

RF Test Report

For

Globe Electric Company Inc.

	Part 15C Subpart C §15.247
Test Standards:	RSS 247 Issue 2
Product Name:	LED Recessed Luminaires
Tested Model:	<u>50323</u>
Additional Model No.:	<u>50068*</u>
Brand Name:	Globe
FCC ID:	2AQUQGE50323
IC:	8290A-GE50323
Classification	(DTS) Digital Transmission System
Report No.:	EC2104017RF04
Tested Date:	2021-04-19 to 2021-04-30
Issued Date:	2021-04-30
Prepared By:	Jack Lin.
	Jack Liu / Engineer
Approved By:	Raron Wu

Hunan Ecloud Testing Technology Co., Ltd.

Bacon Wu / RF Manager

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and

Technological Development Zone, Hunan, P.R.C

Tel.: +86-731-89634887 Fax.: +86-731-89634887

www.hn-ecloud.com

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2021.04.30	Valid	Based on the
				original case
				EC2009017RF01
				Updated the wick
				part power
				scheme
				composed of U1;
				added the DC/DC
				circuit composed
				of U2, and does
				not affect any RF
				performance.

Tel.:+86-731-89634887

TABLE OF CONTENTS

1	TES	T LABORATORY	5
	1.1	Test facility	5
2	GEN	IERAL DESCRIPTION	6
	2.1	Applicant	6
	2.2	Manufacturer	6
	2.3	General Description Of EUT	6
	2.4	Modification of EUT	7
	2.5	Applicable Standards	7
3	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	3.1	Descriptions of Test Mode	8
	3.2	Test Mode	8
	3.3	Support Equipment	9
	3.4	Test Setup	9
	3.5	Measurement Results Explanation Example	11
4	TES	T RESULT	12
	4.1	Radiated Band Edges and Spurious Emission Measurement	12
	4.2	AC Conducted Emission Measurement	16
5	LIST	OF MEASURING EQUIPMENT	19
6	UNC	ERTAINTY OF EVALUATION	21
	Арр	endix H: Setup Photographs	22

Tel.:+86-731-89634887

Summary Of Test Result

FCC Rule	IC Rule	Description	Limit	Result	Remark
15.247(d)	RSS-247 5.5	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 2.50 dB at 227.88 MHz
15.207	RSS-GEN 8.8	AC Conducted Emission	15.207(a)	Pass	Under limit 11.32 dB at 0.529 MHz

Tel.:+86-731-89634887

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number: L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1244, Test Firm Registration Number: 793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Code: 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

Tel.:+86-731-89634887

2 General Description

2.1 Applicant

Globe Electric Company Inc.

150, Oneida, Montreal, Quebec, Canada, H9R 1A8

2.2 Manufacturer

Globe Electric Company Inc.

150, Oneida, Montreal, Quebec, Canada, H9R 1A8

2.3 General Description Of EUT

Product	LED Recessed Luminaires	
Model No.	50323	
Additional No.	50068*	
Difference Description	Only the model name is different	
FCC ID	2AQUQGE50323	
IC	8290A-GE50323	
Power Supply	120Vac	
Modulation Technology	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM BLE	
Modulation Type	802.11b : DSSS 802.11g/n : OFDM BLE:GFSK	
Operating Frequency	WIFI: 2412-2462MHz BLE: 2402-2480MHz	
Number Of Channel	WIFI:11 BLE:40	
Max. Output Power	802.11b : 17.57 dBm (0.057 W) 802.11g : 15.71 dBm (0.0372 W) 802.11n HT20 : 13.78 dBm (0.0239 W) 3.75 dBm (0.002371 W)	
Max. E.I.R.P.	16.57 dBm (0.0454 W)	
Antenna Type	PCB Antenna type with -1dBi gain	
HW Version	V2	
SW Version	1.0.3	
I/O Ports	Refer to user's manual	

Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

Liuyang Economic and Technological Development Zone, Hunan, P.R.C

FCC ID: 2AQUQGE50323 IC: 8290A-GE50323

www.hn-ecloud.com

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013
- KDB 558074 D01 15.247 Meas Guidance v05r02
- IC RSS-247 Issue 2
- IC RSS-Gen Issue 5

Tel.:+86-731-89634887

3 Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

11 channels are provided for 802.11b, 802.11g and 802.11n(HT20):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

The transmitter has a maximum peak conducted output power as follows:

Frequency Range(MHz)	Mode	Rate	Output Power(dBm)
2412~2462	802.11b	1Mbps	17.57
2412~2462	802.11g	6Mbps	15.71
2412~2462	802.11n HT20	MCS0	13.78

Channel	Frequency	Mode	Bluetooth RF Output Power
Ch00	2402MHz	GFSK	3.69
Ch19	2440MHz	GFSK	2.84
Ch39	2480MHz	GFSK	3.75

a. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

3.2 Test Mode

3.2.1 Radiated Emission Test (Below 1GHz)

Radiated	802.11 b
Test Cases	Mode 1: CH01

Note: 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type. Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

2. Following channel(s) was (were) selected for the final test as listed above

Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID: 2AQUQGE50323 IC: 8290A-GE50323

www.hn-ecloud.com

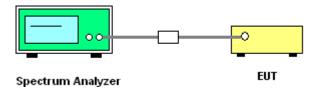
Tel.:+86-731-89634887

Report No.: EC2104017RF04

3.2.2 Power Line Conducted Emission Test:

AC	
Conducted	Mode 1 : WLAN Linking + Lighting
Emission	

3.3 Support Equipment

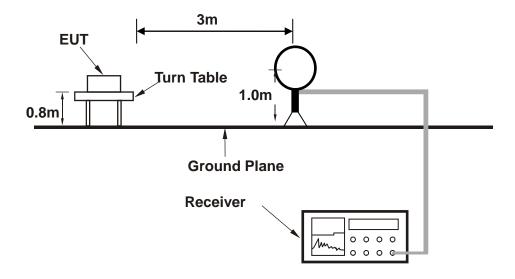

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	NETGEAR	R7800	PY315100319	N/A	shielded, 1.8 m
2.	Notebook	Lenovo	E470C	FCC sDoC	N/A	shielded cable DC O/P 1.8 m unshielded AC I/P cable1.2 m

3.4 Test Setup

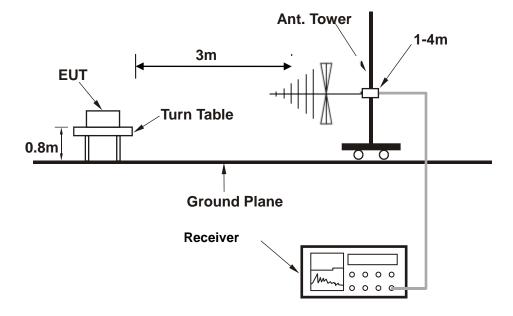
The EUT is continuously communicating to the WIFI tester during the tests.

EUT was set in the Hidden menu mode to enable WIFI communications.

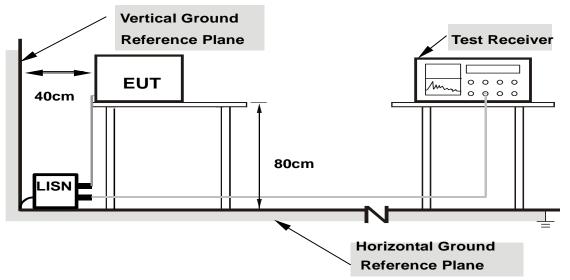
Setup diagram for Conducted Test



Setup diagram for Radiation(9KHz~30MHz) Test


Building A1, Changsha E Center, No. 18 Xiangtai Avenue,
Liuyang Economic and Technological Development Zone, Hunan, P.R.C
FCC ID: 2AQUQGE50323 IC: 8290A-GE50323
www.hn-ecloud.com

Tel.:+86-731-89634887


Setup diagram for Radiation(Below 1G) Test

Tel.:+86-731-89634887

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

$$= 5 + 10 = 15 (dB)$$

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Over Limit (dB μ V/m) = Level(dB μ V/m) - Limit Level (dB μ V/m)

www.hn-ecloud.com

Tel.:+86-731-89634887 Fax.: +86-731-89634887

4 Test Result

4.1 Radiated Band Edges and Spurious Emission Measurement

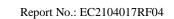
4.1.1 Limit of Radiated Band Edges and Spurious Emission

FCC §15.247 (d)

IC RSS-247 5.5

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 30 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3


4.1.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement:

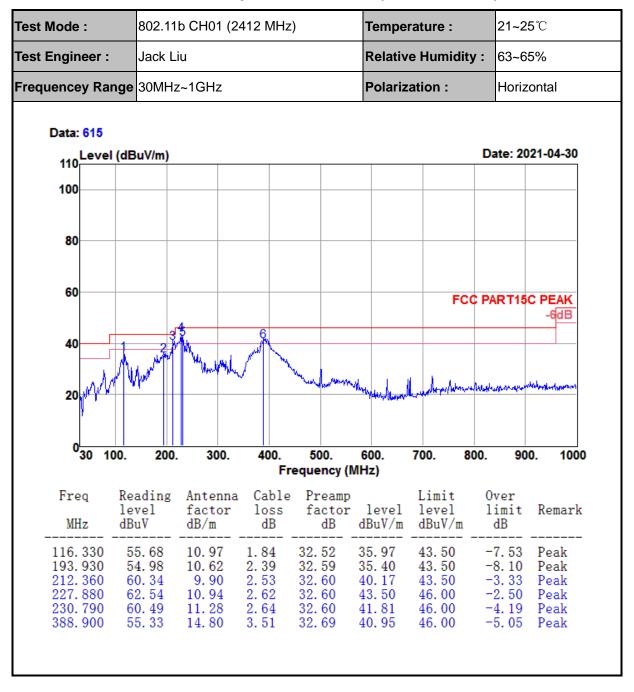
VBW = 10 Hz, when duty cycle is no less than 98 percent.

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID: 2AQUQGE50323 IC: 8290A-GE50323

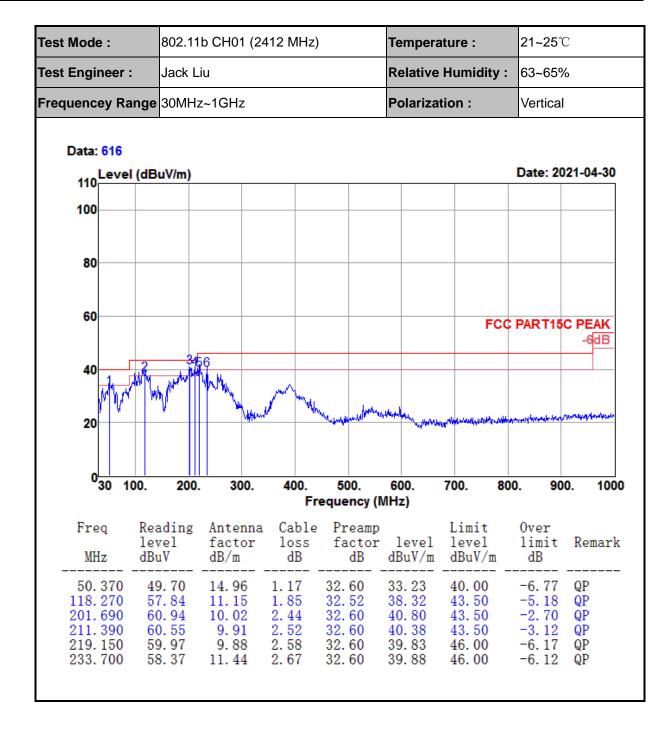
www.hn-ecloud.com

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

4.1.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)


The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Tel.:+86-731-89634887


4.1.4 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

Tel.:+86-731-89634887

Tel.:+86-731-89634887

4.2 **AC Conducted Emission Measurement**

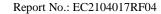
4.2.1 **Limit of AC Conducted Emission**

FCC §15.207

IC RSS-GEN 8.8

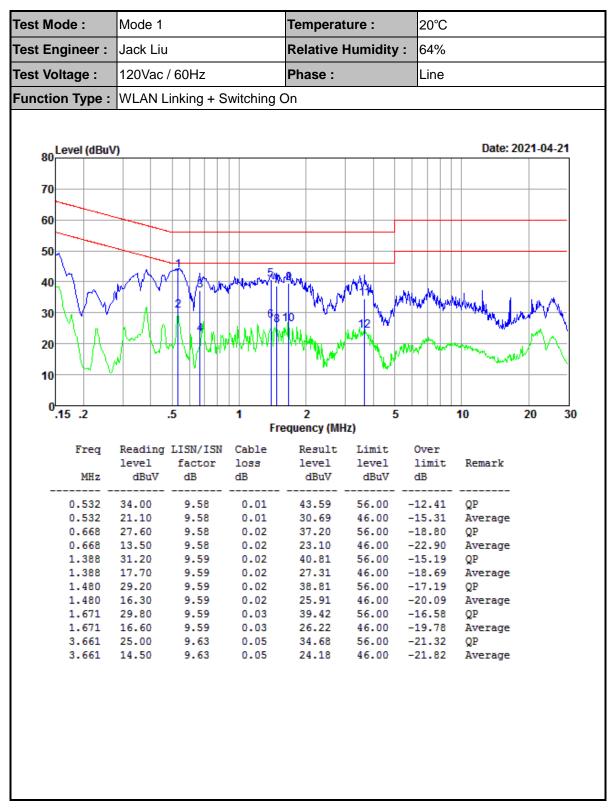
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBμV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		


^{*}Decreases with the logarithm of the frequency.

4.2.2 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.


FCC ID: 2AQUQGE50323 IC: 8290A-GE50323 www.hn-ecloud.com

Tel.:+86-731-89634887

4.2.3 Test Result of AC Conducted Emission

Result Level= Reading Level + LISN Factor + Cable Loss

www.hn-ecloud.com

Result Level= Reading Level + LISN Factor + Cable Loss

www.hn-ecloud.com

Tel.:+86-731-89634887

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2021-01-05	2022-01-04	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2021-01-05	2022-01-04	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2021-01-05	2022-01-04	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2021-01-05	2022-01-04	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2021-01-05	2022-01-04	Conducted
Thermal Chamber	Howkin	UHL-34	19111801	2020-05-09	2021-05-08	Conducted
Base Station	R&S	CMW 270	101231	2021-01-05	2022-01-04	Conducted
Signal Generator (Interferer)	Keysight	N5182B	MY56200384	2021-01-05	2022-01-04	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2021-01-05	2022-01-04	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV 40	101433	2021-01-05	2022-01-04	Radiation
Amplifier	Sonoma	310	363917	2021-01-06	2022-01-05	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2021-01-06	2022-01-05	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2020-05-14	2021-05-15	Radiation
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	2020-02-14	2023-02-13	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2020-09-27	2023-09-26	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2020-02-14	2023-02-13	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2018-06-20	2021-06-19	Radiation
Test Software	Audix	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

www.hn-ecloud.com

Tel.:+86-731-89634887

Report No.: EC2104017RF04

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
LISN	R&S	ENV216	102125	2021-01-05	2022-01-04	Conducted
LISN	R&S	ENV432	101327	2021-01-06	2022-01-05	Conducted
EMI Test	R&S	ESR3	102143	2021-01-06	2022-01-05	Conducted
Receiver	Nao	LONG	102143	2021-01-00	2022-01-03	Conducted
EMI Test	Audiv	E2	N/A	N/A	N/A	Conducted
Software	Audix	E3	IN/A	IN/A	IN/A	Conducted

N/A: No Calibration Required

Tel.:+86-731-89634887

6 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.42dB
	30MHz ~ 1GMHz	2.50dB
Radiated emission	1GHz ~ 18GHz	3.51dB
	18GHz ~ 40GHz	3.96dB

MEASUREMENT	UNCERTAINTY
Occupied Channel Bandwidth	±196.4Hz
RF output power, conducted	±2.31dB
Power density, conducted	±2.31dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 21 of 23

Tel.:+86-731-89634887

Appendix H: Setup Photographs



Fig. 1 Radiated emission setup photo(Below 30MHz)

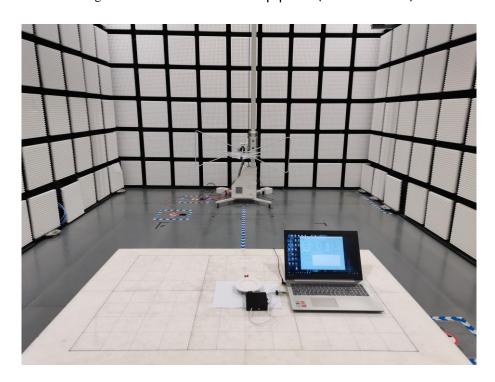


Fig. 2 Radiated emission setup photo(30MHz-1GHz)

Fax.: +86-731-89634887

Tel.:+86-731-89634887

www.hn-ecloud.com

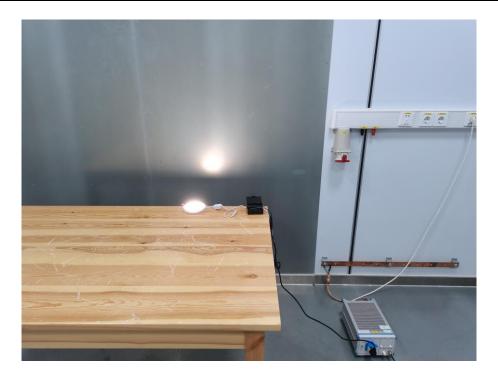


Fig. 3 Power line conducted emission setup photo

-----End of the report-----

Tel.:+86-731-89634887