TEST REPORT Product Name : Smart Dimmer Switch Brand Mark : Globe Model No. : 50587 Report Number : BLA-EMC-202206-A10502 FCC ID : 2AQUQGE50587 Date of Sample Receipt : 2022/6/24 **Date of Test** : 2022/6/24 to 2022/7/14 **Date of Issue** : 2022/7/14 Test Standard : 47 CFR Part 15, Subpart C 15.247 Test Result : Pass Jose hong Prepared for: Globe Electric Company Inc. 150 Oneida, Montreal, Quebec, Canada, H9R 1A8 Prepared by: BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481 Compiled by: Approved by: Review by: Date: Report No.: BLA-EMC-202206-A10502 Page 2 of 107 **REPORT REVISE RECORD** | Version No. | Date | Description | | |-------------|-----------|-------------|--| | 00 | 2022/7/14 | Original | | ## **TABLE OF CONTENTS** | 1 | • | TES | T SUMMARY | 5 | |----|-----|------------------|--|------| | 2 | (| GEN | ERAL INFORMATION | 6 | | 3 | (| GEN | ERAL DESCRIPTION OF E.U.T | 6 | | 4 | | TES ⁻ | T ENVIRONMENT | 7 | | 5 | | TES ⁻ | T MODE | 7 | | 6 | | MEA | SUREMENT UNCERTAINTY | 7 | | 7 | | DES | CRIPTION OF SUPPORT UNIT | 8 | | 8 | | | ORATORY LOCATION | | | 9 | | | T INSTRUMENTS LIST | | | | | | ENNA REQUIREMENT | | | 10 | 1 | ANI | CONCLUSION | | | | 10. | | | | | 11 | I | RAD | NATED SPURIOUS EMISSIONS | .13 | | | 11. | 1 | LIMITS | | | | 11. | 2 | BLOCK DIAGRAM OF TEST SETUP | | | | 11. | 3 | PROCEDURE | | | | 11. | 4 | TEST DATA | . 16 | | 12 | I | RAD | NATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | | | | 12. | 1 | LIMITS | .24 | | | 12. | 2 | BLOCK DIAGRAM OF TEST SETUP | .25 | | | 12. | | PROCEDURE | | | | 12. | 4 | TEST DATA | . 27 | | 13 | (| CON | IDUCTED SPURIOUS EMISSIONS | 43 | | | 13. | 1 | LIMITS | .43 | | | 13. | 2 | BLOCK DIAGRAM OF TEST SETUP | .43 | | | 13. | 3 | TEST DATA | . 44 | | 14 | (| CON | IDUCTED BAND EDGES MEASUREMENT | 45 | | | 14. | 1 | LIMITS | .45 | | | 14. | 2 | BLOCK DIAGRAM OF TEST SETUP | .45 | | | 14. | 3 | TEST DATA | . 46 | Page 4 of 107 | 15 MI | NIMUM 6DB BANDWIDTH | 47 | |-------|--|-----| | 15.1 | LIMITS | 4 | | 15.2 | BLOCK DIAGRAM OF TEST SETUP | 47 | | 15.3 | TEST DATA | 47 | | 16 PC | OWER SPECTRUM DENSITY | 48 | | 16.1 | LIMITS | 48 | | 16.2 | BLOCK DIAGRAM OF TEST SETUP | 48 | | 16.3 | TEST DATA | 48 | | 17 CC | ONDUCTED PEAK OUTPUT POWER | 49 | | 17.1 | LIMITS | | | 17.2 | BLOCK DIAGRAM OF TEST SETUP | | | 17.3 | TEST DATA | 50 | | 18 CC | ONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) | | | 18.1 | LIMITS | 51 | | 18.2 | BLOCK DIAGRAM OF TEST SETUP | 52 | | 18.3 | PROCEDURE | 5. | | 18.4 | TEST DATA | 53 | | 19 AF | PPENDIX | 5! | | APPEN | DIX A: PHOTOGRAPHS OF TEST SETUP | 10 | | ΔΡΡΕΝ | DIX B: PHOTOGRAPHS OF EUT | 107 | Page 5 of 107 ## 1 TEST SUMMARY | Test item | Test Requirement | Test Method | Class/Severity | Result | |--|-------------------------------------|---|--|--------| | Antenna
Requirement | 47 CFR Part 15,
Subpart C 15.247 | N/A | N/A 47 CFR Part 15, Subpart C 15.203 & 15.247(c) | | | Radiated Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
6.4,6.5,6.6 | 47 CFR Part 15, Subpart C
15.209 & 15.247(d) | Pass | | Radiated Emissions which fall in the restricted bands | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
6.10.5 | 47 CFR Part 15, Subpart C
15.209 & 15.247(d) | Pass | | Conducted Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
7.8.6 & Section
11.11 | 47 CFR Part 15, Subpart C
15.247(d) | Pass | | Conducted Band
Edges Measurement | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
7.8.8 & Section
11.13.3.2 | 47 CFR Part 15, Subpart C
15.247(d) | Pass | | Minimum 6dB
Bandwidth | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
11.8.1 | 47 CFR Part 15, Subpart C
15.247a(2) | Pass | | Power Spectrum
Density | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
11.10.2 | 47 CFR Part 15, Subpart C
15.247(e) | Pass | | Conducted Peak
Output Power | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
7.8.5 & Section
11.9.1 | 47 CFR Part 15, Subpart C
15.247(b)(1) & 15.247(b)(3) | Pass | | Conducted
Emissions at AC
Power Line
(150kHz-30MHz) | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10
(2013) Section
6.2 | 47 CFR Part 15, Subpart C
15.207 | Pass | ## 2 GENERAL INFORMATION | Applicant | Globe Electric Company Inc. | |----------------|---| | Address | 150 Oneida, Montreal, Quebec, Canada, H9R 1A8 | | Manufacturer | Globe Electric Company Inc. | | Address | 150 Oneida, Montreal, Quebec, Canada, H9R 1A8 | | Factory | Globe Electric Company Inc. | | Address | 150 Oneida, Montreal, Quebec, Canada, H9R 1A8 | | Product Name | Smart Dimmer Switch | | Test Model No. | 50587 | ## 3 GENERAL DESCRIPTION OF E.U.T. | Hardware Version | V1.5 | |----------------------|---| | Software Version | 35668226 | | Operation Frequency: | 802.11b/g/n(HT20): 2412MHz to 2462MHz
802.11n(HT40): 2422MHz to 2452MHz | | Modulation Type: | 802.11b: DSSS (CCK, DQPSK, DBPSK)
802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK) | | Channel Spacing: | 5MHz | | Number of Channels: | 802.11b/g/n(HT20):11
802.11n(HT40):7 | | Antenna Type: | PCB Antenna | | Antenna Gain: | 3.96dBi (Provided by the applicant) | Page 7 of 107 # 4 TEST ENVIRONMENT | Environment | Temperature | Voltage | | |-------------|-------------|---------|--| | Normal | 25°C | DC3.3V | | ### 5 TEST MODE | TEST MODE | TEST MODE DESCRIPTION | | | | | |----------------|--|--|--|--|--| | Transmitting | Keep the EUT in continuously transmitting mode with modulation. (The duty cycle is | | | | | | mode | greater than 98%) | | | | | | Remark: During | Remark: During the radiated spurious emission test, 802.11b/11g/11nH20/11nH40 modulations all have | | | | | Remark: During the radiated spurious emission test, 802.11b/11g/11nH20/11nH40 modulations all have been tested, only worse case 802.11b is reported. ## **6 MEASUREMENT UNCERTAINTY** | Parameter | Expanded Uncertainty (Confidence of 95%) | | | |---|--|--|--| | Radiated Emission(9kHz-30MHz) | ±4.34dB | | | | Radiated Emission(30Mz-1000MHz) | ±4.24dB | | | | Radiated Emission(1GHz-18GHz) | ±4.68dB | | | | AC Power Line Conducted
Emission(150kHz-30MHz) | ±3.45dB | | | Page 8 of 107 # 7 DESCRIPTION OF SUPPORT UNIT | Device Type | Manufacturer | Model Name | Serial No. | Remark | | | |--|--------------|------------|------------|---------|--|--| | PC | HASEE | K610D | | | | | | Note: "" means no any support device during testing. | | | | | | | ### **8 LABORATORY LOCATION** All tests were performed at: BlueAsia of Technical Services(Shenzhen) Co., Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted. Page 9 of 107 # 9 TEST INSTRUMENTS LIST | Test Equipment Of Radiated Spurious Emissions | | | | | | | |---|--------------|--------------|------------------|------------|-----------|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | Chamber | SKET | 966 | N/A | 10/11/2020 | 9/11/2023 | | | Spectrum | R&S | FSP40 | 100817 | 24/9/2021 | 23/9/2022 | | | Receiver | R&S | ESR7 | 101199 | 24/9/2021 | 23/9/2022 | | | broadband Antenna | Schwarzbeck | VULB9168 | 00836
P:00227 | 26/9/2020 | 25/9/2022 | | | Horn Antenna | Schwarzbeck | 9120D | 01892
P:00331 | 26/9/2020 | 25/9/2022 | | | Amplifier | SKET | LNPA-0118-45 | N/A | 24/9/2021 | 23/9/2022 | | | EMI software | EZ | EZ-EMC | N/A | N/A | N/A | | | Loop antenna | SCHNARZBECK | FMZB1519B | 00102 | 26/9/2020 | 25/9/2022 | | | Test Equipment Of Radiated Emissions which fall in the restricted bands | | | | | | | |---|--------------|--------------|------------------|------------|-----------|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | Chamber | SKET | 966 | N/A | 10/11/2020 | 9/11/2023 | | | Spectrum | R&S | FSP40 | 100817 | 24/9/2021 | 23/9/2022 | | | Receiver | R&S | ESR7 | 101199 | 24/9/2021 | 23/9/2022 | | | broadband Antenna | Schwarzbeck | VULB9168 | 00836
P:00227 | 26/9/2020 | 25/9/2022 | | | Horn Antenna | Schwarzbeck | 9120D | 01892
P:00331 | 26/9/2020 | 25/9/2022 | | | Amplifier | SKET | LNPA-0118-45 | N/A | 24/9/2021 | 23/9/2022 | | | EMI software | EZ | EZ-EMC | N/A | N/A | N/A | | | Loop antenna | SCHNARZBECK | FMZB1519B | 00102 | 26/9/2020 | 25/9/2022 | | Page 10 of 107 | Test Equipment Of 0 | Test Equipment Of Conducted Spurious Emissions | | | | | | | | | | | |---------------------|--|--------|------------|-----------|-----------|--|--|--|--|--|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | | | | | | Spectrum | R&S | FSP40 | 100817 | 24/9/2021 | 23/9/2022 | | | | | | | | Spectrum | Agilent | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 | | | | | | | | Signal Generator | Agilent | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 | | | | | | | | Signal Generator | Agilent | E8257D | MY44320250 |
24/9/2021 | 23/9/2022 | | | | | | | | Test Equipment Of 0 | Conducted Band E | dges Measurem | ent | | | | |---------------------|------------------|---------------|------------|------------------|-----------|--| | Equipment | Manufacturer | Model | S/N | Cal.Date Cal.Due | | | | Spectrum | R&S | FSP40 | 100817 | 24/9/2021 | 23/9/2022 | | | Spectrum | Agilent | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 | | | Signal Generator | Agilent | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 | | | Signal Generator | Agilent | E8257D | MY44320250 | 24/9/2021 | 23/9/2022 | | | Test Equipment Of | Test Equipment Of Minimum 6dB Bandwidth | | | | | | | | | | |-------------------|---|--------|------------|-----------|-----------|--|--|--|--|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | | | | | Spectrum | R&S | FSP40 | 100817 | 24/9/2021 | 23/9/2022 | | | | | | | Spectrum | Agilent | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 | | | | | | | Signal Generator | Agilent | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 | | | | | | | Signal Generator | Agilent | E8257D | MY44320250 | 24/9/2021 | 23/9/2022 | | | | | | | Test Equipment Of Power Spectrum Density | | | | | | | | | |--|----------|---------|--------|-----------|-----------|--|--|--| | Equipment | Cal.Date | Cal.Due | | | | | | | | Spectrum | R&S | FSP40 | 100817 | 24/9/2021 | 23/9/2022 | | | | Page 11 of 107 | Spectrum | Agilent | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 | |------------------|---------|--------|------------|-----------|-----------| | Signal Generator | Agilent | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 | | Signal Generator | Agilent | E8257D | MY44320250 | 24/9/2021 | 23/9/2022 | | Test Equipment Of 0 | Test Equipment Of Conducted Peak Output Power | | | | | | | | | | | |---------------------|---|--------|------------|-----------|-----------|--|--|--|--|--|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | | | | | | Spectrum | R&S | FSP40 | 100817 | 24/9/2021 | 23/9/2022 | | | | | | | | Spectrum | Agilent | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 | | | | | | | | Signal Generator | Agilent | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 | | | | | | | | Signal Generator | Agilent | E8257D | MY44320250 | 24/9/2021 | 23/9/2022 | | | | | | | | Test Equipment Of | Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz) | | | | | | | | | | |-------------------|---|---------|---------------|------------|------------|--|--|--|--|--| | Equipment | Manufacturer | Model | S/N | Cal.Date | Cal.Due | | | | | | | Shield room | SKET | 833 | N/A | 25/11/2020 | 24/11/2023 | | | | | | | Receiver | R&S | ESPI3 | 101082 | 24/9/2021 | 23/9/2022 | | | | | | | LISN | R&S | ENV216 | 3560.6550.15 | 24/9/2021 | 23/9/2022 | | | | | | | LISN | AT | AT166-2 | AKK1806000003 | 26/9/2021 | 25/9/2022 | | | | | | | EMI software | EZ | EZ-EMC | N/A | N/A | N/A | | | | | | Report No.: BLA-EMC-202206-A10502 Page 12 of 107 **10 ANTENNA REQUIREMENT** | Test Standard 47 CFR Part 15, Subpart C 15.247 | | | |--|-----|--| | Test Method | N/A | | ### 10.1 CONCLUSION ## Standard Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. ### **EUT Antenna:** The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.96dBi. Page 13 of 107 ### 11 RADIATED SPURIOUS EMISSIONS | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|--| | Test Method | ANSI C63.10 (2013) Section 6.4,6.5,6.6 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | ### **11.1 LIMITS** | Frequency(MHz) | Field
strength(microvolts/meter) | Measurement distance(meters) | |----------------|-------------------------------------|------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Page 14 of 107 ### 11.2 BLOCK DIAGRAM OF TEST SETUP ### 11.3 PROCEDURE - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Report No.: BLA-EMC-202206-A10502 Page 15 of 107 h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. #### Remark: - 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report. - 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor - 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown. - 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. ### 11.4 TEST DATA # [TestMode: TX Below 1G]; [Polarity: Horizontal] # [TestMode: TX Below 1G]; [Polarity: Vertical] Humidity: %RH Page 18 of 107 Remark: During the test, pre-scan the 802.11b/g/n mode, and found the 802.11b mode which it is worse case. ## [TestMode: TX b low channel]; [Polarity: Horizontal] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-L Note: | No. | Mk. | Freq. | Reading
Level | Correct | Measure-
ment | Limit | Over | | | |-----|-----|-----------|------------------|---------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 3843.500 | 42.76 | 7.12 | 49.88 | 74.00 | -24.12 | peak | | | 2 | | 4824.000 | 40.79 | 3.62 | 44.41 | 74.00 | -29.59 | peak | | | 3 | | 7326.000 | 39.44 | 6.44 | 45.88 | 74.00 | -28.12 | peak | | | 4 | | 8473.000 | 40.71 | 8.17 | 48.88 | 74.00 | -25.12 | peak | | | 5 | | 9648.000 | 39.36 | 9.37 | 48.73 | 74.00 | -25.27 | peak | | | 6 | * | 11316.500 | 38.90 | 11.88 | 50.78 | 74.00 | -23.22 | peak | | | | | | | | | | | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX b low channel]; [Polarity: Vertical] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-L Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|-----------|------------------|-------------------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 3820.000 | 42.33 | 7.41 |
49.74 | 74.00 | -24.26 | peak | | | 2 | | 4824.000 | 40.98 | 3.62 | 44.60 | 74.00 | -29.40 | peak | | | 3 | | 7326.000 | 39.56 | 6.44 | 46.00 | 74.00 | -28.00 | peak | | | 4 | | 8167.500 | 40.75 | 8.17 | 48.92 | 74.00 | -25.08 | peak | | | 5 | | 9648.000 | 38.12 | 9.37 | 47.49 | 74.00 | -26.51 | peak | | | 6 | * | 11340.000 | 38.99 | 11.85 | 50.84 | 74.00 | -23.16 | peak | | | | | | | | | | | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX b mid channel]; [Polarity: Horizontal] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-M Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|-----------|------------------|-------------------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 3867.000 | 42.79 | 6.82 | 49.61 | 74.00 | -24.39 | peak | | | 2 | | 4874.000 | 40.93 | 3.39 | 44.32 | 74.00 | -29.68 | peak | | | 3 | | 7311.000 | 39.21 | 6.37 | 45.58 | 74.00 | -28.42 | peak | | | 4 | | 8238.000 | 41.35 | 8.22 | 49.57 | 74.00 | -24.43 | peak | | | 5 | | 9748.000 | 37.82 | 9.59 | 47.41 | 74.00 | -26.59 | peak | | | 6 | * | 11410.500 | 39.03 | 11.78 | 50.81 | 74.00 | -23.19 | peak | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH [TestMode: TX b mid channel]; [Polarity: Vertical] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-M Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|-----------|------------------|-------------------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 3867.000 | 43.03 | 6.82 | 49.85 | 74.00 | -24.15 | peak | | | 2 | | 4874.000 | 40.81 | 3.39 | 44.20 | 74.00 | -29.80 | peak | | | 3 | | 7311.000 | 38.90 | 6.37 | 45.27 | 74.00 | -28.73 | peak | | | 4 | | 8214.500 | 41.70 | 8.21 | 49.91 | 74.00 | -24.09 | peak | | | 5 | | 9748.000 | 38.19 | 9.59 | 47.78 | 74.00 | -26.22 | peak | | | 6 | * | 11011.000 | 38.99 | 11.99 | 50.98 | 74.00 | -23.02 | peak | | | | | | | | | | | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only Temperature: Humidity: (C) %RH [TestMode: TX b high channel]; [Polarity: Horizontal] Polarization: Horizontal Site Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|-----------|------------------|-------------------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 3632.000 | 42.45 | 7.77 | 50.22 | 74.00 | -23.78 | peak | | | 2 | | 4924.500 | 43.74 | 3.47 | 47.21 | 74.00 | -26.79 | peak | | | 3 | | 7386.000 | 39.61 | 6.68 | 46.29 | 74.00 | -27.71 | peak | | | 4 | | 8308.500 | 41.01 | 8.25 | 49.26 | 74.00 | -24.74 | peak | | | 5 | | 9748.000 | 37.96 | 9.59 | 47.55 | 74.00 | -26.45 | peak | | | 6 | * . | 10846.500 | 38.74 | 11.84 | 50.58 | 74.00 | -23.42 | peak | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX b high channel]; [Polarity: Vertical] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|-----------|------------------|-------------------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 3843.500 | 43.18 | 7.12 | 50.30 | 74.00 | -23.70 | peak | | | 2 | | 4924.500 | 42.68 | 3.47 | 46.15 | 74.00 | -27.85 | peak | | | 3 | | 7386.000 | 40.77 | 6.68 | 47.45 | 74.00 | -26.55 | peak | | | 4 | | 8191.000 | 40.63 | 8.20 | 48.83 | 74.00 | -25.17 | peak | | | 5 | | 9848.000 | 38.41 | 9.88 | 48.29 | 74.00 | -25.71 | peak | | | 6 | * | 11716.000 | 39.53 | 11.76 | 51.29 | 74.00 | -22.71 | peak | | Power: *:Maximum data x:Over limit !:over margin (Reference Only Page 24 of 107 ### 12 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|-----------------------------------| | Test Method | ANSI C63.10 (2013) Section 6.10.5 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | ### **12.1 LIMITS** | Frequency(MHz) | Field
strength(microvolts/meter) | Measurement distance(meters) | |----------------|-------------------------------------|------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Page 25 of 107 ### 12.2 BLOCK DIAGRAM OF TEST SETUP ### 12.3 PROCEDURE - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Page 26 of 107 - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. Humidity: %RH Page 27 of 107 ### 12.4 TEST DATA # [TestMode: TX b low channel]; [Polarity: Horizontal] Site Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-L Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2310.000 | 43.78 | -3.93 | 39.85 | 74.00 | -34.15 | peak | | | | 2 | * | 2390.000 | 55.23 | -3.58 | 51.65 | 74.00 | -22.35 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only Temperature: Humidity: (C) %RH # [TestMode: TX b low channel]; [Polarity: Vertical] Polarization: Vertical Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-L Note: Site | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2310.000 | 43.92 | -3.93 | 39.99 | 74.00 | -34.01 | peak | | | | 2 | * | 2390.000 | 49.01 | -3.58 | 45.43 | 74.00 | -28.57 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX b high channel]; [Polarity: Horizontal] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2483.500 | 54.78 | -3.14 | 51.64 | 74.00 | -22.36 | peak | | | | 2 | | 2483.500 | 50.07 | -3.14 | 46.93 | 54.00 | -7.07 | AVG | | | | 3 | | 2488.000 | 57.93 | -3.13 | 54.80 | 74.00 | -19.20 | peak | | | | 4 | * | 2488.000 | 52.98 | -3.13 | 49.85 | 54.00 | -4.15 | AVG | | | |
5 | | 2500.000 | 49.82 | -3.08 | 46.74 | 74.00 | -27.26 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX b high channel]; [Polarity: Vertical] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11B-TX-H Note: Site | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | * | 2483.500 | 46.03 | -3.14 | 42.89 | 74.00 | -31.11 | peak | | | | 2 | | 2500.000 | 44.03 | -3.08 | 40.95 | 74.00 | -33.05 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX g low channel]; [Polarity: Horizontal] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11G-TX-L Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 2310.000 | 44.28 | -3.93 | 40.35 | 74.00 | -33.65 | peak | | | 2 | | 2387.050 | 60.65 | -3.60 | 57.05 | 74.00 | -16.95 | peak | | | 3 | | 2387.050 | 41.64 | -3.60 | 38.04 | 54.00 | -15.96 | AVG | | | 4 | | 2390.000 | 65.63 | -3.58 | 62.05 | 74.00 | -11.95 | peak | | | 5 | * | 2390.000 | 47.32 | -3.58 | 43.74 | 54.00 | -10.26 | AVG | | | 6 | | 2387.050 | 41.64 | -3.60 | 38.04 | 54.00 | -15.96 | AVG | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH [TestMode: TX g low channel]; [Polarity: Vertical] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11G-TX-L Note: Site | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2310.000 | 44.55 | -3.93 | 40.62 | 74.00 | -33.38 | peak | | | | 2 | * | 2390.000 | 46.99 | -3.58 | 43.41 | 74.00 | -30.59 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX g high channel]; [Polarity: Horizontal] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11G-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2483.500 | 62.67 | -3.14 | 59.53 | 74.00 | -14.47 | peak | | | | 2 | * | 2483.500 | 47.73 | -3.14 | 44.59 | 54.00 | -9.41 | AVG | | | | 3 | | 2485.100 | 59.51 | -3.14 | 56.37 | 74.00 | -17.63 | peak | | | | 4 | | 2485.100 | 44.65 | -3.14 | 41.51 | 54.00 | -12.49 | AVG | | | | 5 | | 2500.000 | 50.34 | -3.08 | 47.26 | 74.00 | -26.74 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX g high channel]; [Polarity: Vertical] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11G-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | * | 2483.500 | 46.67 | -3.14 | 43.53 | 74.00 | -30.47 | peak | | | | 2 | | 2500.000 | 45.29 | -3.08 | 42.21 | 74.00 | -31.79 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX n20 low channel]; [Polarity: Vertical] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11N20-TX-L Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2310.000 | 43.79 | -3.93 | 39.86 | 74.00 | -34.14 | peak | | | | 2 | * | 2390.000 | 52.33 | -3.58 | 48.75 | 74.00 | -25.25 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX n20 low channel]; [Polarity: Horizontal] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11N20-TX-L Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2310.000 | 44.09 | -3.93 | 40.16 | 74.00 | -33.84 | peak | | | | 2 | | 2390.000 | 65.19 | -3.58 | 61.61 | 74.00 | -12.39 | peak | | | | 3 | * | 2390.000 | 49.17 | -3.58 | 45.59 | 54.00 | -8.41 | AVG | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX n20 high channel]; [Polarity: Vertical] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11N20-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | * | 2483.500 | 51.69 | -3.14 | 48.55 | 74.00 | -25.45 | peak | | | | 2 | | 2500.000 | 46.05 | -3.08 | 42.97 | 74.00 | -31.03 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX n20 high channel]; [Polarity: Horizontal] Site Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11N20-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2483.500 | 57.80 | -3.14 | 54.66 | 74.00 | -19.34 | peak | | | | 2 | * | 2483.500 | 42.89 | -3.14 | 39.75 | 54.00 | -14.25 | AVG | | | | 3 | | 2500.000 | 47.91 | -3.08 | 44.83 | 74.00 | -29.17 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only Temperature: Humidity: (C) %RH [TestMode: TX n40 low channel]; [Polarity: Vertical] Polarization: Vertical Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11N40-TX-L Note: Site | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2310.000 | 43.66 | -3.93 | 39.73 | 74.00 | -34.27 | peak | | | | 2 | * | 2390.000 | 50.01 | -3.58 | 46.43 | 74.00 | -27.57 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX n40 low channel]; [Polarity: Horizontal] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11N40-TX-L Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2310.000 | 43.92 | -3.93 | 39.99 | 74.00 | -34.01 | peak | | | | 2 | | 2390.000 | 58.55 | -3.58 | 54.97 | 74.00 | -19.03 | peak | | | | 3 | * | 2390.000 | 45.02 | -3.58 | 41.44 | 54.00 | -12.56 | AVG | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX n40 high channel]; [Polarity: Vertical] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11N40-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | * | 2483.500 | 52.13 | -3.14 | 48.99 | 74.00 | -25.01 | peak | | | | 2 | | 2500.000 | 43.90 | -3.08 | 40.82 | 74.00 | -33.18 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only %RH # [TestMode: TX n40 high channel]; [Polarity: Horizontal] Limit: FCC Part15 (PK) EUT: Smart Dimmer Switch M/N: 50587 Mode: 2.4GWiFi 11N40-TX-H Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 2483.500 | 59.04 | -3.14 | 55.90 | 74.00 | -18.10 | peak | | | | 2 | * | 2483.500 | 43.11 | -3.14 | 39.97 | 54.00 | -14.03 | AVG | | | | 3 | | 2500.000 | 47.17 | -3.08 | 44.09 | 74.00 | -29.91 | peak | | | Power: *:Maximum data x:Over limit !:over margin (Reference Only Page 43 of 107 #### 13 CONDUCTED SPURIOUS EMISSIONS | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|--| | Test Method | ANSI C63.10 (2013) Section 7.8.6 & Section 11.11 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | #### **13.1 LIMITS** Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated
intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). #### 13.2 BLOCK DIAGRAM OF TEST SETUP ### 13.3 TEST DATA Page 45 of 107 #### 14 CONDUCTED BAND EDGES MEASUREMENT | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|--| | Test Method | ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | #### **14.1 LIMITS** Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). #### 14.2 BLOCK DIAGRAM OF TEST SETUP ### 14.3 TEST DATA Page 47 of 107 ### 15 MINIMUM 6DB BANDWIDTH | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|-----------------------------------| | Test Method | ANSI C63.10 (2013) Section 11.8.1 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | #### **15.1 LIMITS** **Limit:** ≥500 kHz #### 15.2 BLOCK DIAGRAM OF TEST SETUP # 15.3 TEST DATA Page 48 of 107 ### 16 POWER SPECTRUM DENSITY | Test Standard | 47 CFR Part 15, Subpart C 15.247 | |------------------------|------------------------------------| | Test Method | ANSI C63.10 (2013) Section 11.10.2 | | Test Mode (Pre-Scan) | TX | | Test Mode (Final Test) | TX | | Tester | Jozu | | Temperature | 25℃ | | Humidity | 60% | #### **16.1 LIMITS** **Limit:** | ≤8dBm in any 3 kHz band during any time interval of continuous transmission #### 16.2 BLOCK DIAGRAM OF TEST SETUP ### 16.3 TEST DATA Page 49 of 107 ### 17 CONDUCTED PEAK OUTPUT POWER | Test Standard | 47 CFR Part 15, Subpart C 15.247 | | | | | |------------------------|---|--|--|--|--| | Test Method | ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1 | | | | | | Test Mode (Pre-Scan) | TX | | | | | | Test Mode (Final Test) | TX | | | | | | Tester | Jozu | | | | | | Temperature | 25℃ | | | | | | Humidity | 60% | | | | | #### **17.1 LIMITS** | Frequency range(MHz) | Output power of the intentional radiator(watt) | |----------------------|--| | | 1 for ≥50 hopping channels | | 902-928 | 0.25 for 25≤ hopping channels <50 | | | 1 for digital modulation | | | 1 for ≥75 non-overlapping hopping channels | | 2400-2483.5 | 0.125 for all other frequency hopping systems | | | 1 for digital modulation | | | 1 for frequency hopping systems and digital | | 5725-5850 | modulation | # 17.2 BLOCK DIAGRAM OF TEST SETUP ### 17.3 TEST DATA ### 18 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) | Test Standard | 47 CFR Part 15, Subpart C 15.247 | | | | | | | |------------------------|----------------------------------|--|--|--|--|--|--| | Test Method | ANSI C63.10 (2013) Section 6.2 | | | | | | | | Test Mode (Pre-Scan) | TX | | | | | | | | Test Mode (Final Test) | TX | | | | | | | | Tester | Jozu | | | | | | | | Temperature | 25℃ | | | | | | | | Humidity | 60% | | | | | | | #### **18.1 LIMITS** | Frequency of | Conducted limit(dBμV) | | | | | | |-------------------------------|-----------------------|-----------|--|--|--|--| | emission(MHz) | Quasi-peak | Average | | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | | 0.5-5 | 56 | 46 | | | | | | 5-30 | 60 | 50 | | | | | | *Decreases with the logarithm | of the frequency. | | | | | | ### 18.2 BLOCK DIAGRAM OF TEST SETUP #### 18.3 PROCEDURE - 1) The mains terminal disturbance voltage test was conducted in a shielded room. - 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. Page 52 of 107 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Remark: LISN=Read Level+ Cable Loss+ LISN Factor #### 18.4 TEST DATA # [TestMode: TX]; [Line: Line] ;[Power:AC120V/60Hz] Limit: FCC Class B Conduction(QP) EUT: 50587 M/N: Smart Dimmer Switch Mode: 2.4Gwifi TX mode Note: Site | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.7780 | 28.32 | 9.89 | 38.21 | 56.00 | -17.79 | QP | | | 2 | | 0.7780 | 24.05 | 9.89 | 33.94 | 46.00 | -12.06 | AVG | | | 3 | | 1.5620 | 27.27 | 9.93 | 37.20 | 56.00 | -18.80 | QP | | | 4 | | 1.5620 | 23.59 | 9.93 | 33.52 | 46.00 | -12.48 | AVG | | | 5 | | 2.6980 | 27.02 | 9.96 | 36.98 | 56.00 | -19.02 | QP | | | 6 | | 2.6980 | 23.42 | 9.96 | 33.38 | 46.00 | -12.62 | AVG | | | 7 | | 4.8100 | 26.39 | 10.00 | 36.39 | 56.00 | -19.61 | QP | | | 8 | | 4.8100 | 23.22 | 10.00 | 33.22 | 46.00 | -12.78 | AVG | | | 9 | | 12.2660 | 27.00 | 10.27 | 37.27 | 60.00 | -22.73 | QP | | | 10 | | 12.2660 | 24.28 | 10.27 | 34.55 | 50.00 | -15.45 | AVG | | | 11 | | 20.9900 | 23.13 | 10.41 | 33.54 | 60.00 | -26.46 | QP | | | 12 | | 20.9900 | 16.87 | 10.41 | 27.28 | 50.00 | -22.72 | AVG | | *:Maximum data x:Over limit (Reference Only !:over margin # [TestMode: TX]; [Line: Nutral] ;[Power:AC120V/60Hz] Limit: FCC Class B Conduction(QP) EUT: 50587 M/N: Smart Dimmer Switch Mode: 2.4Gwifi TX mode Note: | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | | 0.5899 | 20.99 | 9.80 | 30.79 | 56.00 | -25.21 | QP | | | 2 | | 0.5899 | 11.21 | 9.80 | 21.01 | 46.00 | -24.99 | AVG | | | 3 | | 1.5220 | 20.15 | 9.85 | 30.00 | 56.00 | -26.00 | QP | | | 4 | | 1.5220 | 10.00 | 9.85 | 19.85 | 46.00 | -26.15 | AVG | | | 5 | | 2.5420 | 19.88 | 9.89 | 29.77 | 56.00 | -26.23 | QP | | | 6 | | 2.5420 | 9.08 | 9.89 | 18.97 | 46.00 | -27.03 | AVG | | | 7 | | 4.4980 | 17.21 | 9.92 | 27.13 | 56.00 | -28.87 | QP | | | 8 | | 4.4980 | 8.67 | 9.92 | 18.59 | 46.00 | -27.41 | AVG | | | 9 | | 9.5659 | 21.28 | 10.14 | 31.42 | 60.00 | -28.58 | QP | | | 10 | | 9.5659 | 17.20 | 10.14 | 27.34 | 50.00 | -22.66 | AVG | | | 11 | | 21.1140 | 28.69 | 10.41 | 39.10 | 60.00 | -20.90 | QP | | | 12 | | 21.1140 | 23.05 | 10.41 | 33.46 | 50.00 | -16.54 | AVG | | *: Maximum data x:Over limit !:over margin (Reference Only Page 55 of 107 ### 19 APPENDIX #### **Maximum Conducted Output Power** | Condition | Mode | Frequency (MHz) | Antenna | Conducted Power (dBm) | Limit (dBm) | Verdict | |-----------|------|-----------------|---------|-----------------------|-------------|---------| | NVNT | ь | 2412 | Ant1 | 15.394 | 30 | Pass | | NVNT | ь | 2437 | Ant1 | 14.467 | 30 | Pass | | NVNT | ь | 2462 | Ant1 | 15.266 | 30 | Pass | | NVNT | g | 2412 | Ant1 | 11.387 | 30 | Pass | | NVNT | g | 2437 | Ant1 | 10.697 | 30 | Pass | | NVNT | g | 2462 | Ant1 | 11.602 | 30 | Pass | | NVNT | n20 | 2412 | Ant1 | 10.647 | 30 | Pass | | NVNT | n20 | 2437 | Ant1 | 10.396 | 30 |
Pass | | NVNT | n20 | 2462 | Ant1 | 11.38 | 30 | Pass | | NVNT | n40 | 2422 | Ant1 | 11.022 | 30 | Pass | | NVNT | n40 | 2437 | Ant1 | 10.744 | 30 | Pass | | NVNT | n40 | 2452 | Ant1 | 11.186 | 30 | Pass | ### Power NVNT b 2412MHz Ant1 Power NVNT b 2437MHz Ant1 Power NVNT b 2462MHz Ant1 Power NVNT g 2412MHz Ant1 Power NVNT g 2437MHz Ant1 Power NVNT g 2462MHz Ant1 Power NVNT n20 2412MHz Ant1 Power NVNT n20 2437MHz Ant1 Power NVNT n20 2462MHz Ant1 Power NVNT n40 2422MHz Ant1 Power NVNT n40 2437MHz Ant1 Power NVNT n40 2452MHz Ant1 #### -6dB Bandwidth | Condition | Mode | Frequency | Antenna | -6 dB Bandwidth | Limit -6 dB | Verdict | |-----------|------|-----------|---------|-----------------|-----------------|---------| | | | (MHz) | | (MHz) | Bandwidth (MHz) | | | NVNT | b | 2412 | Ant1 | 10.027 | 0.5 | Pass | | NVNT | ь | 2437 | Ant1 | 8.376 | 0.5 | Pass | | NVNT | ь | 2462 | Ant1 | 9.839 | 0.5 | Pass | | NVNT | g | 2412 | Ant1 | 16.399 | 0.5 | Pass | | NVNT | g | 2437 | Ant1 | 16.363 | 0.5 | Pass | | NVNT | g | 2462 | Ant1 | 16.456 | 0.5 | Pass | | NVNT | n20 | 2412 | Ant1 | 17.58 | 0.5 | Pass | | NVNT | n20 | 2437 | Ant1 | 17.58 | 0.5 | Pass | | NVNT | n20 | 2462 | Ant1 | 17.592 | 0.5 | Pass | | NVNT | n40 | 2422 | Ant1 | 32.321 | 0.5 | Pass | | NVNT | n40 | 2437 | Ant1 | 34.125 | 0.5 | Pass | | NVNT | n40 | 2452 | Ant1 | 32.56 | 0.5 | Pass | -6dB Bandwidth NVNT b 2412MHz Ant1 -6dB Bandwidth NVNT b 2437MHz Ant1 -6dB Bandwidth NVNT b 2462MHz Ant1 -6dB Bandwidth NVNT g 2412MHz Ant1 -6dB Bandwidth NVNT g 2437MHz Ant1 -6dB Bandwidth NVNT g 2462MHz Ant1 -6dB Bandwidth NVNT n20 2412MHz Ant1 -6dB Bandwidth NVNT n20 2437MHz Ant1 -6dB Bandwidth NVNT n20 2462MHz Ant1 -6dB Bandwidth NVNT n40 2422MHz Ant1 -6dB Bandwidth NVNT n40 2437MHz Ant1 -6dB Bandwidth NVNT n40 2452MHz Ant1 #### **Occupied Channel Bandwidth** | Condition | Mode | Frequency (MHz) | Antenna | 99% OBW (MHz) | |-----------|------|-----------------|---------|---------------| | NVNT | b | 2412 | Ant1 | 13.010 | | NVNT | b | 2437 | Ant1 | 13.037 | | NVNT | b | 2462 | Ant1 | 13.054 | | NVNT | g | 2412 | Ant1 | 16.685 | | NVNT | g | 2437 | Ant1 | 16.675 | | NVNT | g | 2462 | Ant1 | 16.729 | | NVNT | n20 | 2412 | Ant1 | 17.799 | | NVNT | n20 | 2437 | Ant1 | 17.838 | | NVNT | n20 | 2462 | Ant1 | 17.861 | | NVNT | n40 | 2422 | Ant1 | 34.857 | | NVNT | n40 | 2437 | Ant1 | 34.831 | | NVNT | n40 | 2452 | Ant1 | 34.768 | ### OBW NVNT b 2412MHz Ant1 OBW NVNT b 2437MHz Ant1 ### OBW NVNT b 2462MHz Ant1 OBW NVNT g 2412MHz Ant1 OBW NVNT g 2437MHz Ant1 OBW NVNT g 2462MHz Ant1 ### OBW NVNT n20 2412MHz Ant1 OBW NVNT n20 2437MHz Ant1 # OBW NVNT n20 2462MHz Ant1 OBW NVNT n40 2422MHz Ant1 # OBW NVNT n40 2437MHz Ant1 OBW NVNT n40 2452MHz Ant1 ## **Maximum Power Spectral Density Level** | Condition | Mode | Frequency (MHz) | Antenna | Max PSD (dBm) | Limit (dBm) | Verdict | |-----------|------|-----------------|---------|---------------|-------------|---------| | NVNT | b | 2412 | Ant1 | 1.825 | 8 | Pass | | NVNT | ь | 2437 | Ant1 | 1.063 | 8 | Pass | | NVNT | b | 2462 | Ant1 | 2.961 | 8 | Pass | | NVNT | g | 2412 | Ant1 | -4.896 | 8 | Pass | | NVNT | g | 2437 | Ant1 | -6.12 | 8 | Pass | | NVNT | g | 2462 | Ant1 | -4.438 | 8 | Pass | | NVNT | n20 | 2412 | Ant1 | -6.186 | 8 | Pass | | NVNT | n20 | 2437 | Ant1 | -7.539 | 8 | Pass | | NVNT | n20 | 2462 | Ant1 | -4.467 | 8 | Pass | | NVNT | n40 | 2422 | Ant1 | -7.809 | 8 | Pass | | NVNT | n40 | 2437 | Ant1 | -7.373 | 8 | Pass | | NVNT | n40 | 2452 | Ant1 | -7.815 | 8 | Pass | # PSD NVNT b 2412MHz Ant1 PSD NVNT b 2437MHz Ant1 PSD NVNT b 2462MHz Ant1 PSD NVNT g 2412MHz Ant1 PSD NVNT g 2437MHz Ant1 PSD NVNT g 2462MHz Ant1 PSD NVNT n20 2412MHz Ant1 PSD NVNT n20 2437MHz Ant1 PSD NVNT n20 2462MHz Ant1 PSD NVNT n40 2422MHz Ant1 PSD NVNT n40 2437MHz Ant1 PSD NVNT n40 2452MHz Ant1 #### **Band Edge** | Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict | |-----------|------|-----------------|---------|-----------------|-------------|---------| | NVNT | ь | 2412 | Ant1 | -55.59 | -30 | Pass | | NVNT | ь | 2462 | Ant1 | -53.51 | -30 | Pass | | NVNT | g | 2412 | Ant1 | -49.44 | -30 | Pass | | NVNT | g | 2462 | Ant1 | -47.47 | -30 | Pass | | NVNT | n20 | 2412 | Ant1 | -48.99 | -30 | Pass | | NVNT | n20 | 2462 | Ant1 | -48.52 | -30 | Pass | | NVNT | n40 | 2422 | Ant1 | -46.06 | -30 | Pass | | NVNT | n40 | 2452 | Ant1 | -43.38 | -30 | Pass | Band Edge NVNT b 2412MHz Ant1 Ref Band Edge NVNT b 2412MHz Ant1 Emission Band Edge NVNT b 2462MHz Ant1 Ref Band Edge NVNT b 2462MHz Ant1 Emission Band Edge NVNT g 2412MHz Ant1 Ref Band Edge NVNT g 2412MHz Ant1 Emission Band Edge NVNT g 2462MHz Ant1 Ref Band Edge NVNT g 2462MHz Ant1 Emission Band Edge NVNT n20 2412MHz Ant1 Ref Band Edge NVNT n20 2412MHz Ant1 Emission Band Edge NVNT n20 2462MHz Ant1 Ref Band Edge NVNT n20 2462MHz Ant1 Emission Band Edge NVNT n40 2422MHz Ant1 Ref Band Edge NVNT n40 2422MHz Ant1 Emission Band Edge NVNT n40 2452MHz Ant1 Ref Band Edge NVNT n40 2452MHz Ant1 Emission ## **Conducted RF Spurious Emission** | Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict | |-----------|------|-----------------|---------|-----------------|-------------|---------| | NVNT | b | 2412 | Ant1 | -49.2 | -30 | Pass | | NVNT | ь | 2437 | Ant1 | -47.05 | -30 | Pass | | NVNT | b | 2462 | Ant1 | -48.24 | -30 | Pass | | NVNT | g | 2412 | Ant1 | -40.31 | -30 | Pass | | NVNT | g | 2437 | Ant1 | -37.39 | -30 | Pass | | NVNT | g | 2462 | Ant1 | -40.41 | -30 | Pass | | NVNT | n20 | 2412 | Ant1 | -39.29 | -30 | Pass | | NVNT | n20 | 2437 | Ant1 | -40.74 | -30 | Pass | | NVNT | n20 | 2462 | Ant1 | -41.34 | -30 | Pass | | NVNT | n40 | 2422 | Ant1 | -37.94 | -30 | Pass | | NVNT | n40 | 2437 | Ant1 | -37.81 | -30 | Pass | | NVNT | n40 | 2452 | Ant1 | -37.21 | -30 | Pass | Tx. Spurious NVNT b 2412MHz Ant1 Ref Tx. Spurious NVNT b 2412MHz Ant1 Emission Tx. Spurious NVNT b 2437MHz Ant1 Ref Tx. Spurious NVNT b 2437MHz Ant1 Emission Tx. Spurious NVNT b 2462MHz Ant1 Ref Tx. Spurious NVNT b 2462MHz Ant1 Emission Tx. Spurious NVNT g 2412MHz Ant1 Ref Tx. Spurious NVNT g 2412MHz Ant1 Emission Tx. Spurious NVNT g 2437MHz Ant1 Ref Tx. Spurious NVNT g 2437MHz Ant1 Emission Tx. Spurious NVNT g 2462MHz Ant1 Ref Tx. Spurious NVNT g 2462MHz Ant1 Emission Tx. Spurious NVNT n20 2412MHz Ant1 Ref Tx. Spurious NVNT n20 2412MHz Ant1 Emission Tx. Spurious NVNT n20 2437MHz Ant1 Ref Tx. Spurious NVNT n20 2437MHz Ant1 Emission Tx. Spurious NVNT n20 2462MHz Ant1 Ref Tx. Spurious NVNT n20 2462MHz Ant1 Emission Tx. Spurious NVNT n40 2422MHz Ant1 Ref Tx. Spurious NVNT n40 2422MHz Ant1 Emission Tx. Spurious NVNT n40 2437MHz Ant1 Ref Tx. Spurious NVNT n40 2437MHz Ant1 Emission Tx. Spurious NVNT n40 2452MHz Ant1 Ref Tx. Spurious NVNT n40 2452MHz Ant1 Emission # **APPENDIX A: PHOTOGRAPHS OF TEST SETUP** Report No.: BLA-EMC-202206-A10502 Page 107 of 107 ## APPENDIX B: PHOTOGRAPHS OF EUT Reference to the test report No. BLA-EMC-202206-A10501 # ----END OF REPORT---- The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.