

Report No.: EED32M00333501 Page 1 of 56

Product Fingertip pulse oximeter

Trade mark N/A

Model/Type reference XM-101

N/A **Serial Number**

Report Number EED32M00333501

FCC ID 2AQVU0009 Date of Issue Dec. 03, 2020

Test Standards 47 CFR Part 15Subpart C

Test result **PASS**

Prepared for:

JOYTECH HEALTHCARE CO., LTD. No.365, Wuzhou Road, Yuhang Economic **Development Zone, Hangzhou city,** 311100 Zhejiang, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

bil. lu

Reviewed by:

Tom Chen

bill Lu Acron Ma

Date:

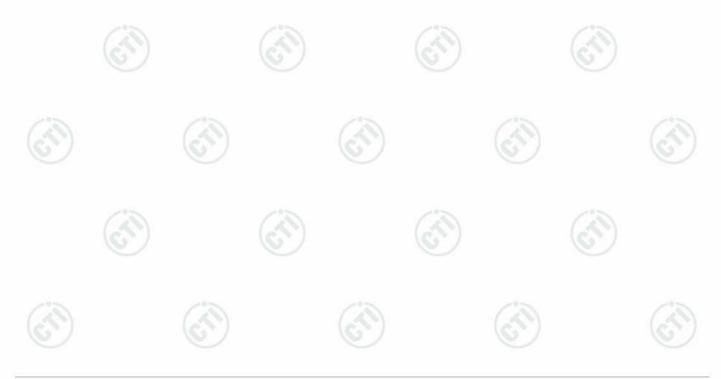
Dec. 03, 2020

Aaron Ma

Check No.:4538066215

2 Version

Version No.	Date	Description
00	Dec. 03, 2020	Original


Report No.: EED32M00333501 Page 3 of 56

3 Test Summary

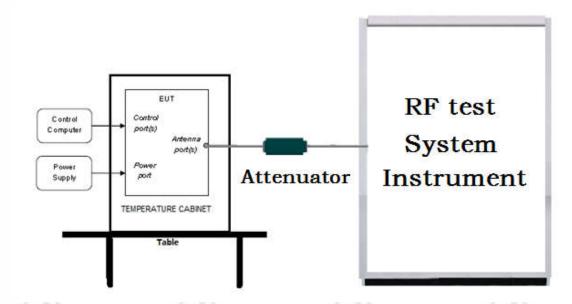
o rest carring	2107	2.0	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 4 of 56

7	Content				
1 C	OVER PAGE				1
2 V	ERSION			•••••	2
3 T	EST SUMMARY	•••••	•••••	•••••	3
4 C	ONTENT			•••••	4
5 T	EST REQUIREMENT			•••••	5
į	5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test 5.1.3 For Conducted Emissions to 5.2 TEST ENVIRONMENT	st setuptest setup			5 6 6
	5.3 TEST CONDITION				
	ENERAL INFORMATION				
6	5.1 CLIENT INFORMATION	CONDITIONS			
	QUIPMENT LIST				
	ADIO TECHNICAL REQUIREMEN				
	Appendix A): 6dB Occupied Ban Appendix B): Conducted Peak O Appendix C): Band-edge for RF Appendix D): RF Conducted Spu Appendix E): Power Spectral De Appendix F): Antenna Requirema Appendix G): Restricted bands a Appendix H) Radiated Spurious	dwidth Putput Power Conducted Emissions Irious Emissions nsity ent Iround fundamental frec	quency (Radiated)		
РΗ	OTOGRAPHS OF TEST SETUP				47
РΗ	OTOGRAPHS OF EUT CONSTRU	ICTIONAL DETAILS			49



Report No.: EED32M00333501 Page 5 of 56

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

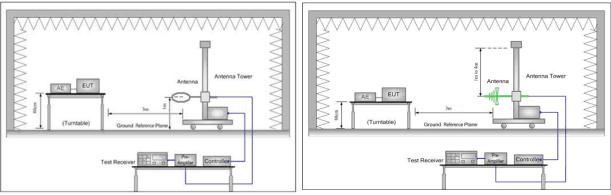
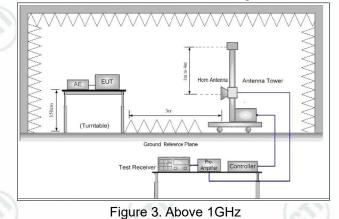
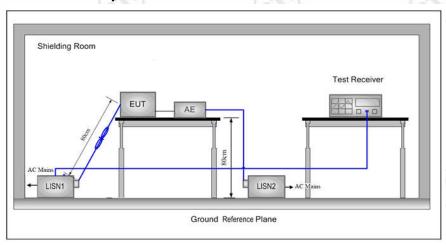



Figure 1. Below 30MHz


Figure 2. 30MHz to 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(0)
Temperature:	24.0 °C		
Humidity:	54 % RH	1962	
Atmospheric Pressure:	1010mbar		(0)

5.3 Test Condition

Test channel:

TOST GHAIITGI.					
Test Mode	Tx/Rx	RF Channel			
rest Mode	TX/RX	Low(L)	Middle(M)	High(H)	
05014	GFSK 2402MHz ~2480 MHz	Channel 0	Channel 19	Channel 39	
GFSK		2402MHz	2440MHz	2480MHz	
Transmitting mode: Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.					
		- X	7		

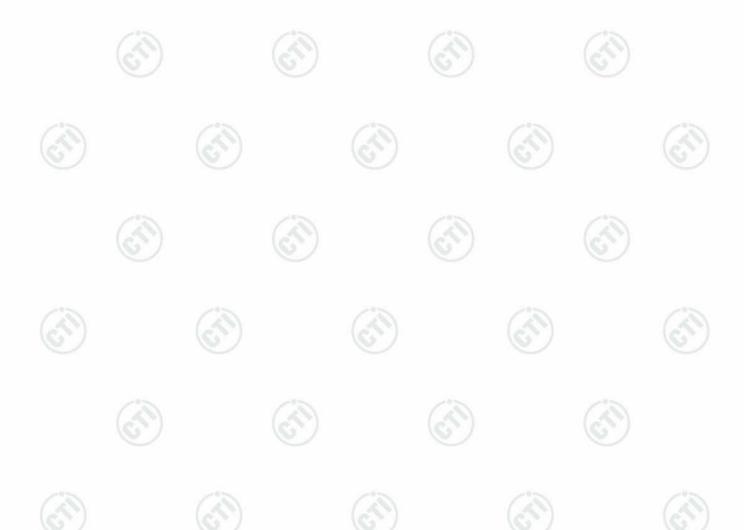
Report No.: EED32M00333501 Page 7 of 56

6 General Information

6.1 Client Information

Applicant:	JOYTECH HEALTHCARE CO., LTD.
Address of Applicant:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang,China
Manufacturer:	JOYTECH HEALTHCARE CO., LTD.
Address of Manufacturer:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang,China
Factory:	JOYTECH HEALTHCARE CO., LTD.
Address of Factory:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang,China

6.2 General Description of EUT


Product Name:	Fingertip pulse oximeter				
Model No.(EUT):	XM-101				
Trade mark:	N/A		(3)		(2)
Power Supply:	2*AAA Battery 3.0V				
Operation Frequency:	2402MHz~2480MHz				
Bluetooth Version:	5.0 (BLE)	15.		(3)	
Modulation Technique:	DSSS	('S		(67)	
Modulation Type:	GFSK				
Number of Channel:	40				
Test Power Grade:	10		13		13
Test Software of EUT:	PhyPlusKit		(6.5)		(6.75)
Antenna Type and Gain:	Type: integral Antenna Gain: 0.5dBi				
Test Voltage:	DC 3.0V	an Pil State			
Sample Received Date:	Nov. 16, 2020			(41)	
Sample tested Date:	Nov. 16, 2020 to Dec. 02, 2020	3)		0	

_	_	_		
Page	Q	Ωf	56	
Faue	()	()I	w	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Report No.: EED32M00333501 Page 9 of 56

6.3 Description of Support Units

The EUT has been tested independently

6.4 Test Location

All tests were performed at:

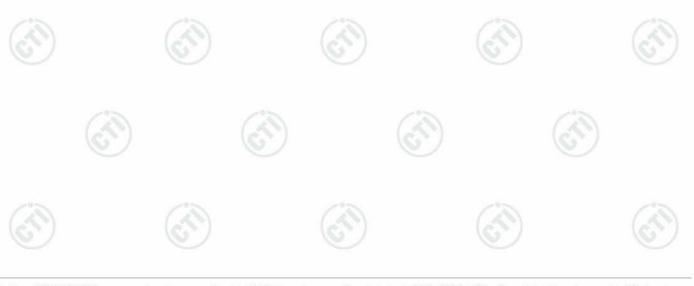
Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.5 Abnormalities from Standard Conditions


None.

6.6 Other Information Requested by the Customer

None.

6.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
1	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 10 of 56

7 Equipment List

		3M full-anechoid	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3	(6,77)	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	<u> </u>	(41)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- (2)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	- 6,	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(T)	(0)

Page 1	1	of	56
--------	---	----	----

	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/107 11112	-(38)	·	(A)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A	A-X	

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
21	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)



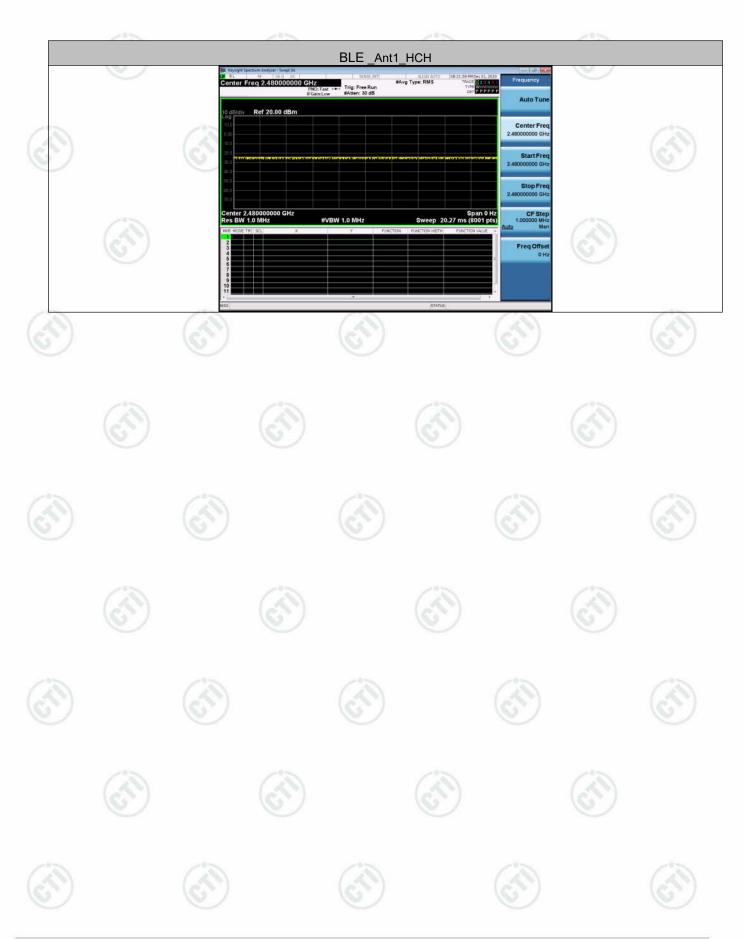
Report No.: EED32M00333501 Page 13 of 56

Duty Cycle

Result Table

Mode	Channel	Duty Cycle [%]	Limit	Verdict
BLE	LCH	100		PASS
BLE	МСН	100	/ S	PASS
BLE	нсн	100	(3)	PASS





Report No.: EED32M00333501 Page 15 of 56

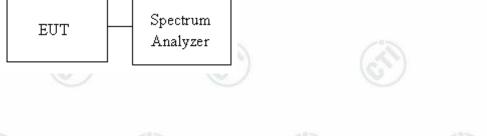
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

Limi	(3)	Shall be at least 500kHz


Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

Mode Channel		6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.7257	1.0626	PASS
BLE	MCH	0.7336	1.0672	PASS
BLE	HCH	0.7233	1.0609	PASS



Report No.: EED32M00333501 Page 17 of 56

Test Graphs
6 dB Bandwidth

Page 18 of 56

Occupied Bandwidth(99%)

Report No.: EED32M00333501 Page 19 of 56

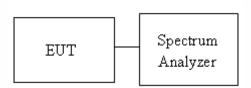
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


		Ø.
Limit	☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]	
	☐ Point-to-point operation	

Test Procedure

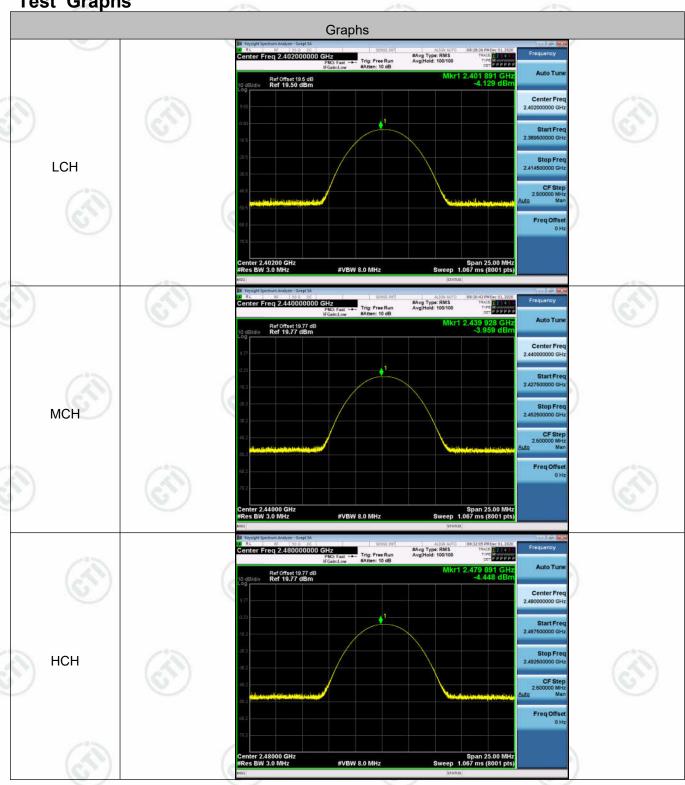
Test method Refer as KDB 558074 D01, section 9.1.2.


- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup

Test Result

		O and and Dool Down (IdDa)	Manalla4
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-4.129	PASS
BLE	MCH	-3.959	PASS
BLE	НСН	-4.448	PASS



Test Graphs

Report No.: EED32M00333501 Page 22 of 56

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

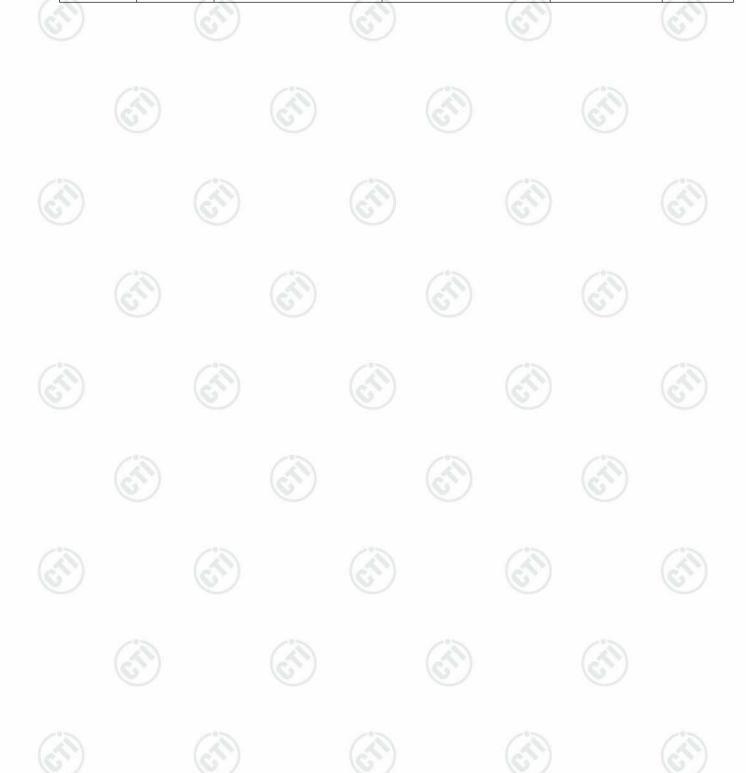
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

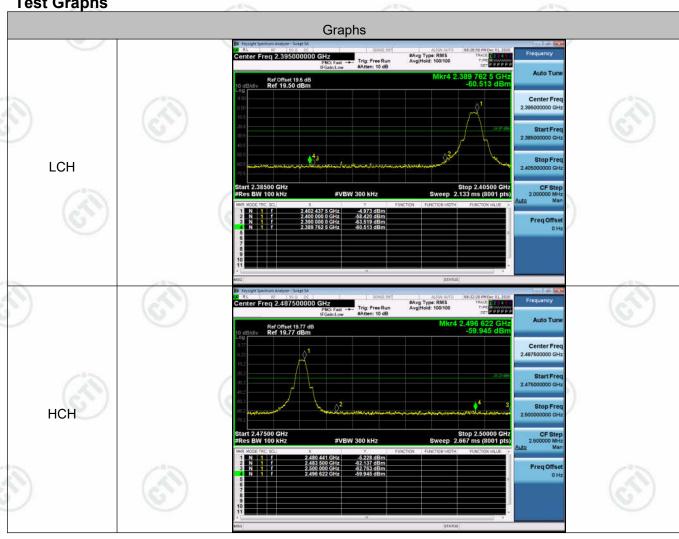
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Page 23 of 56

Result Table


Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-4.973	-60.513	-24.97	PASS
BLE	HCH	-5.228	-59.945	-25.23	PASS

Page 24 of 56

Report No.: EED32M00333501 Page 25 of 56

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

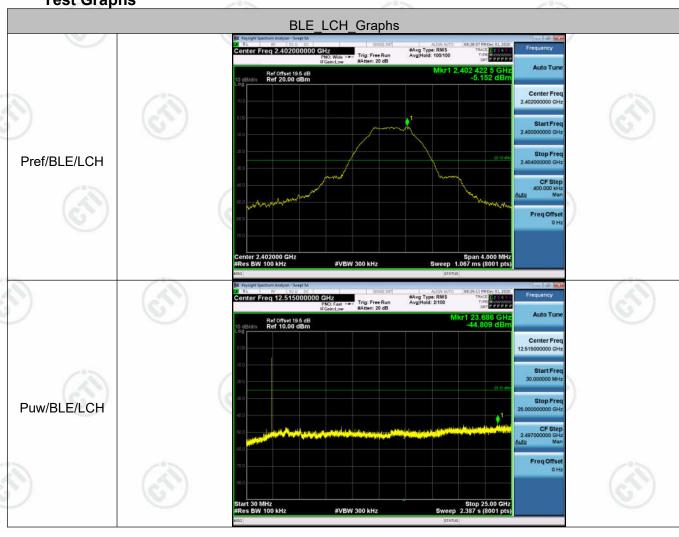
Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

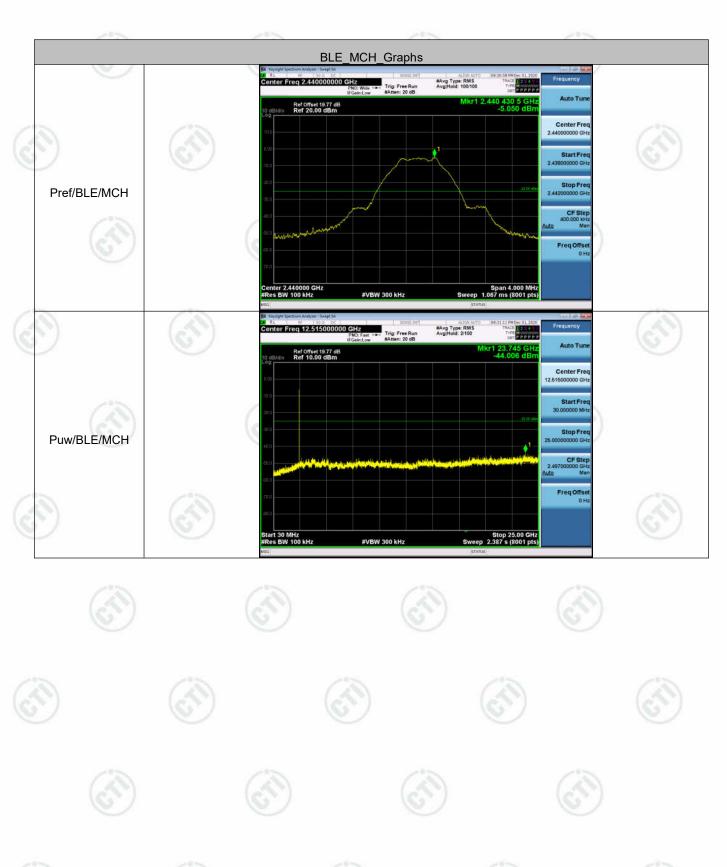
Test Setup

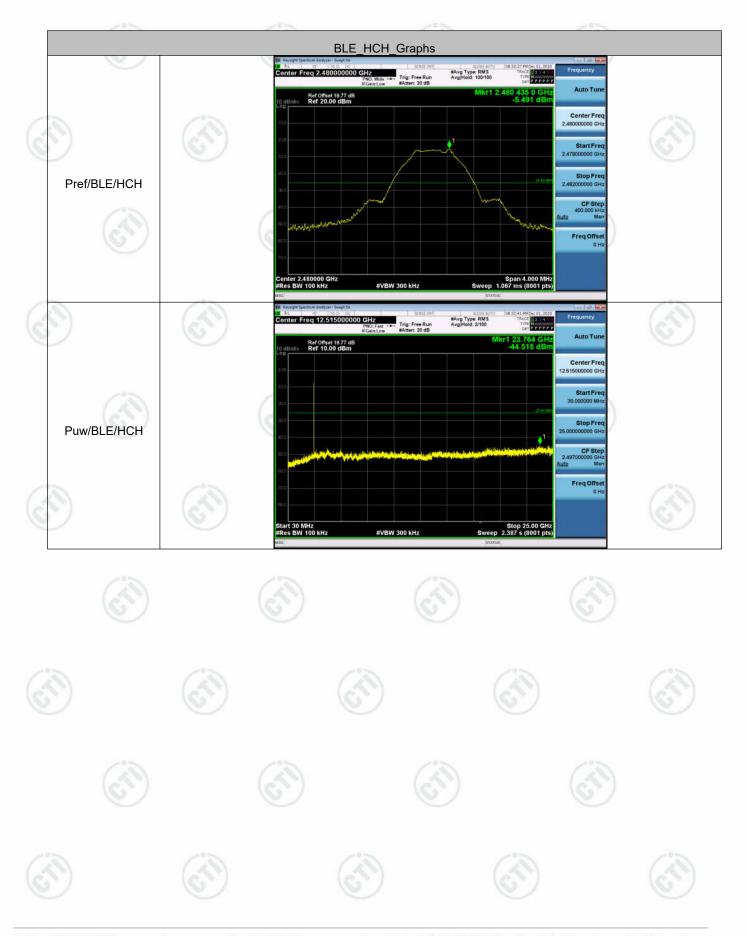
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-5.152	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-5.050	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-5.491	<limit< td=""><td>PASS</td></limit<>	PASS




Page 27 of 56





Report No.: EED32M00333501 Page 30 of 56

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

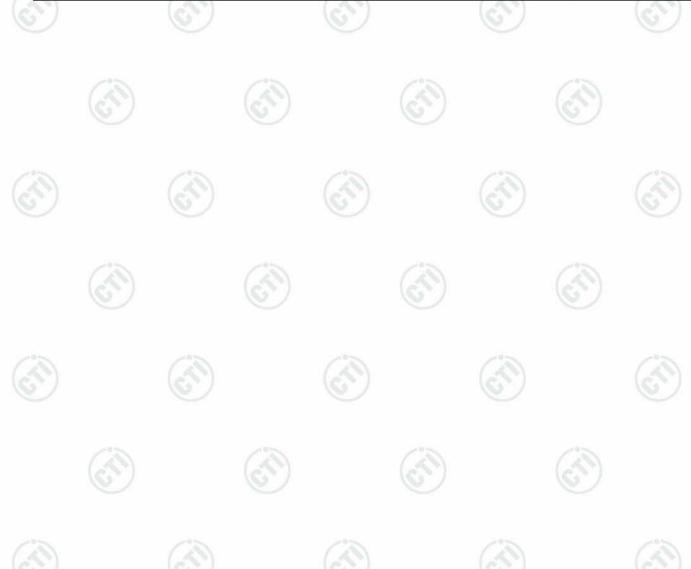
Limit 6	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation :
	i diffe to point operation .

Test Procedure

Test method Refer as KDB 558074 D01, Section 10.2

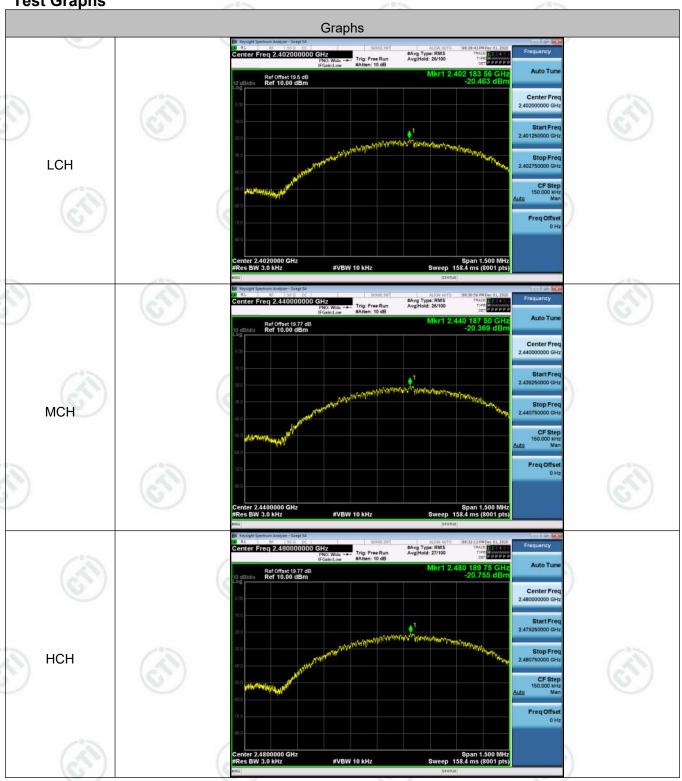
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup



Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-20.463	PASS
BLE	MCH	-20.369	PASS
BLE	НСН	-20.755	PASS

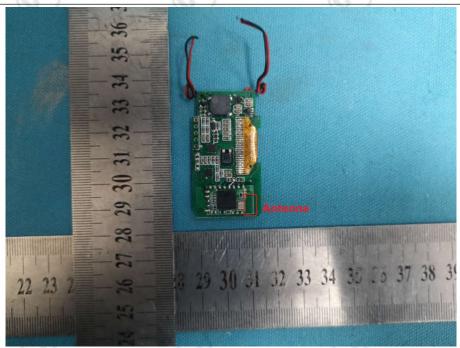


Page 32 of 56

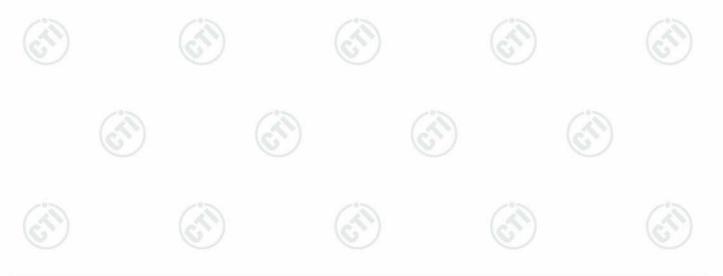
Test Graphs

Report No.: EED32M00333501 Page 33 of 56

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

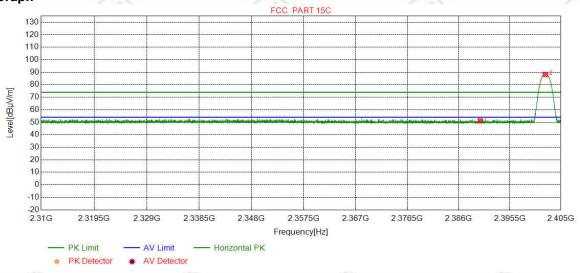
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.5dBi.

Report No.: EED32M00333501 Page 34 of 56

Appendix G): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test proced Test method Refer as KD a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximi polarizations of the ar d. For each suspected e the antenna was tune was turned from 0 de e. The test-receiver syst Bandwidth with Maxim	ure as below: B 558074 D01, Son the top of a rochoic camber. The of the highest raceters away from op of a variable-hovaried from one aum value of the finitenna are set to mission, the EUT d to heights from grees to 360 degreem was set to Penum Hold Mode.	Section 12. Intating table the table was adiation. Ithe interfer height anter to food the strength make the reas arran 1 meter to frees to find eak Detect	1 e 0.8 meter as rotated 3 ence-recei nna tower. our meters n. Both hor neasuremen aged to its 4 meters a the maxin Function a	rs above the gas of the growing antenna above the growing antenna rizontal and vent. Worst case are and the rotate and the rotate and Specified	to, which which which we have a constructed to the construction of
	f. Place a marker at the frequency to show co					otod
	bands. Save the spector for lowest and highes Above 1GHz test proced g. Different between about to fully Anechoic Charant 18GHz the distance is h. Test the EUT in the	trum analyzer plot to channel lure as below: ove is the test site of the change form the change form the channel of the chan	ot. Repeat in table 0.8 le is 1.5 methods	rom Semi- meter to 1 ter). t channel	ower and mod Anechoic Ch .5 meter(Abd	dulation ambe
	bands. Save the spector for lowest and highes Above 1GHz test proced g. Different between about to fully Anechoic Characterists.	trum analyzer plot channel lure as below: ove is the test site of the change form of the change form of the channel of the c	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis position	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Ch .5 meter(Abo positioning for t is worse cas	dulation ambeove
imit:	bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between about to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, a	trum analyzer plot channel lure as below: ove is the test site of the change form of the change form of the channel of the c	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis positioniuencies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Ch .5 meter(Abo positioning for t is worse cas	dulation ambeove
imit:	bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between about to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, and j. Repeat above proced	trum analyzer plot channel lure as below: ove is the test site of the change form of the second the lowest channel, the ments are performed found the X axiones until all frequents.	e, change fin table 0.8 le is 1.5 methe Highest rmed in X, kis position uencies med/m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete.	dulation ambeove
imit:	bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between about to fully Anechoic Charant 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, and j. Repeat above proced	trum analyzer plot channel lure as below: ove is the test site of the change form of the channel	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me //m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	dulation ambe
imit:	bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between about to fully Anechoic Charant 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, and j. Repeat above proced Frequency 30MHz-88MHz	trum analyzer plot channel lure as below: ove is the test site of the change form of the stand the lowest channel , the country of the channel are perfoord found the X axions until all frequires until all frequires until (dBµV).	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value	dulation ambeove
imit:	bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between about to fully Anechoic Charater 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, at j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	trum analyzer plot channel lure as below: ove is the test site of the change form of the stand the lowest channel of the stand found the X axions until all frequency the lowest channel of the X axions until all frequency the lowest channel of the X axions until all frequency the lowest channel of the lowe	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me //m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value eak Value	dulation ambeove
imit:	bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, at j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	trum analyzer plot the channel strum analyzer plot the channel structure as below: It channel structure as below: It channel structure and table to the channel structure and table to the channel structure are performed found the X axion and the X axion axion and the X	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me (/m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value eak Value eak Value	dulation ambeove
Limit:	bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, at j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	trum analyzer plot channel lure as below: ove is the test site of the second table lowest channel of the test site of the second found the X as the test and table lowest channel of the test are perfoond found the X as the test and table lowest channel of the test and found the X as the test and table lowest channel of the test site of	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me //m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value eak Value	dulation ambeove



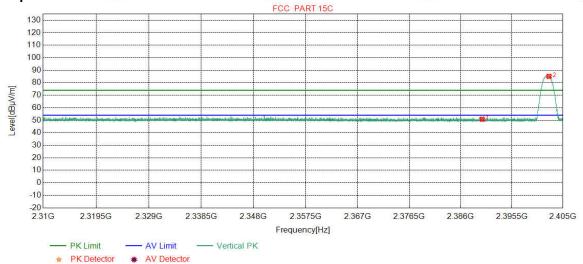
Report No.: EED32M00333501 Page 35 of 56

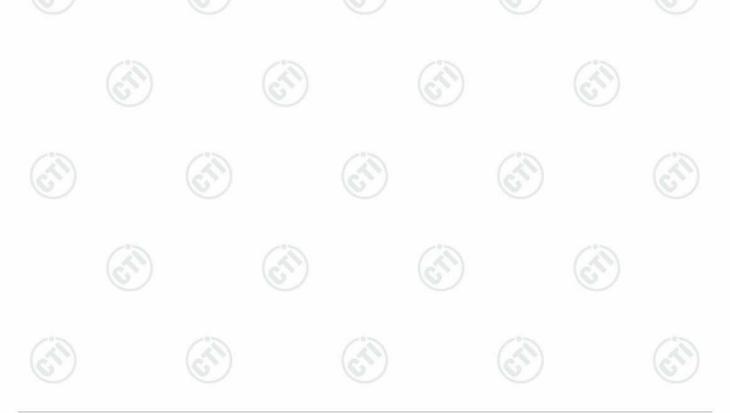
Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.74	51.24	74.00	22.76	Pass	Horizontal
2	2402.1245	32.26	13.31	-43.12	85.69	88.14	74.00	-14.14	Pass	Horizontal

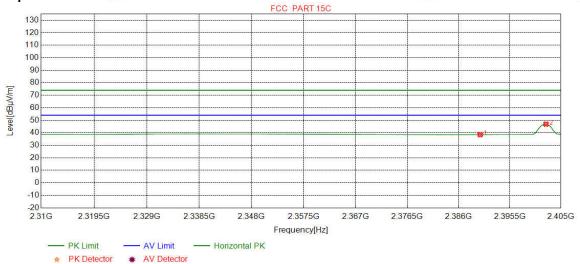


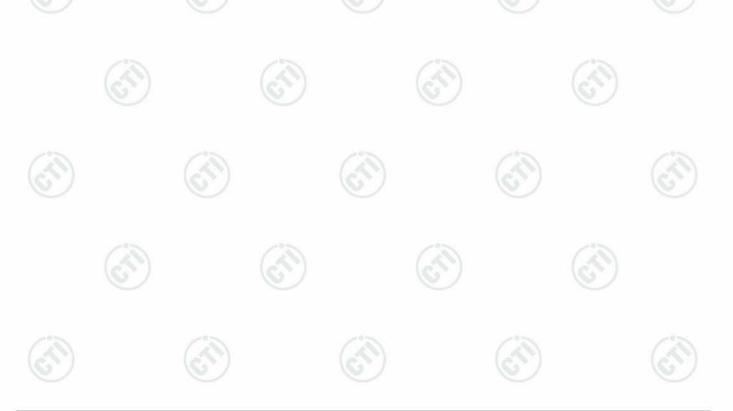

Page 36	of of	56
---------	-------	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.31	50.81	74.00	23.19	Pass	Vertical
2	2402.4158	32.26	13.31	-43.12	82.62	85.07	74.00	-11.07	Pass	Vertical

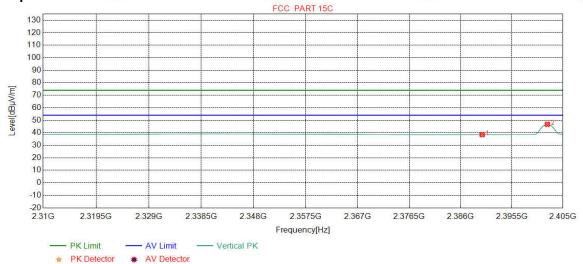



Page	37	of	56	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

N	Ю	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	36.01	38.51	54.00	15.49	Pass	Horizontal
	2	2402.2258	32.26	13.31	-43.12	44.43	46.88	54.00	7.12	Pass	Horizontal

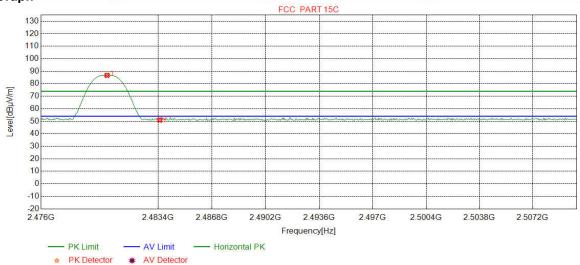


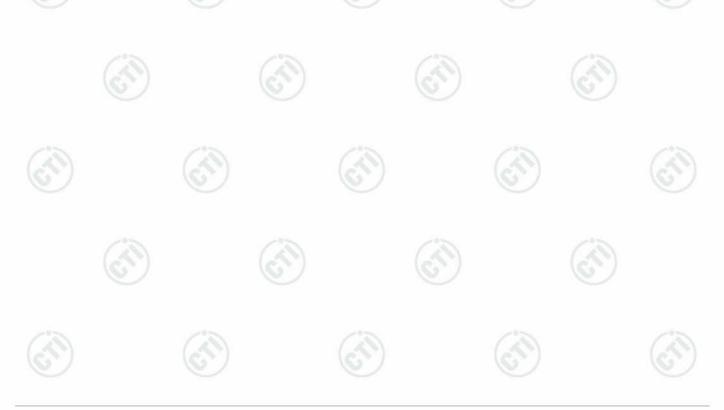
Page	38	of	56	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.00	38.50	54.00	15.50	Pass	Vertical
2	2402.1055	32.26	13.31	-43.12	44.30	46.75	54.00	7.25	Pass	Vertical

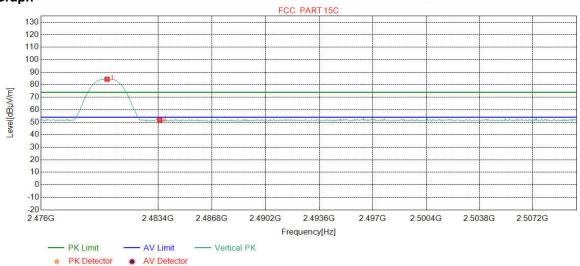


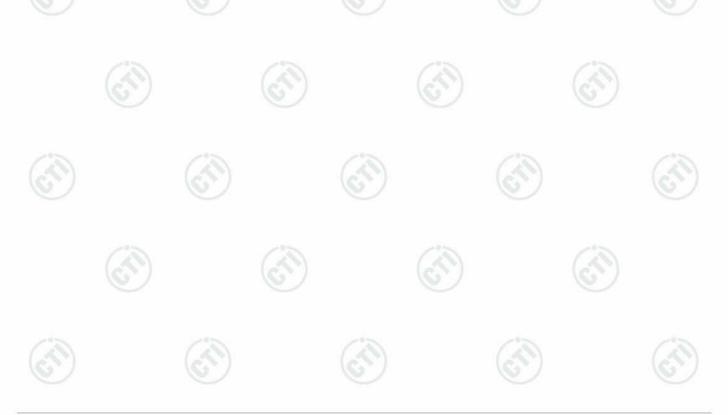

Page	39	of	56
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

١	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2480.1702	32.37	13.39	-43.10	84.04	86.70	74.00	-12.70	Pass	Horizontal
	2	2483.5000	32.38	13.38	-43.11	48.31	50.96	74.00	23.04	Pass	Horizontal

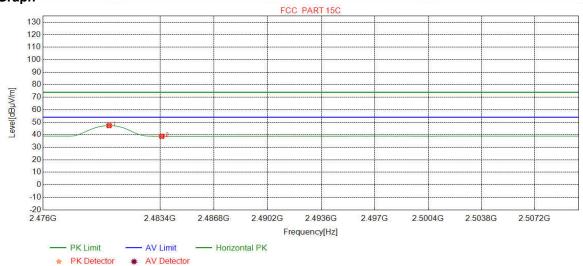


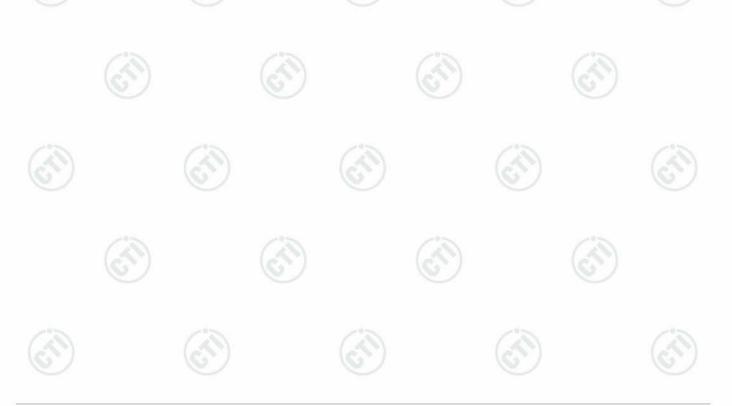

Page 4	40 o	f 56
--------	------	------

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

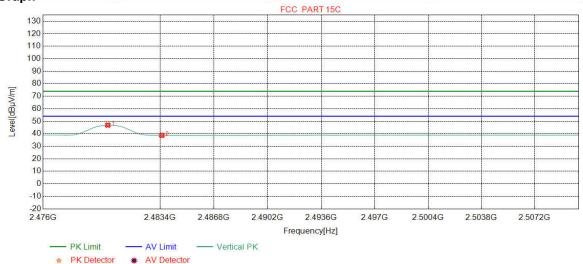
N	0	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2480.1702	32.37	13.39	-43.10	81.67	84.33	74.00	-10.33	Pass	Vertical
2	2	2483.5000	32.38	13.38	-43.11	49.01	51.66	74.00	22.34	Pass	Vertical




Page 4	41	of	56
--------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1702	32.37	13.39	-43.10	44.64	47.30	54.00	6.70	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.08	38.73	54.00	15.27	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	44.24	46.90	54.00	7.10	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.07	38.72	54.00	15.28	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32M00333501 Page 43 of 56

Appendix H) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
\ \	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(6.)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(21)	Al 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

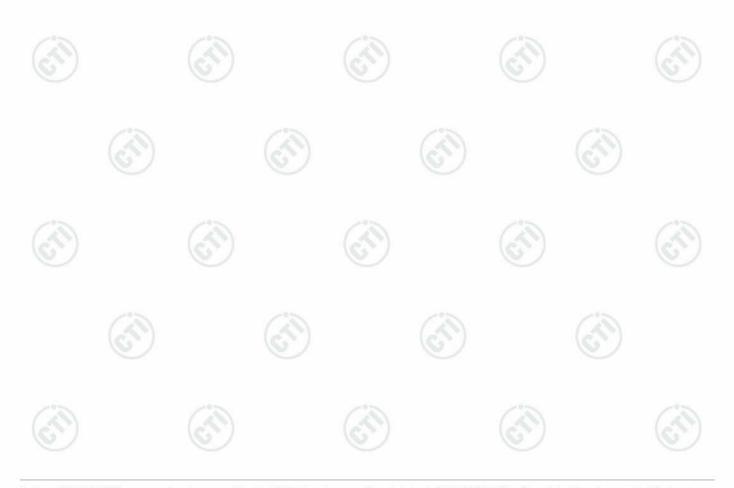
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300	
0.490MHz-1.705MHz	24000/F(kHz)	-	(0.)	30	
1.705MHz-30MHz	30	-	-	30	
30MHz-88MHz	100	40.0	Quasi-peak	3	
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1GHz	500	54.0	Average	3	

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


Page 44 of 56 Report No.: EED32M00333501

Radiated Spurious Emissions test Data:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2440MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiated Emission below 1GHz

Mode	e:		BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	48.38	28.88	40.00	11.12	Pass	Н	PK
2	47.9468	13.20	0.78	-31.95	44.37	26.40	40.00	13.60	Pass	Н	PK
3	71.8112	8.66	0.97	-32.03	46.79	24.39	40.00	15.61	Pass	Н	PK
4	167.4627	8.31	1.51	-31.96	59.78	37.64	43.50	5.86	Pass	Н	PK
5	299.9780	13.20	2.06	-31.40	46.80	30.66	46.00	15.34	Pass	Н	PK
6	600.0290	19.00	2.96	-31.50	45.74	36.20	46.00	9.80	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	48.60	29.10	40.00	10.90	Pass	V	PK
8	72.0052	8.62	0.97	-32.02	53.42	30.99	40.00	9.01	Pass	V	PK
9	84.0344	8.03	1.06	-31.98	49.41	26.52	40.00	13.48	Pass	V	PK
10	207.7218	11.10	1.71	-31.94	52.49	33.36	43.50	10.14	Pass	V	PK
11	299.9780	13.20	2.06	-31.40	46.99	30.85	46.00	15.15	Pass	V	PK
12	600.0290	19.00	2.96	-31.50	44.67	35.13	46.00	10.87	Pass	V	PK

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333

Transmitter Emission above 1GHz

Mode:			BLE GFS	SK Transmi	itting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1332.2332	28.23	2.80	-42.75	55.34	43.62	74.00	30.38	Pass	Н	PK
2	3814.0543	33.65	4.37	-43.04	50.14	45.12	74.00	28.88	Pass	Н	PK
3	4805.1203	34.50	4.55	-42.80	53.32	49.57	74.00	24.43	Pass	Н	PK
4	7205.2804	36.31	5.82	-42.17	52.12	52.08	74.00	21.92	Pass	Н	PK
5	9609.4406	37.64	6.63	-42.10	49.91	52.08	74.00	21.92	Pass	Н	PK
6	11362.5575	38.82	7.35	-42.00	48.99	53.16	74.00	20.84	Pass	Н	PK
7	1331.4331	28.23	2.79	-42.75	54.28	42.55	74.00	31.45	Pass	V	PK
8	3081.0054	33.23	4.76	-43.10	51.12	46.01	74.00	27.99	Pass	V	PK
9	3947.0631	33.76	4.34	-43.01	49.98	45.07	74.00	28.93	Pass	V	PK
10	4804.1203	34.50	4.55	-42.80	55.35	51.60	74.00	22.40	Pass	V	PK
11	7207.2805	36.31	5.81	-42.16	53.89	53.85	74.00	20.15	Pass	V	PK
12	9199.4133	37.66	6.44	-42.04	48.90	50.96	74.00	23.04	Pass	V	PK

Mode:			BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1328.0328	28.23	2.79	-42.76	55.24	43.50	74.00	30.50	Pass	Н	PK
2	3185.0123	33.27	4.63	-43.10	50.10	44.90	74.00	29.10	Pass	Н	PK
3	4897.1265	34.50	4.87	-42.80	55.54	52.11	74.00	21.89	Pass	Н	PK
4	7321.2881	36.42	5.85	-42.13	52.34	52.48	74.00	21.52	Pass	Н	PK
5	9154.4103	37.67	6.45	-42.03	49.72	51.81	74.00	22.19	Pass	Н	PK
6	10285.4857	38.20	6.85	-42.04	49.54	52.55	74.00	21.45	Pass	Н	PK
7	1329.4329	28.23	2.79	-42.75	55.40	43.67	74.00	30.33	Pass	V	PK
8	1998.6999	31.69	3.47	-43.20	52.72	44.68	74.00	29.32	Pass	V	PK
9	4881.1254	34.50	4.80	-42.80	56.11	52.61	74.00	21.39	Pass	V	PK
10	7320.2880	36.42	5.85	-42.14	53.56	53.69	74.00	20.31	Pass	V	PK
11	9246.4164	37.65	6.59	-42.05	49.15	51.34	74.00	22.66	Pass	V	PK
12	10356.4904	38.30	6.96	-42.03	50.01	53.24	74.00	20.76	Pass	V	PK

Mode:			BLE GFSK Transmitting					Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1328.0328	28.23	2.79	-42.76	55.59	43.85	74.00	30.15	Pass	Н	PK
2	3587.0391	33.47	4.37	-43.09	49.07	43.82	74.00	30.18	Pass	Н	PK
3	4501.1001	34.50	4.63	-42.80	51.87	48.20	74.00	25.80	Pass	Н	PK
4	5189.1459	34.69	4.91	-42.73	55.80	52.67	74.00	21.33	Pass	Н	PK
5	7440.2960	36.54	5.85	-42.11	52.35	52.63	74.00	21.37	Pass	Н	PK
6	10592.5062	38.52	6.93	-42.00	48.94	52.39	74.00	21.61	Pass	Н	PK
7	1328.4328	28.23	2.79	-42.76	56.59	44.85	74.00	29.15	Pass	V	PK
8	2054.7055	31.78	3.56	-43.19	51.93	44.08	74.00	29.92	Pass	V	PK
9	3893.0595	33.71	4.34	-43.01	50.88	45.92	74.00	28.08	Pass	V	PK
10	4974.1316	34.50	4.82	-42.80	55.06	51.58	74.00	22.42	Pass	V	PK
11	7439.2960	36.54	5.85	-42.11	52.77	53.05	74.00	20.95	Pass	V	PK
12	10353.4902	38.29	6.94	-42.02	49.20	52.41	74.00	21.59	Pass	V	PK

NOTE:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

