

Product

Page 1 of 40

- Infrared Ear/Forehead Thermometer
- **Trade mark** Model/Type reference **Serial Number Report Number** FCC ID Date of Issue

Test Standards

Test result

DET-218 : N/A

N/A

- EED32L00041001 :
- : 2AQVU0004
- : Mar. 27, 2019
- 47 CFR Part 15Subpart C
- PASS

Prepared for:

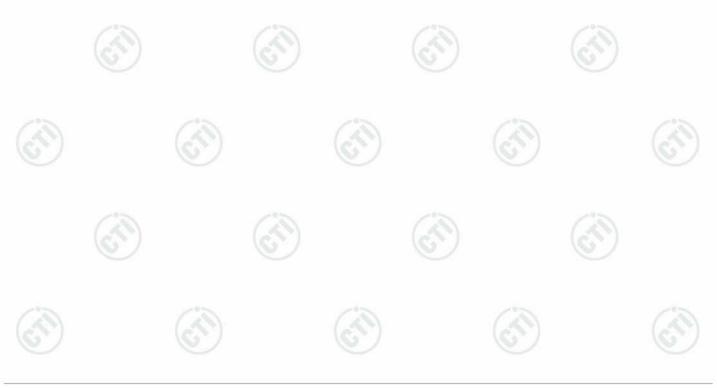
JOYTECH HEALTHCARE CO., LTD. No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

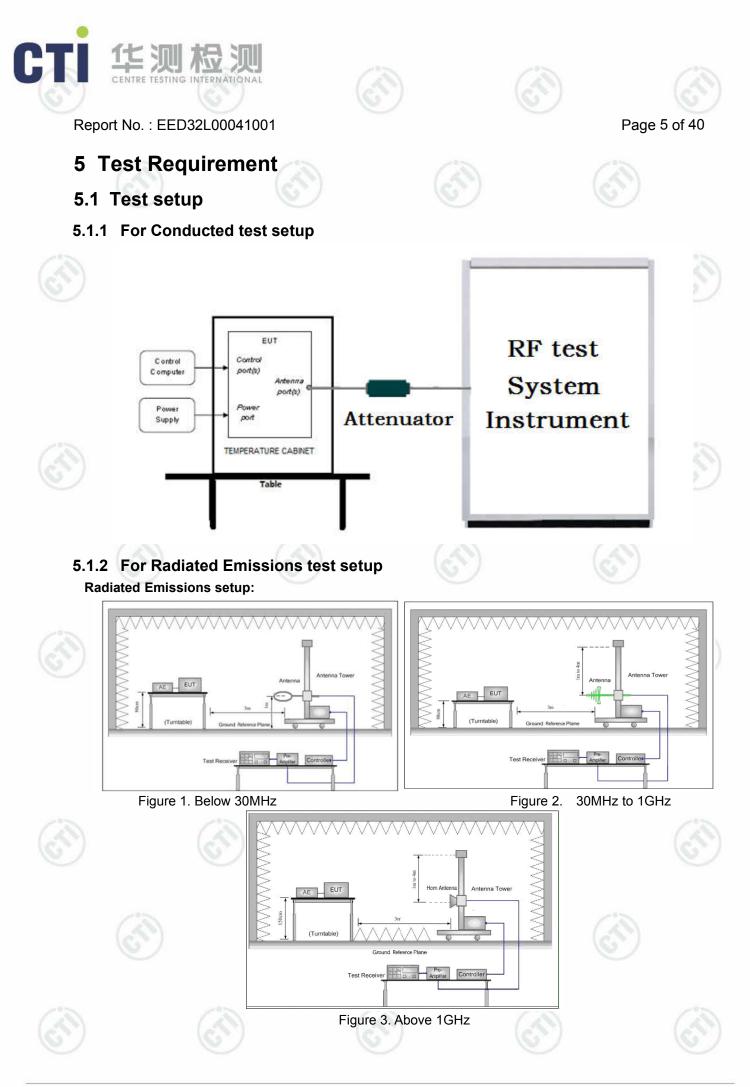
2 Version

Version No.	Date	0	Description	9
00	Mar. 27, 2019		Original	
	100	12	23	10
((cS)		(2)

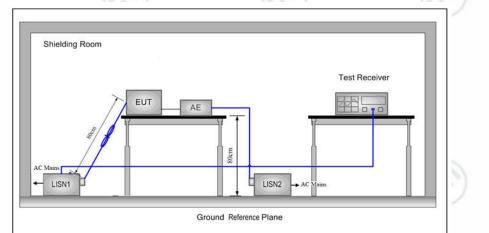

10-

Test Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client. N/A:The device is only battery operated, the test related AC mains is not applicable.



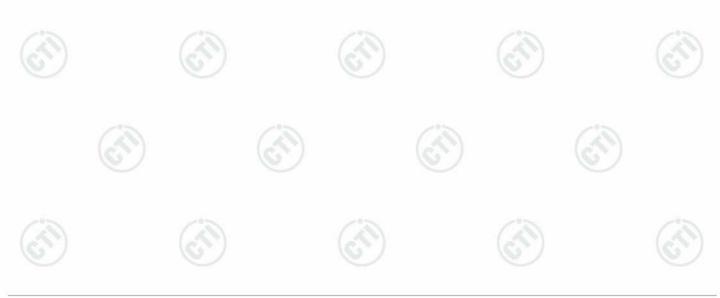
1 COVER PAGE			
2 VERSION	•••••••••••••••••••••••••••••••••••••••	••••••	
3 TEST SUMMARY			
4 CONTENT			
5 TEST REQUIREMENT		••••••	
 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION			
6 GENERAL INFORMATION			
 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDAR 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVER) 	RD LS, κ=2)		
7 EQUIPMENT LIST			••••••
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATIO			
Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emission Appendix D): RF Conducted Spurious Emissions Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): Restricted bands around fundamental fi Appendix H): Radiated Spurious Emissions	s requency (Radiated)		
PHOTOGRAPHS OF TEST SETUP			
PHUTUGRAPHS OF TEST SETUP			



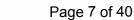
Page 6 of 40

Report No. : EED32L00041001

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

	- (A. N.)		
Operating Environment:	S		()
Temperature:	25.0 °C		
Humidity:	59 % RH	mash the	
Atmospheric Pressure:	1010mbar		0
6.21	(C. 7)	0.0	


5.3 Test Condition

Test channel:

197	Test Mode	Tx/Rx		RF Channel	-11
~	Test Mode		Low(L)	Middle(M)	High(H)
5)	0501/		Channel 1	Channel 20	Channel 40
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	The EUT transmitted the continuo	us signal at the sp	becific channel(s	;).

General Information 6

6.1 Client Information

Applicant:	JOYTECH HEALTHCARE CO., LTD.
Address of Applicant:	No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China
Manufacturer:	JOYTECH HEALTHCARE CO., LTD.
Address of Manufacturer:	No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China
Factory:	JOYTECH HEALTHCARE CO., LTD.
Address of Factory:	No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China

6.2 General Description of EUT

Product Name:	Infrared Ear/Forehead Thermometer
Model No.(EUT):	DET-218
Trade mark:	N/A
EUT Supports Radios application:	BT 4.0 Single mode, 2402MHz-2480MHz
Power Supply:	DC3V(2×AAA battery)
Firmware version of the sample:	V1.0(manufacturer declare)
Hardware version of the sample:	Z(manufacturer declare)
Sample Received Date:	Mar. 04, 2019
Sample tested Date:	Mar. 04, 2019 to Mar. 20, 2019

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	U		V
Bluetooth Version:	4.0			
Modulation Technique:	DSSS	25	25	
Modulation Type:	GFSK	(25)	(\mathcal{S})	
Number of Channel:	40	U	S	
Sample Type:	Portable production			
Test Power Grade:	N/A			- 0.5
Test Software of EUT:	N/A	(AS		
Antenna Type and Gain:	Type: PIFA Antenna Gain: -13.6016dBi	O.).	C.
Test Voltage:	DC3V(2×AAA battery)			

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz

_								
	5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
	6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
	7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
	8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
	9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
1	10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Fax:+86 (0) 755 33683385 Telephone: +86 (0) 755 33683668 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

	. .	• •
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	ncy 7.9 x 10 ⁻⁸ ucted 0.46dB (30MHz-1GHz) 0.55dB (1GHz-18GHz) 0.55dB (1GHz-18GHz) hission test 4.3dB (30MHz-1GHz) 4.5dB (1GHz-12.75GHz) 3.5dB (9kHz to 150kHz) ssion 3.1dB (150kHz to 30MHz) est 0.64°C st 3.8%
2	Dedicted Sourieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

Page 9 of 40

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-29-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(\underline{C})	01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Page 10 of 40

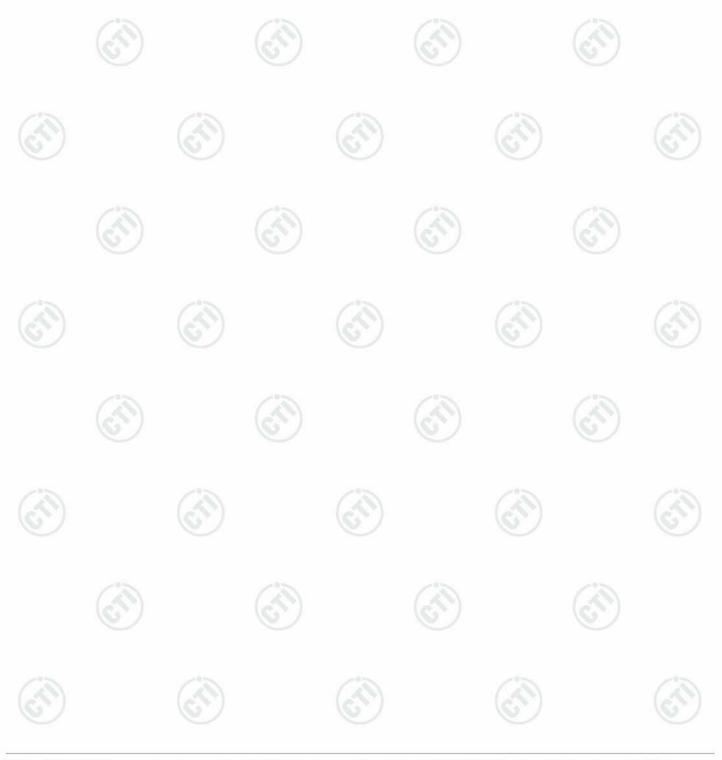
	3M S	Semi/full-anecho		-	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
RILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
RILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	<u>.</u>	01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-29-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 11 of 40

8 Radio Technical Requirements Specification

Reference documents for testing:

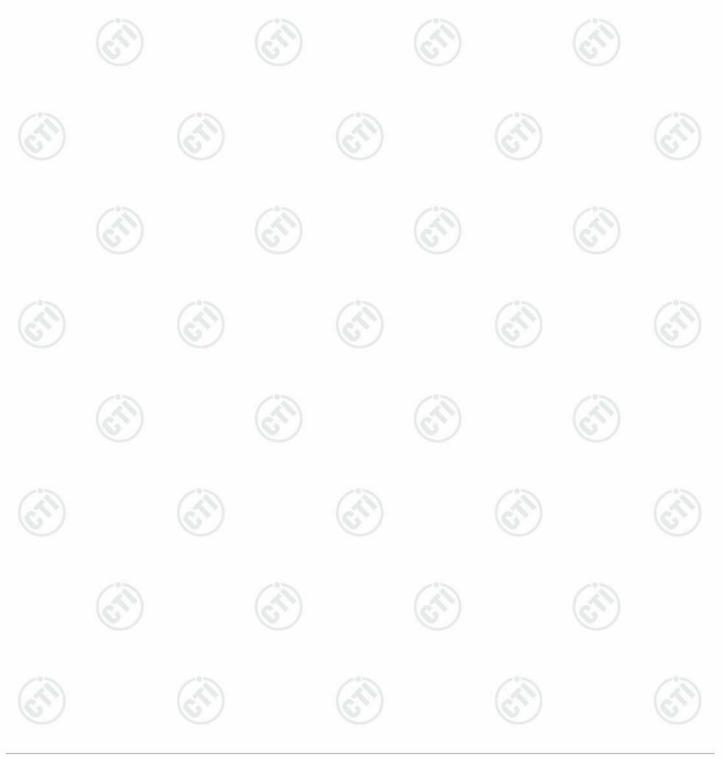
	No.	lde	entity		Document Title		
	1	FCC I	Part15C	Subpar	t C-Intentional Radiators		
0	2	17	3.10-2013	Americ Device:	an National Standard for Testing Ur s	nlicesed W	/ireless
7	est R	esults List:	I all all all all all all all all all al				e
	Test	Requirement	Test met	thod	Test item	Verdict	Note
		15C Section .247 (a)(2)	ANSI C6	3.10	6dB Occupied Bandwidth	PASS	Appendix A)
0		15C Section .247 (b)(3)	ANSI C6	3.10	Conducted Peak Output Power	PASS	Appendix B
		15C Section 5.247(d)	ANSI C6	3.10	Band-edge for RF Conducted Emissions	PASS	Appendix C
		15C Section 5.247(d)	ANSI C6	3.10	RF Conducted Spurious Emissions	PASS	Appendix D)
2		15C Section 5.247 (e)	ANSI C6	3.10	Power Spectral Density	PASS	Appendix E)
D		15C Section 03/15.247 (c)	ANSI C6	3.10	Antenna Requirement	PASS	Appendix F)
		15C Section 15.207	ANSI C6	3.10	AC Power Line Conducted Emission	N/A	N/A
		15C Section 205/15.209	ANSI C6	3.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G
0		15C Section 205/15.209	ANSI C6	3.10	Radiated Spurious Emissions	PASS	Appendix H



Appendix A): 6dB Occupied Bandwidth

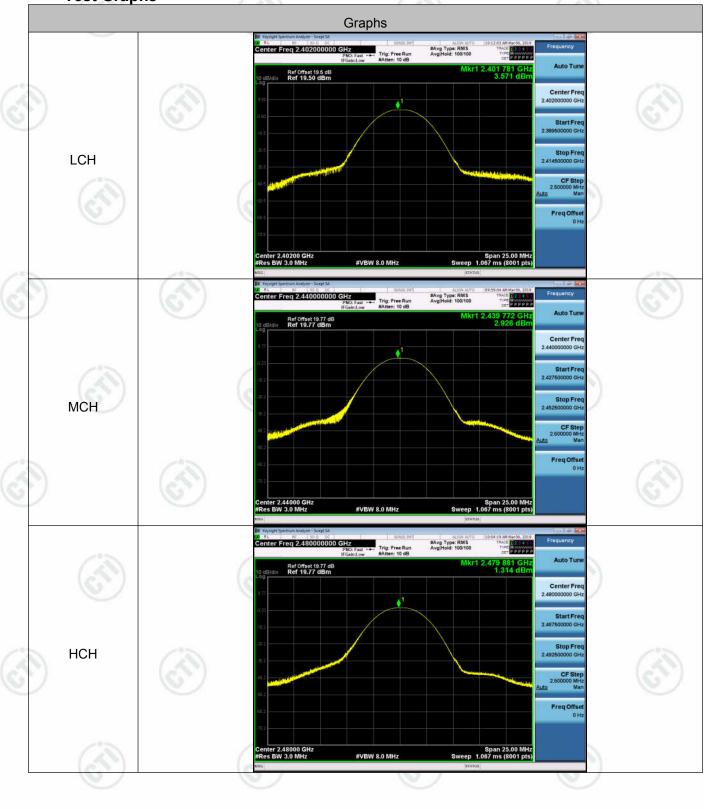
	Test Res	sult				
	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
13	BLE	LCH	0.6712	1.0468	PASS	Deale
6	BLE	МСН	0.6801	1.0596	PASS	Peak detector
~	BLE	НСН	0.6615	1.0567	PASS	uelector

Page 13 of 40



Appendix B): Conducted Peak Output Power

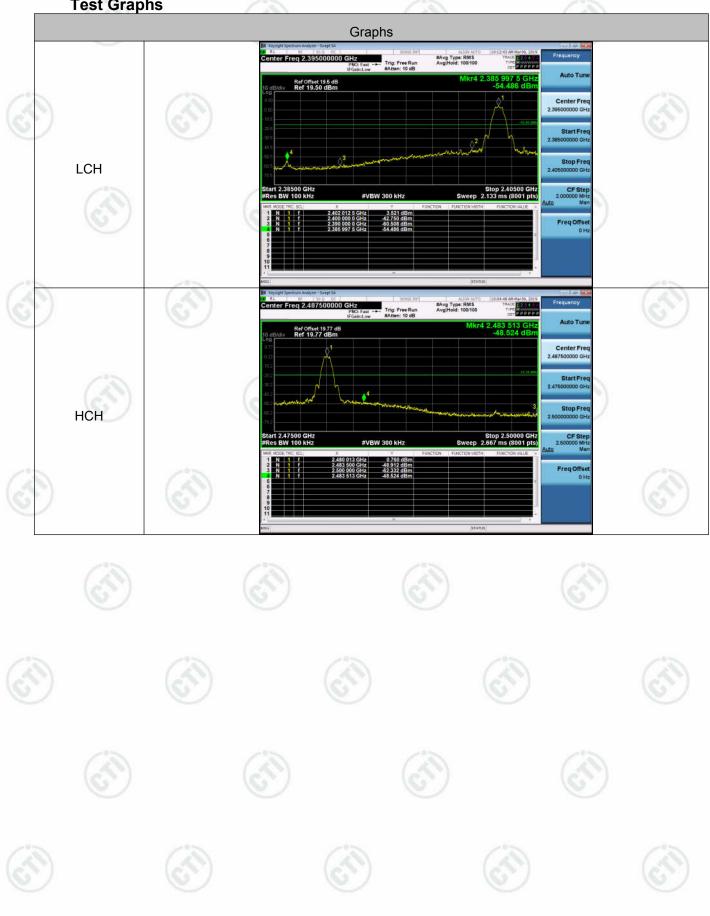
	Test Result	U		U
	Mode	Channel	Conduct Peak Power[dBn	n] Verdict
-	BLE	LCH	3.571	PASS
(P)	BLE	МСН	2.926	PASS
Y	BLE	НСН	1.314	PASS



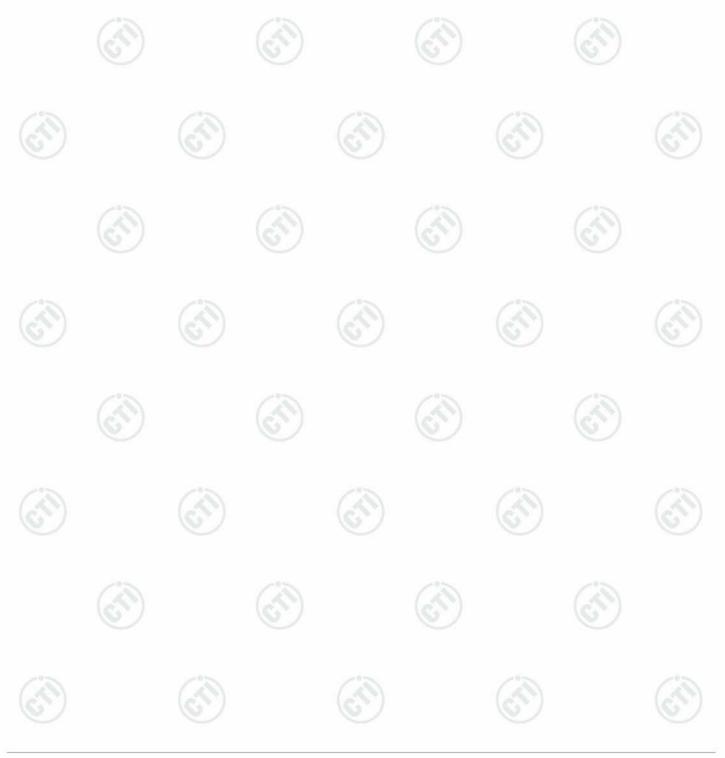
Page 15 of 40

Page 16 of 40

Appendix C): Band-edge for RF Conducted Emissions


•	Resul	, t Table	(D					
M	ode	Channel	Carrier	Power[d	IBm]	Max.Spurious I [dBm]	Level	Limit [dBm]	Verdict
	BLE	LCH	S)	3.521	(\mathcal{A})	-54.486		-16.48	PASS
E	BLE	НСН		0.760		-48.524	U	-19.24	PASS

Test Graphs



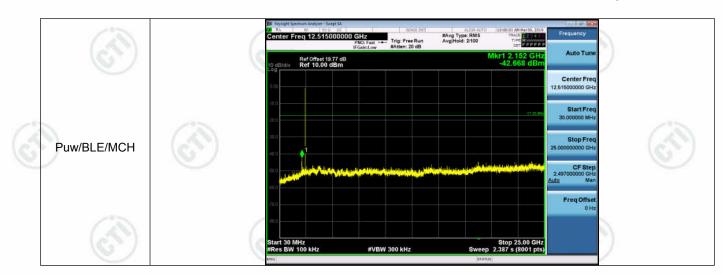
Page 18 of 40

Appendix D): RF Conducted Spurious Emissions


Result	Table		0	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	3.433	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	2.652	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	0.478	<limit< td=""><td>PASS</td></limit<>	PASS



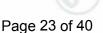
Page 19 of 40

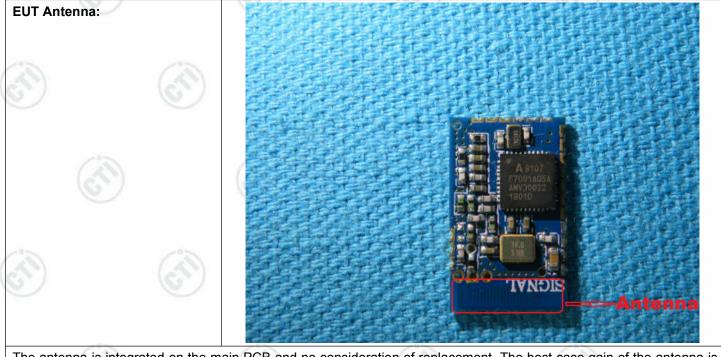


Page 20 of 40

Appendix E): Power Spectral Density

	Result Tab	ble	3)	-	\odot		(C)	
	Mode	Channel	P	SD [dBm/3	kHz]	Limi [dBm/3ł		Verdict
	BLE	LCH	6	-8.877		8	-	PASS
2	BLE	МСН	8	-9.395		8		PASS
	BLE	НСН		-11.619		8		PASS


Page 22 of 40


Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

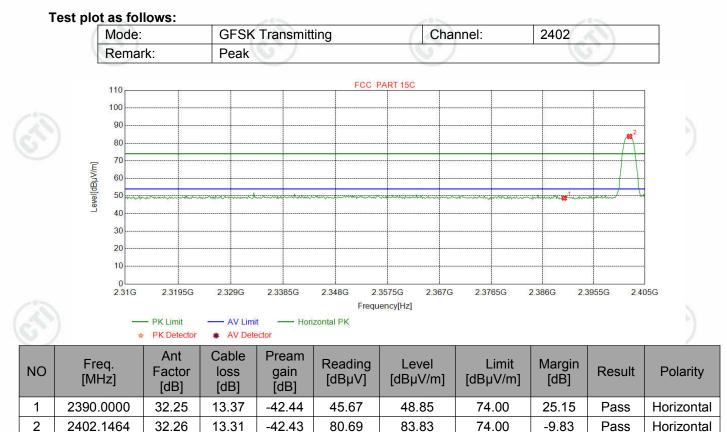
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

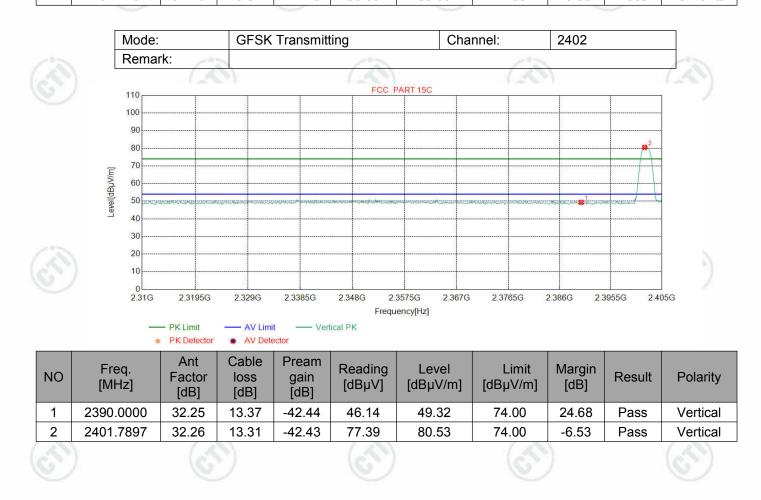
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 13.6016dBi

S

Appendix G): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	(e
Test Procedure:	Below 1GHz test proced	ure as below:	1			
	 a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 means are set 3 means and a set 3 means and a set 3 means are set 3 means and a set 3 means are set 3 means and a set 3 means are se	on the top of a ro choic camber. The of the highest ra- eters away from op of a variable-h varied from one im value of the fi- tenna are set to mission, the EUT d to heights from grees to 360 degreen was set to Pe	he table wa adiation. the interfer neight anter meter to for eld strengtl make the r 1 was arran 1 meter to rees to find eak Detect	ence-recei nna tower. our meters n. Both hor neasureme ged to its 4 meters the maxin	360 degrees to iving antenna above the gra- rizontal and v ent. worst case ar and the rotata num reading.	a, w our vert nd t able
	 f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest 	npliance. Also m trum analyzer plo	easure any	emission	s in the restrie	
	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tabl owest channel , t ements are perfo ad found the X ax	e, change fi n table 0.8 le is 1.5 me the Highesi rmed in X, kis position	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	s in the restric ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas	dula nam ove r
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abov to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above procede	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tabl owest channel , t ements are perfo ad found the X as ures until all freq	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restric ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas	dula nam ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tabl owest channel , t ements are perfo ad found the X ax	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	v emissions for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei	s in the restrictower and mode Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete.	dula nam ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above procedu	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tabl owest channel , t ements are perfo ad found the X as ures until all freq Limit (dBµV	e, change fin n table 0.8 le is 1.5 me the Highesi rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restrictower and mode Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete. mark	dula nam ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above procede Frequency 30MHz-88MHz	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tabl owest channel , t ements are perfo ad found the X as ures until all frequents Limit (dBµV. 40.0	e, change fin n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	s in the restrictower and mode Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete. mark eak Value	dula nam ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tabl owest channel , t ements are perfo ad found the X as ures until all freq Limit (dBµV) 40.0	easure any bt. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m) 0	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	s in the restriction of the sector of the se	dula nam ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tabl owest channel , f ements are perfo ad found the X as ures until all freq Limit (dBµV. 40.0 43.9	e, change fi n table 0.8 le is 1.5 me the Highesi rmed in X, kis position uencies me /m @3m) 0 5 0	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	s in the restriction of the second se	dula nam ove r

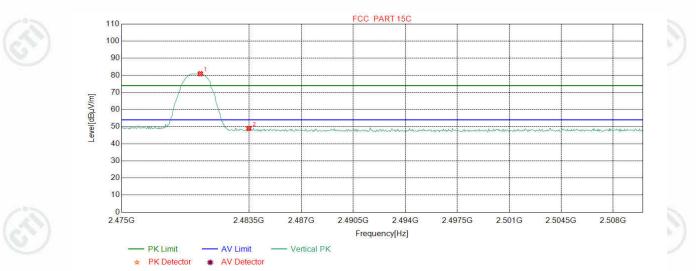




25 of 40

Page 25 of 40

Report No. : EED32L00041001



Page 26 of 40

(1)			r 🗰 AV De	tector						
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	81.38	84.75	74.00	-10.75	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	45.34	48.70	74.00	25.30	Pass	Horizontal

Mode:GFSK TransmittingChannel:2480Remark:Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2566	32.37	13.39	-42.40	77.59	80.95	74.00	-6.95	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	45.62	48.98	74.00	25.02	Pass	Vertical
N	lote:									

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Page 27 of 40

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
$\langle \mathcal{C} \rangle$		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

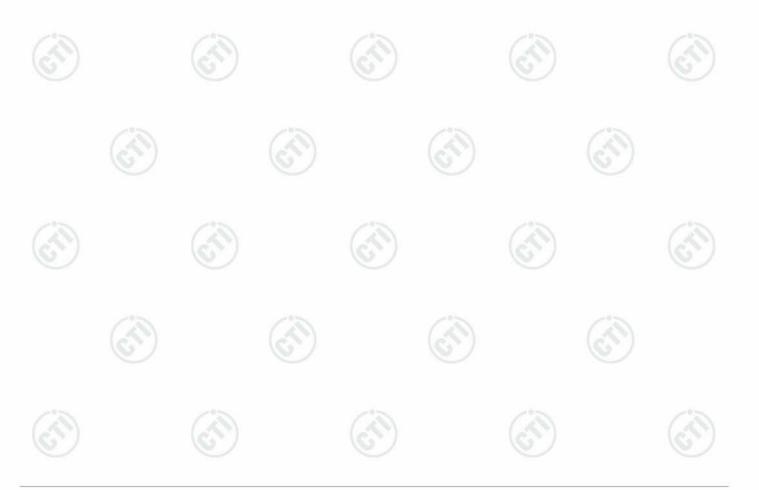
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic
- camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter) (dBµV/m)		Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	2.61
	0.490MHz-1.705MHz	24000/F(kHz)	-		30	
2	1.705MHz-30MHz	30	-	0	30	0
	30MHz-88MHz	100	40.0	Quasi-peak	3	
	88MHz-216MHz	150	43.5	Quasi-peak	3	
	216MHz-960MHz	200	46.0	Quasi-peak	3	
67)	960MHz-1GHz	500	54.0	Quasi-peak	3	
	Above 1GHz	500	54.0	Average	3]
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	B above the maxir equipment under	num permi test. This p	itted average of	emission limit	3


Page 28 of 40

Report No. : EED32L00041001

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	
1	37.9548	11.65	0.69	-32.12	32.74	12.96	40.00	27.04	Pass	Horizontal	
2	140.0090	7.20	1.39	-31.99	36.73	13.33	43.50	30.17	Pass	Horizontal	
3	208.8859	11.13	1.71	-31.94	36.37	17.27	43.50	26.23	Pass	Horizontal	
4	625.0575	19.20	2.97	-31.98	31.87	22.06	46.00	23.94	Pass	Horizontal	
5	687.5318	19.70	3.14	-32.06	34.88	25.66	46.00	20.34	Pass	Horizontal	
6	930.8321	22.28	3.65	-31.34	29.35	23.94	46.00	22.06	Pass	Horizontal	
				1	•		·		1.		

0	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
G	1	55.7076	12.29	0.85	-32.08	39.39	20.45	40.00	19.55	Pass	Vertical
1	2	67.8338	9.56	0.94	-32.05	40.43	18.88	40.00	21.12	Pass	Vertical
	3	120.0250	9.20	1.30	-32.07	42.34	20.77	43.50	22.73	Pass	Vertical
	4	208.8859	11.13	1.71	-31.94	44.77	25.67	43.50	17.83	Pass	Vertical
	5	625.0575	19.20	2.97	-31.98	35.69	25.88	46.00	20.12	Pass	Vertical
	6	688.0168	19.70	3.14	-32.05	33.03	23.82	46.00	22.18	Pass	Vertical

Transmitter Emission above 1GHz

	Mode: BLE GFSK Transmitting				Channel:				2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark	
1	1656.6657	29.43	3.15	-42.76	50.89	40.71	74.00	33.29	Pass	Н	PK	
2	2114.3114	31.86	3.60	-42.56	50.34	43.24	74.00	30.76	Pass	Н	PK	
3	3525.8851	33.42	4.46	-41.76	49.83	45.95	74.00	28.05	Pass	Н	PK	
4	4804.0000	34.50	4.55	-40.66	74.19	72.58	74.00	1.42	Pass	Н	PK	
5	4804.0000	34.50	4.55	-40.66	46.07	44.46	54.00	9.54	Pass	Н	AV	
6	7206.0000	36.31	5.81	-41.02	53.06	54.16	74.00	19.84	Pass	Н	PK	
7	7206.0000	36.31	5.82	-41.02	41.06	42.17	54.00	11.83	Pass	Н	AV	
8	9608.0000	37.64	6.63	-40.76	47.19	50.70	74.00	23.30	Pass	Н	PK	
9	1415.0415	28.32	2.92	-42.69	50.63	39.18	74.00	34.82	Pass	V	PK	
10	2066.9067	31.79	3.57	-42.58	50.81	43.59	74.00	30.41	Pass	V	PK	
11	3197.6132	33.28	4.65	-42.01	48.94	44.86	74.00	29.14	Pass	V	PK	
12	4804.0000	34.50	4.55	-40.66	74.48	72.87	74.00	1.13	Pass	V	PK	
13	4804.0000	34.50	4.55	-40.66	46.08	44.47	54.00	9.53	Pass	V	AV	
14	7206.0000	36.31	5.81	-41.02	52.90	54.00	74.00	20.00	Pass	V	PK	
15	7206.0000	36.31	5.82	-41.02	40.28	41.39	54.00	12.61	Pass	V	AV	
16	9608.0000	37.64	6.63	-40.76	47.10	50.61	74.00	23.39	Pass	V	PK	

Mode: BLE GFSK Transmitting			Channel:				2440				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1432.2432	28.33	2.93	-42.67	51.67	40.26	74.00	33.74	Pass	Н	PK
2	2141.9142	31.90	3.64	-42.55	51.95	44.94	74.00	29.06	Pass	Н	PK
3	3189.8127	33.28	4.63	-42.01	49.39	45.29	74.00	28.71	Pass	Н	PK
4	4880.0000	34.50	4.80	-40.60	72.40	71.10	74.00	2.90	Pass	Н	PK
5	4880.0000	34.50	4.80	-40.60	46.18	44.88	54.00	9.12	Pass	Н	AV
6	7320.0000	36.42	5.85	-40.92	54.20	55.55	74.00	18.45	Pass	Н	PK
7	7320.0000	36.42	5.85	-40.92	39.79	41.14	54.00	12.86	Pass	Н	AV
8	9760.0000	37.70	6.73	-40.62	46.46	50.27	74.00	23.73	Pass	Н	PK
9	1415.0415	28.32	2.92	-42.69	50.66	39.21	74.00	34.79	Pass	V	PK
10	1839.0839	30.64	3.37	-42.70	50.35	41.66	74.00	32.34	Pass	V	PK
11	3507.0338	33.41	4.48	-41.81	49.50	45.58	74.00	28.42	Pass	V	PK
12	4880.0000	34.50	4.80	-40.60	73.86	72.56	74.00	1.44	Pass	V	PK
13	4880.0000	34.50	4.80	-40.60	46.17	44.87	54.00	9.13	Pass	V	AV
14	7320.0000	36.42	5.85	-40.92	50.69	52.04	74.00	21.96	Pass	V	PK
15	7320.0000	36.42	5.85	-40.92	39.50	40.85	54.00	13.15	Pass	V	AV
16	9760.0000	37.70	6.73	-40.62	46.84	50.65	74.00	23.35	Pass	V	PK

Page 29 of 40

Page 30 of 40

215 215				21%				200				
	Mode: BLE GFSK Transmitting				Channel:				2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark	
1	1405.0405	28.31	2.91	-42.69	50.50	39.03	74.00	34.97	Pass	Н	PK	
2	1947.0947	31.35	3.42	-42.64	49.88	42.01	74.00	31.99	Pass	Н	PK	
3	4088.1725	33.92	4.32	-40.80	47.41	44.85	74.00	29.15	Pass	Н	PK	
4	4960.0000	34.50	4.82	-40.53	72.91	71.70	74.00	2.30	Pass	Н	PK	
5	4960.0000	34.50	4.82	-40.53	45.34	44.13	54.00	9.87	Pass	Н	AV	
6	7440.0000	36.54	5.85	-40.82	50.38	51.95	74.00	22.05	Pass	Н	PK	
7	7440.0000	36.54	5.85	-40.82	39.49	41.06	54.00	12.94	Pass	Н	AV	
8	9920.0000	37.77	6.79	-40.48	46.37	50.45	74.00	23.55	Pass	Н	PK	
9	1224.0224	28.12	2.67	-42.86	51.60	39.53	74.00	34.47	Pass	V	PK	
10	1798.4798	30.37	3.32	-42.71	50.60	41.58	74.00	32.42	Pass	V	PK	
11	3169.6613	33.27	4.60	-42.02	50.04	45.89	74.00	28.11	Pass	V	PK	
12	4960.0000	34.50	4.82	-40.53	73.66	72.45	74.00	1.55	Pass	V	PK	
13	4960.0000	34.50	4.82	-40.53	45.31	44.10	54.00	9.90	Pass	V	AV	
14	7440.0000	36.54	5.85	-40.82	52.28	53.85	74.00	20.15	Pass	V	PK	
15	7440.0000	36.54	5.85	-40.82	39.49	41.06	54.00	12.94	Pass	V	AV	
16	9920.0000	37.77	6.79	-40.48	45.43	49.51	74.00	24.49	Pass	V	PK	

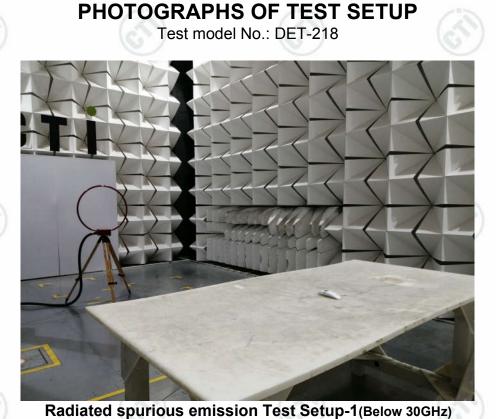
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

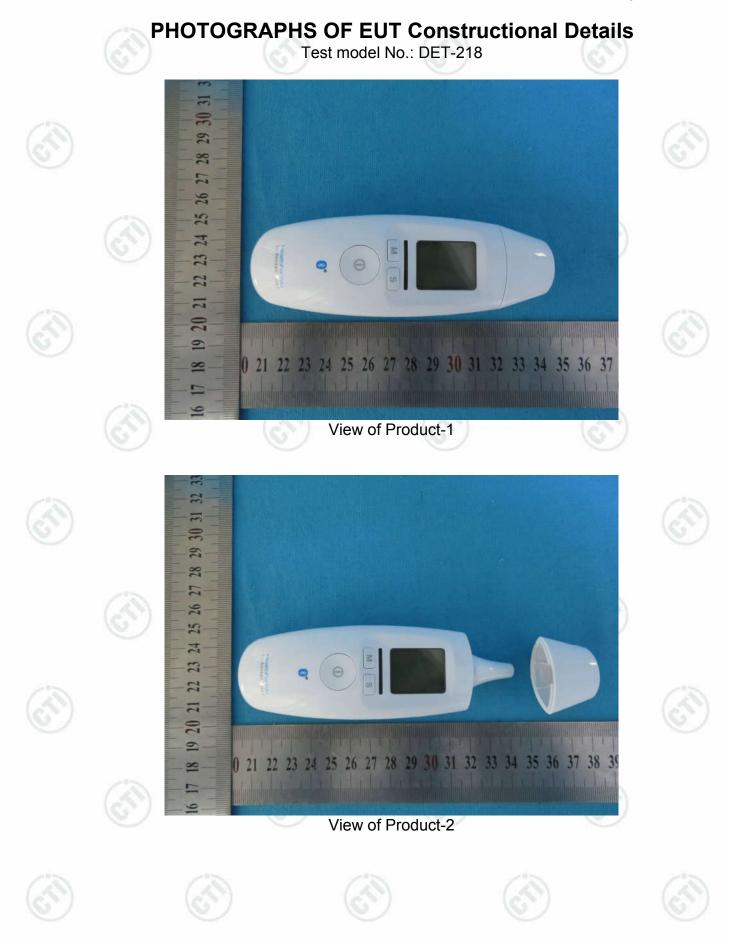
2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

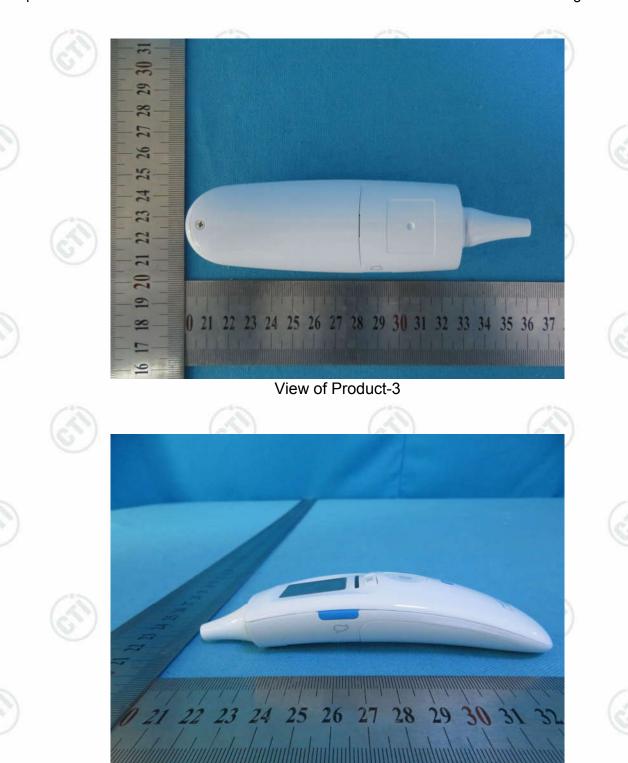




Page 31 of 40

Radiated spurious emission Test Setup-2(30MHz-1GHz)





View of Product-4

