

Г

Shenzhen Huatongwei International Inspection Co.,Ltd. Huatongwei Building, kejinan 12th Road, High-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China. Phone:86-756-26715489 E-mail: cs@szhtw.com.cn Webate:http://www.szhtw.com.cn

TE	EST REPOR	ſ			
Report No	CHTEW22060145	Report verificaiton:			
Project No:	SHT2206032305EW				
FCC ID:	2AQV7E360				
Applicant's name:	CALTTA TECHNOLOGIES C	:O., LTD.			
Address	Floor 12,Building G2, internat Shenzhen, China, 518055	ional E-City, Nanshan District,			
Test item description:	Broadband Portable Radio				
Trade Mark	eChat				
Model/Type reference:	e360				
Listed Model(s)	-				
Standard:	FCC 47 CFR Part2.1093 IEEE Std C95.1, 1999 Edition IEEE 1528: 2013				
Date of receipt of test sample	Dec.15, 2020				
Date of testing	Dec.16, 2020- Dec.25, 2020				
Date of issue	Jun.28,2022				
Result	PASS				
Compiled by (position+printedname+signature):	File administrators: Fanghui Z	nu Janghuizhu			
Supervised by (position+printedname+signature):	Test Engineer: Weiyang X				
Approved by (position+printedname+signature):	Manager: Hans Hu	Homsty			
Testing Laboratory Name :	: Shenzhen Huatongwei International Inspection Co., Ltd				
Address:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China				
Shenzhen Huatongwei International I	nspection Co., Ltd. All rights	reserved.			

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	Statement of Compliance	3
<u>2.</u>	Test Standards and Report version	4
2.1.	Test Standards	4
2.2.	Report version	4
<u>3.</u>	Summary	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	RF Specification Description	5
3.4.	Testing Laboratory Information	6
3.5.	Environmental conditions	7
<u>4.</u> 5	Equipments Used during the Test	
<u>5.</u>	Measurement Uncertainty	
<u>6.</u>	SAR Measurements System Configuration	
6.1.	SAR Measurement Set-up	11
6.2. 6.3.	DASY5 E-field Probe System Phantoms	12 13
6.4.	Device Holder	13
<u>7.</u>	SAR Test Procedure	14
7.1.	Scanning Procedure	14
7.2.	Data Storage and Evaluation	16
<u>8.</u>	Position of the wireless device in relation to the phantom	18
8.1.	Front-of-face	18
8.2.	Body Position	18
<u>9.</u>	Dielectric Property Measurements & System Check	19
9.1.	Tissue Dielectric Parameters	19
9.2.	System Check	21
<u>10.</u>	SAR Exposure Limits	29
<u>11.</u>	Conducted Power Measurement Results	30
	WCDMA	30
		32
	Wi-Fi Bluetooth	40 40
<u>12.</u>		
<u>13.</u>	Maximum Tune-up Limit Antenna Location	
<u>10.</u> 14.	Measured and Reported SAR Results	
	Head SAR	49
	Body SAR	49 51
<u>15.</u>	SAR Measurement Variability	55
16.	Simultaneous Transmission analysis	50
16.1.	Head	57
16.2.	Body-worn	58
<u>17.</u>	TestSetup Photos	60
<u>18.</u>	External and Internal Photos of the EUT	61

1. Statement of Compliance

Maximum Reported SAR (W/kg @1g)						
RF Exposure Conditions PCF DTS Simultaneous TX						
Head(Dist.= 25mm)	0.240	0.019	0.259			
Body-worn(Dist.= 10mm) 0.731 0.076 0.799						

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

2. Test Standards and Report version

2.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices.

IEEE Std C95.1, 1999 Edition: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

<u>865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

<u>447498 D01 General RF Exposure Guidance v06:</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

248227 D01 802 11 Wi-Fi SAR v02r02: SAR Measurement Proceduresfor802.11 a/b/g Transmitters 941225 D01 3G SAR Procedures v03r01: SAR Measurement Procedures for 3G Devices 941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

TCB workshop April, 2019; Page 19, Tissue Simulating Liquids (TSL)

2.2. Report version

Revision No.	Date of issue	Description
N/A	2020-06-28	Add a battery and do a difference test based on the report CHTEW20120160

3. <u>Summary</u>

3.1. Client Information

Applicant:	CALTTA TECHNOLOGIES CO., LTD.
Address: Floor 12,Building G2, international E-City, Nanshan District, Shenzher China, 518055	
Manufacturer: CALTTA TECHNOLOGIES CO., LTD.	
Address: Floor 12,Building G2, international E-City, Nanshan District, Shenzher China, 518055	
Factory:	Caltta (Shenzhen) Technologies Co., Ltd
Address:West Side of 3rd Floor, No.1 Building, Ting Wei Industrial Zone, No.6Address:Liufang Road, No.67 District, Xin An Street, Bao An District, Shenzhe Guangdong Province 518000, P.R. China	

3.2. Product Description

Main unit	
Name of EUT:	Broadband Portable Radio
Trade Mark:	eChat
Model No.:	e360
Listed Model(s):	-
Power supply:	DC 3.7V
Device Category:	Portable
Product stage:	Production unit
RF Exposure Environment:	General Population/Uncontrolled
HTW test sample No.:	YPHT20120285009
Hardware version:	e320MB_B
Software version:	e360V1.0
Device Dimension:	Overall (Length x Width x Thickness): 115x55x30 mm Antenna length: 40 mm

3.3. RF Specification Description

WCDMA	
Operation Band:	FDD Band IV FDD Band V
Power Class: Class 3	
Operating Mode:	UMTS Rel. 99 (Voice & Data) HSDPA HSUPA
Antenna Type:	Stick antenna

LTE	
Operation Band:	FDD Band 4 FDD Band 5 FDD Band 7
Power Class:	Class 3
Operating Mode:	QPSK 16QAM
Antenna Type:	Stick antenna
Does this device support	Carrier Aggregation (CA)? 🗌 Yes 🖂 No
Does this device support	SV-LTE (1xRTT-LTE)? 🗌 Yes 🛛 No
Wi-Fi 2.4G	
Operating Mode:	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)
Antenna Type:	PIFA antenna
Does this device 2.4GHz	wi-Fi support hotspot operation? 🗌 Yes 🖾 No
Bluetooth	
Bluetooth version:	V4.0
Support function:	BLE
Operating Mode:	GFSK
Antenna Type:	PIFA antenna
Does this device support	Bluetooth Tethering? 🗌 Yes 🖾 No
Remark: 1 The FUT battery mu	st be fully charged and checked periodically during the test to ascertain uniform

1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.			
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			
Connect information:	Tel: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>			
Qualifications	Туре	Accreditation Number		
Qualifications	FCC	762235		

3.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature	18 °C to 25 °C
Ambient humidity	30%RH to 70%RH
Air Pressure	950-1050mbar

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
•	Data Acquisition Electronics DAEx	SPEAG	DAE4	1549	2020/04/04	2021/04/03
	E-field Probe	SPEAG	EX3DV4	7494	2020/04/01	2021/03/31
•	Universal Radio Communication Tester	R&S	CMW500	137681	2020/06/18	2021/06/17
• T	issue-equivalent liquids Va	lidation				
•	Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	N/A	N/A
0	Dielectric Assessment Kit	SPEAG	DAK-12	1130	N/A	N/A
٠	Network analyzer	Keysight	E5071C	MY46733048	2020/10/15	2021/10/14
• S	ystem Validation					
0	System Validation Antenna	SPEAG	CLA-150	4024	2018/02/21	2021/02/20
0	System Validation Dipole	SPEAG	D450V3	1102	2018/02/23	2021/02/22
0	System Validation Dipole	SPEAG	D750V3	1180	2018/02/07	2021/02/06
	System Validation Dipole	SPEAG	D835V2	4d238	2018/02/19	2021/02/18
	System Validation Dipole	SPEAG	D1750V2	1164	2018/02/06	2021/02/05
0	System Validation Dipole	SPEAG	D1900V2	5d226	2018/02/22	2021/02/21
	System Validation Dipole	SPEAG	D2450V2	1009	2018/02/05	2021/02/04
	System Validation Dipole	SPEAG	D2600V2	1150	2018/02/05	2021/02/04
	System Validation Dipole	SPEAG	D5GHzV2	1273	2018/02/21	2021/02/20
	Signal Generator	R&S	SMB100A	114360	2020/08/11	2021/08/10
	Power Viewer for Windows	R&S	N/A	N/A	N/A	N/A
	Power sensor	R&S	NRP18A	101010	2020/08/11	2021/08/10
•	Power sensor	R&S	NRP18A	101386	2020/06/08	2021/06/07
•	Power Amplifier	BONN	BLWA 0160-2M	1811887	2020/11/12	2021/11/11
•	Dual Directional Coupler	Mini-Circuits	ZHDC-10-62-S+	F975001814	2020/11/12	2021/11/11
	Attenuator	Mini-Circuits	VAT-3W2+	1819	2020/11/12	2021/11/11
•	Attenuator	Mini-Circuits	VAT-10W2+	1741	2020/11/12	2021/11/11

Report No.:

CHTEW22060145

Page: 9 of 61 Issued:

2022-06-28

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
•	Data Acquisition Electronics DAEx	SPEAG	DAE4	1549	2022/04/12	2023/04/11
•	E-field Probe	SPEAG	EX3DV4	7494	2022/05/16	2023/05/15
•	Universal Radio Communication Tester	R&S	CMW500	137681	2022/05/12	2023/05/11
• Tis	ssue-equivalent liquids Val	idation				
•	Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	N/A	N/A
0	Dielectric Assessment Kit	SPEAG	DAK-12	1130	N/A	N/A
•	Network analyzer	Keysight	E5071C	MY46733048	2021/09/17	2022/09/16
• Sy	stem Validation					
0	System Validation Antenna	SPEAG	CLA-150	4024	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	D450V3	1102	2021/01/20	2024/01/19
0	System Validation Dipole	SPEAG	D750V3	1180	2021/01/22	2024/01/21
٠	System Validation Dipole	SPEAG	D835V2	4d238	2021/01/22	2024/01/21
٠	System Validation Dipole	SPEAG	D1750V2	1164	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D1900V2	5d226	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D2450V2	1009	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	D2600V2	1150	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	D5GHzV2	1273	2021/01/26	2024/01/25
•	Signal Generator	R&S	SMB100A	114360	2021/08/05	2022/08/04
•	Power Viewer for Windows	R&S	N/A	N/A	N/A	N/A
•	Power sensor	R&S	NRP18A	101010	2021/08/05	2022/08/04
•	Power sensor	R&S	NRP18A	101386	2022/05/12	2023/05/12
•	Power Amplifier	BONN	BLWA 0160-2M	1811887	2021/11/11	2022/11/10
•	Dual Directional Coupler	Mini-Circuits	ZHDC-10-62-S+	F975001814	2021/11/11	2022/11/10
•	Attenuator	Mini-Circuits	VAT-3W2+	1819	2021/11/11	2022/11/10
•	Attenuator	Mini-Circuits	VAT-10W2+	1741	2021/11/11	2022/11/10

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix B and C.

2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

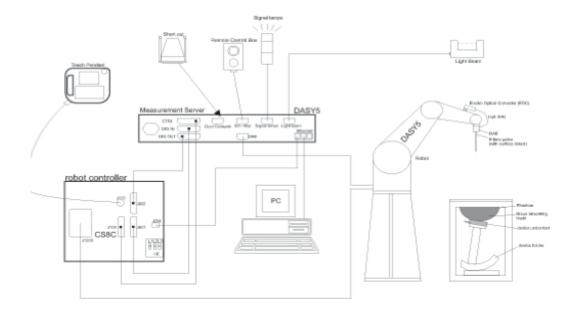
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.


• Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	4 MHz to 10 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 W/kg; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

• Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM-Twin Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

\leq 3 GHz > 3 GHz Maximum distance from closest measurement point $5 \text{ mm} \pm 1 \text{ mm}$ $\frac{1}{2} \cdot \hat{\partial} \cdot \ln(2) \min \pm 0.5 \min$ (geometric center of probe sensors) to phantom surface Maximum probe angle from probe axis to phantom $30^{\circ} \pm 1^{\circ}$ $20^{\circ} \pm 1^{\circ}$ surface normal at the measurement location 3 - 4 GHz: ≤ 12 mm $\leq 2 \text{ GHz}; \leq 15 \text{ mm}$ 2-3 GHz: ≤ 12 mm $4 - 6 \text{ GHz} \le 10 \text{ mm}$ When the x or v dimension of the test device, in the Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.

Area Scan Resolutions per FCC KDB Publication 865664 D01v04

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$3-4 \text{ GHz:} \le 4 \text{ mm}$ $4-5 \text{ GHz:} \le 3 \text{ mm}$ $5-6 \text{ GHz:} \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
	grid	$\Delta z_{Zoom}(n>1)$; between subsequent points	$\leq 1.5 \cdot \Delta z_{Zo}$	om(n-1) mm
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$

Note: \hat{o} is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. The SAR drift shall be kept within ± 5 %.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors),s together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity:	Normi, ai0, ai1, ai2
	Conversion factor:	ConvFi
	Diode compression point:	Dcpi
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H-field probes:$$

 $H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{\ell}$

	2
Vi:	compensated signal of channel (i = x, y, z)
Normi:	sensor sensitivity of channel (i = x, y, z),
	[mV/(V/m)2] for E-field Probes
ConvF:	sensitivity enhancement in solution
aij:	sensor sensitivity factors for H-field probes
f:	carrier frequency [GHz]
Ei:	electric field strength of channel i in V/m
Hi:	magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

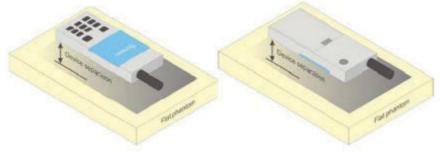
- SAR: local specific absorption rate in W/kg
- Etot: total field strength in V/m
- σ: conductivity in [mho/m] or [Siemens/m]
- ρ: equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. Position of the wireless device in relation to the phantom

8.1. Front-of-face

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.



Test positions for Front-of-face devices

8.2. Body Position

Devices that support transmission while used with body-worn accessories must be tested for body-worn accessory SAR compliance, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. Devices that are designed to operate on the body of users using lanyards and straps or without requiring

additional body-worn accessories must be tested for SAR compliance using a conservative minimum test separation distance \leq 5mm to support compliance.

Picture 4 Test positions for body-worn devices

9. Dielectric Property Measurements & System Check

9.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C

and within ± 2°C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The dielectric constant (ε_r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within ± 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ε_r and σ may be relaxed to ± 10%. This is limited to frequencies ≤ 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

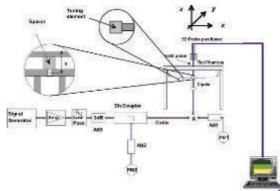
	Tissue dielectric p	arameters for Head	and Body	
Target Frequency	He	ead	ŀ	Body
(MHz)	٤ _r	σ(S/m)	٤ _r	σ(S/m)
835	41.5	0.90	55.2	0.97
1750	40.1	1.37	53.4	1.49
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

		Dielectric	: performa	ance of Head	d tissue si	mulating	liquid		
Frequency		٤ _r	σ(S/m)		Delta Delta			Temp	
(MHz)	Target	Measured	Target	Measured	(ɛ _r)	(σ)	Limit	(°C)	Date
835	41.50	42.70	0.900	0.914	2.89%	1.60%	±5%	22.3	2020-12-17
1750	40.10	41.18	1.370	1.331	2.69%	-2.85%	±5%	22.3	2020-12-17
2450	39.20	40.34	1.800	1.796	2.91%	-0.22%	±5%	22.1	2020-12-18
2600	39.00	40.10	1.960	1.922	2.82%	-1.94%	±5%	22.1	2020-12-18


		Dielectric	: performa	ance of Head	d tissue si	mulating	liquid		
Frequency		ε _r σ(S/m)		Delta	elta Delta		Temp		
(MHz)	Target	Measured	Target	Measured	(ε _r)	(σ)	Limit	(°C)	Date
835	41.50	40.59	0.900	0.911	-2.19%	1.22%	±5%	22.4	2022/6/24
1750	40.10	39.66	1.370	1.414	-1.10%	3.21%	±5%	22.4	2022/6/24

9.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
- For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- The results are normalized to 1 W input power.

System Performance Check Setup

Photo of Dipole Setup

System Check Result:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within ±10% of the manufacturer calibrated dipole SAR target.

					Неа	d					
Frequency	1g SAR				10g SAR			Delta	Linsit	Temp	Data
(MHz)	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW	(1g)	(10g)	Limit	(°C)	Date
835	9.51	9.96	2.49	6.15	6.52	1.63	4.73%	6.02%	±10%	22.3	2020-12-17
1750	36.60	38.28	9.57	19.40	20.40	5.10	4.59%	5.15%	±10%	22.3	2020-12-17
2450	51.50	54.00	13.50	24.10	25.24	6.31	4.85%	4.73%	±10%	22.1	2020-12-18
2600	55.60	58.00	14.50	25.00	26.12	6.53	4.32%	4.48%	±10%	22.1	2020-12-18

					Неа	d					
Frequency		1g SAR			10g SAR		Delta	Delta	l insit	Temp	Dette
(MHz)	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW	(1g)	(10g)	Limit	(°C)	Date
835	9.39	10.08	2.52	6.14	6.64	1.66	7.35%	8.14%	±10%	22.2	2022/6/24
1750	36.40	38.28	9.57	19.20	20.28	5.07	5.16%	5.63%	±10%	22.2	2022/6/24

Plots of System Performance Check

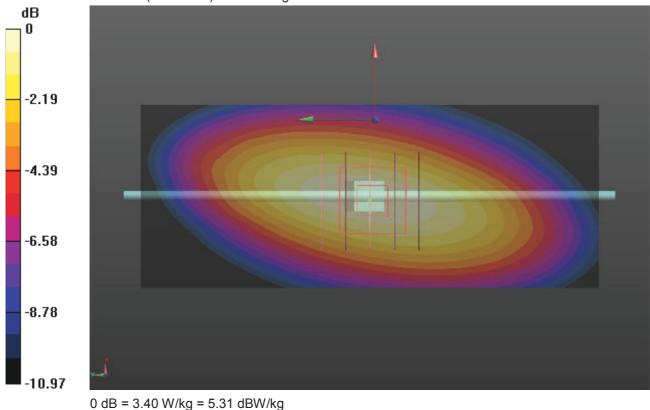
System Performance Check-Head 835MHz

DUT: D835V2; Type: D835V2; Serial: 4d238 Date: 2020-12-17 Communication System: UID 0, CW (0); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.914 S/m; ϵ r = 42.704; ρ = 1000 kg/m3 Phantom section: Flat Section Ambient Temperature:22.8°C;Liquid Temperature:22.6°C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.46, 10.46, 10.46) @ 835 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=15mm, Pin=250mW/Area Scan (41x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 3.39 W/kg

Head/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 62.68 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.91W/kg

SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.63 W/kg

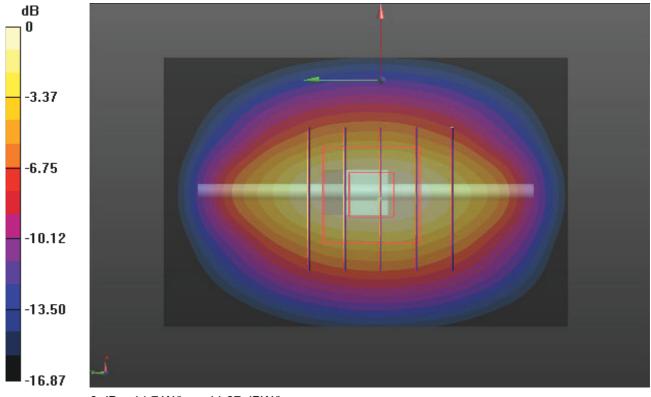
Maximum value of SAR (measured) = 3.40 W/kg

System Performance Check-Head 1750MHz

DUT: D1750V2; Type: D1750V2; Serial: 1164 Date: 2020-12-17 Communication System: UID 0, CW (0); Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.331 S/m; ϵ r = 41.183; ρ = 1000 kg/m3 Phantom section: Flat Section Ambient Temperature:22.6°C;Liquid Temperature:22.4°C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.92, 8.92, 8.92) @ 1750 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Head/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Maximum value of SAR (interpolated) = 14.8 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 107.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.57 W/kg; SAR(10 g) = 5.1 W/kg Maximum value of SAR (measured) = 14.7 W/kg

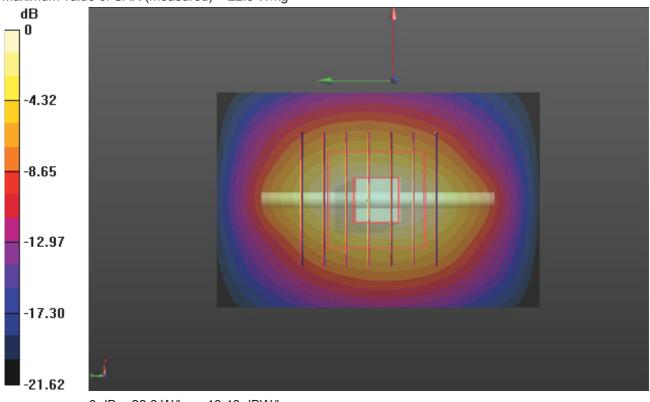
0 dB = 14.7 W/kg = 11.67 dBW/kg

SystemPerformanceCheck-Head 2450MHz

DUT: D2450V2; Type: D2450V2; Serial: 1009 Date: 2020-12-18 Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.796 S/m; ϵ r = 40.338; ρ = 1000 kg/m3 Phantom section: Flat Section Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.91, 7.91, 7.91) @ 2450 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Head/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm

Maximum value of SAR (interpolated) = 23.0 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.7 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.31 W/kg Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

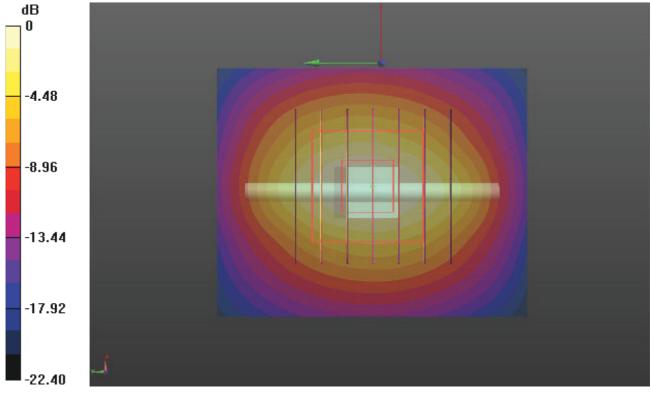
Page: 26 of 61

SystemPerformanceCheck-Head 2600MHz

DUT: D2600V2; Type: D2600V2; Serial: 1150 Date: 2020-12-18 Communication System: UID 0, CW (0); Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.922 S/m; ϵ r = 40.098; ρ = 1000 kg/m3 Phantom section: Flat Section Ambient Temperature:22.3°C;Liquid Temperature:22.1°C;

DASY5 Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.72, 7.72, 7.72) @ 2600 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Head/d=10mm,Pin=250mW/Area Scan (41x51x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm

Maximum value of SAR (interpolated) = 26.6 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

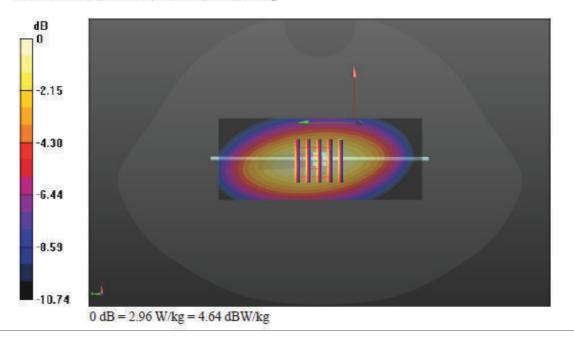
dy=5mm, dz=5mm Reference Value = 117.8 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 30.9 W/kg **SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.53 W/kg** Maximum value of SAR (measured) = 24.5 W/kg

0 dB = 24.5 W/kg = 13.89 dBW/kg

SystemPerformanceCheck-Head 835MHz

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.911$ S/m; $\varepsilon_r = 40.592$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

DASY Configuration:


- Probe: EX3DV4 SN7494; ConvF(10.3, 10.3, 10.3) @ 835 MHz; Calibrated: 5/16/2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=15mm, Pin=250mW/Area Scan (41x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

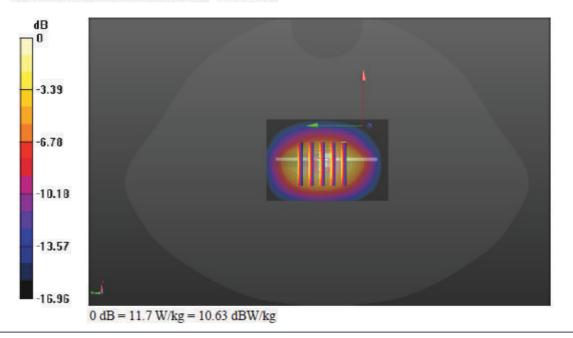
Maximum value of SAR (interpolated) = 2.99 W/kg

Head/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 57.64 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 3.82 W/kg SAR(1 g) = 2.52 W/kg; SAR(10 g) = 1.66 W/kg Maximum value of SAR (measured) = 2.96 W/kg

SystemPerformanceCheck-Head 1750MHz

Communication System: UID 0, CW (0); Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.414$ S/m; $\epsilon_r = 39.658$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.81, 8.81, 8.81) @ 1750 MHz; Calibrated: 5/16/2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.1 W/kg

Head/d=10mm,Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 84.22 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.57 W/kg; SAR(10 g) = 5.07 W/kg Maximum value of SAR (measured) = 11.7 W/kg

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

	Limit (W/kg)					
Type Exposure	General Population/ Uncontrolled Exposure Environment	Occupational/ Controlled Exposure Environment				
Spatial Average SAR (whole body)	0.08	0.4				
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0				
Spatial Peak SAR (10g for limb)	4.0	20.0				

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

11. Conducted Power Measurement Results

11.1. WCDMA

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS34.121 specification.
- 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode to determine SAR test exclusion

A summary of thest setting are illustrated belowe:

HSDPA Setup Configureation:

- a) The EUT was connected to base station RS CMU200 referred to the setup configuration
- b) The RF path losses were compensated into the measurements
- c) A call was established between EUT and base station with following setting:
 - i. Set Gain Factors (βc and βd) and parameters were set according to each specific sub-test in the following table, C10.1.4, Quoted from the TS 34.121
 - ii. Set RMC 12.2Kbps + HSDPA mode
 - iii. Set Cell Power=-86dBm
 - iv. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - v. Select HSDPA uplink parameters
 - vi. Set Delta ACK, Delta NACK and Delta CQI=8
 - vii. Set Ack-Nack repetition Factor to 3
 - viii. Set CQI Feedback Cycle (K) to 4ms
 - ix. Set CQI repetition factor to 2
 - x. Power ctrl mode= all up bits
- d) The transmitter maximum output power waw recorded.

```
Table C.10.1.4: \beta values for transmitter characteristics tests with HS-DPCCH
```

Sub-test	βα	βa	βd (SF)	β₀/β₀	βHS (Note 1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
	with $\beta_{br} = 2$		O. THIN, MACK	and ANACK = 30/	Phs -	ρ_c, an	
	when p hs - 2	$4/15 \cdot p_c$.					u Abbi - 24/15
Note 3:	$CM = 1$ for β DPCCH the I	/β _d =12/15, β	d on the rela	For all other cor tive CM difference releases.			H and HS-

Setup Configuration

HSUPA Setup Configureation:

- a) The EUT was connected to base station RS CMU200 referred to the setup configuration
- b) The RF path losses were compensated into the measurements
- c) A call was established between EUT and base station with following setting:
 - i. Call configs = 5.2b, 5.9b, 5.10b, and 5.13.2B with QPSK
 - ii. Set Gain Factors (βc and βd) and parameters (AG index) were set according to each specific sub-test in the following table, C11.1.3, Quoted from the TS 34.121
 - iii. Set Cell Power=-86dBm
 - iv. Set channel type= 12.2Kbps + HSPA mode
 - v. Set UE Target power
 - vi. Set Ctrl mode=Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal the target E-TFCI of 75 for Sub-test 1, and other subtest's E-TFCI
- d) The transmitter maximum output power waw recorded.

βc	βa	βα (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{ks} = 30/15 * β_c .												
Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.												
	11/15 (Note 3) 6/15 15/15 2/15 15/15 (Note 4) СМ =	11/15 15/15 (Note 3) (Note 3) 6/15 15/15 15/15 9/15 2/15 15/15 15/15 15/15 15/15 15/15 (Note 4) (Note 4) ΔΑCK, ΔΝΑCΚ αΠ CM = 1 for βc/β	$\begin{array}{c} (SF) \\ \hline 11/15 & 15/15 & 64 \\ (Note 3) & (Note 3) \\ \hline 0.05 & 3.0 \\ \hline 0.05 & 15/15 & 64 \\ \hline 15/15 & 9/15 & 64 \\ \hline 15/15 & 15/15 & 64 \\ \hline 15/15 & 15/15 & 64 \\ \hline 15/15 & 15/15 & 64 \\ \hline 0.05 & 4) \\ \hline 0.05 & 4 \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$. Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to

TS25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

General Note:

- Per KDB 941225 D01, SAR for Head / Hotsport / Body-worn Exposure is measured using a 12.2Kbps RMC with TPC bit ocnfigured to all 1s
- Per KDB 941225 D01 RMC12.2Kbps setting is used to evaluate SAR. If the maximum output power and Tune-up tolerance specified for production units in HSDPA/HSUPA is ≤ 1/4dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio fo specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC 12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.

Mode		V	VCDMA Band	IV	WCDMA Band V			
		Cond	ducted Power	(dBm)	Conducted Power (dBm)			
		CH1312	CH1413	CH1513	CH4132	CH4183	CH4233	
		1712.4MHz	1732.6MHz	1752.6MHz	826.4MHz	836.6MHz	846.6MHz	
AMR 12.2K		22.89	22.81	22.95	23.30	23.33	23.19	
RMC 12.2K		22.92	22.84	22.98	23.34	23.37	23.22	
	Subtest-1	21.83	21.79	21.85	22.24	22.30	22.40	
	Subtest-2	21.41	21.46	21.47	21.77	21.86	21.99	
HSDPA	Subtest-3	21.40	21.47	21.50	21.80	21.90	22.05	
	Subtest-4	21.39	21.46	21.39	21.78	21.88	22.03	
	Subtest-1	21.54	21.89	21.66	21.59	21.58	21.48	
	Subtest-2	20.88	20.29	20.72	21.01	21.06	20.92	
HSUPA	Subtest-3	20.72	19.95	19.80	20.90	20.98	20.67	
	Subtest-4	21.32	20.75	20.64	21.43	21.50	21.37	
	Subtest-5	22.09	21.59	21.68	21.95	22.05	22.08	

11.2. LTE

General Note:

1. CMW500 base station simulator was used to setup the connection with EUT; the frequency band, channel,bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUTtransmitting at maximum power and at different configurations which are requested to be reported to FCC, forconducted power measurement and SAR testing.

Per KDB 941225 D05v02r03, when a properly configured base station simulator is used for the SAR and powermeasurements, spectrum plots for each RB allocation and offset configuration is not required.
 Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1

RBallocation, using the RB offset and required test channel combination with the highest maximum output power for RBoffsets at the upper edge, middle and lower edge of each required test channel. 4. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation

4. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.

5. Per KDB 941225 D05v02r03, for QPSK with 100% RB allocation, SAR is not required when the highest maximumoutput power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highestoutput power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also betested.

6. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not $\frac{1}{2}$ dB higher than thesame configuration in QPSK and the reported SAR for the QPSK configuration is \leq 1.45 W/kg; Per KDB 941225D05v02r03, 16QAM SAR testing is not required.

7. Per KDB 941225 D05v02r03, smaller bandwidth output power for each RB allocation configuration is > not $\frac{1}{2}$ dBhigher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supportedbandwidth is \leq 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required.

According to April 2015 TCB workshop, SAR test exclusion can be applied for testing overlapping LTE bands as follows:

- a) The maximum output power, including tolerance, for the smaller band must be ≤ the larger band to qualify for the SAR test exclusion.
- b) The channel bandwidth and other operating parameters for the smaller band must be fully supported by the larger band.
 - LTE Band 2 (1850-1910 MHz) is covered by LTE Band 25 (1850-1915 MHz)
 - LTE Band 4 (1710-1755 MHz) is covered by LTE Band 66 (1710-1780 MHz)
 - LTE Band 5 (824-849 MHz) is covered by LTE Band 26 (814-849 MHz)
 - LTE Band 17 (704-716 MHz) is covered by LTE Band 12 (699-716 MHz)

Issued: 2022-06-28

	LTE-FDD	Band 4	Conducted Power(dBm)			
Band-	Madulation	RB	RB offset	19957	20175	20393
width	Modulation	allocation		1710.7MHz	1732.5MHz	1754.3MHz
			0	23.74	23.63	23.79
		1	2	23.86	23.80	23.69
			5	23.96	23.69	23.93
	QPSK		0	23.79	23.74	23.80
		3	1	23.98	23.64	23.83
			3	23.94	23.84	23.89
1.4MHz		6	0	22.81	22.83	22.83
1.411172			0	23.28	22.51	22.81
		1	2	23.45	23.10	22.87
	16QAM		5	23.34	22.97	22.67
		3	0	22.74	22.64	22.80
			1	22.74	22.72	22.81
			3	22.76	22.73	22.57
		6	0	21.93	21.82	21.90
Band-	Modulation	RB allocation	RB offset	19965	20175	20385
width				1711.5MHz	1732.5MHz	1753.5MHz
		1	0	23.81	23.88	23.71
			8	23.64	23.63	23.68
			14	23.94	24.14	23.75
	QPSK		0	22.93	22.92	23.01
		8	4	23.10	22.75	22.97
			7	23.02	22.89	22.91
21/11-7		15	0	22.97	22.78	23.08
3MHz			0	22.84	23.10	22.98
		1	8	22.98	23.06	22.91
			14	23.02	23.15	22.81
	16QAM	8	0	22.02	21.82	22.03
			4	22.06	21.82	22.06
			7	22.03	22.01	22.01
		15	0	21.83	21.75	22.13

Issued:

2022-06-28

	LTE-FDD	Band 4	Conducted Power(dBm)			
Band-		RB	RB	19975	20175	20375
width	Modulation	allocation	offset	1712.5MHz	1732.5MHz	1752.5MHz
			0	23.82	23.74	23.66
		1	12	23.86	24.07	23.67
			24	23.71	24.13	23.79
	QPSK		0	23.01	22.98	22.99
		12	7	23.02	22.82	22.84
			13	22.95	22.87	23.00
5MHz		25	0	23.02	22.88	22.96
			0	23.12	22.79	22.68
		1	12	23.00	22.61	22.26
			24	22.77	22.89	22.79
	16QAM	12	0	21.90	21.96	21.78
			7	21.90	21.77	21.81
			13	21.99	22.01	22.16
		25	0	21.82	22.04	22.10
Band-	Modulation	RB allocation	RB	20000	20175	20350
width			offset	1715MHz	1732.5MHz	1750MHz
		1	0	24.04	23.99	23.80
			24	23.85	23.97	23.76
			49	23.62	23.95	23.76
	QPSK		0	23.06	22.94	23.18
		25	24	23.05	22.86	23.15
			49	22.86	22.87	22.84
10MHz		50	0	22.94	22.83	22.99
			0	22.88	22.99	22.17
		1	24	22.07	22.12	22.98
			49	22.52	22.32	22.97
	16QAM		0	22.00	21.99	22.15
		25	24	22.37	22.00	21.98
			49	21.98	22.02	21.79
		50	0	21.99	21.93	21.96

Issued:

2022-06-28

	LTE-FDD	Band 4	Conducted Power(dBm)			
Band-		RB	RB	20025	20175	20325
width	Modulation	allocation	offset	1717.5MHz	1732.5MHz	1747.5MHz
			0	24.02	24.09	23.66
		1	38	23.70	23.77	23.80
			74	23.87	24.12	24.15
	QPSK		0	23.43	23.29	22.78
		38	18	22.46	23.09	22.76
			37	22.48	23.41	22.77
15MHz		75	0	22.93	22.99	23.10
			0	23.30	23.13	22.96
		1	38	23.13	22.96	23.29
	16QAM		74	23.10	23.17	23.06
		38	0	22.35	22.25	22.77
			18	22.43	22.17	22.85
			37	22.38	22.41	22.76
		75	0	21.95	22.11	22.11
Band-	Modulation	RB allocation	RB offset	20050	20175	20300
width				1720MHz	1732.5MHz	1745MHz
		1	0	24.43	24.00	24.22
			49	23.89	23.87	24.18
			99	24.01	23.94	24.25
	QPSK		0	23.04	22.94	23.00
		50	25	22.87	22.90	23.07
			50	22.74	22.99	23.15
20MHz		100	0	22.83	22.93	23.02
2011112			0	23.57	22.91	22.95
		1	49	23.09	23.12	23.19
			99	23.17	23.24	23.02
	16QAM		0	21.89	21.95	22.20
		50	25	21.90	21.94	22.32
			50	21.74	22.19	22.17
		100	0	21.85	22.00	22.07

Issued:

2022-06-28

	LTE-FDD	Band 5	Conducted Power(dBm)			
Band-	Madulation	RB	RB	20407	20525	20643
width	Modulation	allocation	offset	8.4.7MHz	836.5MHz	848.3MHz
			0	24.39	24.64	24.28
		1	2	24.37	24.71	23.96
			5	24.38	24.66	23.92
	QPSK		0	24.66	24.54	23.94
		3	1	24.43	24.53	23.94
			3	24.39	24.66	23.87
1.4MHz		6	0	23.47	23.62	23.97
1.411172			0	23.39	23.56	23.31
		1	2	23.62	23.80	23.22
	16QAM		5	23.56	23.68	23.14
		3	0	23.45	23.58	22.97
			1	23.57	23.56	22.97
			3	23.60	23.70	22.90
		6	0	22.45	22.54	22.82
Band-	Modulation	RB allocation	RB offset	20415	20525	20635
width				825.5MHz	836.5MHz	847.5MHz
		1	0	24.55	24.75	24.58
			8	24.32	24.68	24.35
			14	24.35	24.87	24.26
	QPSK		0	23.62	23.56	23.79
		8	4	23.45	23.67	23.74
			7	23.33	23.71	23.68
3MHz		15	0	23.64	23.53	23.71
			0	23.59	23.77	23.69
		1	8	23.53	23.67	23.56
			14	23.61	23.69	23.49
	16QAM		0	22.46	22.72	22.91
		8	4	22.47	22.72	22.90
			7	22.68	22.69	22.83
		15	0	22.59	22.54	22.79

Issued:

	LTE-FDD Band 5			Conducted Power(dBm)		
Band-		RB	RB	20425	20525	20625
width	Modulation	allocation	offset	826.5MHz	836.5MHz	846.5MHz
			0	24.40	24.59	24.31
		1	12	24.47	24.75	24.42
			24	24.38	24.78	24.34
	QPSK		0	23.57	23.54	23.73
		12	7	23.43	23.54	23.65
			13	23.40	23.68	23.63
5MHz		25	0	23.48	23.54	23.73
			0	23.58	23.57	23.46
		1	12	23.67	23.61	23.47
			24	23.64	23.54	23.46
	16QAM		0	22.53	22.65	22.71
		12	7	22.54	22.73	22.81
			13	22.44	22.71	22.69
		25	0	22.43	22.64	22.83
Band-	Modulation	RB	RB	20450	20525	20600
width	wouldtion	allocation	offset	829MHz	836.5MHz	844MHz
			0	23.51	23.22	23.58
		1	24	23.38	23.14	23.37
			49	23.68	23.30	23.08
	QPSK		0	23.72	23.62	24.19
		25	24	23.58	23.64	23.71
			49	23.64	23.77	23.74
10MHz		50	0	23.62	23.69	23.79
			0	23.58	23.09	23.71
		1	24	23.58	23.88	23.62
			49	22.95	23.35	23.36
	16QAM		0	22.67	22.81	22.86
		25	24	22.60	22.60	22.76
			49	22.71	22.78	22.81
		50	0	22.73	22.70	22.79

Issued:

	LTE-FDD	Band 7		Conducted Power(dBm)		
Band-		RB	RB	20775	21100	21425
width	Modulation	allocation	offset	2502.5MHz	2535MHz	2567.5MHz
			0	22.77	22.06	22.54
		1	12	22.12	22.14	22.08
			24	22.03	22.54	22.34
	QPSK		0	22.32	22.27	22.09
		12	7	22.33	22.31	22.71
			13	21.91	22.41	22.64
5MHz		25	0	22.09	22.38	22.41
SIVINZ			0	21.92	21.91	21.35
		1	12	21.23	21.18	21.27
			24	21.14	21.45	21.20
	16QAM		0	21.48	21.41	21.58
		12	7	21.48	21.44	21.70
			13	21.03	21.52	21.64
		25	0	21.24	21.13	21.61
Band-	Modulation	RB	RB	20800	21100	21400
width	Modulation	allocation	offset	2505MHz	2535MHz	2565MHz
			0	22.68	22.12	22.87
		1	24	22.24	22.48	22.26
			49	21.68	22.15	22.46
	QPSK		0	22.32	22.51	22.11
		25	24	22.31	22.64	22.88
			49	22.46	22.66	22.71
10MHz		50	0	22.02	22.10	22.75
			0	22.01	22.72	22.63
		1	24	22.06	22.35	22.56
			49	22.48	22.17	22.71
	16QAM		0	21.48	21.49	21.44
		25	24	21.45	21.74	21.85
			49	21.65	21.82	21.74
		50	0	21.17	21.19	21.49

Issued:

	LTE-FDD Band 7			Conducted Power(dBm)		
Band-	Madulation	RB	RB	20825	21100	21375
width	Modulation	allocation	offset	2507.5MHz	2535MHz	2562.5MHz
			0	22.57	22.35	22.30
		1	38	21.75	22.14	22.88
			74	22.70	22.08	22.65
	QPSK		0	22.05	22.24	22.40
		38	18	22.14	22.06	22.13
			37	22.09	22.41	22.91
15MHz		75	0	22.04	22.52	22.36
TOIVITIZ			0	22.02	22.41	22.41
		1	38	22.09	22.96	22.25
			74	22.10	22.83	22.34
	16QAM		0	22.02	22.38	22.28
		38	18	22.13	22.99	22.24
			37	22.12	22.85	22.49
		75	0	21.12	21.36	21.58
Band-	Modulation	RB	RB	20850	21100	21350
width	Wouldtion	allocation	offset	2510MHz	2535MHz	2560MHz
			0	22.27	22.06	22.97
		1	49	22.05	22.31	22.51
			99	22.36	22.41	22.34
	QPSK		0	22.14	22.63	22.62
		50	25	22.46	22.71	22.47
			50	22.53	22.36	22.52
20MHz		100	0	22.22	22.74	22.24
20101112			0	21.58	21.18	21.75
		1	49	21.23	21.06	21.77
			99	21.00	21.29	21.41
	16QAM		0	21.26	21.43	21.44
		50	25	21.87	21.58	21.52
			50	21.72	21.09	21.65
		100	0	21.29	21.84	21.65

11.3. Wi-Fi

For 2.4GHz Wi-Fi SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were for SAR evaluation.

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

	Wi-Fi 2.4G						
Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)			
	1	2412	10.45	7.97			
802.11b	6	2437	9.72	7.29			
	11	2462	12.54	10.09			
	1	2412	9.05	6.52			
802.11g	6	2437	8.86	5.01			
	11	2462	11.32	7.38			
	1	2412	10.46	6.67			
802.11n (HT20)	6	2437	8.93	5.24			
(1120)	11	2462	11.80	8.00			
	3	2422	9.95	5.87			
802.11n (HT40)	6	2437	10.05	6.25			
	9	2452	11.29	7.16			

11.4. Bluetooth

Bluetooth					
Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)	
	0	2402	1.44	1.42	
BLE	19	2440	1.17	1.15	
	39	2480	0.30	0.29	

12. Maximum Tune-up Limit

	WCDMA					
Mode	Maximum Tune-up (dBm)					
Mode	FDD Band IV	FDD Band V				
AMR 12.2Kbps	23.00	23.50				
RMC 12.2Kbps	23.00	23.50				
HSDPA Subtest-1	22.00	22.50				
HSDPA Subtest-2	21.50	22.00				
HSDPA Subtest-3	22.00	22.50				
HSDPA Subtest-4	21.50	22.50				
HSUPA Subtest-1	22.00	22.00				
HSUPA Subtest-2	21.00	21.50				
HSUPA Subtest-3	21.00	21.00				
HSUPA Subtest-4	21.50	22.00				
HSUPA Subtest-5	22.50	22.50				

		LTE		
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)
			1	24.00
		QPSK	3	24.00
	1.4		6	23.00
	1.4		1	23.50
		16QAM	3	23.00
			6	22.00
			1	24.50
		QPSK	8	23.50
	3		15	23.50
	5		1	23.50
		16QAM	8	22.50
			15	22.50
			1	24.50
		QPSK	12	23.50
	5		25	23.50
		16QAM	1	23.50
			12	22.50
FDD Band 4			25	22.50
FDD Ballu 4	10	QPSK	1	24.50
			25	23.50
			50	23.00
		16QAM	1	23.00
			25	22.50
			50	22.00
			1	24.50
		QPSK	38	23.50
	15		75	23.50
	15		1	23.50
		16QAM	38	23.00
			75	22.50
			1	24.50
		QPSK	50	23.50
	20		100	23.50
	20		1	24.00
		16QAM	50	22.50
			100	22.50

	LTE					
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)		
			1	25.00		
		QPSK	3	25.00		
	1.4		6	24.00		
	1.4		1	24.00		
		16QAM	3	24.00		
			6	23.00		
			1	25.00		
		QPSK	8	24.00		
	3	-	15	24.00		
		16QAM	1	24.00		
			8	23.00		
			15	23.00		
FDD Band 5	5	QPSK	1	25.00		
			12	24.00		
			25	24.00		
			1	24.00		
		16QAM	12	23.00		
			25	23.00		
			1	24.00		
		QPSK	25	24.50		
	10		50	24.00		
	10		1	24.00		
		16QAM	25	23.00		
			50	23.00		

	LTE					
Fequency Band	Band-width(MHz)	Modulation	RB allocation	Maximum Tune-up (dBm)		
			1	23.00		
		QPSK	12	23.00		
	5		25	22.50		
	5		1	22.00		
		16QAM	12	22.00		
			25	22.00		
			1	23.00		
		QPSK	25	23.00		
	10		50	23.00		
		16QAM	1	23.00		
			25	22.00		
FDD Band 7			50	21.50		
FDD Ballu 7	15	QPSK	1	23.00		
			38	23.00		
			75	23.00		
			1	23.00		
		16QAM	38	23.00		
			75	22.00		
			1	23.00		
		QPSK	50	23.00		
	20		100	23.00		
	20		1	22.00		
		16QAM	50	22.00		
			100	22.00		

The allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

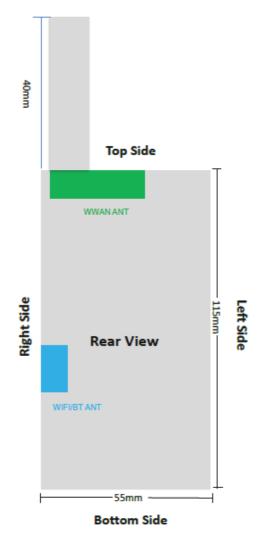
Modulation	Cha	Channel bandwidth / Transmission bandwidth (N _{RB})					MPR (dB)
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	>8	> 12	> 16	> 18	±1
16 QAM	≾ 5	≾ 4	"≍8	≾ 12	≾ 16	≾ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≴2
64 QAM	≴5	≾ 4	≾ 8	≾ 12	≾ 16	≾ 18	≾ 2
64 QAM	> 5	> 4	>8	> 12	> 16	> 18	≴3
256 QAM		≥1					≾ 5

Report No.: CHTEW22060145

Wi-Fi 2.4G						
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power				
	1	8.00				
802.11b	6	7.50				
	11	10.50				
	1	7.00				
802.11g	6	5.50				
	11	7.50				
	1	7.00				
802.11n(HT20)	6	5.50				
	11	8.00				
	3	6.00				
802.11n(HT40)	6	6.50				
	9	7.50				

	Bluetooth	
Mode	Channel	Maximum Tune-up (dBm) Conducted Average Power
	0	1.50
BLE	19	1.50
	39	0.50

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances \leq 50mm are determined by:


[(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] * [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR

Band/Mode	F(GHz)	Position	Separation Distance (mm)	Exclusion Thresholds	SAR test exclusion
Bluetooth	2.45	Body	10	0.2	yes

Per KDB 447498 D01, when the minimum test separation distance is <5mm, a distance of 5mm is applied to determine SAR test exclusion.

The test exclusion thereshold is \leq 3, SAR testing is not required.

13. Antenna Location

14. Measured and Reported SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 941225 D01 SAR test for 3G SAR Test Reduction Procedure:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

GSM Guidance

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Please refer to section 9. for GSM power verification.

SAR is not required for EDGE (8PSK) mode because the maximum output power and tune-up limit is \leq 1/4dB higher than GPRS/EDGE (GMSK) or the adjusted SAR of the highest reported SAR of GPRS/EDGE (GMSK) is \leq 1.2W/kg.

W-CDMA Guidance

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC (Head) and other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC (Body-Worn Accessory) as the primary mode.

SAR measurement is not required for the HSDPA, HSUPA, DC-HSDPA and HSPA+. When primary mode and the adjusted SAR is \leq 1.2 W/kg and secondary mode is \leq 1/4 dB higher than the primary mode

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM and 64-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.

• Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

KDB 248227 D01 SAR meas for 802.11:

When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - > When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions,when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

14.1. Head SAR

	WCDMA Band IV													
Mode Test Positior		Frec	luency	Conducted Power	Tune up limit	Tune up scaling	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot				
	POSILION	СН	MHz	(dBm)	(dBm)	factor	(dB)	(W/kg)	(W/kg)	No.				
		1312	1712.4	22.92	23.00	1.019	-	-	-	-				
RMC 12.2K	Front	1413	1732.6	22.84	23.00	1.038	-	-	-	-				
		1513	1752.6	22.98	23.00	1.005	0.01	0.173	0.174	1				

	WCDMA Band V												
Mode Test Position	Freq	luency	Conducted Power	Tune up limit	Tune up scaling	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot				
	Position	СН	MHz	(dBm)	(dBm)	factor	(dB)	(W/kg)	(W/kg)	No.			
		4132	826.4	23.34	23.50	1.038	-	-	-	-			
RMC 12.2K	Front	4183	836.6	23.37	23.50	1.030	0.03	0.230	0.237	2			
		4233	846.6	23.22	23.50	1.067	-	-	-	-			
The fell	The following data is the new battery difference test data of WCDMA Band V												

The following data is the new battery difference test data of WCDMA Band V Battrey 3.7V 5100mAh/Model AB260

3										
RMC 12.2Kbps	Front	4183	836.6	23.37	23.50	1.030	-0.15	0.226	0.233	13

	LTE Band 4												
Mode	Mode Test Position	Freq	uency	Conducted Power	Tune up limit	Tune up scaling	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot			
	Position	СН	MHz	(dBm)	(dBm)	factor	(dB)	(W/kg)	(W/kg)	No.			
20M		20050	1720	24.43	24.50	1.016	-0.07	0.190	0.193	3			
QPSK	Front	20175	1732.5	24.00	24.50	1.122	-	-	-	-			
1RB		20300	1745	24.22	24.50	1.067	-	-	-	-			
20M		20050	1720	22.74	23.50	1.191	-	-	-	-			
QPSK	Front	20175	1732.5	22.99	23.50	1.125	-	-	-	-			
50RB		20300	1745	23.15	23.50	1.084	-0.06	0.169	0.183	-			

	LTE Band 5												
Mode	Test Position	Frequ	uency	Conducted Power	Tune up limit	Tune up scaling	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot			
	POSILION	СН	MHz	(dBm)	(dBm)	factor	(dB)	(W/kg)	(W/kg)	No.			
10M		20450	829	23.68	24.00	1.076	0.10	0.223	0.240	4			
QPSK	Front	20525	836.5	23.30	24.00	1.175	-	-	-	-			
1RB		20600	844	23.08	24.00	1.236	-	-	-	-			
10M		20450	829	23.72	24.50	1.197	-	-	-	-			
QPSK	Front	20525	836.5	23.62	24.50	1.225	-	-	-	-			
25RB		20600	844	24.19	24.50	1.074	0.09	0.199	0.214	-			

	LTE Band 7												
Mode	Mode Test Position	Frequ	uency	Conducted Power	Tune up limit	Tune up scaling	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot			
			MHz	(dBm)	(dBm)	factor	(dB)	(W/kg)	(W/kg)	No.			
20M		20850	2510	22.27	23.00	1.183	-	-	-	-			
QPSK	Front	21100	2535	22.06	23.00	1.242	-	-	-	-			
1RB		21350	2560	22.97	23.00	1.007	0.06	0.112	0.113	5			
20M		20850	2510	22.46	23.00	1.132	-	-	-	-			
QPSK	Front	21100	2535	22.71	23.00	1.069	-0.08	0.099	0.106	-			
50RB		21350	2560	22.47	23.00	1.130	-	-	-	-			

	Wi-Fi 2.4G												
Mode	Test	Fre	equency	Conducted Power	Tune- up limit	Tune- up	Duty	Duty Cycle	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot	
Mode	Mode Position	СН	MHz	(dBm)	(dBm)	scaling factor	Cycle	Scaling Factor	(dB)	(W/kg)	(W/kg)	No.	
		1	2412	7.97	8.00	1.007	97.50%	1.03	-	-	-	-	
802.11b	Front	6	2437	7.29	7.50	1.050	97.50%	1.03	-	-	-	-	
		11	2462	10.09	10.50	1.099	97.50%	1.03	-0.18	0.017	0.019	6	

14.2. Body SAR

				WCD	MA Band	IV				
Mode	Test	Frec	luency	Conducted Power	Tune up limit	Tune up scaling	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot
	Position	СН	MHz	(dBm)	(dBm)	factor	(dB)	(W/kg)	(W/kg)	No.
		1312	1712.4	22.92	23.00	1.019	-	-	-	-
	Front	1413	1732.6	22.84	23.00	1.038	-	-	-	-
		1513	1752.6	22.98	23.00	1.005	0.04	0.614	0.617	7
5.46		1312	1712.4	22.92	23.00	1.019	-	-	-	-
RMC 12.2Kbps	Rear	1413	1732.6	22.84	23.00	1.038	-	-	-	-
		1513	1752.6	22.98	23.00	1.005	0.14	0.331	0.333	-
	Rear	1312	1712.4	22.92	23.00	1.019	-	-	-	-
(With	1413	1732.6	22.84	23.00	1.038	-	-	-	-	
	Belt clip)	1513	1752.6	22.98	23.00	1.005	0.17	0.366	0.368	-

				WCD	MA Band	V k				
Mode	Test Position	Frequency		Conducted Power	Tune up limit	Tune up scaling	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot No.
	1 USILION	CH	MHz	(dBm)	(dBm)	factor	(dB)	(W/kg)	(W/kg)	INO.
		4132	826.4	23.34	23.50	1.038	-	-	-	-
	Front	4183	836.6	23.37	23.50	1.030	-0.04	0.461	0.475	8
		4233	846.6	23.22	23.50	1.067	-	-	-	-
		4132	826.4	23.34	23.50	1.038	-	-	-	-
RMC 12.2Kbps	Rear	4183	836.6	23.37	23.50	1.030	-0.01	0.283	0.292	-
		4233	846.6	23.22	23.50	1.067	-	-	-	-
	Rear	4132	826.4	23.34	23.50	1.038	-	-	-	-
	(With	4183	836.6	23.37	23.50	1.030	-0.11	0.215	0.222	-
	Belt clip)	4233	846.6	23.22	23.50	1.067	-	-	-	-

				LTE	Band 4					
Mode	Test	Freq	uency	Conducted Power	Tune up limit	Tune up	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot
	Position	СН	MHz	(dBm)	(dBm)	scaling factor	(dB)	(W/kg)	(W/kg)	No.
		20050	1720	24.43	24.50	1.016	-0.10	0.719	0.731	9
	Front	20175	1732.5	24.00	24.50	1.122	-	-	-	-
		20300	1745	24.22	24.50	1.067	-	-	-	-
20M		20050	1720	24.43	24.50	1.016	0.17	0.404	0.411	-
QPSK	Rear	20175	1732.5	24.00	24.50	1.122	-	-	-	-
1RB		20300	1745	24.22	24.50	1.067	-	-	-	-
	Rear	20050	1720	24.43	24.50	1.016	0.05	0.417	0.424	-
	(With Belt	20175	1732.5	24.00	24.50	1.122	-	-	-	-
	clip)	20300	1745	24.22	24.50	1.067	-	-	-	-
		20050	1720	22.74	23.50	1.191	-	-	-	-
	Front	20175	1732.5	22.99	23.50	1.125	-	-	-	-
		20300	1745	23.15	23.50	1.084	-0.13	0.664	0.720	-
20M		20050	1720	22.74	23.50	1.191	-	-	-	-
QPSK	Rear	20175	1732.5	22.99	23.50	1.125	-	-	-	-
50RB		20300	1745	23.15	23.50	1.084	-0.06	0.361	0.391	-
	Rear	20050	1720	22.74	23.50	1.191	-	-	-	-
	(With Belt	20175	1732.5	22.99	23.50	1.125	-	-	-	-
	clip)	20300	1745	23.15	23.50	1.084	0.01	0.369	0.400	-

The following data is the new battery difference test data of LTE Band 4

Battrey 3.7	Battrey 3.7V 5100mAh/Model AB260									
20M QPSK 1RB	Front	20050	1720	24.43	24.50	1.016	-0.13	0.714	0.726	14

Report No.: CHTEW22060145

Page: 53 of 61

Issued:

				LTE	Band 5					
Mode	Test Position	Freq CH	uency MHz	Conducted Power (dBm)	Tune up limit (dBm)	Tune up scaling factor	Power Drift(dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	Plot No.
		20450	829	23.68	24.00	1.076	-0.13	0.491	0.529	10
	Front	20525	836.5	23.30	24.00	1.175	-	-	-	-
		20600	844	23.08	24.00	1.236	-	-	-	-
10M		20450	829	23.68	24.00	1.076	-0.16	0.306	0.329	-
QPSK	Rear	20525	836.5	23.30	24.00	1.175	-	-	-	-
1RB		20600	844	23.08	24.00	1.236	-	-	-	-
	Rear	20450	829	23.68	24.00	1.076	0.03	0.297	0.320	-
	(With Belt	20525	836.5	23.30	24.00	1.175	-	-	-	-
	clip)	20600	844	23.08	24.00	1.236	-	-	-	-
		20450	829	23.72	24.50	1.197	-	-	-	-
	Front	20525	836.5	23.62	24.50	1.225	-	-	-	-
		20600	844	24.19	24.50	1.074	-0.07	0.462	0.496	-
10M		20450	829	23.72	24.50	1.197	-	-	-	-
QPSK	Rear	20525	836.5	23.62	24.50	1.225	-	-	-	-
25RB		20600	844	24.19	24.50	1.074	0.15	0.284	0.305	-
	Rear	20450	829	23.72	24.50	1.197	-	-	-	-
	(With Belt	20525	836.5	23.62	24.50	1.225	-	-	-	-
	clip)	20600	844	24.19	24.50	1.074	0.11	0.263	0.282	-

				LT	E Band 7	•				
Mode	Test	Frequency		Conducted Power	Tune up limit	Tune up	Power	Measured SAR(1g)	Report SAR(1g)	Plot
	Position	СН	MHz	(dBm)	(dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	No.
		20850	2510	22.27	23.00	1.183	-	-	-	-
	Front	21100	2535	22.06	23.00	1.242	-	-	-	-
		21350	2560	22.97	23.00	1.007	-0.02	0.418	0.421	11
20M		20850	2510	22.27	23.00	1.183	-	-	-	-
QPSK 1RB	Rear	21100	2535	22.06	23.00	1.242	-	-	-	-
		21350	2560	22.97	23.00	1.007	0.06	0.193	0.194	-
	Rear	20850	2510	22.27	23.00	1.183	-	-	-	-
	(With	21100	2535	22.06	23.00	1.242	-	-	-	-
	Belt clip)	21350	2560	22.97	23.00	1.007	0.10	0.206	0.207	-
		20850	2510	22.46	23.00	1.132	-	-	-	-
	Front	21100	2535	22.71	23.00	1.069	-0.12	0.375	0.401	-
		21350	2560	22.47	23.00	1.130	-	-	-	-
20M		20850	2510	22.46	23.00	1.132	-	-	-	-
QPSK	Rear	21100	2535	22.71	23.00	1.069	0.04	0.164	0.175	-
50RB		21350	2560	22.47	23.00	1.130	-	-	-	-
	Rear	20850	2510	22.46	23.00	1.132	-	-	-	-
	(With	21100	2535	22.71	23.00	1.069	0.03	0.183	0.196	-
	Belt clip)	21350	2560	22.47	23.00	1.130	-	-	-	-

	Wi-Fi 2.4G											
Mode Test Position	Test	Frequency		Conducted	Tune-	Tune- up	Duty	Duty Cycle	Power Drift	Measured SAR(1g)	Report SAR(1g)	Plot
	Position	СН	MHz	Power (dBm)	up limit (dBm)	scaling factor	Cycle	Scaling Factor	(dB)	(W/kg)	(W/kg)	No.
		1	2412	7.97	8.00	1.007	97.50%	1.03	-	-	-	-
	Front	6	2437	7.29	7.50	1.050	97.50%	1.03	-	-	-	-
		11	2462	10.09	10.50	1.099	97.50%	1.03	-0.12	0.061	0.069	-
		1	2412	7.97	8.00	1.007	97.50%	1.03	-	-	-	-
802.11b	Rear	6	2437	7.29	7.50	1.050	97.50%	1.03	-	-	-	-
		11	2462	10.09	10.50	1.099	97.50%	1.03	-0.01	0.046	0.052	-
	Rear	1	2412	7.97	8.00	1.007	97.50%	1.03	-	-	-	-
	(With Belt	6	2437	7.29	7.50	1.050	97.50%	1.03	-	-	-	-
	clip)	11	2462	10.09	10.50	1.099	97.50%	1.03	-0.09	0.067	0.076	12

SAR Test Data Plots to the Appendix A.

15. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).

4) Perform a third repeated measurement only if the original, first, or second repeated measurement is \geq 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Band F	Test	Frequency		Highest		rst eated	Second Repeated	
	Position	СН	MHz	Measured SAR (W/kg)	Measured SAR(W/kg)	Largest to Smallest SAR Ratio	Measured SAR(W/kg)	Largest to Smallest SAR Ratio
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

16. Simultaneous Transmission analysis

No.	Simultaneous Transmission Configurations	Head	Body-worn	Note
1	WCDMA(voice) + Bluetooth (data)	Yes	Yes	
2	WCDMA(voice) + WLAN (data)	Yes	Yes	
3	WCDMA (data) + Bluetooth (data)	Yes	Yes	
4	WCDMA (data) + WLAN (data)	Yes	Yes	
5	LTE + Bluetooth (data)	Yes	Yes	
6	LTE + WLAN (data)	Yes	Yes	

General note:

1. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.

2. EUT will choose either GSM or WCDMA LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment.

- 3. The reported SAR summation is calculated based on the same configuration and test position
- 4. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the formula below
 - a) [(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] * [√f(GHz)/x]W/kg for test separation distances ≦ 50mm; whetn x=7.5 for 1-g SAR, and x=18.75 for 10-g SAR.
 - b) When the minimum separation distance is <5mm, the distance is used 5mm to determine SAR test exclusion
 - c) 0.4 W/kg for 1-g SAR and 1.0W/kg for 10-g SAR, when the test separation distances is >50mm.

Bluetooth	Exposure position	Body-worn
Max power	Test separation	10mm
1.50dBm	Estimated SAR (W/kg)	0.029

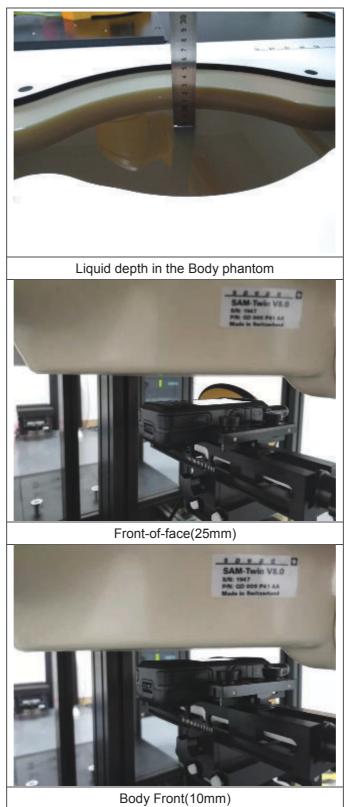
16.1. Head

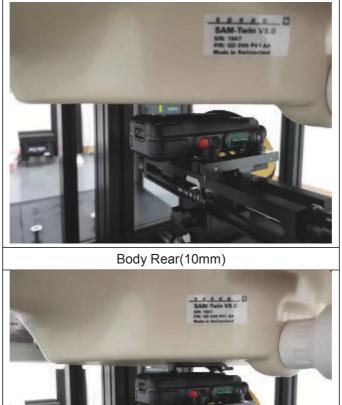
PCF+ WLAN DTS									
\\\\\\	WWAN Band		Standalone	SAR (W/kg)	Σ 1-g SAR				
		Position	PCF	WLAN DTS	(W/kg)				
WCDMA	Band IV	Front	0.174	0.019	0.193				
VVCDIVIA	Band V	Front	0.237	0.019	0.256				
	B4 1RB	Front	0.193	0.019	0.212				
	B4 50RB	Front	0.183	0.019	0.202				
LTE	B5 1RB	Front	0.240	0.019	0.259				
	B5 25RB	Front	0.214	0.019	0.233				
	B7 1RB	Front	0.113	0.019	0.132				
	B7 50RB	Front	0.106	0.019	0.125				

PCF+ BT									
\\\\\\\	N Rand	Exposure	Standalone	SAR (W/kg)	Σ 1-g SAR				
V V V /~\I	WWAN Band		PCF	WLAN U-NII	(W/kg)				
	Band IV	Front	0.174	0.029	0.203				
WCDMA	Band V	Front	0.237	0.029	0.266				
	B4 1RB	Front	0.193	0.029	0.223				
	B4 50RB	Front	0.183	0.029	0.213				
LTE	B5 1RB	Front	0.240	0.029	0.270				
LIE	B5 25RB	Front	0.214	0.029	0.243				
	B7 1RB	Front	0.113	0.029	0.142				
	B7 50RB	Front	0.106	0.029	0.135				

16.2. Body-worn

		PCF + WLA	N DTS		
		Exposure	Standalone	SAR (W/kg)	Σ 1-g SAR
VVVVA	N Band	Position	PCF	WLAN DTS	(W/kg)
		Front	0.617	0.069	0.686
	Band IV	Rear	0.333	0.052	0.384
WCDMA	Banary	Rear (With Belt clip)	0.368	0.076	0.443
VUCDIVIA		Front	0.475	0.069	0.544
	Band V	Rear	0.292	0.052	0.343
		Rear (With Belt clip)	0.222	0.076	0.297
		Front	0.731	0.069	0.799
	B4	Rear	0.411	0.052	0.462
	1RB	Rear (With Belt clip)	0.424	0.076	0.499
		Front	0.720	0.069	0.788
	B4 50RB	Rear	0.391	0.052	0.443
		Rear (With Belt clip)	0.400	0.076	0.475
	B5 1RB	Rear (With Belt clip)	0.529	0.069	0.597
		Front	0.329	0.052	0.381
LTE		Rear	0.320	0.076	0.395
LIL	B5	Rear (With Belt clip)	0.496	0.069	0.565
	25RB	Front	0.305	0.052	0.357
		Rear	0.282	0.076	0.358
	В7	Rear (With Belt clip)	0.421	0.069	0.490
	1RB	Front	0.194	0.052	0.246
		Rear	0.207	0.076	0.283
		Front	0.401	0.069	0.470
	B7	Rear	0.175	0.052	0.227
	50RB	Rear (With Belt clip)	0.196	0.076	0.271


Report No.: CHTEW22060145


Page: 59 of 61

Issued: 2022-06-28

		PCF + I	BT		
		Exposure	Standalone	SAR (W/kg)	Σ 1-g SAR
VVVA	N Band	Position	PCF	WLAN DTS	(W/kg)
		Front	0.617	0.029	0.646
	Band IV	Rear	0.333	0.029	0.362
WCDMA	Danu IV	Rear (With Belt clip)	0.368	0.029	0.397
VVCDIVIA		Front	0.475	0.029	0.504
	Band V	Rear	0.292	0.029	0.321
		Rear (With Belt clip)	0.222	0.029	0.251
		Front	0.731	0.029	0.760
	B4	Rear	0.411	0.029	0.440
	1RB	Rear (With Belt clip)	0.424	0.029	0.453
		Front	0.720	0.029	0.749
	B4 50RB	Rear	0.391	0.029	0.421
		Rear (With Belt clip)	0.400	0.029	0.429
	B5 1RB	Rear (With Belt clip)	0.529	0.029	0.558
		Front	0.329	0.029	0.359
LTE		Rear	0.320	0.029	0.349
	B5	Rear (With Belt clip)	0.496	0.029	0.526
	25RB	Front	0.305	0.029	0.334
		Rear	0.282	0.029	0.312
	B7	Rear (With Belt clip)	0.421	0.029	0.450
	1RB	Front	0.194	0.029	0.224
		Rear	0.207	0.029	0.237
		Front	0.401	0.029	0.430
	B7	Rear	0.175	0.029	0.205
	50RB	Rear (With Belt clip)	0.196	0.029	0.225

17. TestSetup Photos

18. External and Internal Photos of the EUT

Please reference to the report No.: CHTEW22060158

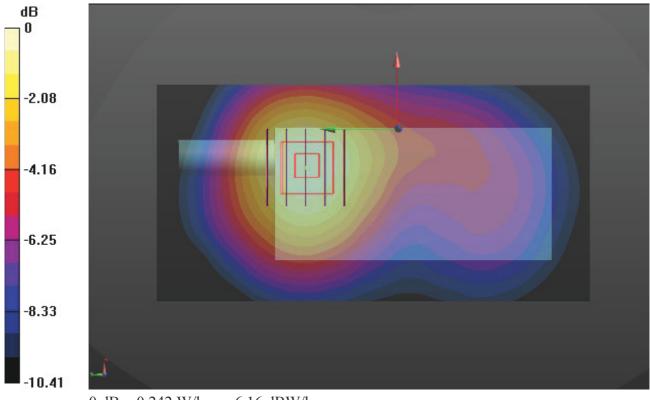
-----End of Report-----

WCDMA Band IV-Front of face

Communication System: UID 0, Generic UMTS (0); Frequency: 1752.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.333$ S/m; $\epsilon_r = 41.179$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.5°C;

DASY Configuration:


- Probe: EX3DV4 SN7494; ConvF(8.92, 8.92, 8.92) @ 1752.6 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front of face/CH 1513/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.248 W/kg

Front of face/CH 1513/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.295 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.284 W/kg SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.110 W/kg Maximum value of SAR (measured) = 0.242 W/kg

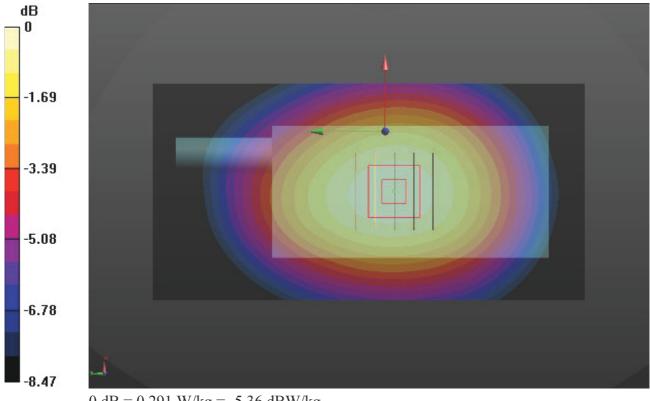
0 dB = 0.242 W/kg = -6.16 dBW/kg

WCDMA Band V-Front of face

Communication System: UID 0, Generic UMTS (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.915$ S/m; $\varepsilon_r = 42.703$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Ambient Temperature:22.5°C;Liquid Temperature:22.3°C;

DASY Configuration:


- Probe: EX3DV4 SN7494; ConvF(10.46, 10.46, 10.46) @ 836.6 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front of face/CH 4183/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.288 W/kg

Front of face/CH 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

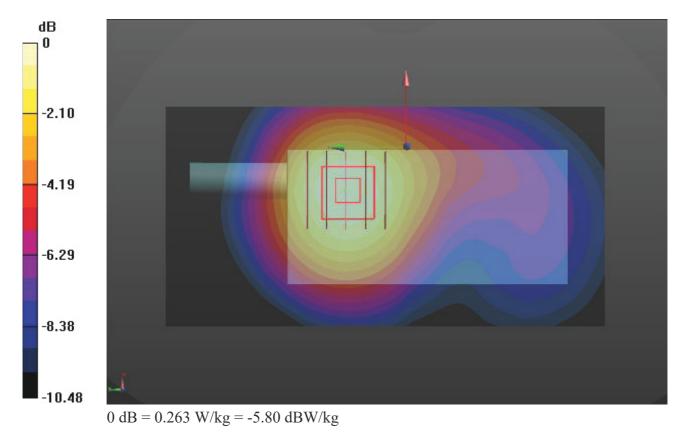
Reference Value = 18.24 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.326 W/kg SAR(1 g) = 0.230 W/kg; SAR(10 g) = 0.168 W/kg Maximum value of SAR (measured) = 0.291 W/kg

0 dB = 0.291 W/kg = -5.36 dBW/kg

LTE Band 4-Front of face

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 1720 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.316$ S/m; $\varepsilon_r = 41.207$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.3°C;Liquid Temperature:22.1°C;

DASY Configuration:


- Probe: EX3DV4 SN7494; ConvF(8.92, 8.92, 8.92) @ 1720 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front of face/CH 20050/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.268 W/kg

Front of face/CH 20050/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

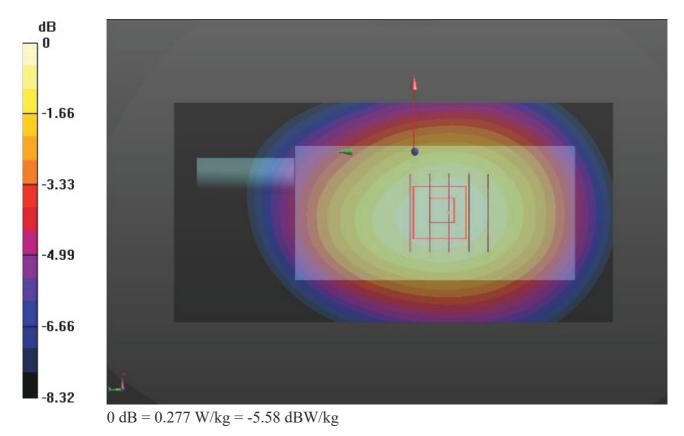
dy=8mm, dz=5mm Reference Value = 11.17 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.308 W/kg SAR(1 g) = 0.190 W/kg; SAR(10 g) = 0.123 W/kg Maximum value of SAR (measured) = 0.263 W/kg

LTE Band 5-Front of face

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 829 MHz; $\sigma = 0.912$ S/m; $\varepsilon_r = 42.707$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Ambient Temperature:22.1°C;Liquid Temperature:21.9°C;

DASY Configuration:


- Probe: EX3DV4 SN7494; ConvF(10.46, 10.46, 10.46) @ 829 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front of face/CH 20450/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.274 W/kg

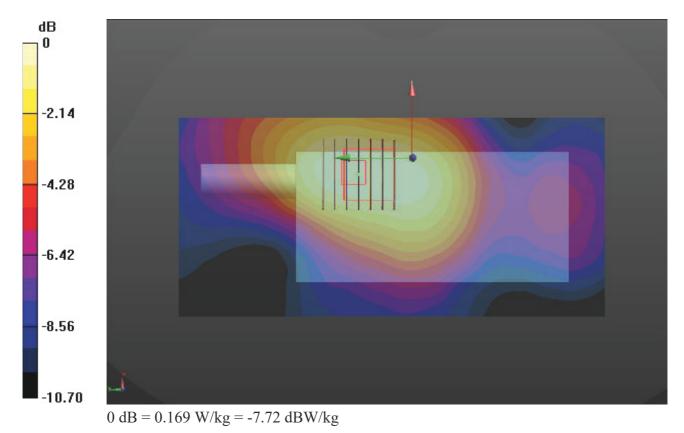
Front of face/CH 20450/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 17.09 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.312 W/kg SAR(1 g) = 0.223 W/kg; SAR(10 g) = 0.165 W/kg Maximum value of SAR (measured) = 0.277 W/kg

LTE Band 7-Front of face

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 2560 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; $\sigma = 1.888$ S/m; $\varepsilon_r = 40.159$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.5°C;Liquid Temperature:22.3°C;

DASY Configuration:


- Probe: EX3DV4 SN7494; ConvF(7.72, 7.72, 7.72) @ 2560 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front of face/CH 21350/Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

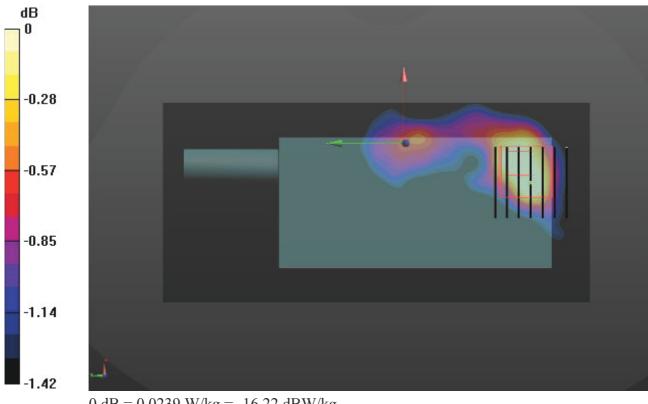
Maximum value of SAR (interpolated) = 0.165 W/kg

Front of face/CH 21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 8.453 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.208 W/kg SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.067 W/kg Maximum value of SAR (measured) = 0.169 W/kg

WiFi 2.4G-Front of face

Communication System: UID 0, Generic WIFI (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.804$ S/m; $\varepsilon_r = 40.312$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.91, 7.91, 7.91) @ 2462 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front of face/CH 11/Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0253 W/kg

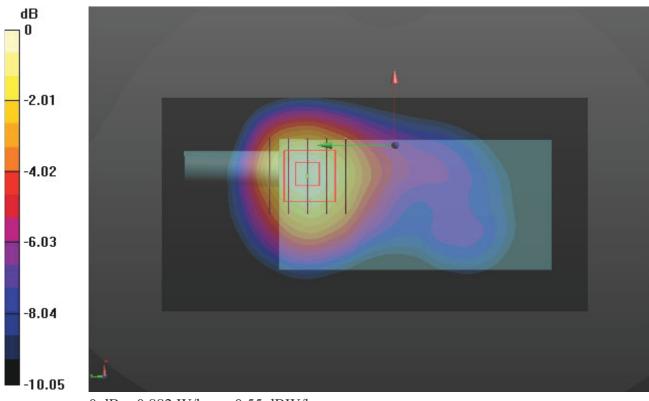
Front of face/CH 11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.659 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.0280 W/kgSAR(1 g) = 0.017 W/kg; SAR(10 g) = 0.011 W/kgMaximum value of SAR (measured) = 0.0239 W/kg

0 dB = 0.0239 W/kg = -16.22 dBW/kg

WCDMA Band IV-Body

Communication System: UID 0, Generic UMTS (0); Frequency: 1752.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.333$ S/m; $\varepsilon_r = 41.179$; $\rho = 1000$ kg/m³


Phantom section: Flat Section Ambient Temperature:22.8°C;Liquid Temperature:22.6°C;

DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.92, 8.92, 8.92) @ 1752.6 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

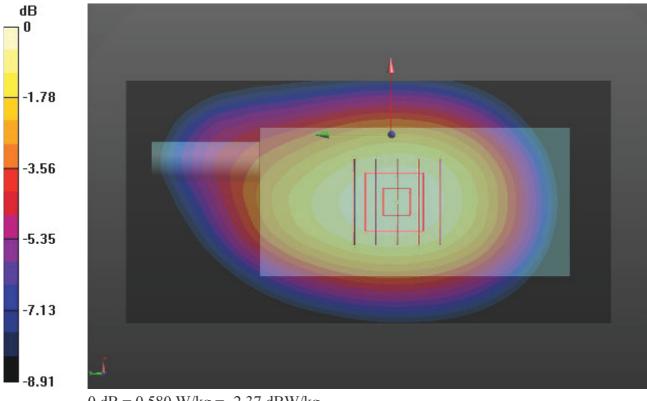
Front/CH 1513/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.894 W/kg

Front/CH 1513/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.85 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.05 W/kg SAR(1 g) = 0.614 W/kg; SAR(10 g) = 0.368 W/kg Maximum value of SAR (measured) = 0.882 W/kg

0 dB = 0.882 W/kg = -0.55 dBW/kg

WCDMA Band V-Body

Communication System: UID 0, Generic UMTS (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.915$ S/m; $\varepsilon_r = 42.703$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


Ambient Temperature:22.6°C;Liquid Temperature:22.4°C;

DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.46, 10.46, 10.46) @ 836.6 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

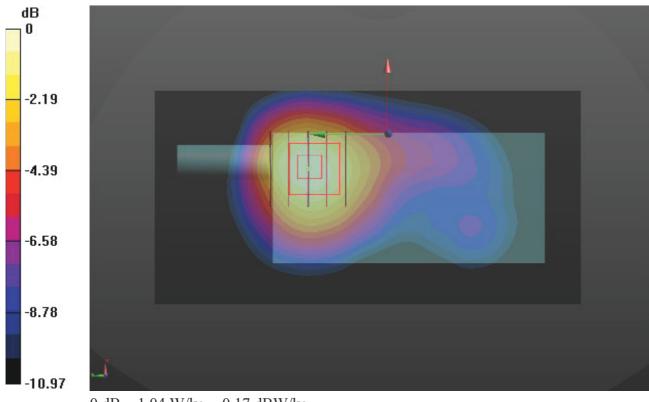
Front/CH 4183/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.579 W/kg

Front/CH 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.94 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.648 W/kg SAR(1 g) = 0.461 W/kg; SAR(10 g) = 0.335 W/kg Maximum value of SAR (measured) = 0.580 W/kg

0 dB = 0.580 W/kg = -2.37 dBW/kg

LTE Band 4-Body

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 1720 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.316$ S/m; $\varepsilon_r = 41.207$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.92, 8.92, 8.92) @ 1720 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front/CH 20050/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.06 W/kg

Front/CH 20050/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

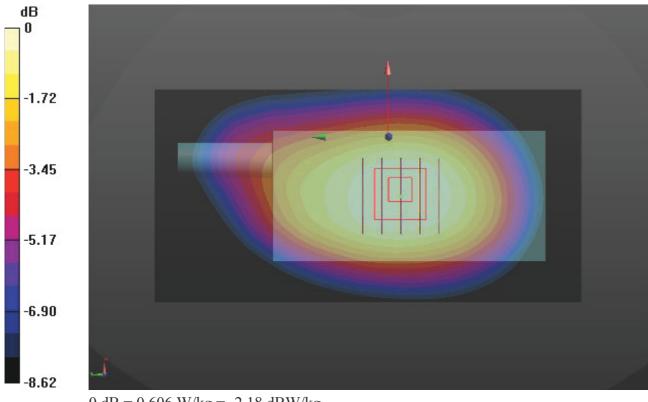
Reference Value = 15.09 V/m; Power Drift = -0.10 dBPeak SAR (extrapolated) = 1.23 W/kgSAR(1 g) = 0.719 W/kg; SAR(10 g) = 0.429 W/kgMaximum value of SAR (measured) = 1.04 W/kg

 $0 \ dB = 1.04 \ W/kg = 0.17 \ dBW/kg$

LTE Band 5-Body

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 829 MHz; $\sigma = 0.912$ S/m; $\varepsilon_r = 42.707$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Ambient Temperature:22.2°C;Liquid Temperature:22.0°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.46, 10.46, 10.46) @ 829 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front/CH 20450/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.627 W/kg

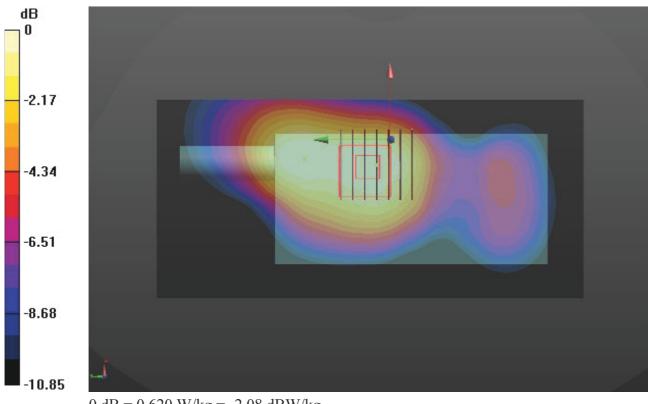
Front/CH 20450/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.05 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.684 W/kg SAR(1 g) = 0.491 W/kg; SAR(10 g) = 0.360 W/kg Maximum value of SAR (measured) = 0.606 W/kg

0 dB = 0.606 W/kg = -2.18 dBW/kg

LTE Band 7-Body

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 2560 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; $\sigma = 1.888$ S/m; $\varepsilon_r = 40.159$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.6°C;Liquid Temperature:22.4°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.72, 7.72, 7.72) @ 2560 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front/CH 21350/Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.653 W/kg

Front/CH 21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.37 V/m; Power Drift = -0.02 dB

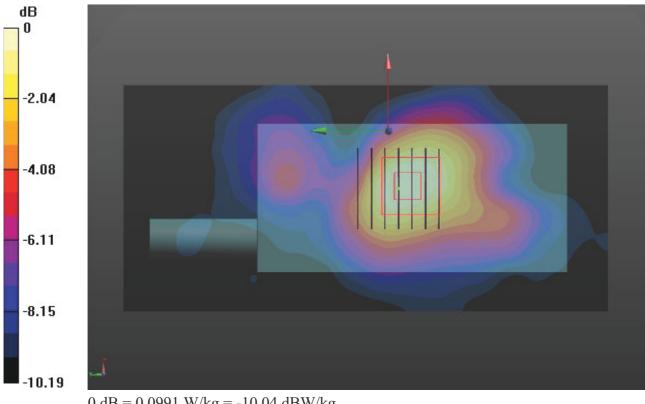
Reference Value = 16.37 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.750 W/kg SAR(1 g) = 0.418 W/kg; SAR(10 g) = 0.244 W/kg Maximum value of SAR (measured) = 0.620 W/kg

0 dB = 0.620 W/kg = -2.08 dBW/kg

Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab

WiFi 2.4G-Body

Communication System: UID 0, Generic WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.804$ S/m; $\varepsilon_r = 40.312$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


Ambient Temperature:22.3°C;Liquid Temperature:22.1°C;

DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(7.91, 7.91, 7.91) @ 2462 MHz; Calibrated: 4/1/2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/4/2020
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 11/Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.107 W/kg

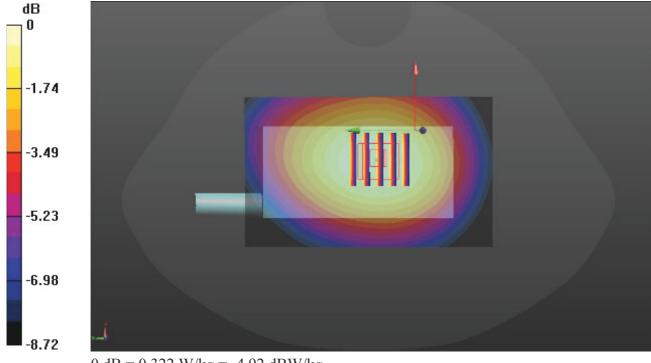
Rear/CH 11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.982 V/m; Power Drift = -0.09 dBPeak SAR (extrapolated) = 0.120 W/kgSAR(1 g) = 0.067 W/kg; SAR(10 g) = 0.038 W/kgMaximum value of SAR (measured) = 0.0991 W/kg

0 dB = 0.0991 W/kg = -10.04 dBW/kg

WCDMA Band V-M-Front of face

Communication System: UID 0, Generic UMTS (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.911$ S/m; $\varepsilon_r = 40.592$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.3°C;Liquid Temperature:22.0°C;

DASY Configuration:


- Probe: EX3DV4 SN7494; ConvF(10.3, 10.3, 10.3) @ 836.6 MHz; Calibrated: 5/16/2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front of face/CH 4183/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.334 W/kg

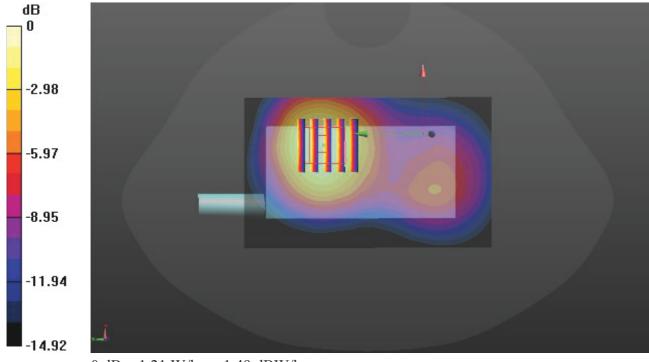
Front of face/CH 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.63 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.372 W/kg SAR(1 g) = 0.226 W/kg; SAR(10 g) = 0.178 W/kg Maximum value of SAR (measured) = 0.322 W/kg

0 dB = 0.322 W/kg = -4.92 dBW/kg

LTE Band 4-L-Body

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 1720 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.414$ S/m; $\varepsilon_r = 39.658$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.5°C;Liquid Temperature:22.3°C;


DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.81, 8.81, 8.81) @ 1720 MHz; Calibrated: 5/16/2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/12/2022
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front/CH 20050/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.27 W/kg

Front/CH 20050/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.07 V/m; Power Drift = -0.13 dBPeak SAR (extrapolated) = 1.48 W/kgSAR(1 g) = 0.714 W/kg; SAR(10 g) = 0.397 W/kgMaximum value of SAR (measured) = 1.21 W/kg

0 dB = 1.21 W/kg = 1.49 dBW/kg

1.1. DAE4 Calibration Certificate

E-mail: cttl@chi Client : HTV	CITE INC. ICAN INC.	tp://www.chinattl.cn	Certificate N	No: Z20-60131	
CALIBRATION	CERTIFIC	ATE	A THE	No.	
Object	DAE	4 - SN: 1549		10791 - 12	
Calibration Procedure(s)	FF-2	211-002-01 bration Procedure for the Ex)	Data Acquisit	ion Electronics	
Calibration date:	Apri	1 04, 2020	100.000		
pages and are part of the	certificate.	ne traceability to national s nd the uncertainties with co in the closed laboratory f	onfidence proba	bility are given on	the following
bages and are part of the All calibrations have be numidity<70%.	e certificate.	nd the uncertainties with co	onfidence proba	bility are given on ment temperature	the following (22±3)℃ and
pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	e certificate. en conducted sed (M&TE critic	nd the uncertainties with co	onfidence proba	bility are given on	the following (22±3)℃ and
bages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards	e certificate. en conducted sed (M&TE critic	nd the uncertainties with co in the closed laboratory f al for calibration)	nfidence proba	bility are given on ment temperature	(22±3)°C and
bages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards	e certificate. en conducted ed (M&TE critic ID #	nd the uncertainties with co in the closed laboratory f al for calibration) Cal Date(Calibrated by, Cer	nfidence proba	bility are given on ment temperature Scheduled Calit	(22±3)°C and
ages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	e certificate. en conducted ed (M&TE critic ID # 1971018	nd the uncertainties with co in the closed laboratory f al for calibration) Cal Date(Calibrated by, Cer 24-Jun-19 (CTTL, No.J ⁴ Function	nfidence proba acility: environr rtificate No.) 19X05126)	bility are given on ment temperature Scheduled Calit Jun-20	(22±3)°C and
pages and are part of the	e certificate. en conducted ed (M&TE critic ID # 1971018 Name	nd the uncertainties with co in the closed laboratory f al for calibration) Cal Date(Calibrated by, Cer 24-Jun-19 (CTTL, No.J ⁴ Function	nfidence proba acility: environr ntificate No.) 19X05126)	bility are given on ment temperature Scheduled Calit Jun-20	(22±3)°C and

Certificate No: Z20-60131

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z20-60131

Page 2 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Re High Range:	1LSB =	6.1µV.	full range =	-100+300 mV
Low Range:	1LSB =	61nV	full range =	-1+3mV
DASY measuremen	t parameters:	Auto Zero	Time: 3 sec; Meas	uring time: 3 sec

Calibration Factors	x	Y	Z
High Range	406.283 ± 0.15% (k=2)	405.977 ± 0.15% (k=2)	$406.124 \pm 0.15\%$ (k=2)
Low Range	3.98484 ± 0.7% (k=2)	3.99178 ± 0.7% (k=2)	$3.99281 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	19°±1°

Certificate No: Z20-60131

Page 3 of 3

1.2. Probe Calibration Certificate

the second se	TTL	CALIBRATION L	ABORATORY	CN	AS 校准 CALIBRAT
Tel: +86-10-	Xueyuan Roa 62304633-251 §chinattl.com	12 Fax: +86-10	Beijing, 100191, China -62304633-2504 chinattl.cn		CNAS LO
Client H	ITW		Certificate No	: Z20-6	60109
CALIBRATION	I CERT	TIFICAT			
Object		EX3DV4 - S	N : 7494		
Calibration Procedure((s)	FF-Z11-004	-01		
		Calibration F	Procedures for Dosimetric E-field Prob	es	
Calibration date:		April 01, 202	20		
numidity<70%.			closed laboratory facility: environmen	nt temper	ature(22±3)°C and
umidity<70%. Calibration Equipment		TE critical for ca	libration)		
umidity<70%. Calibration Equipment Primary Standards	used (M&		libration) Cal Date(Calibrated by, Certificate No		ature(22±3)℃ and eduled Calibration Jun-20
umidity<70%. alibration Equipment rimary Standards Power Meter NRP2	used (M&	TE critical for cal	libration) Cal Date(Calibrated by, Certificate No 18-Jun-19(CTTL, No.J19X05125)		eduled Calibration
umidity<70%. alibration Equipment rimary Standards Power Meter NRP2 Power sensor NRP-	used (M& -Z91	TE critical for ca ID # 101919	libration) Cal Date(Calibrated by, Certificate No 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)		eduled Calibration Jun-20
umidity<70%. alibration Equipment 'rimary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP-	used (M& -Z91 -Z91	TE critical for ca ID # 101919 101547 101548	libration) Cal Date(Calibrated by, Certificate No 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)		eduled Calibration Jun-20 Jun-20
umidity<70%. alibration Equipment rimary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte	t used (M& -Z91 -Z91 enuator	TE critical for ca ID # 101919 101547 101548	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525)		eduled Calibration Jun-20 Jun-20 Jun-20
umidity<70%. Calibration Equipment Primary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte	t used (M& -Z91 -Z91 enuator enuator	TE critical for ca ID # 101919 101547 101548 18N50W-10dB	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526)	o.) Sche	eduled Calibration Jun-20 Jun-20 Jun-20 Feb-22
umidity<70%. alibration Equipment rimary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte Reference Probe E3	t used (M& -Z91 -Z91 enuator enuator	TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525)	o.) Sche 1ay19/2)	duled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22
umidity<70%. alibration Equipment trimary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte Reference Probe E2 DAE4	: used (M& -Z91 -Z91 enuator enuator X3DV4	TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_M	o.) Sche 1ay19/2) Aug19)	eduled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20
umidity<70%. alibration Equipment rimary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte Reference Probe E3 DAE4 Secondary Standards	-Z91 -Z91 enuator enuator X3DV4	TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_N 26-Aug-19(SPEAG, No.DAE4-1525_	o.) Sche 1ay19/2) Aug19)	eduled Calibration Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20
umidity<70%. alibration Equipment rimary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte Reference Probe E3 DAE4 Secondary Standards SignalGenerator MC	-Z91 -Z91 enuator enuator X3DV4	TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID #	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_M 26-Aug-19(SPEAG, No.DAE4-1525_ Cal Date(Calibrated by, Certificate No.)	o.) Sche 1ay19/2) Aug19)	duled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 duled Calibration
umidity<70%. calibration Equipment rimary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte Reference Probe E3 DAE4 Secondary Standards SignalGenerator MC	-Z91 -Z91 enuator enuator X3DV4 s G3700A	TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_M 26-Aug-19(SPEAG, No.DAE4-1525_ Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127)	5.) Sche May19/2) Aug19) Sched	eduled Calibration Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 duled Calibration Jun-20
umidity<70%. Calibration Equipment Primary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte Reference Probe E2 DAE4 Secondary Standards SignalGenerator MC Network Analyzer E	-Z91 -Z91 enuator enuator X3DV4 s G3700A 5071C Nam	TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_M 26-Aug-19(SPEAG, No.DAE4-1525_ Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515)	5.) Sche May19/2) Aug19) Sched	eduled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 Aug-20 Jun-20 Feb-21
aumidity<70%. Calibration Equipment Primary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte Reference Probe E2 DAE4 Secondary Standards SignalGenerator MC	-Z91 -Z91 enuator enuator X3DV4 s G3700A 5071C Nam	TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673 e Zongying	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_M 26-Aug-19(SPEAG, No.DAE4-1525_ Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515) Function	5.) Sche May19/2) Aug19) Sched	eduled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 Aug-20 Jun-20 Feb-21
aumidity<70%. Calibration Equipment Primary Standards Power Meter NRP2 Power sensor NRP- Power sensor NRP- Reference 10dBAtte Reference 20dBAtte Reference Probe E3 DAE4 Secondary Standards SignalGenerator MC Network Analyzer E Calibrated by:	z used (M& -Z91 -Z91 enuator enuator X3DV4 s G3700A 5071C Nam Yu 2 Lin I	TE critical for cal ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673 e Zongying	libration) Cal Date(Calibrated by, Certificate No. 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_M 26-Aug-19(SPEAG, No.DAE4-1525_ Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515) Function SAR Test Engineer	5.) Sche May19/2) Aug19) Sched	eduled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 May-20 Aug-20 Aug-20 Jun-20 Feb-21

Certificate No: Z20-60109

Page 1 of 9

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A.B.C.D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis
11.2 March 10.0 Million State Processing Street Stree	

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- Methods Applied and Interpretation of Parameters:
- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z20-60109

Page 2 of 9

E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7494

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	0.40	0.47	0.40	±10.0%
DCP(mV) ^B	99.8	100.6	101.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	x	0.0	0.0	1.0	0.00	146.2	and the second s
		Y	0.0	0.0	1.0		158.3	
		Z	0.0	0.0	1.0		145.4	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).
^B Numerical linearization parameter: uncertainty not required.

E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z20-60109

Page 3 of 9

E-mail: cttl@chinattl.com

Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7494

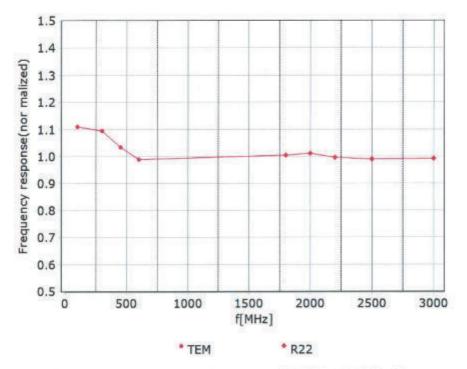
f [MHz] ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.76	10.76	10.76	0.40	0.75	±12.1%
835	41.5	0.90	10.46	10.46	10.46	0.20	1.13	±12.1%
1750	40.1	1.37	8.92	8.92	8.92	0.19	1.07	±12.1%
1900	40.0	1.40	8.60	8.60	8.60	0.20	1.11	±12.1%
2000	40.0	1.40	8.57	8.57	8.57	0.18	1.25	±12.1%
2300	39.5	1.67	8.25	8.25	8.25	0.41	0.79	±12.1%
2450	39.2	1.80	7.91	7.91	7.91	0.48	0.76	±12.1%
2600	39.0	1.96	7.72	7.72	7.72	0.57	0.70	±12.1%
5250	35.9	4.71	5.58	5.58	5.58	0.40	1.50	±13.3%
5600	35.5	5.07	4.95	4.95	4.95	0.45	1.40	±13.3%
5800	35.3	5.27	4.76	4.76	4.76	0.50	1.60	±13.3%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z20-60109


Page 4 of 9

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com

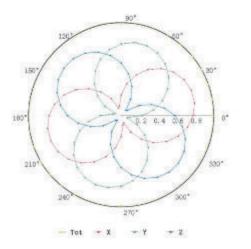
Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

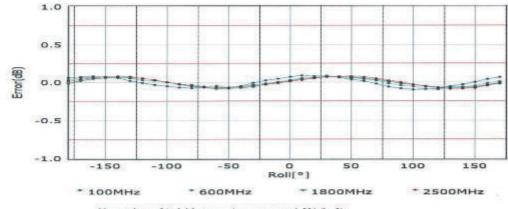
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

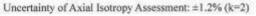
Certificate No:Z20-60109

Page 5 of 9

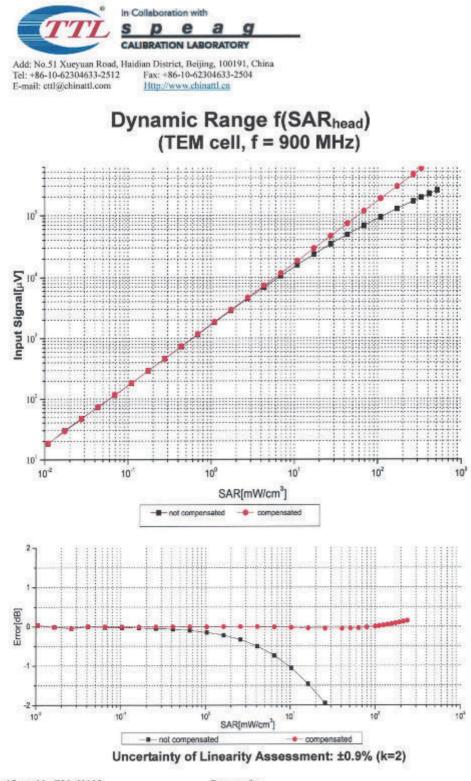



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com <u>Http://www.chinattl.cn</u>


Receiving Pattern (Φ), θ=0°


f=600 MHz, TEM

f=1800 MHz, R22

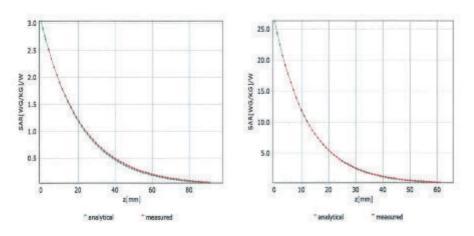


Certificate No:Z20-60109

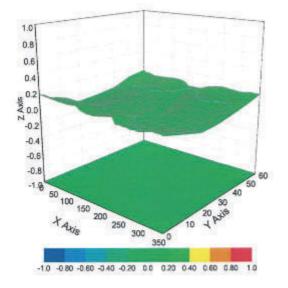
Page 6 of 9

Certificate No:Z20-60109

Page 7 of 9



E-mail: cttl@chinattl.com Http://www.chinattl.cn


Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No:Z20-60109

Page 8 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7494

Triangular Sensor Arrangement 21.2 Connector Angle (°) **Mechanical Surface Detection Mode** enabled **Optical Surface Detection Mode** disable 337mm **Probe Overall Length** 10mm **Probe Body Diameter** 10mm **Tip Length** 2.5mm **Tip Diameter** 1mm Probe Tip to Sensor X Calibration Point 1mm **Probe Tip to Sensor Y Calibration Point** Probe Tip to Sensor Z Calibration Point 1mm **Recommended Measurement Distance from Surface** 1.4mm

Other Probe Parameters

Certificate No:Z20-60109

Page 9 of 9