FCC §1.1310& §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSHD191008002-00A

Applicable Standard

According to subpart §2.1091 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure										
Frequency Range Electric Field (MHz) Strength (V/m)		Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)						
0.3-1.34	614	1.63	*(100)	30						
1.34-30	824/f	2.19/f	*(180/f ²)	30						
30-300	27.5	0.073	0.2	30						
300-1500	/	/	f/1500	30						
1500-100,000	/	/	1.0	30						

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Mode	Frequency Range (MHz)	Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit (mW/cm ²)
		(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	()
Zigbee	2405~2480	0.5	1.12	14.50	28.18	20	0.0063	1.0

Note: The tune-up output power was declared by the manufacturer.

Conclusion: The device meets MPE at distance 20cm.

FCC Part 15.247 Page 12 of 42