

Report No.: EED32K00303801 Page 1 of 40

TEST REPORT

Product: DIGITAL THERMOMETER

Trade mark : N/A

Model/Type reference : DMT-4751, OT 30

Serial Number : N/A

Report Number : EED32K00303801

FCC ID : 2AQVU0002

Date of Issue : Dec. 06, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

JOYTECH HEALTHCARE CO., LTD.

No. 365, Wuzhou Road, Yuhang Economic Development Zone,
Hangzhou city, 311100 Zhejiang, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested by:

Tom chen

Reviewed by:

Kevin yang

ZeJm (a

Date: Dec. 06, 2018

Levin San

Kevin Lan

Sheek Luo

Check No.:3570177792

2 Version

Version No.	Date	(6	Description	7
00	Dec. 06, 2018		Original	
	200	100	75	/15
((c,5)	(64)	(65)

Report No. : EED32K00303801 Page 3 of 40

3 Test Summary

, rest dummary		/ 21/		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

N/A:The device is only battery operated, the test related AC mains is not applicable.

Model No.: DMT-4751, OT 30

Only the model DMT-4751 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, only the model name is different.

4 Content

2 VERSION 3 TEST SUMMARY 4 CONTENT 5 TEST REQUIREMENT 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST	
4 CONTENT	
5 TEST REQUIREMENT 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
5 TEST REQUIREMENT 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).	
5.1.2 For Radiated Emissions test setup. 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION. 6 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).	
5.2 TEST ENVIRONMENT 5.3 TEST CONDITION. 6 GENERAL INFORMATION. 6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).	
5.3 TEST CONDITION 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	677788888
6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
6.4 DESCRIPTION OF SUPPORT UNITS	
6.5 TEST LOCATION	
6.6 Deviation from Standards	8 8
6.7 ABNORMALITIES FROM STANDARD CONDITIONS	8 8
6.8 Other Information Requested by the Customer	8
	N Q
7 EQUIPMENT LIST	
	9
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	11
Appendix A): 6dB Occupied Bandwidth	
Appendix A): 0dB Occupied Bandwidth	12
Appendix C): Band-edge for RF Conducted Emissions	
Appendix D): RF Conducted Spurious Emissions	
Appendix E): Power Spectral Density	
Appendix F): Antenna Requirement(Parlick t)	
Appendix G): Restricted bands around fundamental frequency (Radiated) Appendix H): Radiated Spurious Emissions	
PHOTOGRAPHS OF TEST SETUP	
	30
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	32

Report No.: EED32K00303801 Page 5 of 40

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.2 Test Environment

Operating Environment:	(6)	(37)		(E)
Temperature:	21 °C			
Humidity:	55 % RH			
Atmospheric Pressure:	1010mbar		_0_	_0-

5.3 Test Condition

Test channel:

oot onarmon.					
Test Mode	Tx/Rx	RF Channel			
rest wode	TX/RX	Low(L)	Middle(M)	High(H)	
GFSK	0400MUL	Channel 1	Channel 20	Channel 40	
Gran	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Report No.: EED32K00303801 Page 7 of 40

6 General Information

6.1 Client Information

Applicant:	JOYTECH HEALTHCARE CO., LTD.
Address of Applicant:	No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China
Manufacturer:	JOYTECH HEALTHCARE CO., LTD.
Address of Manufacturer:	No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China
Factory:	JOYTECH HEALTHCARE CO., LTD
Address of Factory:	No. 365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China

6.2 General Description of EUT

Product Name:	DIGITAL THERMOMETER			
Model No.(EUT):	DMT-4751, OT 30			
Test Model No.:	DMT-4751	(3)		(2)
Trade mark:	N/A	(0,)		6.
EUT Supports Radios application:	BT 4.0 Single mode, 2402-2480MHz			
Power Supply:	Button battery (CR 2032) 3V		75	
Firmware version of the sample:	V1.0(manufacturer declare)		(4)	
Hardware version of the sample:	Z(manufacturer declare)			
Sample Received Date:	Nov. 09, 2018			
Sample tested Date:	Nov. 12, 2018 to Dec. 05, 2018	(3)		(2)
	-			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	4.0		245	
Modulation Technique:	DSSS		(25)	
Modulation Type:	GFSK		0	
Number of Channel:	40			
Sample Type:	Portable production			
Test Power Grade:	N/A			
Test Software of EUT:	N/A	(0.)		(0.
Antenna Type :	PCB Antenna			
Antenna Gain:	0dBi			
Test Voltage:	Button battery (CR 2032) 3V		6	

Operation		of channal					
Operation	Frequency each	oi channei	T	1	T	1	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz

Report No. : EED32K00303801 Page 8 of 40

4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Padiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32K00303801 Page 9 of 40

7 Equipment List

		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019	
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019	
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02		01-10-2018	01-09-2019	
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-10-2018	01-09-2019	
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019	
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019	
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019	
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019	

	3M S	emi/full-anechoi		0.1.1.1	0-1-0
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	10-28-2018	10-27-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
			100435		
Receiver Receiver	R&S R&S	ESCI ESCI7	100435 100938- 003	05-25-2018 11-22-2017	05-24-2019 11-23-2018
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001	_	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018	01-09-2019

8 Radio Technical Requirements Specification

Reference documents for testing:

No	. Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Appendix A): 6dB Occupied Bandwidth

Test Result

		The state of the s	to the second of		
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6715	1.0686	PASS	
BLE	MCH	0.6506	1.0577	PASS	Peak
BLE	НСН	0.6957	1.0802	PASS	detector

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	3.014	PASS
BLE	MCH	1.719	PASS
BLE	HCH	-0.041	PASS

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
7	BLE	LCH	2.966	-57.573	-17.03	PASS
3	BLE	HCH	-0.144	-48.109	-20.14	PASS

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.933	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	1.581	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-0.168	<limit< td=""><td>PASS</td></limit<>	PASS

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-8.992	8	PASS
BLE	MCH	-10.764	8	PASS
BLE	НСН	-12.131	8	PASS

Test Graphs

Report No.: EED32K00303801

Report No. : EED32K00303801 Page 22 of 40

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No. : EED32K00303801 Page 23 of 40

Appendix G): Restricted bands around fundamental frequency (Radiated)

(Radiated)	1.00.2		1.70.2			36.2	
Receiver Setup:	Freq	uency	Detector	RBW	VBW	Remark	
	30MHz	z-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A1	4011-	Peak	1MHz	3MHz	Peak	-07
	Above	e 1GHz	Peak	1MHz	10Hz	Average	6
Test Procedure:	a. The EUT at a 3 me determine b. The EUT was mou c. The anter determine polarizati d. For each the anten was turne e. The test-	was placed eter semi-and ethe position was set 3 m nted on the trans height is ethe maximuons of the arrough suspected enha was tuned from 0 degreceiver systems.	ure as below: on the top of a rechoic camber. To of the highest recters away from op of a variable-learn varied from one aum value of the fintenna are set to mission, the EUT do heights from grees to 360 degem was set to Penum Hold Mode.	otating table he table wa adiation. the interfer neight anter meter to fo eld strength make the n r was arran 1 meter to rees to find	e 0.8 meter ence-recei nna tower. our meters n. Both hor neasurement aged to its we 4 meters a the maxin	rs above the gas above the gro- rizontal and vent. worst case and the rotata and meading.	, which which was a second control of the control o
	f. Place a n frequency bands. So	narker at the y to show co	end of the restrice mpliance. Also m trum analyzer plo	easure any	emission:	s in the restric	
	f. Place a n frequency bands. So for lowes Above 1GHz g. Different to fully Ar 18GHz the i. Test the Transmitt	marker at the y to show con ave the spect and highest test proced between about the distance is a EUT in the lation measurating mode, and	end of the restrict mpliance. Also me trum analyzer place channel for as below: when the test site may be a meter and table towest channel, aments are performed found the X as	e, change fin table 0.8 le is 1.5 method in X, kis positioni	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i	Anechoic Ch. 5 meter(Abo cositioning for t is worse cas	amb ove
Limit:	f. Place a n frequency bands. So for lowes Above 1GHz g. Different to fully An 18GHz th h. Test the i. The radia Transmitt j. Repeat a	marker at the y to show con ave the spect and highest test proced between about the distance is EUT in the lation measurating mode, and bove proced	end of the restrict mpliance. Also me trum analyzer plot channel for the state of t	e, change fin table 0.8 le is 1.5 me the Highest remed in X, xis positioniuencies me	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i	Anechoic Ch. 5 meter(Abo cositioning for t is worse cas	amb ove
Limit:	f. Place a n frequency bands. So for lowes Above 1GHz g. Different to fully Ar 18GHz th h. Test the i. The radia Transmitt j. Repeat a	marker at the y to show con ave the spect and highest test proced between about the distance is a EUT in the lation measurating mode, and	end of the restrict mpliance. Also me trum analyzer place channel for as below: when the test site may be a meter and table towest channel, aments are performed found the X as	e, change fin table 0.8 le is 1.5 me the Highest freed in X, xis positioniuencies me 1/m @3m)	rom Semi-meter to 1 ter). t channel Y, Z axis ping which i easured wa	Anechoic Ch. 5 meter (Abo	amb ove
Limit:	f. Place a n frequency bands. So for lowes Above 1GHz g. Different to fully Ar 18GHz the i. Test the i. The radia Transmitt j. Repeat a	narker at the y to show con ave the spect and highest test proced between about the distance is EUT in the lation measurating mode, and bove proced quency	end of the restrict mpliance. Also more trum analyzer place channel for the state of the state o	e, change fin table 0.8 le is 1.5 me the Highest remed in X, kis positioni uencies me //m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i easured wa	Anechoic Ch. 5 meter(Abo cositioning for t is worse cas as complete. mark eak Value	amb ove
Limit:	f. Place a n frequency bands. So for lowes Above 1GHz g. Different to fully Ar 18GHz th h. Test the i. The radia Transmitt j. Repeat a Frequency 530MHz 88MHz	marker at the y to show con ave the spect and highest test proced between about the distance is a EUT in the lation measurating mode, and bove proced guency	end of the restrict mpliance. Also more trum analyzer plot channel street as below: the test site mber change forms of the test site mber change forms of the test and table towest channel, the ments are performed found the X as the test site of the test site mber change forms of the test site o	e, change fin table 0.8 le is 1.5 me the Highest remed in X, xis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Ch. 5 meter (Abo	amb ove
Limit:	f. Place a n frequency bands. So for lowes Above 1GHz g. Different to fully Ar 18GHz the i. Test the i. The radia Transmitt j. Repeat a Frequency 500 Section 18 Se	narker at the y to show cor ave the spect and highest test proced between aborechoic Charles distance is EUT in the ation measurating mode, and bove proced quency 2-88MHz	end of the restrict mpliance. Also more trum analyzer place channel for the state of the state o	e, change fin table 0.8 le is 1.5 me the Highest firmed in X, kis positioniuencies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (About 15 meter (About 15 meter) Anechoic Ch. 5 meter (About 15 meter) Anechoic Ch. 5 meter (About 15 meter) Anechoic Ch. 6 meter (About 15 meter) Anechoic Ch. 7 m	amb ove
Limit:	f. Place a n frequency bands. So for lowes Above 1GHz g. Different to fully Ar 18GHz th h. Test the i. The radia Transmitt j. Repeat a Frequency 500 MHz 88MHz 216MHz 960MHz	marker at the y to show con ave the spect and highest test proced between about the distance is EUT in the lation measurating mode, and bove proced quency 2-88MHz 2-960MHz	end of the restrict mpliance. Also more trum analyzer plots channel series to the test site of the test site	e, change fin table 0.8 le is 1.5 mer the Highest ormed in X, xis positioniquencies med	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (Aborders as complete. mark eak Value eak Value	amb ove

Report No.: EED32K00303801 Page 24 of 40

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-36.62	41.00	50.00	74.00	24.00	Pass	Horizontal
2	2401.7897	32.26	13.31	-36.60	75.33	84.30	74.00	-10.30	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak	/15	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-36.62	41.25	50.25	74.00	23.75	Pass	Vertical
2	2402.0275	32.26	13.31	-36.60	73.44	82.41	74.00	-8.41	Pass	Vertical

Page 25 of 40

Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-36.77	75.73	84.72	74.00	-10.72	Pass	Horizontal
2	2483.5000	32.38	13.38	-36.80	41.76	50.72	74.00	23.28	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2566	32.37	13.39	-36.77	69.34	78.33	74.00	-4.33	Pass	Vertical
2	2483.5000	32.38	13.38	-36.80	41.69	50.65	74.00	23.35	Pass	Vertical
NIA	to:									

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32K00303801 Page 26 of 40

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1011=	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	- 11	m	ΙIT	•
ш	-11	ш	ш	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	705	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	GFSK	Transmittin	ng	(223)		(853)		(6	
	QP	/						1/2	
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
57.1627	12.05	0.87	-32.06	43.22	24.08	40.00	15.92	Pass	Vertical
110.0330	10.89	1.24	-32.07	37.54	17.60	43.50	25.90	Pass	Vertical
150.0010	7.55	1.45	-32.01	39.67	16.66	43.50	26.84	Pass	Vertical
208.8859	11.13	1.71	-31.94	44.15	25.05	43.50	18.45	Pass	Vertical
289.9860	13.00	2.03	-31.88	33.49	16.64	46.00	29.36	Pass	Vertical
853.1273	21.54	3.52	-31.76	29.67	22.97	46.00	23.03	Pass	Vertical
	Freq. [MHz] 57.1627 110.0330 150.0010 208.8859 289.9860	Freq. [MHz] Ant Factor [dB] 57.1627 12.05 110.0330 10.89 150.0010 7.55 208.8859 11.13 289.9860 13.00	Freq. [MHz] Ant Factor [dB] Cable loss [dB] 57.1627 12.05 0.87 110.0330 10.89 1.24 150.0010 7.55 1.45 208.8859 11.13 1.71 289.9860 13.00 2.03	QP Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] 57.1627 12.05 0.87 -32.06 110.0330 10.89 1.24 -32.07 150.0010 7.55 1.45 -32.01 208.8859 11.13 1.71 -31.94 289.9860 13.00 2.03 -31.88	QP Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dBμV] Reading [dBμV] 57.1627 12.05 0.87 -32.06 43.22 110.0330 10.89 1.24 -32.07 37.54 150.0010 7.55 1.45 -32.01 39.67 208.8859 11.13 1.71 -31.94 44.15 289.9860 13.00 2.03 -31.88 33.49	QP Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] 57.1627 12.05 0.87 -32.06 43.22 24.08 110.0330 10.89 1.24 -32.07 37.54 17.60 150.0010 7.55 1.45 -32.01 39.67 16.66 208.8859 11.13 1.71 -31.94 44.15 25.05 289.9860 13.00 2.03 -31.88 33.49 16.64	QP Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 57.1627 12.05 0.87 -32.06 43.22 24.08 40.00 110.0330 10.89 1.24 -32.07 37.54 17.60 43.50 150.0010 7.55 1.45 -32.01 39.67 16.66 43.50 208.8859 11.13 1.71 -31.94 44.15 25.05 43.50 289.9860 13.00 2.03 -31.88 33.49 16.64 46.00	QP Freq. [MHz] Ant Factor [dB] Cable loss [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Magin [dB] 57.1627 12.05 0.87 -32.06 43.22 24.08 40.00 15.92 110.0330 10.89 1.24 -32.07 37.54 17.60 43.50 25.90 150.0010 7.55 1.45 -32.01 39.67 16.66 43.50 26.84 208.8859 11.13 1.71 -31.94 44.15 25.05 43.50 18.45 289.9860 13.00 2.03 -31.88 33.49 16.64 46.00 29.36	QP Freq. [MHz] Ant Factor [dB] Cable loss [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Magin [dB] Result 57.1627 12.05 0.87 -32.06 43.22 24.08 40.00 15.92 Pass 110.0330 10.89 1.24 -32.07 37.54 17.60 43.50 25.90 Pass 150.0010 7.55 1.45 -32.01 39.67 16.66 43.50 26.84 Pass 208.8859 11.13 1.71 -31.94 44.15 25.05 43.50 18.45 Pass 289.9860 13.00 2.03 -31.88 33.49 16.64 46.00 29.36 Pass

Transmitter Emission above 1GHz

Report No.: EED32K00303801

Mode	e:	BLE GF	SK Tran	smitting	Channel:				2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1894.6895	31.00	3.42	-36.79	47.18	44.81	74.00	29.19	Pass	Н	Peak
2	3305.5204	33.32	4.57	-36.78	47.05	48.16	74.00	25.84	Pass	Н	Peak
3	4804.0000	34.50	4.55	-36.15	66.63	69.53	74.00	4.47	Pass	Н	Peak
4	4804.0000	34.50	4.55	-36.15	40.13	43.03	54.00	10.97	Pass	Н	Average
5	6009.0506	35.80	5.32	-36.31	44.20	49.01	74.00	24.99	Pass	Н	Peak
6	7206.0000	36.31	5.81	-36.43	47.80	53.49	74.00	20.51	Pass	Н	Peak
7	7206.0000	36.31	5.82	-36.43	36.80	42.50	54.00	11.50	Pass	Н	Average
8	9608.0000	37.64	6.63	-36.79	48.55	56.03	74.00	17.97	Pass	Н	Peak
9	9608.0000	37.64	6.63	-36.79	36.01	43.49	54.00	10.51	Pass	Н	Average
10	1798.6799	30.37	3.32	-36.81	47.80	44.68	74.00	29.32	Pass	V	Peak
11	3507.6838	33.41	4.48	-36.57	46.53	47.85	74.00	26.15	Pass	V	Peak
12	4804.0000	34.50	4.55	-36.15	64.39	67.29	74.00	6.71	Pass	V	Peak
13	4804.0000	34.50	4.55	-36.15	39.56	42.46	54.00	11.54	Pass	V	Average
14	5975.2484	35.76	5.33	-36.24	44.64	49.49	74.00	24.51	Pass	V	Peak
15	7206.0000	36.31	5.81	-36.43	52.01	57.70	74.00	16.30	Pass	V	Peak
16	7206.0000	36.31	5.82	-36.43	31.12	36.82	54.00	17.18	Pass	V	Average
17	9608.0000	37.64	6.63	-36.79	53.58	61.06	74.00	12.94	Pass	V	Peak
18	9608.0000	37.64	6.63	-36.79	37.94	45.42	54.00	8.58	Pass	V	Average

Mode	e:	BLE GF	SK Trans	smitting	Channel:				2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1817.4817	30.50	3.34	-36.86	47.17	44.15	74.00	29.85	Pass	Н	Peak
2	3575.2884	33.46	4.39	-36.51	45.48	46.82	74.00	27.18	Pass	Н	Peak
3	4880.0000	34.50	4.80	-36.09	66.51	69.72	74.00	4.28	Pass	Н	Peak
4	4880.0000	34.50	4.80	-36.10	43.21	46.41	54.00	7.59	Pass	Н	Average
5	5523.4682	35.04	5.16	-36.10	44.67	48.77	74.00	25.23	Pass	Н	Peak
6	7320.0000	36.42	5.85	-36.38	52.38	58.27	74.00	15.73	Pass	Н	Peak
7	7320.0000	36.42	5.85	-36.38	30.99	36.88	54.00	17.12	Pass	Н	Average
8	9760.0000	37.70	6.73	-36.81	50.40	58.02	74.00	15.98	Pass	Н	Peak
9	9760.0000	37.70	6.73	-36.82	31.55	39.16	54.00	14.84	Pass	Н	Average
10	1898.2898	31.03	3.42	-36.78	47.99	45.66	74.00	28.34	Pass	V	Peak
11	3311.3708	33.32	4.57	-36.77	46.39	47.51	74.00	26.49	Pass	V	Peak
12	4880.0000	34.50	4.80	-36.09	63.84	67.05	74.00	6.95	Pass	V	Peak
13	4880.0000	34.50	4.80	-36.10	42.09	45.29	54.00	8.71	Pass	V	Average
14	6312.6208	35.86	5.46	-36.20	45.13	50.25	74.00	23.75	Pass	V	Peak
15	7320.0000	36.42	5.85	-36.38	51.50	57.39	74.00	16.61	Pass	V	Peak
16	7320.0000	36.42	5.85	-36.38	37.25	43.14	54.00	10.86	Pass	V	Average
17	9760.0000	37.70	6.73	-36.81	49.79	57.41	74.00	16.59	Pass	V	Peak
18	9760.0000	37.70	6.73	-36.82	37.69	45.30	54.00	8.70	Pass	V	Average

Report No.: EED32K00303801 Page 29 of 40

				100		160	0.7%	20%			
Mode	e:	BLE GF	SK Tran	smitting	Channel:				2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1871.8872	30.85	3.40	-36.87	47.67	45.05	74.00	28.95	Pass	Н	Peak
2	3174.8617	33.27	4.61	-36.83	46.88	47.93	74.00	26.07	Pass	Н	Peak
3	4960.0000	34.50	4.82	-36.20	62.11	65.23	74.00	8.77	Pass	Н	Peak
4	4960.0000	34.50	4.82	-36.21	41.18	44.29	54.00	9.71	Pass	Н	Average
5	5925.8451	35.68	5.19	-36.19	44.84	49.52	74.00	24.48	Pass	Н	Peak
6	7440.0000	36.54	5.85	-36.34	49.88	55.93	74.00	18.07	Pass	Н	Peak
7	7440.0000	36.54	5.85	-36.34	36.19	42.24	54.00	11.76	Pass	Н	Average
8	7440.0000	36.54	5.85	-36.34	36.19	42.24	54.00	11.76	Pass	Н	Peak
9	9920.0000	37.77	6.79	-36.82	34.68	42.42	54.00	11.58	Pass	Н	Average
10	1893.4893	31.00	3.41	-36.79	47.91	45.53	74.00	28.47	Pass	V	Peak
11	3412.1275	33.36	4.53	-36.62	45.87	47.14	74.00	26.86	Pass	V	Peak
12	4960.0000	34.50	4.82	-36.20	61.88	65.00	74.00	9.00	Pass	V	Peak
13	4960.0000	34.50	4.82	-36.21	39.76	42.87	54.00	11.13	Pass	V	Average
14	6105.2570	35.82	5.26	-36.32	44.73	49.49	74.00	24.51	Pass	V	Peak
15	7440.0000	36.54	5.85	-36.34	50.11	56.16	74.00	17.84	Pass	V	Peak
16	7440.0000	36.54	5.85	-36.34	36.21	42.26	54.00	11.74	Pass	V	Average
17	9920.0000	37.77	6.79	-36.82	48.70	56.44	74.00	17.56	Pass	V	Peak
18	9920.0000	37.77	6.79	-36.82	33.98	41.72	54.00	12.28	Pass	V	Average

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32K00303801 Page 30 of 40

PHOTOGRAPHS OF TEST SETUP

Test model No.: DMT-4751

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2 (30MHz- 1GHz)

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: DMT-4751

View of Product-1

View of Product-2

单位:cm CTI 10

View of Product-3

View of Product-4

View of Product-5

View of Product-6

Report No. : EED32K00303801 Page 35 of 40

View of Product-7

View of Product-8

Report No. : EED32K00303801 Page 36 of 40

View of Product-9

View of Product-10

Report No. : EED32K00303801 Page 37 of 40

View of Product-11

View of Product-12

Report No. : EED32K00303801 Page 38 of 40

View of Product-13

View of Product-14

Report No.: EED32K00303801 Page 39 of 40

View of Product-15

View of Product-16

Report No. : EED32K00303801 Page 40 of 40

View of Product-17

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

