

Page 1 of 42

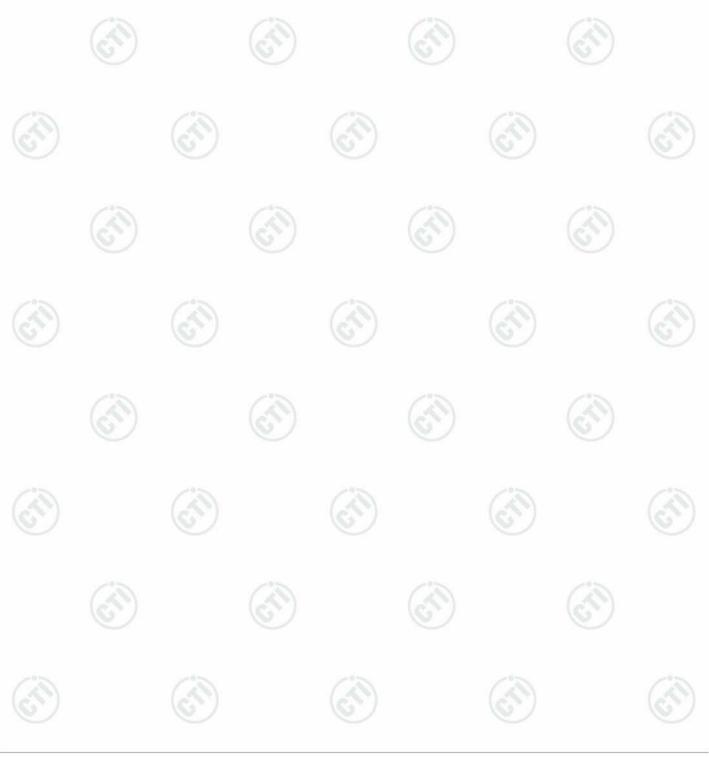
TEST REPORT

- Product **Trade mark** Model/Type reference Serial Number **Report Number** FCC ID Date of Issue **Test Standards Test result**
- DIGITAL THERMOMETER
- N/A
- DMT-4735b
- N/A
- EED32K00141901
- : 2AQVU0001
- Jul. 24, 2018
- 47 CFR Part 15Subpart C
- : PASS

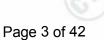
Prepared for:

JOYTECH HEALTHCARE CO., LTD. No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China

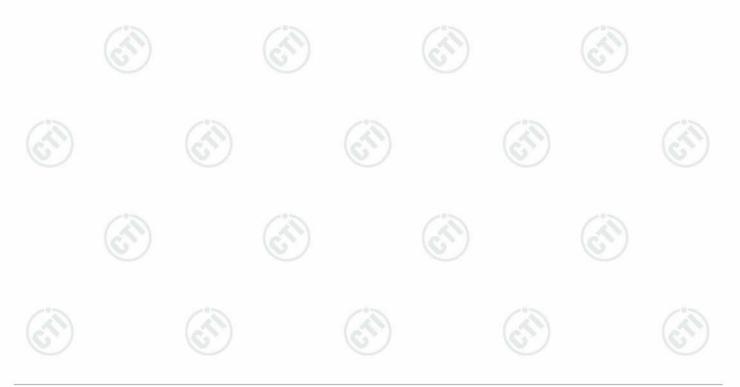
Prepared by:


Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

oroion


Version No.	Date	G	Description	9
00	Jul. 24, 2018		Original	
	12	100	202	10
	S)	(dS)		(2

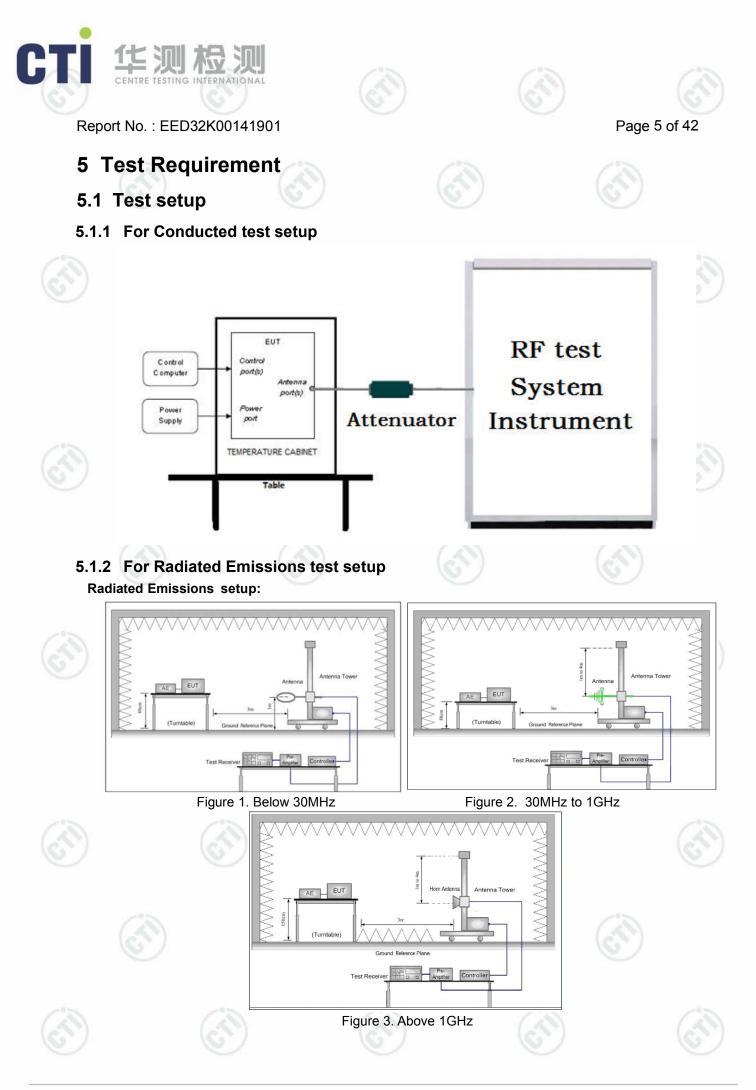
et Summ



Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.



4 Content			
1 COVER PAGE			
3 TEST SUMMARY			
4 CONTENT			
5 TEST REQUIREMENT			
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup			Ę
5.2 TEST ENVIRONMENT 5.3 TEST CONDITION			
6 GENERAL INFORMATION			
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDA 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 	ARD		
6.8 Other Information Requested by the Customer 6.9 Measurement Uncertainty (95% confidence leve	els, k =2)		8
7 EQUIPMENT LIST	<u> </u>		10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATIO	DN	•••••	12
Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output Power			
Appendix C): Band-edge for RF Conducted Emission			
Appendix D): RF Conducted Spurious Emissions Appendix E): Power Spectral Density			
Appendix F): Antenna Requirement			
Appendix G): Restricted bands around fundamental Appendix H) Radiated Spurious Emissions	frequency (Radiat	ted)	
PHOTOGRAPHS OF TEST SETUP		(G [*])	33

Page 6 of 42

5.2 Test Environment **Operating Environment:** Temperature: 24.8 °C Humidity: 57% RH Atmospheric Pressure: 1010mbar

5.3 Test Condition

Test channel:

Test Made	Ty/Dy	RF Channel		
Test Mode GFSK	Tx/Rx	Low(L)	Middle(M)	High(H)
OFOK		Channel 1 Channel 20 Chan		Channel 40
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
Transmitting mode:	The EUT transmitted the continuction channel(s)	uous modulation t	est signal at the	specific
6	(23)	(6	(S)	6



Hotline: 400-6788-333

Hotline: 400-6788-333

6 General Information

6.1 Client Information

Applicant:	JOYTECH HEALTHCARE CO., LTD.			
Address of Applicant:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China			
Manufacturer:	JOYTECH HEALTHCARE CO., LTD.			
Address of Manufacturer:	s of Manufacturer: No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China			
Factory:	JOYTECH HEALTHCARE CO., LTD.			
Address of Factory:	f Factory: No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China			

6.2 General Description of EUT

Product Name:	DIGITAL THERMOMETER			
Model No.(EUT):	DMT-4735b	at 10 mil		2010
Trade mark:	N/A			
EUT Supports Radios application:	BT4.0 Single Mode, 2402-2480MHz			0
Power Supply:	Button battery (CR 2032) 3V			
Sample Received Date:	Jun. 06, 2018		1	
Sample tested Date:	Jun. 06, 2018 to Jul. 24, 2018		(2)	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	4.0		(3)
Modulation Technique:	DSSS	6)	(C)
Modulation Type:	GFSK		
Number of Channel:	40		
Sample Type:	Portable production	20	
Antenna Type and Gain:	Type: PCB Antenna Gain: 0dBi	I)	\odot
Test Voltage:	DC 3V		

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 7 of 42

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

None.

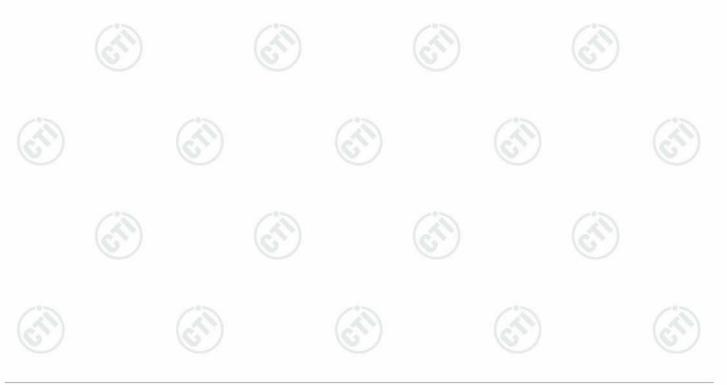
6.8 Other Information Requested by the Customer

Page 9 of 42

Report No. : EED32K00141901

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Padiated Spurious omission test	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Attenuator	HuaXiang	SHX370	15040701	03-29-2018	03-28-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	~	01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(F)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54436035	03-13-2018	03-12-2019
PC-1	Lenovo	R4960d	(A)	03-29-2018	03-28-2019
BT&WI-FI Automatic control	R&S	OSPB157	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-29-2018	03-28-2019

Page 10 of 42

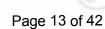
Page 11 of 42

	3M S	emi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-617	03-29-2018	03-28-2019
Microwave Preamplifier	Tonscend	EMC051845S E	980380	01-19-2018	01-18-2019
Horn Antenna	ETS-LINDGREN	3117	00057407	07-10-2018	07-08-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029- 4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001	0	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-10-2018	01-09-2019

Page 12 of 42

Report No. : EED32K00141901

8 Radio Technical Requirements Specification

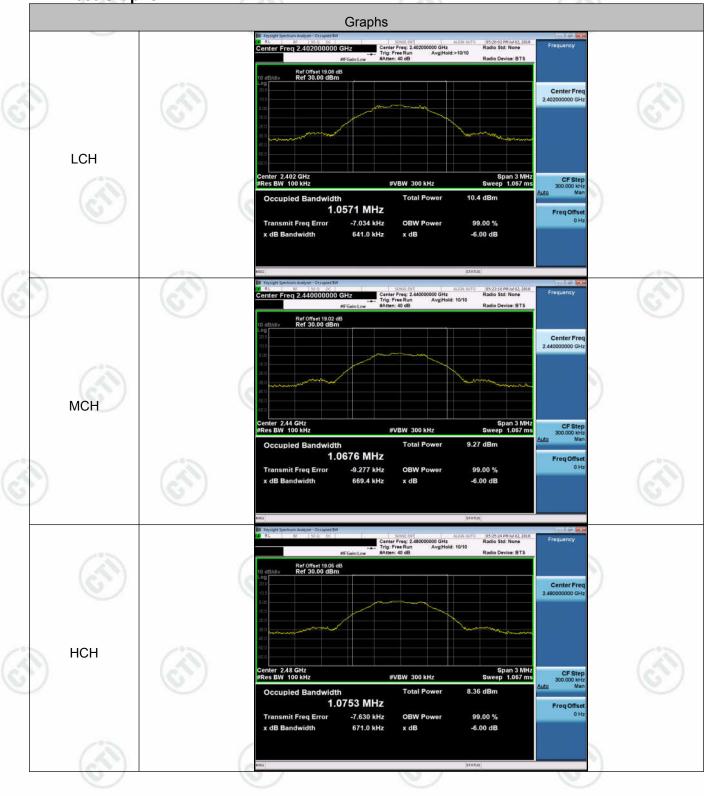

Reference documents for testing:

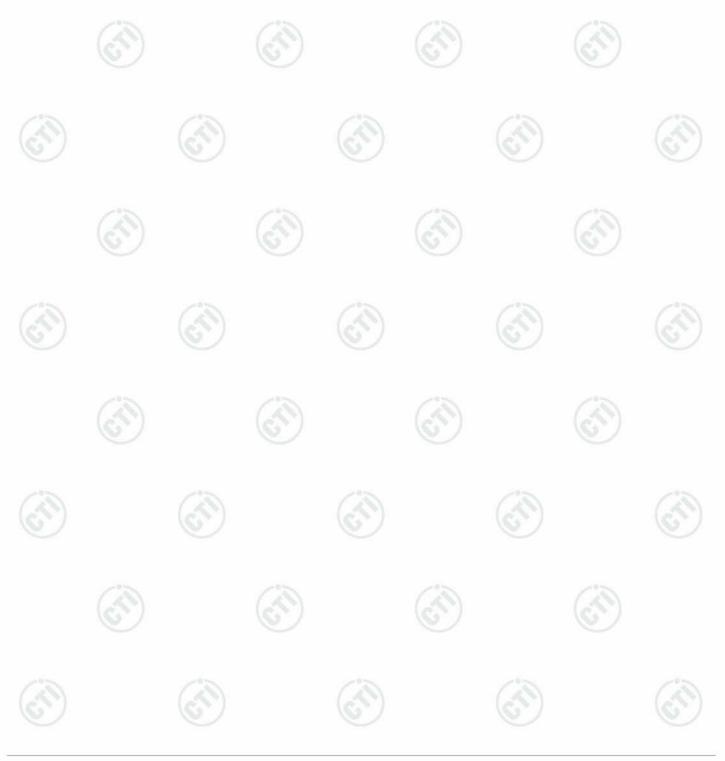
N	lo.	Identity		Document Title						
	1	FCC Part15C	;	Subpart (C-Intentional Radiators					
	2 ANSI C63.10-2013			Americar Devices	American National Standard for Testing Unlicesed Wireless Devices					
es	st R	esults List:		6			C			
	Test Requirement		Test Requirement Test		Test r	nethod	Test item	Verdict	Note	
	Ē	Part15C Section 15.247 (a)(2)	ANSI	C63.10	6dB Occupied Bandwidth	PASS	Appendix A)			
	Part15C Section 15.247 (b)(3) Part15C Section		ANSI	C63.10	Conducted Peak Output Power	PASS	Appendix B)			
			ANSI	C63.10 Band-edge for RF Conducte Emissions		PASS PASS	Appendix C Appendix D			
	F	Part15C Section 15.247(d) Part15C Section 15.247 (e) ANSI C63.10		RF Conducted Spurious Emissions						
	Part			C63.10	Power Spectral Density	PASS	Appendix E)			
	15.203/15.247 (c) Part15C Section		C63.10	Antenna Requirement	PASS	Appendix F)				
			ANSI	C63.10	AC Power Line Conducted Emission	PASS	N/A			
		Part15C Section 15.205/15.209 ANSI C63.10		Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G				
		Part15C Section 15.205/15.209	ANSI	C63.10	Radiated Spurious Emissions	PASS	Appendix H			



Appendix A): 6dB Occupied Bandwidth

	Test Resul	lt	\mathbb{V}	V	
	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
12	BLE	LCH	0.6410	1.0571	PASS
(SE	BLE	МСН	0.6694	1.0676	PASS
~	BLE	НСН	0.6710	1.0753	PASS





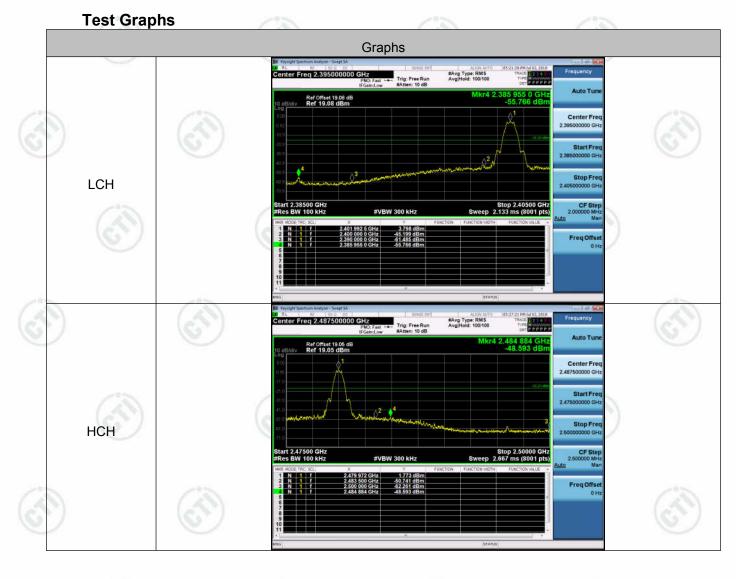
Appendix B): Conducted Peak Output Power

Test	Result		U	U	
Mod	e Ch	annel	Conduct Peak Power[d	Bm]	Verdict
BLE		СН	3.855		PASS
BLE		ИСН	2.617)	PASS
BLE	E F	існ	1.51		PASS



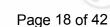
Page 16 of 42

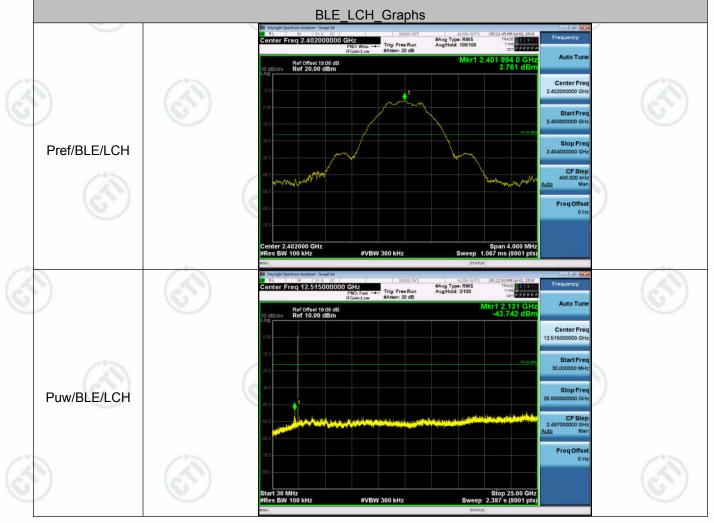
Test Graphs



Page 17 of 42

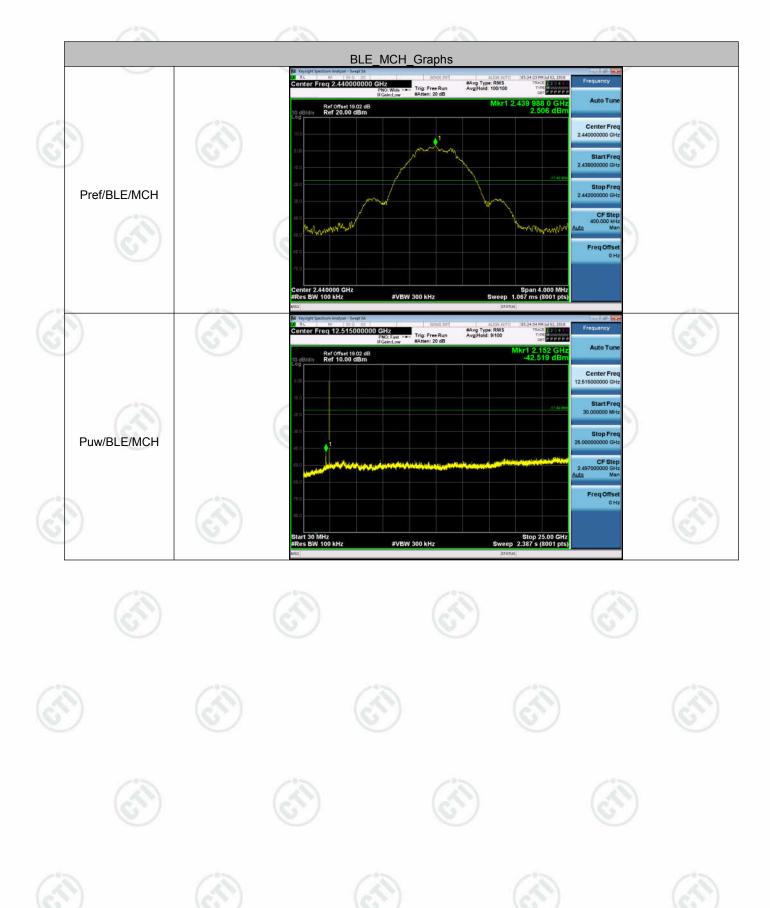
Appendix C): Band-edge for RF Conducted Emissions


Resu	It Table	V		V	
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	3.798	-55.766	-16.2	PASS
BLE	НСН	1.773	-48.593	-18.23	PASS



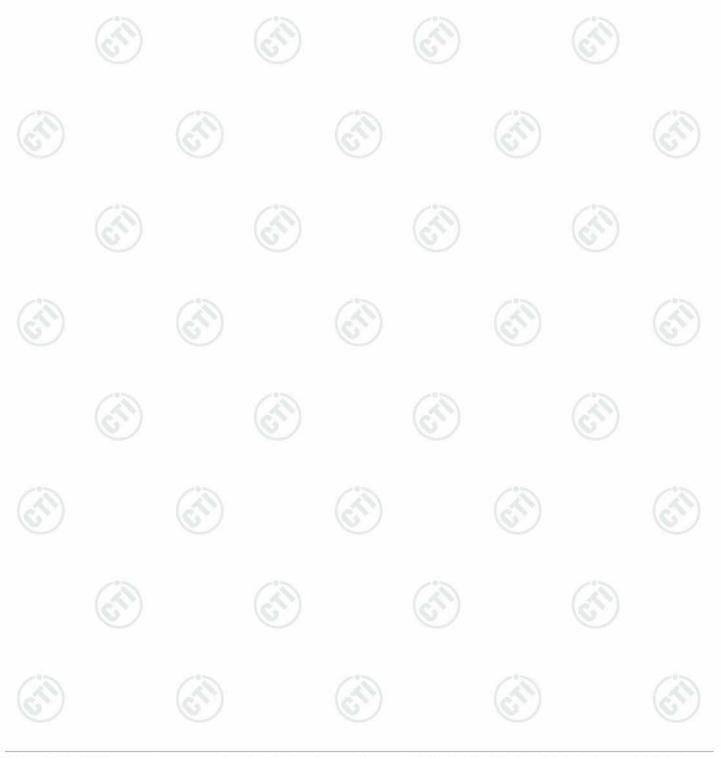
Appendix D): RF Conducted Spurious Emissions

Result	Table		U U	6
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	3.761	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	МСН	2.506	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	1.384	<limit< td=""><td>PASS</td></limit<>	PASS



Page 19 of 42

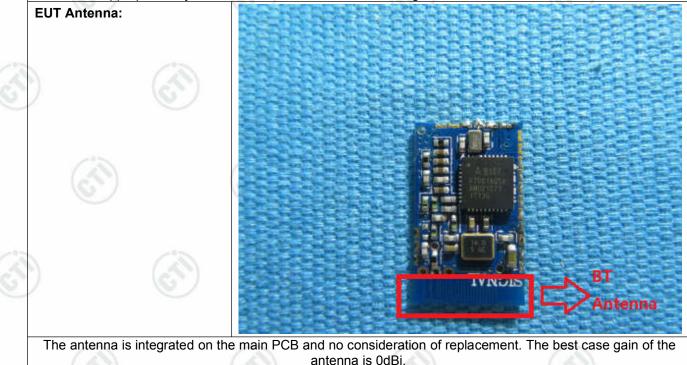
Page 20 of 42



Appendix E): Power Spectral Density

	Result Ta	ble	V	0	
	Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
-	BLE	LCH	-8.482	8	PASS
S?)	BLE	МСН	-9.977	8	PASS
~	BLE	НСН	-10.868	8	PASS

Page 22 of 42


Appendix F): Antenna Requirement

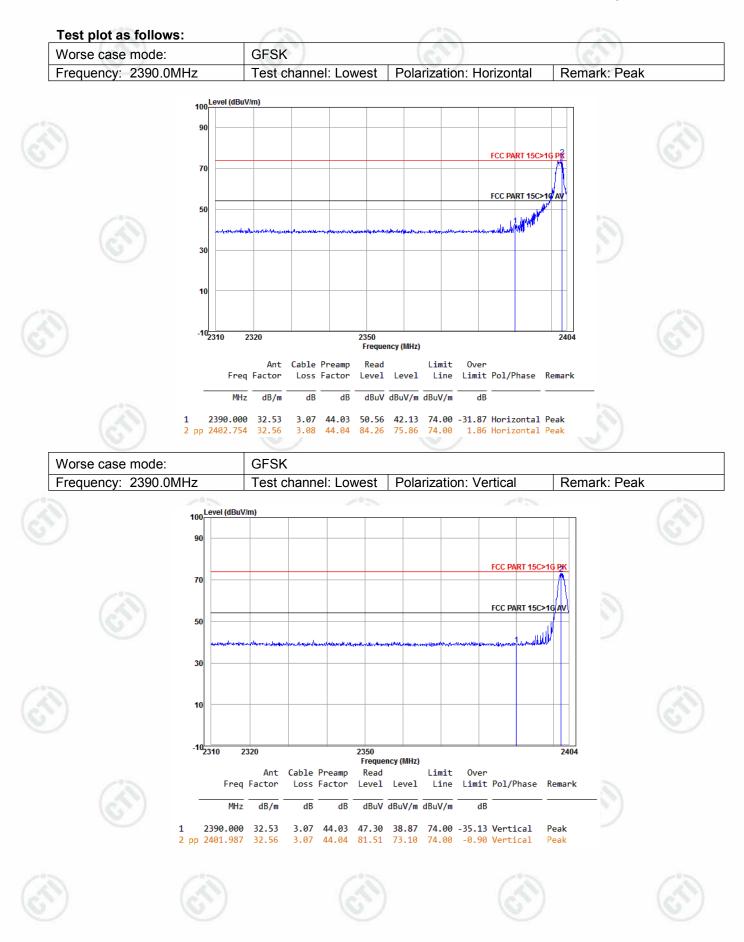
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

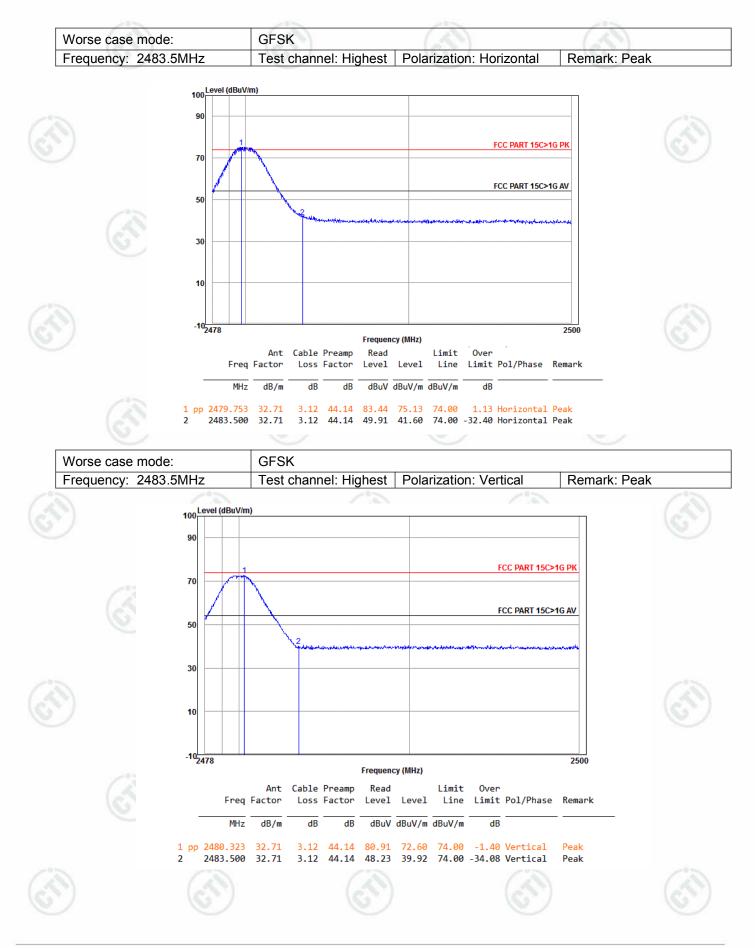
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 24 of 42


Appendix G): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
Test Procedure:	Below 1GHz test proce	dure as below:	6		3
	 a. The EUT was placed at a 3 meter semi-ar determine the position b. The EUT was set 3 means are set of the antenna height determine the maxim polarizations of the attenna was turned from 0 did the antenna was turned from 0 did e. The test-receiver system and width with Max f. Place a marker at the frequency to show comparisation of the set of t	echoic camber. The on of the highest ra- neters away from top of a variable-h is varied from one hum value of the fin- antenna are set to emission, the EUT ed to heights from egrees to 360 degrees to 360 degrees to mum Hold Mode. e end of the restrict	the table way idiation. the interfer neight anter meter to for eld strength make the r was arran 1 meter to rees to find ak Detect	ence-receinna tower. bur meters n. Both hor neasureme ged to its 4 meters the maxin Function a	360 degrees to iving antenna, above the gro rizontal and ve ent. worst case an and the rotata num reading. ind Specified he transmit
	bands. Save the spe	ctrum analyzer plo			
	bands. Save the spe for lowest and highe Above 1GHz test proce g. Different between at to fully Anechoic Cha 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode,	ectrum analyzer plo st channel ove is the test site amber change form is 1 meter and tabl e lowest channel , to rements are perfo and found the X ax	e, change fin n table 0.8 e is 1.5 me he Highesi rmed in X, is position	for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Cha .5 meter(Abo positioning for t is worse cas
Limit:	bands. Save the spe for lowest and highe Above 1GHz test proce g. Different between at to fully Anechoic Cha 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode, j. Repeat above proce	ectrum analyzer plo st channel ove is the test site amber change form is 1 meter and tabl e lowest channel , to rements are perfo and found the X ax dures until all frequent	e, change fin n table 0.8 e is 1.5 me he Highesi rmed in X, is position	for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Cha .5 meter(Abo positioning for t is worse cas
Limit:	bands. Save the spe for lowest and highe Above 1GHz test proce g. Different between at to fully Anechoic Cha 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode,	ectrum analyzer plo st channel ove is the test site amber change form is 1 meter and tabl e lowest channel , to rements are perfo and found the X ax	e, change fin n table 0.8 e is 1.5 me he Highesi rmed in X, is position uencies me m @3m)	for each por moter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark
Limit:	bands. Save the spec for lowest and higher Above 1GHz test proce g. Different between all to fully Anechoic Cha 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode, i j. Repeat above proce	ectrum analyzer plo st channel edure as below: pove is the test site amber change form is 1 meter and table lowest channel , the rements are perform and found the X axe dures until all frequencies Limit (dBµV/	e, change fin n table 0.8 e is 1.5 me he Highest rmed in X, tis position uencies me m @3m)	for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-po	Anechoic Cha .5 meter(Abo oositioning for it is worse cas as complete. mark eak Value
Limit:	bands. Save the spec for lowest and higher Above 1GHz test proce g. Different between all to fully Anechoic Cha 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode, i j. Repeat above proce Frequency 30MHz-88MHz	ectrum analyzer plo st channel edure as below: bove is the test site amber change form is 1 meter and table lowest channel , for rements are perfor and found the X ax dures until all frequency Limit (dBµV/ 40.0	e, change fin n table 0.8 e is 1.5 me he Highest rmed in X, tis position uencies me (m @3m)	for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark
Limit:	bands. Save the spec for lowest and higher Above 1GHz test proce g. Different between all to fully Anechoic Cha 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode, i j. Repeat above proce Frequency 30MHz-88MHz 88MHz-216MHz	etrum analyzer plo st channel edure as below: pove is the test site amber change form is 1 meter and table plowest channel , the rements are perform and found the X ax dures until all frequency Limit (dBµV/ 40.0 43.5	e, change fin n table 0.8 e is 1.5 me he Highest rmed in X, is position uencies me m @3m)	for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-po Quasi-po	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark eak Value eak Value
Limit:	bands. Save the spec for lowest and higher Above 1GHz test proce g. Different between all to fully Anechoic Chi 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode, i j. Repeat above proce Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	ectrum analyzer plo st channel ove is the test site amber change form is 1 meter and table lowest channel , the rements are perfo- and found the X axe dures until all freque Limit (dBµV/ 40.0 43.5 46.0	e, change fin n table 0.8 e is 1.5 me he Highesi rmed in X, tis position uencies me m @3m)	for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	Anechoic Cha .5 meter(Abo oositioning for t is worse cas as complete. mark eak Value eak Value eak Value



Page 26 of 42

Note:

1)The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix H) Radiated Spurious Emissions

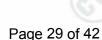
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
(\mathcal{S})		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

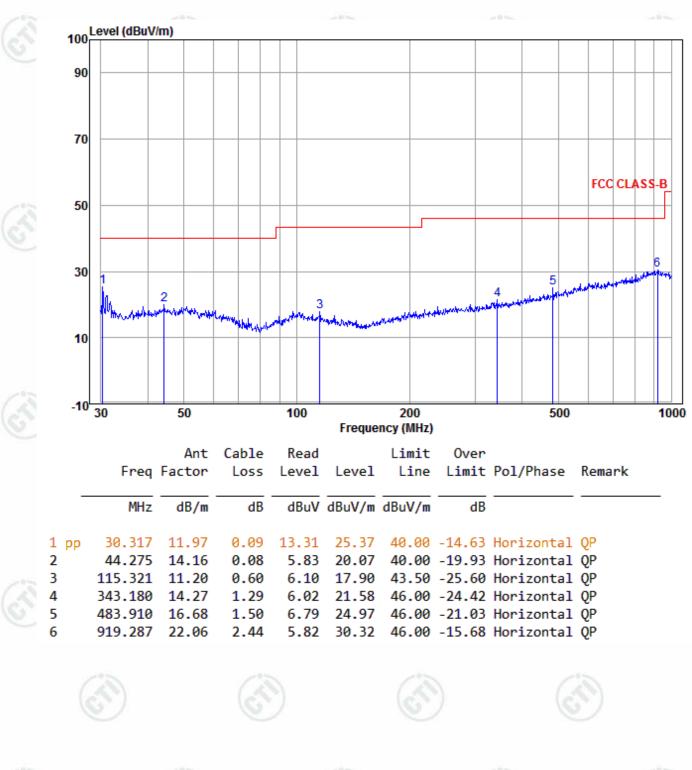
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

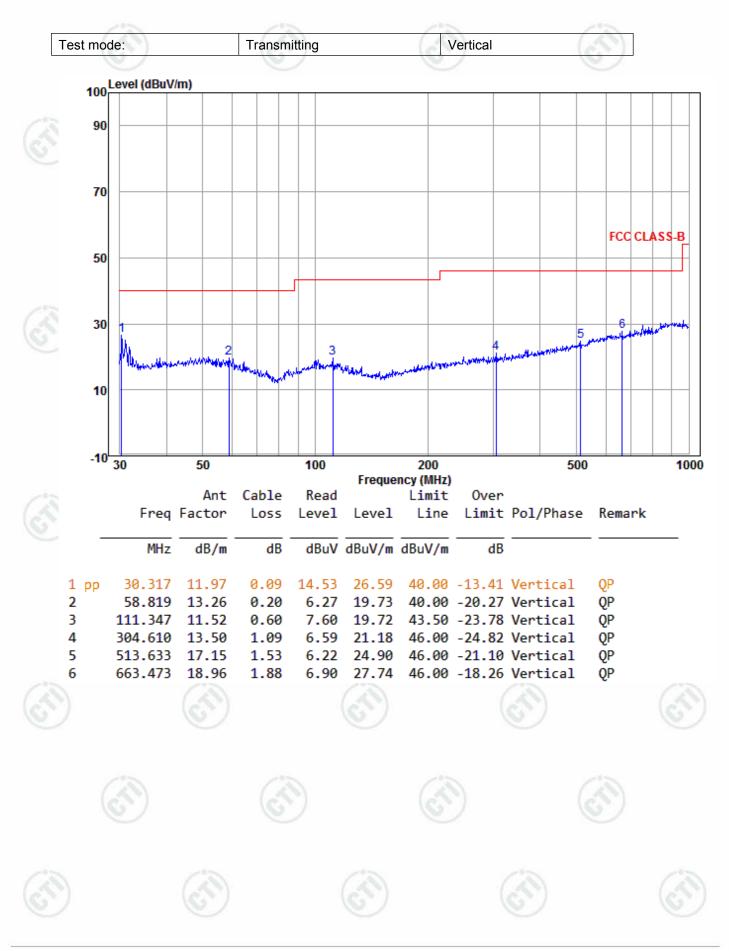
Above 1GHz test procedure as below:


- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

j. Repeat above procedures until all frequencies measured was complete.


Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24000/F(kHz)	-		30	
	1.705MHz-30MHz	30	-	(CT)	30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	
	88MHz-216MHz	150	43.5	Quasi-peak	3	
	216MHz-960MHz	200	46.0	Quasi-peak	3	
	960MHz-1GHz	500	54.0	Quasi-peak	3	
	Above 1GHz	500	54.0	Average	3]
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	B above the maxir equipment under	num perm test. This p	itted average	emission limit	Ì

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz 30MHz~1GHz (QP) Test mode: Test mode: Transmitting



Page 30 of 42

Transmitter Emission above 1GHz

	Transmitt	er Emiss	sion abov	e 1GHz		13		13	2	
	Worse case mode:		GFSK		Test cha	nnel:	Lowest	Remark: P	eak	
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2	1213.441	30.26	1.88	44.37	47.40	35.17	74.00	-38.83	Pass	н
2	1609.646	31.07	2.42	43.88	48.72	38.33	74.00	-35.67	Pass	SH.
	3561.636	33.12	3.86	44.64	49.29	41.63	74.00	-32.37	Pass	Н
	4804.000	34.69	5.98	44.60	46.75	42.82	74.00	-31.18	Pass	Н
	7206.000	36.42	6.97	44.77	47.08	45.70	74.00	-28.30	Pass	Н
	9608.000	37.88	6.98	45.58	44.10	43.38	74.00	-30.62	Pass	Н
	1147.354	30.10	1.77	44.46	47.34	34.75	74.00	-39.25	Pass	V
	1491.300	30.85	2.28	44.01	47.23	36.35	74.00	-37.65	Pass	V
	3561.636	33.12	3.86	44.64	49.21	41.55	74.00	-32.45	Pass	V
	4804.000	34.69	5.98	44.60	46.81	42.88	74.00	-31.12	Pass	V
2	7206.000	36.42	6.97	44.77	47.42	46.04	74.00	-27.96	Pass	V
	9608.000	37.88	6.98	45.58	45.25	44.53	74.00	-29.47	Pass	V

				1	100	1	12	-				
Worse case	mode:	GFSK	12	Test chai	nnel:	Middle	Remark: P	eak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis			
1182.943	30.18	1.83	44.41	46.10	33.70	74.00	-40.30	Pass	1			
1472.440	30.82	2.25	44.03	45.09	34.13	74.00	-39.87	Pass	(H)			
3160.026	33.46	3.51	44.68	48.89	41.18	74.00	-32.82	Pass	Ĥ			
4880.000	34.85	6.13	44.60	45.85	42.23	74.00	-31.77	Pass	Н			
7320.000	36.43	6.85	44.87	46.32	44.73	74.00	-29.27	Pass	Н			
9760.000	38.05	7.12	45.55	46.15	45.77	74.00	-28.23	Pass	Н			
1182.943	30.18	1.83	44.41	46.17	33.77	74.00	-40.23	Pass	V			
1453.818	30.78	2.23	44.05	45.78	34.74	74.00	-39.26	Pass	V			
3350.560	33.29	3.68	44.66	48.21	40.52	74.00	-33.48	Pass	V			
4880.000	34.85	6.13	44.60	46.07	42.45	74.00	-31.55	Pass	V			
7320.000	36.43	6.85	44.87	46.37	44.78	74.00	-29.22	Pass	V			
9760.000	38.05	7.12	45.55	45.71	45.33	74.00	-28.67	Pass	V			

Page 32 of 42

Worse case	mode:	GFSK	2	Test chan	nel:	Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1147.354	30.10	1.77	44.46	46.38	33.79	74.00	-40.21	Pass	<u></u>
1431.782	30.74	2.20	44.08	45.70	34.56	74.00	-39.44	Pass	(H)
1856.261	31.48	2.70	43.63	45.48	36.03	74.00	-37.97	Pass	Ĥ
4960.000	35.02	6.29	44.60	46.62	43.33	74.00	-30.67	Pass	Н
7440.000	36.45	6.73	44.97	46.57	44.78	74.00	-29.22	Pass	Н
9920.000	38.22	7.26	45.52	44.21	44.17	74.00	-29.83	Pass	Н
1159.096	30.13	1.79	44.44	47.12	34.60	74.00	-39.40	Pass	V
1537.557	30.94	2.34	43.96	45.92	35.24	74.00	-38.76	Pass	V
1894.450	31.54	2.74	43.59	44.23	34.92	74.00	-39.08	Pass	V
4960.000	35.02	6.29	44.60	47.28	43.99	74.00	-30.01	Pass	V
7440.000	36.45	6.73	44.97	44.72	42.93	74.00	-31.07	Pass	V
9920.000	38.22	7.26	45.52	44.88	44.84	74.00	-29.16	Pass	V

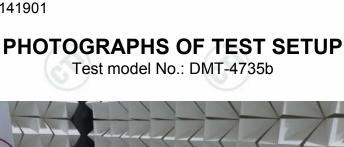
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

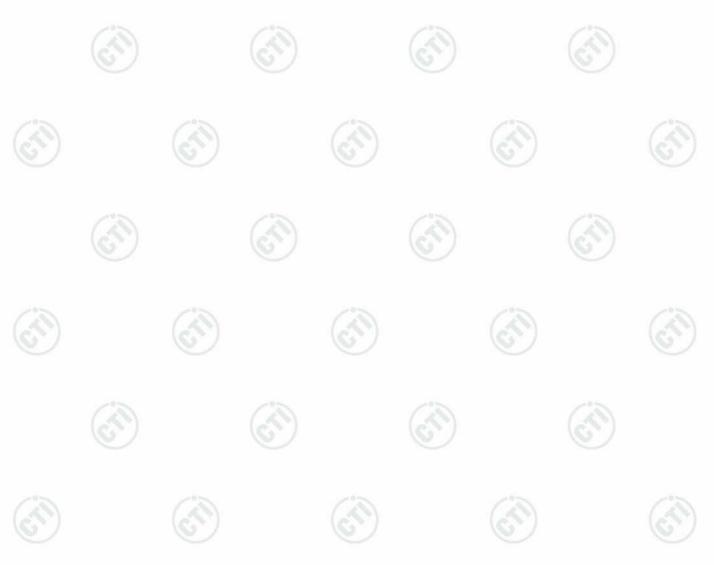
Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor


2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 33 of 42

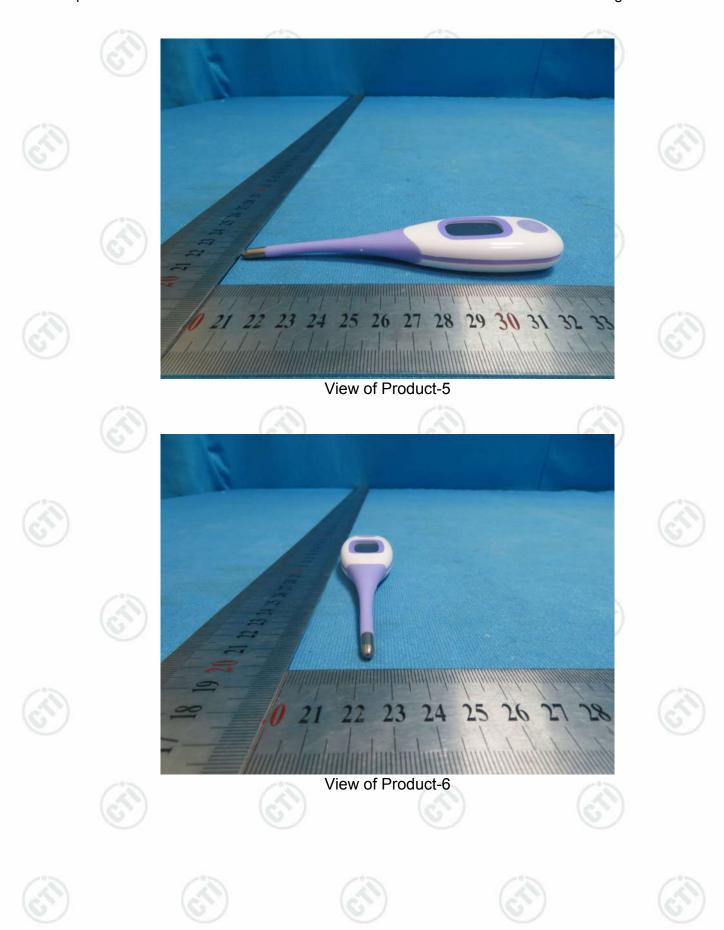
Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)



Page 34 of 42

Radiated spurious emission Test Setup-3(Above 1GHz)



Page 38 of 42

