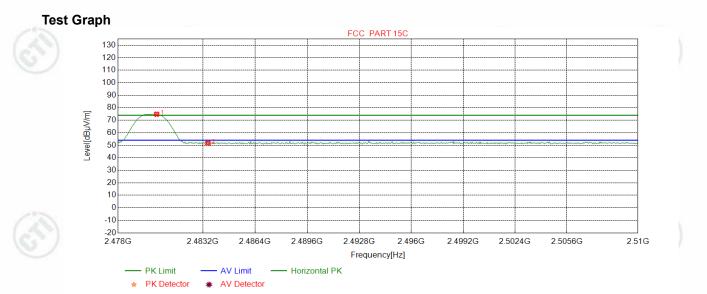
 Mode:
 BLE GFSK Transmitting
 Channel:
 2402

 Remark:
 AV

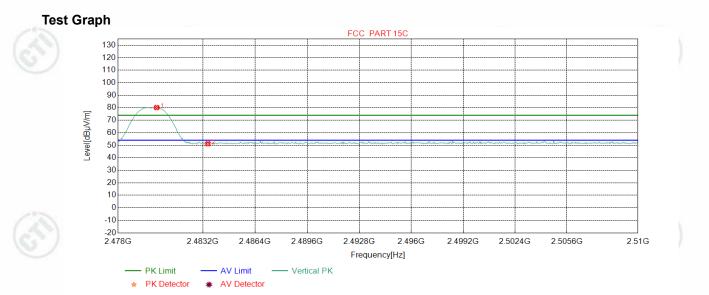

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.15	38.65	54.00	15.35	Pass	Horizontal
2	2402.0801	32.26	13.31	-43.12	76.70	79.15	54.00	-25.15	Pass	Horizontal
(A)		12	1	-			(1)		1	12



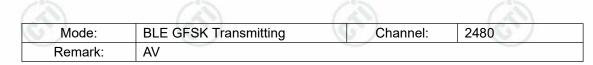

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.40	38.90	54.00	15.10	Pass	Vertical
2	2402.0865	32.26	13.31	-43.12	82.93	85.38	54.00	-31.38	Pass	Vertical
(AN)		12	1						1	12

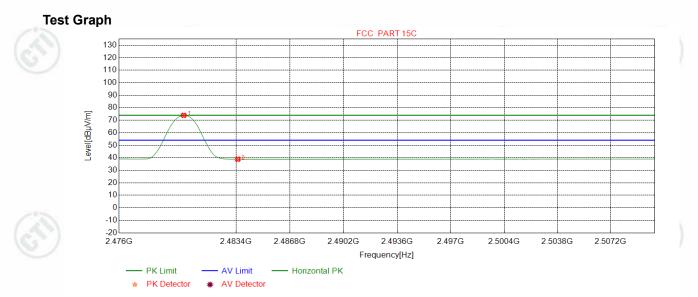


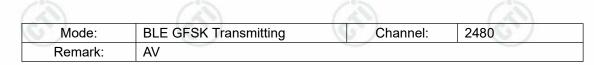
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.3630	32.37	13.39	-43.10	72.15	74.81	74.00	-0.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.01	51.66	74.00	22.34	Pass	Horizontal
(A)		12	1					-	1	12

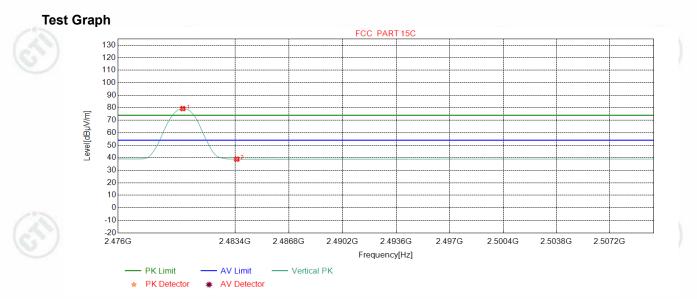


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.3630	32.37	13.39	-43.10	77.49	80.15	74.00	-6.15	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.57	51.22	74.00	22.78	Pass	Vertical
(A)		12	1						1	12






NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	71.22	73.88	54.00	-19.88	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.19	38.84	54.00	15.16	Pass	Horizontal
(AN)		12	0		12		(2)		1	12



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	76.63	79.29	54.00	-25.29	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.23	38.88	54.00	15.12	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

