[TestMode: TX N40 low channel]; [Polarity: Horizontal]

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuN	dB	$\mathrm{dBuN/m}$	$\mathrm{dBuV/m}$	dB	Detector
1	2310.000	41.57	-2.89	38.68	74.00	-35.32	Comment
$2{ }^{*}$	2390.000	49.73	-2.70	47.03	74.00	-26.97	peak

Test Result: Pass

[TestMode: TX N40 high channel]; [Polarity: Vertical]

EUT:
MN:
Mode: 2.4GWIFI-11N40-2452
Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	$\mathrm{dBuN/m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1^{*}	2483.500	41.69	-2.91	38.78	74.00	-35.22	peak	
2	2500.000	41.63	-3.00	38.63	74.00	-35.37	peak	

Test Result: Pass

[TestMode: TX N40 high channel]; [Polarity: Horizontal]

Test Result: Pass

14 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 \& Section 11.11
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	$25^{\circ} \mathrm{C}$
Humidity	60%

14.1 LIMITS

	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in $\S 15.209(a)$ is not required. In addition, radiated emissions which fall in the
restricted bands, as defined in §15.205(a), must also comply with the radiated	
emission limits specified in §15.209(a) (see §15.205(c)).	

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

15 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 \& Section 11.13.3.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	$25^{\circ} \mathrm{C}$
Humidity	60%

15.1 LIMITS

Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in $\S 15.209(a) ~ i s ~ n o t ~ r e q u i r e d . ~ I n ~ a d d i t i o n, ~ r a d i a t e d ~ e m i s s i o n s ~ w h i c h ~ f a l l ~ i n ~ t h e ~$
restricted bands, as defined in §15.205(a), must also comply with the radiated	
emission limits specified in §15.209(a) (see §15.205(c)).	

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

16 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	$25^{\circ} \mathrm{C}$
Humidity	60%

16.1 LIMITS

Limit: $\geq 500 \mathrm{kHz}$
16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

17 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	$25^{\circ} \mathrm{C}$
Humidity	60%

17.1 LIMITS

Limit: $\leq 8 \mathrm{dBm}$ in any 3 kHz band during any time interval of continuous transmission
17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

18 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5 \& Section 11.9.1
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	$25^{\circ} \mathrm{C}$
Humidity	60%

18.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)
$902-928$	1 for ≥ 50 hopping channels
	0.25 for $25 \leq$ hopping channels <50
	1 for digital modulation
$2400-2483.5$	1 for ≥ 75 non-overlapping hopping channels
	0.125 for all other frequency hopping systems
	1 for digital modulation
$5725-5850$	1 for frequency hopping systems and digital

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

19 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	$25^{\circ} \mathrm{C}$
Humidity	60%

19.1 LIMITS

Frequency of emission(MHz)	Quasi-peak	Average
	66 to 56^{*}	56 to 46^{*}
$0.15-0.5$	56	46
$0.5-5$	60	50
$5-30$		
*Decreases with the logarithm of the frequency.		

19.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.
2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \mathrm{ohm} / 50 \mathrm{H}+50 \mathrm{hm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
3) The tabletop EUT was placed upon a non-metallic table 0.8 m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Remark: LISN=Read Level+ Cable Loss+ LISN Factor

19.4 TEST DATA

[TestMode: TX]; [Line: Line]; [Power:AC120V/60Hz]

Mode: 2.4 GWIFI TX Mode
Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measurement	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuiV	dB	dBuiV	dBuJ	dB	Defector	cm	degree	Comment
1	0.5260	35.27	9.70	44.97	56.00	-11.03	QP			
2 *	0.5260	25.82	9.70	35.52	46.00	-10.48	AVG			
3	0.9340	30.80	9.96	40.76	56.00	-15.24	QP			
4	0.9340	20.65	9.96	30.61	46.00	-15.39	AVG			
5	1.4060	27.28	9.94	37.22	56.00	-18.78	QP			
6	1.4060	18.68	9.94	28.62	46.00	-17.38	AVG			
7	2.8220	26.34	10.27	36.61	56.00	-19.39	QP			
8	2.8220	17.78	10.27	28.05	46.00	-17.95	AVG			
9	5.3859	21.76	10.31	32.07	60.00	-27.93	QP			
10	5.3859	13.46	10.31	23.77	50.00	-26.23	AVG			
11	14.5820	20.03	10.14	30.17	60.00	-29.83	QP			
12	14.5820	12.86	10.14	23.00	50.00	-27.00	AVG			

Test Result: Pass

[TestMode: TX]; [Line: Nutral] ;[Power:AC120V/60Hz]

Mode: 2.4GWIFI TX Mode
Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree

Test Result: Pass

20 APPENDIX

20.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	9.432	30	Pass
NVNT	b	2437	Ant1	8.444	30	Pass
NVNT	b	2462	Ant1	9.302	30	Pass
NVNT	g	2412	Ant1	8.972	30	Pass
NVNT	g	2437	Ant1	7.554	30	Pass
NVNT	g	2462	Ant1	9.191	30	Pass
NVNT	n 20	2412	Ant1	7.363	30	Pass
NVNT	n 20	2437	Ant1	7.388	30	Pass
NVNT	n 20	2462	Ant1	8.374	30	Pass
NVNT	n 40	2422	Ant1	8.067	30	Pass
NVNT	n 40	2437	Ant1	6.437	30	Pass
NVNT	n 40	2452	Ant1	7.185	30	Pass

20.2 -6DB BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	Ant1	9.587	0.5	Pass
NVNT	b	2437	Ant1	9.505	0.5	Pass
NVNT	b	2462	Ant1	9.605	0.5	Pass
NVNT	g	2412	Ant1	15.408	0.5	Pass
NVNT	g	2437	Ant1	13.921	0.5	Pass
NVNT	g	2462	Ant1	10.04	0.5	Pass
NVNT	n 20	2412	Ant1	6.376	0.5	Pass
NVNT	n 20	2437	Ant1	11.421	0.5	Pass
NVNT	n 20	2462	Ant1	14.456	0.5	Pass
NVNT	n 40	2422	Ant1	30.125	0.5	Pass
NVNT	n 40	2437	Ant1	23.916	33.827	Pass
NVNT	n 40	2452	Ant1		0.5	Pass

-6dB Bandwidth NVNT b 2412 MHz Ant1

-6dB Bandwidth NVNT b 2437MHz Ant1

-6dB Bandwidth NVNT b 2462 MHz Ant1

-6dB Bandwidth NVNT g 2412MHz Ant1

-6dB Bandwidth NVNT g 2437MHz Ant1

-6dB Bandwidth NVNT g 2462MHz Ant1

-6dB Bandwidth NVNT n20 2412MHz Ant1

-6dB Bandwidth NVNT n20 2437MHz Ant1

