

Page 1 of 67

TEST REPORT

Product Name	:	Smart power strip
Brand Mark	:	Globe
Model No.	:	50573
FCC ID	:	2AQUQGE50573
Report Number	:	BLA-EMC-202207-A6401
Date of Sample Receipt	:	2022/5/13
Date of Test	:	2022/5/13 to 2022/5/31
Date of Issue	:	2022/7/27
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Globe Electric Company Inc. 150 Oneida, Montreal, Quebec, Canada, H9R 1A8

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Approved by:

Jozen Blue Thong

Review by: Date:

REPORT REVISE RECORD

Version No.	Date	Description	
00	2022/7/27	Original	

TABLE OF CONTENTS

1	TE	ST SUMMARY	5
2	GE	NERAL INFORMATION	6
3	GE	NERAL DESCRIPTION OF E.U.T.	6
4	TE	ST ENVIRONMENT	7
5	TE	ST MODE	7
		ST FACILITY	
6	TE		
7			
8	DE	SCRIPTION OF SUPPORT UNIT	8
9		BORATORY LOCATION	
10	TE	ST INSTRUMENTS LIST	9
11	RΔ	DIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	12
	l.1 l.2	LIMITS	
	L.2 L.3	PROCEDURE	
11	L.4	ТЕЅТ DATA	
12	co	NDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	. 19
		LIMITS	
	2.1 2.2	BLOCK DIAGRAM OF TEST SETUP	
	2.3	PROCEDURE	
12	<u>2.4</u>	TEST DATA	
13	со	NDUCTED BAND EDGES MEASUREMENT	. 23
	3.1 3.2	LIMITS BLOCK DIAGRAM OF TEST SETUP	-
	3.3	TEST DATA	
14	RA	DIATED SPURIOUS EMISSIONS	25
14	4.1	LIMITS	25
14	1.2	BLOCK DIAGRAM OF TEST SETUP	
14	1.3	PROCEDURE	26
14	1.4	ТЕЅТ DATA	28
15	со	NDUCTED SPURIOUS EMISSIONS	. 36

1	5.1	LIMITS
1	.5.2	BLOCK DIAGRAM OF TEST SETUP
1	.4.3	TEST DATA
16	POW	/ER SPECTRUM DENSITY
1	6.1	LIMITS
1	.6.2	BLOCK DIAGRAM OF TEST SETUP
1	.6.3	TEST DATA
17	CON	DUCTED PEAK OUTPUT POWER
1	7.1	LIMITS
1	.7.2	BLOCK DIAGRAM OF TEST SETUP
1	.7.3	TEST DATA
18	MINI	MUM 6DB BANDWIDTH
1	.8.1	LIMITS
1	.8.2	BLOCK DIAGRAM OF TEST SETUP
1	.8.3	TEST DATA
19	ANT	ENNA REQUIREMENT
1	.9.1	CONCLUSION
20	99%	BANDWIDTH
2	0.1	BLOCK DIAGRAM OF TEST SETUP
2	0.2	TEST DATA
21	APP	ENDIX
API	PEND	X A: PHOTOGRAPHS OF TEST SETUP59
API	PENDI	X B: PHOTOGRAPHS OF EUT61

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result		
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass		
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass		
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass		
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass		
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass		
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass		
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass		
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass		
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass		

2 GENERAL INFORMATION

Applicant	Globe Electric Company Inc.		
Address	150 Oneida, Montreal, Quebec, Canada, H9R 1A8		
Manufacturer	Globe Electric Company Inc.		
Address	150 Oneida, Montreal, Quebec, Canada, H9R 1A8		
Factory	Globe Electric Company Inc.		
Address	150 Oneida, Montreal, Quebec, Canada, H9R 1A8		
Product Name	Smart power strip		
Test Model No.	50573		

3 GENERAL DESCRIPTION OF E.U.T.

8

Hardware Version	V2.5
Software Version	keya4gvchmtapm8n V1.1.8
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	1.5dBi(Provided by the applicant)
engineer sample no:	BLA-EMC-202207-A64

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25°C	DC3.3V	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION		
ТХ	Keep the EUT in transmitting mode		

6 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Designation No.: CN1252

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Designation CN1252.

•ISED — CAB identifier No.: CN0028

 $\langle \rangle$

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered by Certification and Engineering

Bureau of ISED for radio equipment testing with CAB identifier CN0028.

7 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission(9kHz-30MHz)	±4.34dB	
Radiated Emission(30Mz-1000MHz)	±4.24dB	
Radiated Emission(1GHz-18GHz)	±4.68dB	
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB	

8 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark	
Note:					
"" means no any support device during testing.					

9 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

10 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of	Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)										
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due						
Shield room	SKET	833	N/A	25/11/2020	24/11/2023						
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022						
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022						
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022						
EMI software	EZ	EZ-EMC	N/A	N/A	N/A						

Test Equipment Of Conducted Band Edges Measurement									
Equipment Manufacturer Model S/N Cal.Date Cal.Due									
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				

Report No.: BLA-EMC-202207-A6401 Page 10 of 67

Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of	Test Equipment Of Radiated Spurious Emissions										
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due						
Chamber	SKET	966	N/A	10/11/2020	9/11/2023						
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022						
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022						
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022						
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022						
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022						
EMI software	EZ	EZ-EMC	N/A	N/A	N/A						
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022						

Test Equipment Of	Test Equipment Of Conducted Spurious Emissions										
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due						
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022						
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022						
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022						
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022						

Test Equipment Of Power Spectrum Density

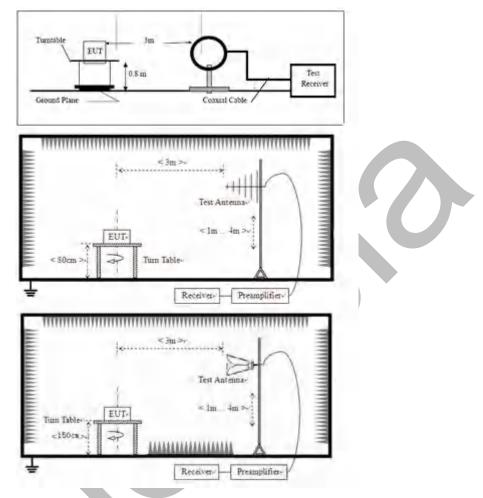
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022	
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022	
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022	

Test Equipment Of Conducted Peak Output Power											
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due						
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022						
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022						
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022						
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022						

Test Equipment Of Minimum 6dB Bandwidth										
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due					
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022					
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022					
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022					
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022					

11 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%


11.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

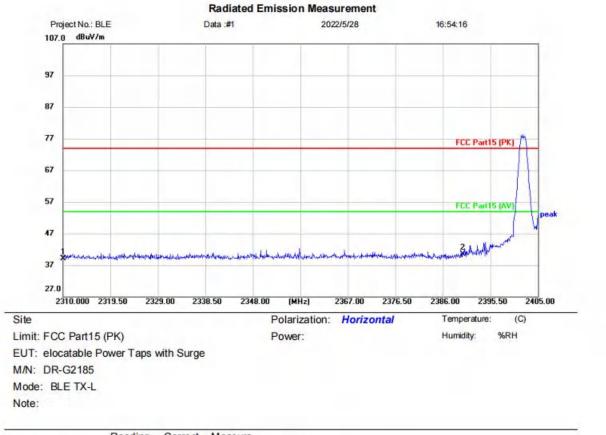
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

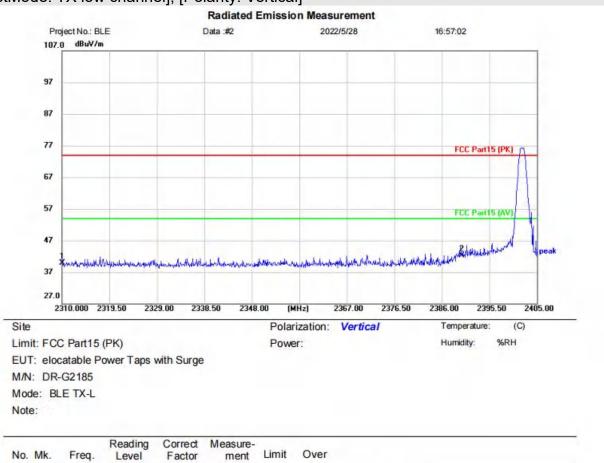
j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

BlueAsia of Technical Services(Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

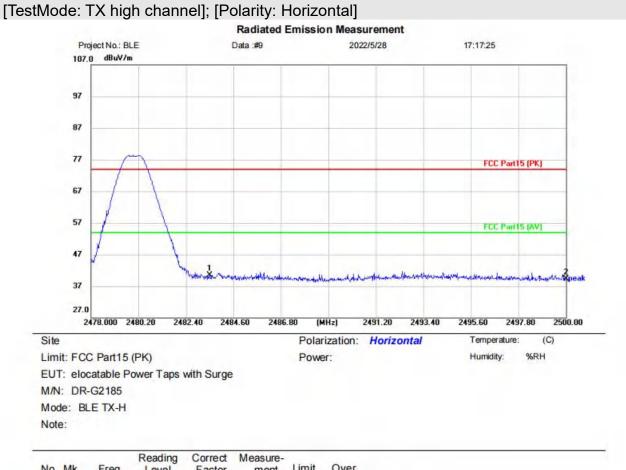
11.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	43.08	-3.93	39.15	74.00	-34.85	peak		
2	*	2390.000	44.11	-3.58	40.53	74.00	-33.47	peak		

*:Maximum data x:Over limit !:over margin

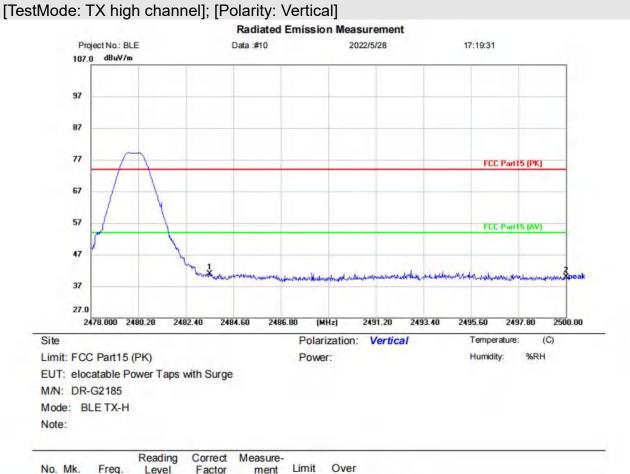
(Reference Only


[TestMode: TX low channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	43.89	-3.93	39.96	74.00	-34.04	peak		
2	*	2390.000	45.97	-3.58	42.39	74.00	-31.61	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only



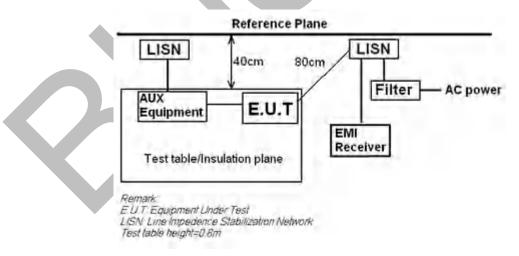
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2483.500	43.73	-3.14	40.59	74.00	-33.41	peak		
2		2500.000	42.45	-3.08	39.37	74.00	-34.63	peak		

(Reference Only

No.	Mk.	Freq.	Level	Factor	ment		Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2483.500	44.07	-3.14	40.93	74.00	-33.07	peak		
2		2500.000	42.97	-3.08	39.89	74.00	-34.11	peak		

(Reference Only

12 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

12.1 LIMITS

Frequency of	Conducted limit(dBµV)						
emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
·		•					

*Decreases with the logarithm of the frequency.

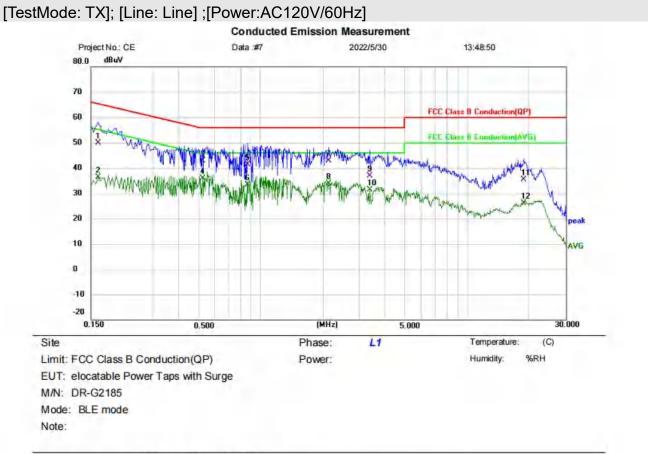
12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

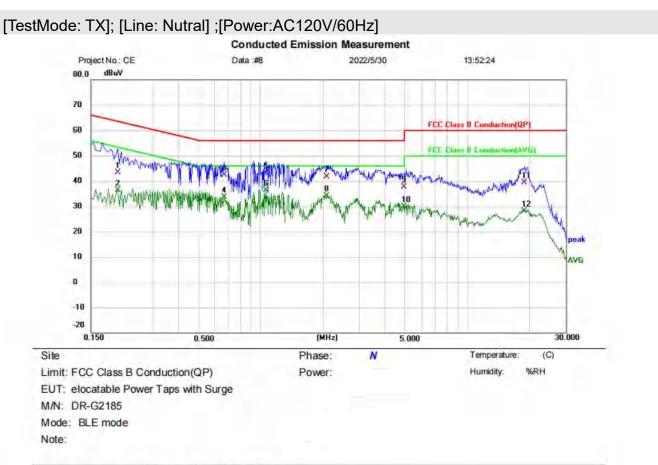
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

12.4 TEST DATA



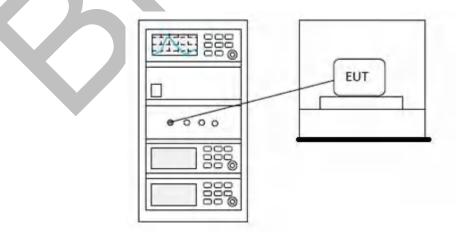
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	S		
	_	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1620	39.78	10.13	49.91	65.36	-15.45	QP		
2		0.1620	26.17	10.13	36.30	55.36	-19.06	AVG		
3		0.5220	32.96	9.87	42.83	56.00	-13.17	QP		
4	*	0.5220	26.04	9.87	35.91	46.00	-10.09	AVG		
5		0.8620	31.38	9.91	41.29	56.00	-14.71	QP		
6		0.8620	23.44	9.91	33.35	46.00	-12.65	AVG		
7		2.1380	33.03	9.94	42.97	56.00	-13.03	QP		
8		2.1380	23.94	9.94	33.88	46.00	-12.12	AVG		
9		3.3700	27.03	9.93	36.96	56.00	-19.04	QP		
10		3.3700	21.56	9.93	31.49	46.00	-14.51	AVG		
11		18.7979	24.84	10.42	35.26	60.00	-24.74	QP		
12		18.7979	15.64	10.42	26.06	50.00	-23.94	AVG		

*:Maximum data x:Over limit 1:over margin

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	S	
	_	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2020	33.12	10.15	43.27	63.53	-20.26	QP	
2		0.2020	26.33	10.15	36.48	53.53	-17.05	AVG	
3		0.6620	32.64	9.82	42.46	56.00	-13.54	QP	
4		0.6620	23.71	9.82	33.53	46.00	-12.47	AVG	
5		1.0580	33.22	9.84	43.06	56.00	-12.94	QP	
6		1.0580	26.52	9.84	36.36	46.00	-9.64	AVG	
7		2.0980	31.72	9.86	41.58	56.00	-14.42	QP	
8		2.0980	24.34	9.86	34.20	46.00	-11.80	AVG	
9		4.9340	27.57	9.95	37.52	56.00	-18.48	QP	
10		4.9340	19.83	9.95	29.78	46.00	-16.22	AVG	
11		19.0060	29.09	10.41	39.50	60.00	-20.50	QP	
12		19.0060	17.75	10.41	28.16	50.00	-21.84	AVG	

(Reference Only


13 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

13.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

13.2 BLOCK DIAGRAM OF TEST SETUP

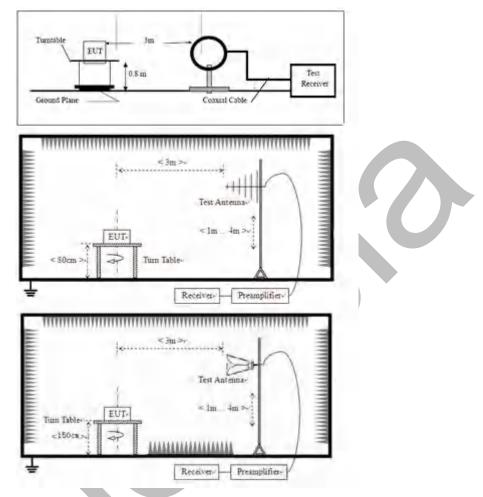
Report No.: BLA-EMC-202207-A6401 Page 24 of 67

13.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

14 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%


14.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

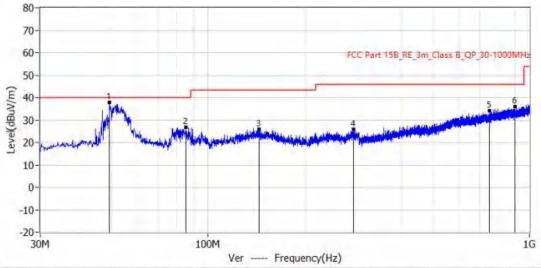
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.


4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

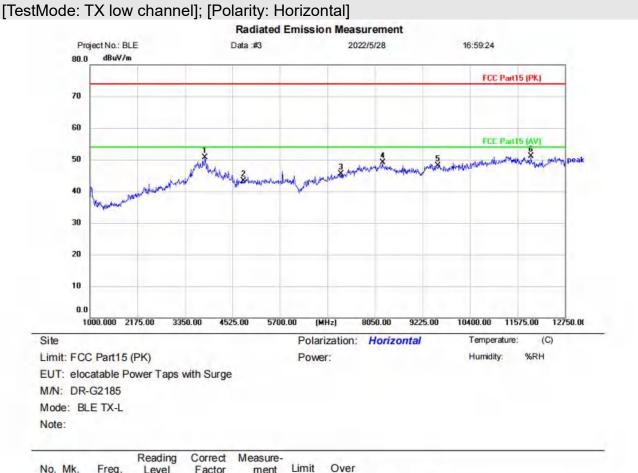
14.4 TEST DATA

[TestMode: TX mode (SE) below 1G]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202205-A37	
EUT: elocatable Power Taps with Surge Protector	Test Engineer: LEO	
M/N: DR-G2185	Temperature:	
S/N:	Humidity:	
Test Mode: BLE mode	Test Voltage:	
Note:	Test Data: 2022-05-30 11:14:35	

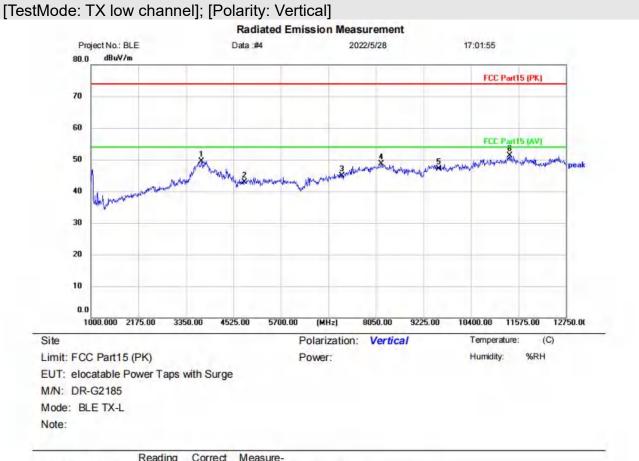
No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	49.279MHz	40.0	37.7	-2.3	13.9	23.8	QP	Ver	100.0	0.0
2*	85.290MHz	40.0	26.8	-13.2	7.3	19.5	QP	Ver	100.0	70.0
3*	144.096MHz	43.5	25.8	-17.7	2.2	23.6	QP	Ver	100.0	185.0
4*	282.928MHz	46.0	25.7	-20.3	2.0	23.7	QP	Ver	100.0	146.0
5*	750.468MHz	46.0	34.1	-11.9	1.0	33.1	QP	Ver	100.0	276.0
6*	902.030MHz	46.0	36.1	-9.9	1.1	35.0	QP	Ver	100.0	292.0

[TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal]


Test Lab: BlueAsia EMC Lab(RE #1)	Project: BLA-EMC-202205-A37	
EUT: elocatable Power Taps with Surge Protector	Test Engineer: LEO	_
M/N: DR-G2185	Temperature:	
S/N:	Humidity:	
Test Mode: BLE mode	Test Voltage:	
Note:	Test Data: 2022-05-30 11:12:00	

No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	41.761MHz	40.0	22.3	-17.7	-1.7	24.0	QP	Hor	100.0	240.0
2*	51.825MHz	40.0	24.0	-16.0	0.2	23.8	QP	Hor	100.0	164.0
3*	143.126MHz	43.5	25.5	-18.0	1.9	23.6	QP	Hor	100.0	224.0
4*	282.443MHz	46.0	26.7	-19.3	3.0	23.7	QP	Hor	100.0	42.0
5*	419.940MHz	46.0	28.5	-17.5	1.0	27.5	QP	Hor	100.0	318.0
6*	807.819MHz	46.0	34.2	-11.8	-0.1	34.3	QP	Hor	100.0	306.0

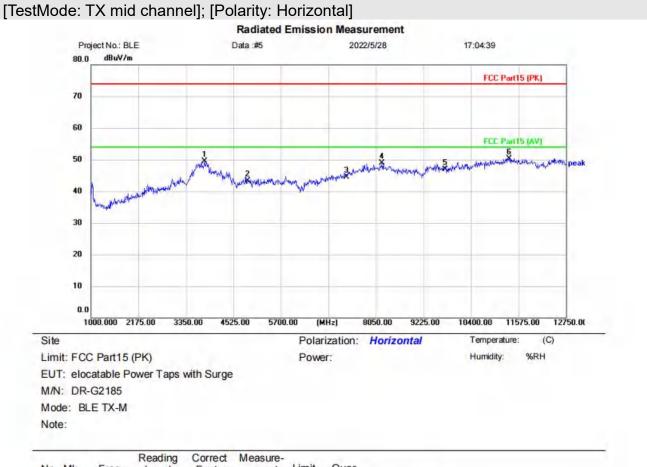
Above 1GHz:



No.	Mk	. Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	_
1		3843.500	43.52	7.12	50.64	74.00	-23.36	peak		
2		4804.000	39.64	3.71	43.35	74.00	-30.65	peak		
3	-	7206.000	39.54	5.96	45.50	74.00	-28.50	peak		
4		8238.000	40.86	8.22	49.08	74.00	-24.92	peak		
5		9608.000	38.90	9.29	48.19	74.00	-25.81	peak		
6	*	11915.750	39.73	11.40	51.13	74.00	-22.87	peak		

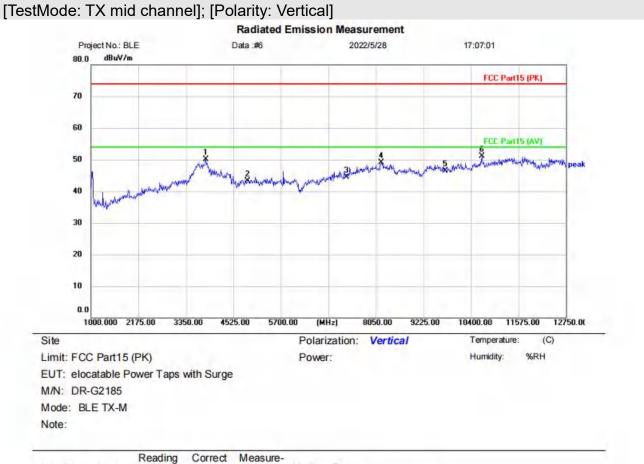
*:Maximum data x:Over limit !:over margin

(Reference Only



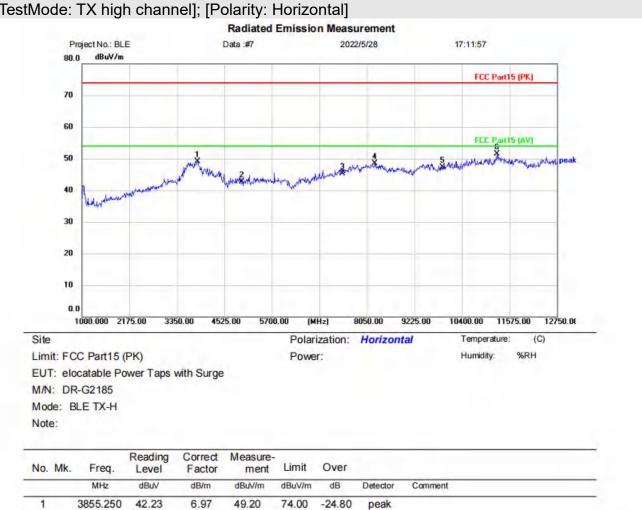
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3726.000	41.81	7.70	49.51	74.00	-24.49	peak		
2		4804.000	39.14	3.71	42.85	74.00	-31.15	peak		
3		7206.000	38.92	5.96	44.88	74.00	-29.12	peak		
4		8179.250	40.43	8.18	48.61	74.00	-25.39	peak		
5		9608.000	37.85	9.29	47.14	74.00	-26.86	peak		
6	*	11363.500	39.56	11.81	51.37	74.00	-22.63	peak		
_	_									

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3808.250	41.87	7.55	49.42	74.00	-24.58	peak		
2		4884.000	39.95	3.34	43.29	74.00	-30.71	peak		
3		7326.000	38.03	6.44	44.47	74.00	-29.53	peak		
4		8202.750	40.72	8.21	48.93	74.00	-25.07	peak		
5	•	9768.000	37.18	9.63	46.81	74.00	-27.19	peak		
6	*	11351.750	38.53	11.82	50.35	74.00	-23.65	peak		

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3843.500	42.90	7.12	50.02	74.00	-23.98	peak		
2		4884.000	40.01	3.34	43.35	74.00	-30.65	peak		
3	-	7326.000	38.12	6.44	44.56	74.00	-29.44	peak		
4		8179.250	40.96	8.18	49.14	74.00	-24.86	peak		
5		9768.000	36.88	9.63	46.51	74.00	-27.49	peak		
6	*	10670.250	39.82	11.36	51.18	74.00	-22.82	peak		
_										

(Reference Only

[TestMode: TX high channel]; [Polarity: Horizontal]

*:Maximum data x:Over limit I:over margin (Reference Only

Test Result: Pass

4960.000

7440.000

8249.750

9920.000

11269.500

2

3

4

5

6 ٠ 38.99

38.45

40.32

37.22

39.65

3.75

6.86

8.23

10.16

11.94

42.74

45.31

48.55

47.38

51.59

74.00

74.00

74.00

74.00

74.00

-31.26

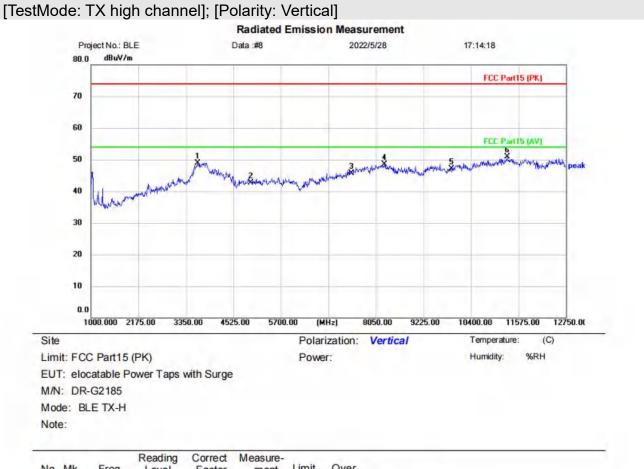
-28.69

-25.45

-26.62

-22.41

peak


peak

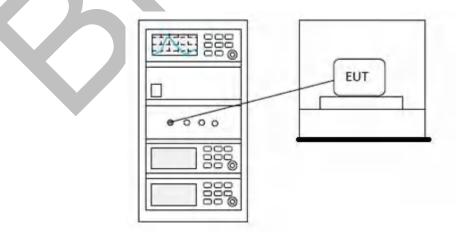
peak

peak

peak

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3632.000	41.22	7.77	48.99	74.00	-25.01	peak		
2		4960.000	39.00	3.75	42.75	74.00	-31.25	peak		
3		7440.000	38.84	6.86	45.70	74.00	-28.30	peak		
4		8261.500	40.23	8.23	48.46	74.00	-25.54	peak		
5		9920.000	36.85	10.16	47.01	74.00	-26.99	peak		
6	*	11293.000	39.05	11.91	50.96	74.00	-23.04	peak		

(Reference Only


15 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11						
Test Mode (Pre-Scan)	ТХ						
Test Mode (Final Test)	ТХ						
Tester	Jozu						
Temperature	25°C						
Humidity	60%						

15.1 LIMITS

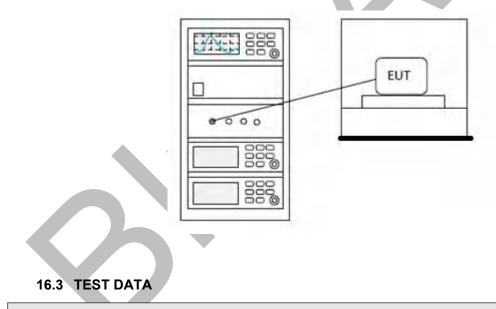
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

15.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202207-A6401 Page 37 of 67

14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


16 POWER SPECTRUM DENSITY

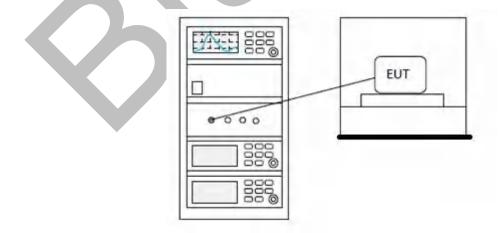
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

16.1 LIMITS

Limit: ≤ 8 dBm in any 3 kHz band during any time interval of continuous transmission

16.2 BLOCK DIAGRAM OF TEST SETUP

Pass: Please Refer To Appendix: Appendix1 For Details


17 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.5					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					

17.1 LIMITS

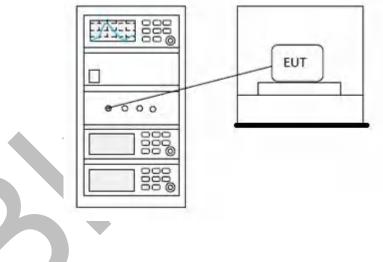
Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for \geq 50 hopping channels		
902-928	0.25 for $25 \le$ hopping channels < 50		
	1 for digital modulation		
	1 for \geq 75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5705 5050	1 for frequency hopping systems and digital		
5725-5850	modulation		

17.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202207-A6401 Page 40 of 67

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


18 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

18.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

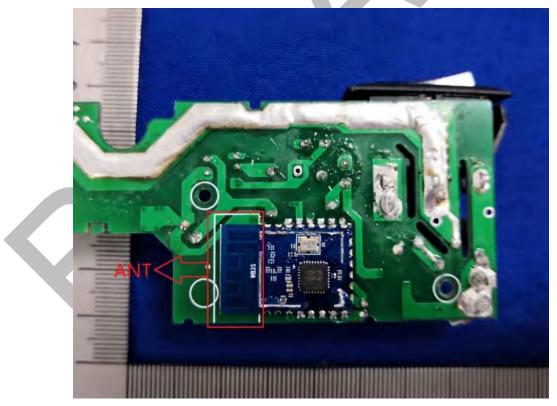
18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

19 ANTENNA REQUIREMENT

Test Standard47 CFR Part 15, Subpart C 15.247			
Test Method	N/A		

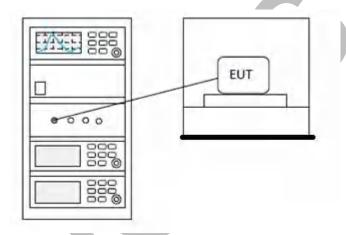

19.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.5dBi.



20 99% BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	52%

20.1 BLOCK DIAGRAM OF TEST SETUP

20.2 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

21 APPENDIX

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	4.595	30	Pass
NVNT	BLE	2440	Ant1	3.74	30	Pass
NVNT	BLE	2480	Ant1	6.028	30	Pass

Power NVNT BLE 2402MHz Ant1

Power NVNT BLE 2440MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.665	0.5	Pass
NVNT	BLE	2440	Ant1	0.675	0.5	Pass
NVNT	BLE	2480	Ant1	0.666	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2440MHz Ant1

	RF 50.0 AC 2.440000000		SENSE:INT Center Freq: 2.440000 Trig: Free Run #Atten: 30 dB	ALIGNAUTO 000 GHz Avg Hold: 100/100		08:33:02 P adio Std: No adio Device:	
	Ref Offset 2.53 dl		#Atten: 30 dB	_	Mkr3	2.4403	335 GHz
0 dB/div	Ref 22.53 dBn	n		1		-0.41	67 dBm
12.5				01			
2.63	-	2 Dem	Yan and the second	- Value			
47		-					
27.5						and a	
37.5	man and a second					Whener	- the start of the
17.5							
57:5				_			
67 5					-		
Center 2.44			#VBW 300 k	(H7			an 2 MHz 1.333 ms
						oncep	1.000 113
Occupie	ed Bandwidt 1.	^h 0338 MHz	Total Power	9.51 dBm			
Transmit	Freq Error	-2.486 kHz	OBW Power	99.00 %			
x dB Ban	dwidth	675.3 kHz	x dB	-6.00 dB			
				STATUŚ			

-6dB Bandwidth NVNT BLE 2480MHz Ant1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.033796326
NVNT	BLE	2440	Ant1	1.032768399
NVNT	BLE	2480	Ant1	1.03103852

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2440MHz Ant1

OBW NVNT BLE 2480MHz Ant1

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	3.621	8	Pass
NVNT	BLE	2440	Ant1	2.702	8	Pass
NVNT	BLE	2480	Antl	5.016	8	Pass

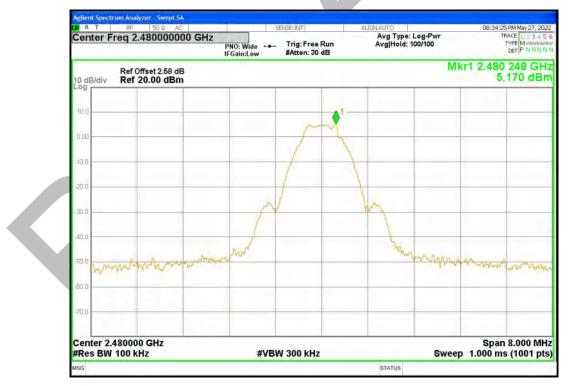
PSD NVNT BLE 2402MHz Ant1

PSD NVNT BLE 2440MHz Ant1

PSD NVNT BLE 2480MHz Ant1

Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-58	-30	Pass
NVNT	BLE	2480	Ant1	-54.58	-30	Pass


Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission

gilent Spectrum Analyzer - Sw	vept SA	SENSE:INT		ALIGNAUTO	00-21-447	M May 27, 2022
enter Freq 2.3560	00000 GHz	: Fast Trig: Fre in:Low #Atten: 3	e Run 10 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRA	CE 1 2 3 4 5 6 PE M WANNAM
Ref Offset 2. 0 dB/dlv Ref 20.00					Mkr1 2.40 3.8	2 0 GHz 59 dBm
00				<u> </u>		1
1.02			-		_	- 1
0.0			-			11-
20.0						-25,45 dbm
0.01						1
40.0					14.2	Q^2
D D D D D D D D D D D D D D D D D D D	والاستردار والمحاصر ومراجع	Marrow Wagness	ماحلوس وزاريهم	and and the second second	mar Indiana	Name and
10.0						
				a		
tart 2.30600 GHz Res BW 100 kHz		#VBW 300 kH	Iz	Sv	Stop 2.4 veep 9.600 ms	0600 GHz (1001 pts)
IN INCOMENTATE SEL N F 2 N F 3 N F 4 N F 5 6 7 8 9 9 0	2.402 0 GHz 2.400 0 GHz 2.390 0 GHz 2.387 6 GHz	¥ 3.859 dBm -48.677 dBm -56.924 dBm -54.469 dBm	UNCTION	INCTION WIDTH	FUNCTION VALUE	~
11						181
sG				STATUŚ		
			_			

Band Edge NVNT BLE 2480MHz Ant1 Ref

Band Edge NVNT BLE 2480MHz Ant1 Emission

TRACE 1 3 3 4 5 6 TYPE MUMUMUM DET P N N N N 1	AUTO Avg Type: Log-Pwr Avg Hold: 100/100	ALIGN AUT Avg Avg	Free Run n: 30 dB	SENSE:IN Trig: #Atte	PNO: Fa	AC 00000 GH2	um Analyzer - RF 50 req 2.526	nter F
Mkr1 2.480 0 GHz 5.284 dBm							Ref Offset Ref 20.0	dB/div
				1			1	
-24 65 am								0
								0
						03	A.	0
and the second and the second second	monether practice all the sheet produced	- Animan	- ner month	the first of the second	- and a second of	an and a free of the second	Amore	0 0
Stop 2.57600 GHz	111	1.1	1.0				600 GHz	
9.600 ms (1001 pts)	Swee		kHz	VBW 300			100 kHz	
				412 dBm	-IZ	2.483 8	f	N
2								NNN
(<u>*</u>)	STATUS	STA						

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-48.4	-30	Pass
NVNT	BLE	2440	Ant1	-47.04	-30	Pass
NVNT	BLE	2480	Antl	-48.8	-30	Pass

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

	Q AC	SENSE:INT	1	ALIGN AUTO		08:32:18 PM May	
enter Freq 13.26	PN): Fast Trig: Fre in:Low #Atten: 3		Avg Type: Log Avg Hold: 10/1	g-Pwr 0	TRACE 1 TYPE M DET P	
Ref Offset		-			h	Akr1 2.412 2.966	
		1					
1.07							
a.a							
e a							
0.0							35,40 dbm
40.0						\Diamond	2
50 (J	\bigcirc \bigcirc	05	Mar Alen		the state	- Barlow and	man
0.0	and the second s	and the second second					-
70.0							_
tart 30 MHz Res BW 100 kHz		#VBW 300 kH	Iz		Sweep	Stop 26.5 2.530 s (100	
KR MODE TRC SCL	× 2.412 GHz	2.966 dBm	UNCTION FUN	CTION WIDTH	FUNCT	ION VALUE	~
N f 2 N f 3 N f 4 N f 5 N f 6 7 8 9	2.412 GHz 24.753 GHz 4.848 GHz 7.018 GHz 9.559 GHz	2.966 dBm -44.806 dBm -54.925 dBm -54.870 dBm -56.192 dBm					
7 8 9 10							
				071710			1
SG				STATUS			

Tx. Spurious NVNT BLE 2440MHz Ant1 Emission

gilent Spectrum Analyzer – Sv							
R T RF 50 Center Freq 13.265		:Fast ++ Trig:Fre in:Low #Atten:	ee Run 30 dB	ALIGNAUTO Avg Type: Avg Hold: 1	Log-Pwr 10/10	TRA	M May 27, 2022 CE 1 2 3 4 5 6 PE M WANNAM 6T P N N N N N
Ref Offset 2 0 dB/div Ref 20.00						Mkr1 2.4 2.4	39 GHz 24 dBm
10.0			_	-			-
0.01	_		-	_			
0.0				_			
30.0			-				-27.28 (20)
30 D	_		-				-7
40.0	A			_			\diamond
50 C	\bigcirc \bigcirc	05	in minut	ma anna anna		martin	Sanda Autom
60.0 metalante	april - a ready	- All and a second second					
70.0							
Start 30 MHz Res BW 100 kHz		#VBW 300 kH	łz		Swee	Stop 2 ep 2.530 s (6.50 GHz (1001 pts)
AVE Model Term Sci. 1 N f 2 N f 3 N f 5 N f 5 N f 5 N f 6 7 7 8 9 9 10 10 11 </td <td>X 2.439 GHz 24.885 GHz 4.874 GHz 7.203 GHz 9.639 GHz</td> <td>2.424 dBm 44.320 dBm 53.975 dBm 56.045 dBm 55.955 dBm</td> <td>UNCTION</td> <td>UNCTION WIDTH</td> <td>fu</td> <td>NCTION VALUE</td> <td></td>	X 2.439 GHz 24.885 GHz 4.874 GHz 7.203 GHz 9.639 GHz	2.424 dBm 44.320 dBm 53.975 dBm 56.045 dBm 55.955 dBm	UNCTION	UNCTION WIDTH	fu	NCTION VALUE	
<				[any sheet]			12
SG				STATUS			

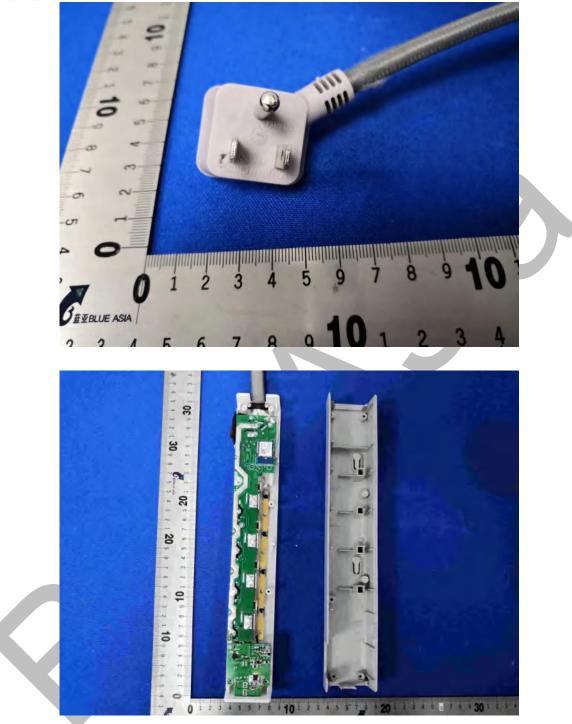
Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

RF 50 s RF 50 s Fr Freq 13.265	2 AC 000000 GHz	SENSE:INT ast ++- Trig: Free Run .ow #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 10/10	08:35:02 PM May 27, 202 TRACE 1 3 4 5 TYPE M WWWWW DET P 11 11 11
Ref Offset 2	58 dB dBm			Mkr1 2.492 GHz 4.037 dBm
A1				
	_	_		
				25 81 (1897
				-25 51 125
	03 04	∧ ⁵		a man for ment
and many and	- Innered per	and many sources and	have a support of the second	
30 MHz BW 100 kHz		#VBW 300 kHz		Stop 26.50 GHz
f	2.492 GHz 25.865 GHz 4.953 GHz 7.468 GHz 10.115 GHz	4.037 dBm 43.815 dBm 49.757 dBm 55.399 dBm 55.206 dBm		(2)
			STATUŚ	
		2		

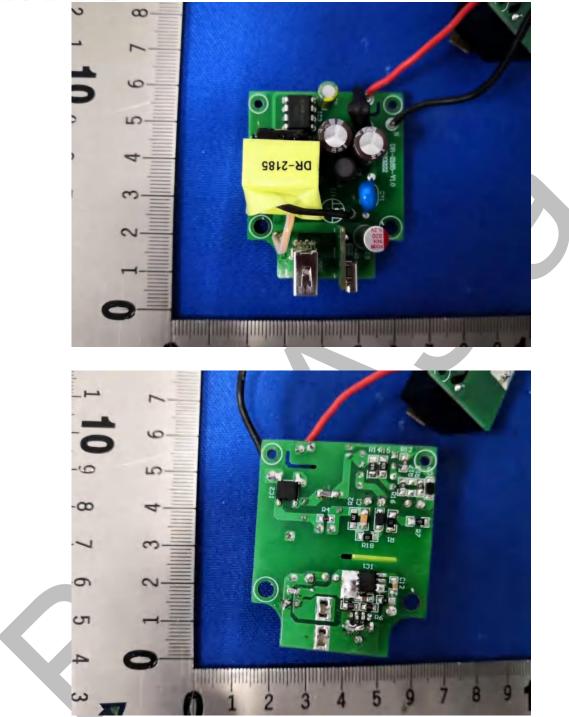
APPENDIX A: PHOTOGRAPHS OF TEST SETUP

APPENDIX B: PHOTOGRAPHS OF EUT

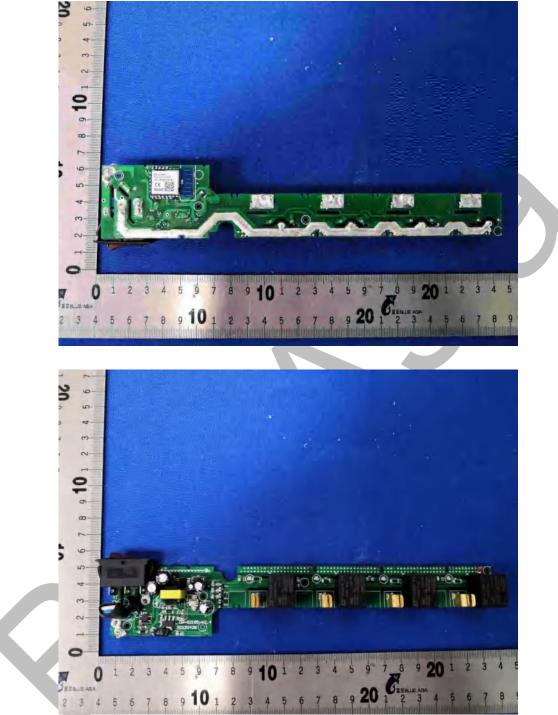
Report No.: BLA-EMC-202207-A6401 Page 62 of 67



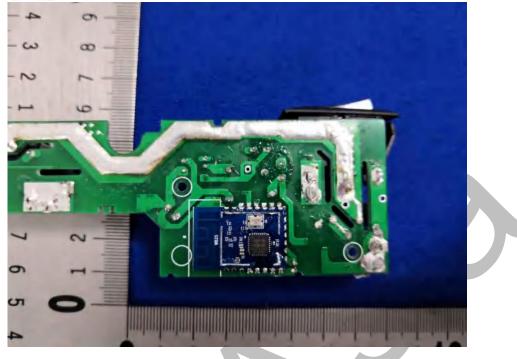
Report No.: BLA-EMC-202207-A6401 Page 63 of 67



Report No.: BLA-EMC-202207-A6401 Page 64 of 67



Report No.: BLA-EMC-202207-A6401 Page 65 of 67



Report No.: BLA-EMC-202207-A6401 Page 66 of 67

Report No.: BLA-EMC-202207-A6401 Page 67 of 67

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.