

TEST REPORT

Applicant:	2	onic Technology Co., Ltd.			
Address:	•	I, Puxin Industrial District, Shipai Town,			
	Dongguan City, Guan				
Manufacturer:	2	onic Technology Co., Ltd.			
Address:	•	I, Puxin Industrial District, Shipai Town,			
Factor //	Dongguan City, Guan				
Factory: Address:		onic Technology Co., Ltd.			
Address:	Dongguan City, Guan	I, Puxin Industrial District, Shipai Town,			
E.U.T.:	OUTRIDER 18 POWE	R BANK			
Model Number:	21110				
Trade mark:	GOAL ZERO				
FCC ID:	2AQTM-21110				
Date of Receipt:	Mar. 26, 2024 Date of Test: Mar. 26 - April 2, 2024				
Test Specification:	FCC 47 CFR Part 15, Subpart C				
Test Result:	The equipment under requirements of the s	test was found to be compliance with the tandards applied.			
Prepared by:		Approved & Authorized Signer:			
Jerry Hu/ Enginee	Hu	Frank Shen/ Manager			
		Issue Date: August 13, 2024			
	Issue Date: August 13, 2024				

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Dongguan Lepont Service Co., Ltd.

TABLE OF CONTENTS

1. GENERAL PRODUCT INFORMATION	4
1.1. Product Function	4
1.2. EUT TECHNICAL DESCRIPTION	4
1.3. DESCRIPTION OF TEST MODES	5
2. TEST STANDARDS AND SITES	6
2.1. DESCRIPTION OF STANDARDS AND RESULTS	6
2.2. LIST OF TEST AND MEASUREMENT INSTRUMENTS	7
2.3. MEASUREMENT UNCERTAINTY	8
2.4. TEST FACILITY	
3. SETUP OF EQUIPMENT UNDER TEST	
3.1. RADIO FREQUENCY TEST SETUP 1	9
3.2. RADIO FREQUENCY TEST SETUP 2	
3.3. CONDUCTED EMISSION TEST SETUP	
3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	11
3.5. SUPPORT EQUIPMENT	
4. TEST RESULTS AND MEASUREMENT DATA	13
4.1. 20DB BANDWIDTH	
4.2. RADIATED SPURIOUS EMISSION	15
4.3. CONDUCTED EMISSION TEST	
4.4. ANTENNA APPLICATION	

Revision History of This Test Report					
Report Number Description Issued Da					
LP24010026C01-04	Initial Issue	2024-8-13			

1. GENERAL PRODUCT INFORMATION

1.1. PRODUCT FUNCTION

Refer to Technical Construction Form and User Manual.

1.2. EUT TECHNICAL DESCRIPTION

Product Name:	OUTRIDER 18 POWER BANK		
Model No.:	21110		
Test Model No:	21110		
Difference:	N/A		
Serial No.:	N/A		
Test sample(s) ID:	LP24010026C01-S001		
Sample(s) Status	Engineer sample		
Hardware:	YX-PCB463C		
Software:	RC589		
Operation frequency:	115-205KHz		
Modulation Type:	FSK		
Antenna Type:	Inductive Loop Antenna with 10 Turns		
Antenna Gain :	0dBi		
Wireless Charging:	wireless output : 5W/7.5W/10W/15W		
Rating:	Input: TYPE-C: 5V3A ; 9V2A; 12V1.5A Output: TYPE-C:5V3A ; 9V2.22A; 12V1.67A		
Power Supply:	 ☑ DC 5-12V for ADAPTER ☑ Adapter supply: Model: GP-209-WHT-NA-BULK Input:100-240VAC, 50/60Hz, 0.5A Max. Output: 5V3A, 9V2A, 12V1.5A 		
Note: for more details, please refer to the User's manual of the EUT.			

DESCRIPTION OF TEST MODES 1.3.

All the test modes were carried out with the EUT in normal operation, the final test mode of the EUT was the worst test mode for emission test, which was shown in this report and defined as:

Mode:	TEST MODE DESCRIPPTION			
1	Charging + Wireless Charging Output: 5W			
2	Full Load + Wireless Output: Type-C:5V2A+5W			
3	Wireless Output: 15W			
4	Wireless Output: 10W			
5	Wireless Output: 7.5W			
6	Wireless Output: 5W			
Note: 1 Product folding has been evaluated for use				

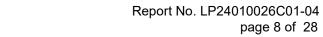
Product folding has been evaluated for use. ١.

2. All test modes were pre - tested, but we only recorded the worst case in this report. The worst case is Mode 3

3. All voltage inputs have been tested, with only the worst voltage recorded.

2. TEST STANDARDS AND SITES

2.1. DESCRIPTION OF STANDARDS AND RESULTS


The EUT have been tested according to the applicable standards as referenced below.

FCC Part Clause	Test Parameter	Verdict	Remark
FCC Part 15, Subpart C- Section 15.207 ANSI C63.10-2013	Conducted Emission	PASS	
FCC Part 15, Subpart C- Section 15.209 ANSI C63.10-2013	Radiated Emission	PASS	
FCC Part 15, Subpart C- Section 15.215 ANSI C63.10-2013	20dB Bandwidth	PASS	
15.203	Antenna Application	PASS	
NOTE1: N/A (Not Applicable)			

2.2. LIST OF TEST AND MEASUREMENT INSTRUMENTS

For radiated(9K-30M) emission test(966 Chamber 1)								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Interval	Lab No.	Remark	
EMI Test Receiver	Rohde & Schwarz	ESR 3	101849	Jan. 31, 2024	1 Year	LEP-E006		
Active Loop Antenna	Schwarzbeck	FMZB 1519C	00008	Feb. 02, 2024	3 Year	LEP-E068		
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051		
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A		
		ed(30M-1G) emi	I I					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Interval	Lab No.	Remark	
EMI Test Receiver	Rohde & Schwarz	ESR 3	101849	Jan. 31, 2024	1 Year	LEP-E006		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	743	Nov. 20, 2022	3 Year	LEP-E005		
Signal Amplifier	HP	8447D	1726A01222	Jan. 24, 2024	1 Year	LEP-E007	\checkmark	
6dB Attenuator	RswTech	5W 6dB	LEP-E084	Jan. 24, 2024	1 Year	LEP-E084	\checkmark	
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051	$\overline{\checkmark}$	
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A	 	
		ed(1-18G) emis						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Interval	Lab No.	Remark	
Spectrum analyzer	Agilent	N9020A	MY49100060	Jan. 24, 2024	1 Year	LEP-E020		
Horn antenna	Schwarzbeck	BBHA 9120D	01875	Nov. 20, 2022	3 Year	LEP-E024		
Preamplifier	Schwarzbeck	BBN 9718B	00010	Jan. 24, 2024	1 Year	LEP-E025		
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2024	3 Year	LEP-E051		
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A		
Test soltware		ed(18-40G) emi	I I			IN/A		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Interval	Lab No.	Remark	
Spectrum analyzer	Rohde & Schwarz	FSV40	101412	Jan. 24, 2024	1 Year	LEP-E076		
Horn antenna+Preamplifier	COM-POWER	AH840	1010020	Sep. 05, 2022	3 Year	LEP-E075		
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051		
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A		
For conducted emission at the mains terminals test(Shielded Room 2)								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Interval	Lab No.	Remark	
EMI Test Receiver	Rohde & Schwarz	ESCS30	1002.4500	Jan. 31, 2024	1 Year	LEP-E004		
Artificial Mains Network	Rohde & Schwarz	ENV216	100873	Jan. 24, 2024	1 Year	LEP-E001		
Artificial Mains Network	Schwarzbeck	NSLK 8128	NSLK 8128-249	Jan. 24, 2024	1 Year	LEP-E047		
Pulse Limiter	Schwarzbeck	VYSD9561-F-N		Jan. 24, 2024	1 Year	LEP-E047		
RF Switching Unit	CD	RSU-M2	8830008	Jan. 31, 2024	1 Year	LEP-E045	V	
Shielded Room 2	MR	MR-L01	LEP-E050	Nov. 17, 2022	3 Year	LEP-E050	\checkmark	
Test software	EZ-EMC	Fala	EMC-CON 3A1.1+	N/A	N/A	N/A		
			RF test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Interval		Remark	
Spectrum analyzer	Rohde & Schwarz	FSV40	101412	Jan. 24, 2024	1 Year	LEP-E076	\checkmark	
Spectrum analyzer	Agilent	N9020A	MY49100060	Jan. 24, 2024	1 Year	LEP-E020		
Vector source	Agilent	N5182A	MY47420382	Jan. 24, 2024	1 Year	LEP-E021	\checkmark	
Analog signal source	Agilent	N5171B	MY51350292	Jan. 24, 2024	1 Year	LEP-E022	\checkmark	
All instrument	Rohde & Schwarz	CMW 500	1201.002K50	Jan. 24, 2024	1 Year	LEP-E019	\checkmark	
					1 Voor		\checkmark	
High and low temperature chamber	Math-mart	MT-1202-40	LEP-E041	Jan. 24, 2024	1 Year	LEP-E041	V	
	Math-mart Tonscend	MT-1202-40 JS0806-2	LEP-E041 10165	Jan. 24, 2024 Jan. 24, 2024	1 Year	LEP-E041 LEP-E034		

page 8 of 28

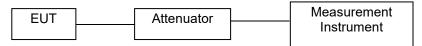
MEASUREMENT UNCERTAINTY 2.3.

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty		
Conducted Emissions Test	±3.08dB		
Radiated Emission Test	±4.60dB		
Occupied Bandwidth Test	±2.3%		
Antenna Port Emission	±3dB		
Temperature	±3.2%		
Humidity	±2.5%		
Measurement Uncertainty for a level of Confidence of 95%			

2.4. **TEST FACILITY**

EMC Lab. :	The Laboratory has been assessed and proved to be in compliance with CNAS/CL01 The Certificate Registration Number is L10100. The Laboratory has been assessed and proved to be in compliance with A2LA The Certificate Registration Number is 6901.01
	FCC Designation No.: CN1351 Test Firm Registration No.: 397428
	ISED CAB identifier: CN0151 Test Firm Registration No.: 20133
Test Location :	Dongguan Lepont Testing Service Co., Ltd.
Address :	Room 102, Building 11, No.7, Houjie Science And Technology Avenue, Houjie, Dongguan, Guangdong, China


Dongguan Lepont Testing Service Co.,Ltd.

3. SETUP OF EQUIPMENT UNDER TEST

3.1. RADIO FREQUENCY TEST SETUP 1

The component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

3.2. RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 32.

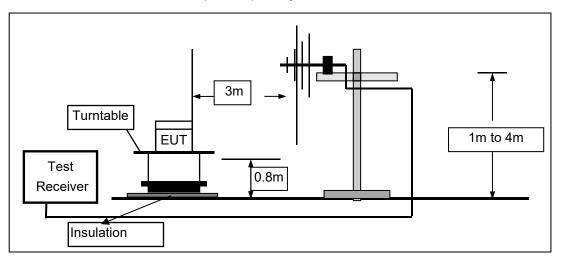
Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

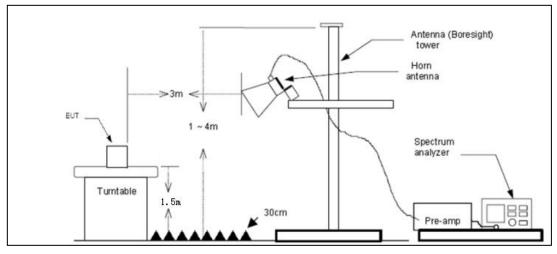

Above 30MHz:

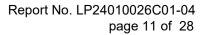
The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:


(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

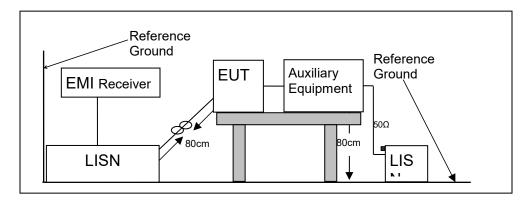
(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



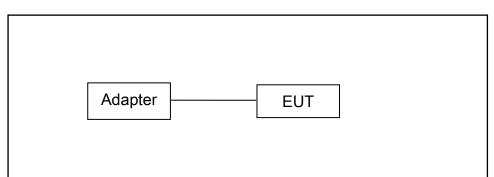


(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



3.3. CONDUCTED EMISSION TEST SETUP


The mains cable of the EUT (Perfect Share Mini) must be connected to LISN. The LISN shall be placed 0.8m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8m.

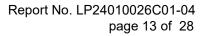
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

Dongguan Lepont Testing Service Co.,Ltd.

3.5. SUPPORT EQUIPMENT

EUT Cable List and Details					
Cable Description Length (m) Shielded/Unshielded With / Withou Ferrite					
USB cable 0.2m		Unshielded	Without Ferrite		


Auxiliary Cable List and Details					
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite					

Auxiliary Equipment List and Details							
Description Manufacturer Model Serial Number Input/ Output							
Intelligent wireless charging full function test module	YZB	/	/	15W MAX			
ADAPTER		GP-209-WHT-NA-BULK		Input:100-240VAC, 50/60Hz, 0.5A Max. Output: 5V3A, 9V2A, 12V1.5A			

Notes:

1.All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2.Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4. TEST RESULTS AND MEASUREMENT DATA

4.1. 20DB BANDWIDTH

4.1.1. Applicable Standard

According to FCC Part 15.215

4.1.2. Test Procedure

Set to the maximum power setting and enable the EUT transmit continuously

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.

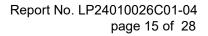
b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation.

d) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement

e) Set detection mode to peak and trace mode to max hold.

f) Determine the "-xx dB down amplitude" using [(reference value) -xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. Measure and record the results in the test report.


4.1.3. Test Results:

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Frequency 115-205kHz 20dB Band

4.2. RADIATED SPURIOUS EMISSION

4.2.1. Applicable Standard

According to FCC Part 15.209

4.2.2. Conformance Limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

FCC Part 15.209										
	Field Strength Field Strength Limitation Frequency tion at 3r									
Frequency	Limitatior	1	Meas	urement Dist						
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)						
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80						
0.490 – 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40						
1.705 – 30.00	30	30m	100* 30	20log 30 + 40						
30.0 - 88.0	100	3m	100	20log 100						
88.0 - 216.0	150	3m	150	20log 150						
216.0 - 960.0	200	3m	200	20log 200						
Above 960.0	500	3m	500	20log 500						

15.205 RESTRICTED BANDS OF OPERATION

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark: 1. Emission level in dBuV/m=20 log (uV/m)

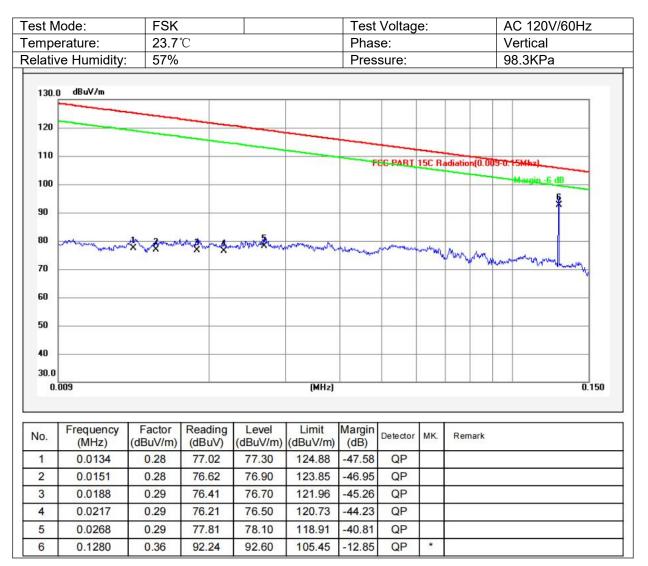
2. Measurement was performed at an antenna to the closed point of EUT distance of meters. 3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

4.2.3. Test Configuration

Test according to clause 3.2 radio frequency test setup 2

4.2.4. Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measured were complete.
- 5. Use the following receiver/spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW=200Hz for 9KHz to 150KHz, RBW=9kHz for 150KHz to 30MHz, RBW=120KHz for 30MHz to 1GHz VBW ≥ 3*RBW Sweep = auto Detector function = QP Trace = max hold


4.2.5. Test Results:

Spurious Emission below 30MHz (9KHz to 30MHz)

All modes were tested, and the worst (mode 3, mode 1) test data was as follows:

6

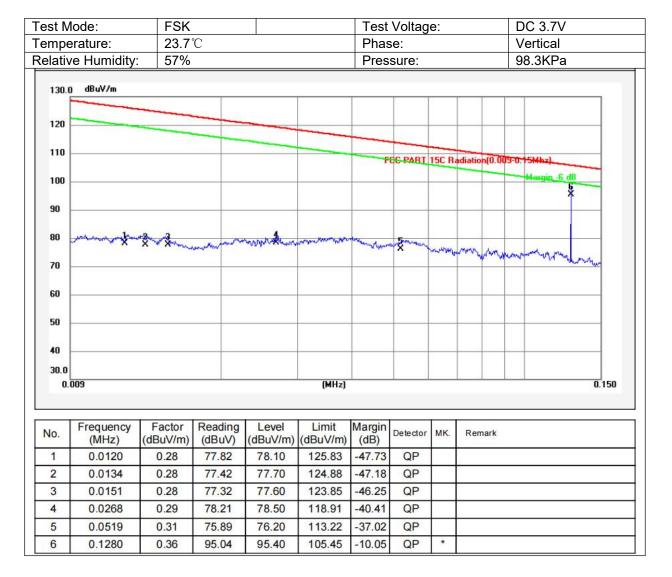
0.1952

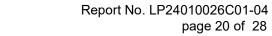
0.40

60.30

est Mo	ode:	FSK				Test	Voltage	e:		AC 120V/6	50Hz
	rature:	23.7	C			Phas	e:			Horizontal	
elative	e Humidity:	57%				Pres	sure:			98.3KPa	
120.0	dBu∀/m										
20.0								Ĩ			
110 -								_			-
100							_				- 1
90 -											_
80 -											_
70 -							FCC P/	RT 15	C Radiation(().15-30Mhz)	
	5 6									Margin -6 dB	
60 -	Ϊ Å			-							_
50	n for horsen	mannather	ma	- Brute	www.mar.ww						_
			<i>.</i>		in which we have	Marka Mark	and more an		an a m	.10	
40								. Autoria	o . Vunio J	approximately appr	1 Mar
30											
20.0											
0.1	50	0	.500 0.8	300	(MHz)		5.0	00			30.000
.	Frequency	Factor	Reading	Level	Limit	Margin	-				
No.	(MHz)	(dBuV/m)	(dBuV)	(dBuV/m)	(dBuV/m)		Detector	MK.	Remark		
1	0.4349	0.53	50.17	50.70	94.84	-44.14	QP				
2	0.6824	0.60	50.30	50.90	70.92	-20.02					
3	1.0423	0.68	48.52	49.20	67.24	-18.04	QP				
4	1.2356	0.68	48.52	49.20	65.76	-16.56	QP	*			

101.79 -41.09


QP


60.70

Report No. LP24010026C01-04 page 19 of 28

Model: 3

0.1748

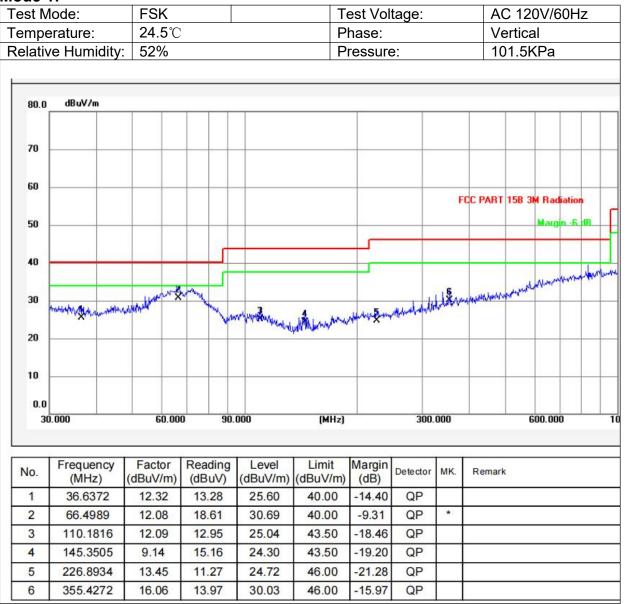
6

57.09

0.39

57.48

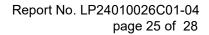
est M	ode:	FSK				Test	Voltage	e:		DC 3.7V
empe	erature:	23.7	°C			Phas	e:			Horizontal
elativ	e Humidity:	57%)			Pres	sure:			98.3KPa
120.0 1100 900 700 500 300 20.0						\underset		VRT 15	Image: Section (0.1) Image: Section (0.1)	5-30Mhz)
0.1	50	(0.500 0.8	800	(MHz)		5.00	00		30.000
	Frequency	Factor	Reading	Level	Limit	Margin (dB)	Detector	MK.	Remark	
No.	(MHz)	(dBuV/m)		(dBuV/m)	(dBuV/m)	(UD)				
No. 1				(dBuV/m) 50.30	(dBuV/m) 94.23	-43.93	QP			
255592	(MHz)	(dBuV/m)	(dBuV)		. ,		QP QP			
1	(MHz) 0.4661	(dBuV/m) 0.54	(dBuV) 49.76	50.30	94.23	-43.93	1.00	*		
1 2	(MHz) 0.4661 0.6683	(dBuV/m) 0.54 0.60	(dBuV) 49.76 48.60	50.30 49.20	94.23 71.10	-43.93 -21.90	QP	*		


102.75 -45.27 peak

■ Spurious Emission below 1GHz (30MHz to 1GHz)

All modes were tested, and the worst (mode 3) test data was as follows:

	lode:	FSK Test Voltage:						AC 120V/60Hz					
mpe	erature:	24.5°	°C		Pł	nase:			H	orizo	ontal		
elativ	e Humidity:	52%			Pr	essure	:		1	01.5ł	KPa		
80.0	dBu∀/m												
00.0													
70				_						-			
60								F	CC PART	158.3	MBar	iation	
50												n -6	
40						-					1.722		hank
40 30	unite .	should and				5		upon which has	all and the second	hamman	mm	winn	aherma
40 30 20	ht aloung a start of the start	Workinson	Winner	man Berthinson and the	when the the	romunite	nonghabhabhabh	gentalistation of	ature at Sam	Amena	mun	they want	electric
40 30 20	ht changes from the states of	nheren k erennen	Wannen	mar Berthian Marching	and the state of the	1 Annormal	noughtentited	got about a	and the second second	Amman	nnun	surer of	hurrh
30 20	hermanin with the	nherin g enerans	Wannywanyd	na & Mariana da	aparta (1. Annormalia	strongsplowed and	got a bold has	atterna ti Serier	Adverte	mmun	844 m	ehernik
30 20 10 0.0	ht.drachadorseder Horient 0.000	1/4rtn&1-4rman) 60.00		000	(MHz)		1		and Same		600.00		
30 20 10 0.0				000 Level		Margin (dB)			Remark	6			
30 20 10 .0 30	0.000 Frequency	60.00 Factor	0 90. Reading	000 Level	(MHz)	Margin	300.	000		6			
30 20 10 0.0 30 No.	0.000 Frequency (MHz)	60.00 Factor (dBuV/m)	0 90. Reading (dBuV)	000 Level (dBuV/m)	(MHz) Limit (dBuV/m)	Margin (dB)	300. Detector	000		6			
30 20 10 0.0 30 No.	0.000 Frequency (MHz) 42.7494	60.00 Factor (dBuV/m) 13.76	0 90. Reading (dBuV) 10.74	000 Level (dBuV/m) 24.50	(MHz) Limit (dBuV/m) 40.00	Margin (dB) -15.50	300. Detector	000 MK.		6			
30 20 10 0.0 30 No. 1 2	55.8047	60.00 Factor (dBuV/m) 13.76 13.81	0 90. Reading (dBuV) 10.74 11.98	000 Level (dBuV/m) 24.50 25.79	(MHz) Limit (dBuV/m) 40.00 40.00	Margin (dB) -15.50 -14.21	300. Detector QP	000 MK.		6			
30 20 10 0.0 30 No. 1 2 3	0.000 Frequency (MHz) 42.7494 55.8047 103.8055	60.00 Factor (dBuV/m) 13.76 13.81 12.37	0 90. Reading (dBuV) 10.74 11.98 12.36	000 Level (dBuV/m) 24.50 25.79 24.73	(MHz) Limit (dBuV/m) 40.00 40.00 43.50	Margin (dB) -15.50 -14.21 -18.77	300. Detector QP QP QP	000 MK.		6			


Mode 3:

est M		FSK			Test Voltage:					DC 3.7V Vertical					
	erature:	24.5	°C			nase:									
elativ	ve Humidity	: 52%			Pressure:					101.5KPa					
80.0	dBuV/m														
70															
60						_		F	CC PART	158.3	M Bad	iatior			
50											Marg				
40			<u> </u>			-						Met	low	٨,	
	-									100	La dentro				
30	water	My Mary Mary Mary	Wenne when	part & and many man		fromenopour	männutetu	A.S.	an enderen	unter the	and the second second				
30 20	watersterriterriterriterriterriterriterrit	ryddiwlawnud	Weiningalin	lan generation with	nuther works	felmennis	märmetete	1.	a waynaan	uturt					
30 20 10	nonhuder teus Brudere	monther manual	hanna	ner Burdening	nauloh an when when his	felintivitue	n Branderke		a endremen	unter the					
10 0.0		60.00		.000	1000/4.2000/14/18	Printerne	300.		a indrawn		00.00				
10 0.0						felont i vitras			a safaan						
10 0.0			00 90	.000 Level		Margin (dB)			Remark	6					
10 0.0 30	0.000 Frequency	60.00	00 90	.000 Level	(MHz)	Margin	300.	000		6					
10 0.0 30 No.	D.000 Frequency (MHz)	60.00 Factor (dBuV/m)	00 90 Reading (dBuV)	Level (dBuV/m)	(MHz) Limit (dBuV/m)	Margin (dB)	300. Detector	000		6					
10 0.0 30 No.	D.000 Frequency (MHz) 40.8444	60.00 Factor (dBuV/m) 13.14	00 90 Reading (dBuV) 10.70	.000 Level (dBuV/m) 23.84	(MHz) Limit (dBuV/m) 40.00	Margin (dB) -16.16	300. Detector QP	000 MK.		6					
10 0.0 30 No. 1 2	D.000 Frequency (MHz) 40.8444 52.9453	60.00 Factor (dBuV/m) 13.14 14.00	00 90 Reading (dBuV) 10.70 12.87	.000 Level (dBuV/m) 23.84 26.87	(MHz) Limit (dBuV/m) 40.00 40.00	Margin (dB) -16.16 -13.13	300. Detector QP QP	000 MK.		6					
10 0.0 30 No. 1 2 3	52.9453 103.8055	60.00 Factor (dBuV/m) 13.14 14.00 12.37	00 90 Reading (dBuV) 10.70 12.87 11.13	Level (dBuV/m) 23.84 26.87 23.50	(MHz) Limit (dBuV/m) 40.00 40.00 43.50	Margin (dB) -16.16 -13.13 -20.00	300. Detector QP QP QP	000 MK.		6					

st M	lode:	FSł	<		Te	est Volt	age:		D	C 3.7	/V		
mpe	erature:	24.	4.5℃ Phase:				Horizontal						
lativ	ve Humidity	: 52%	6		Pressure:				10)1.5k	(Pa		
80.0	dBuV/m			17		12							
70											-		
60									CC PART	15R 3	M Bar	fiation	
50										100 0		n-6	
40						_							
											14.	MAMM	THUNK
30	and how reconstruction	where Englishing		were Barrison		154/144-14	hanverandeling	n Buch	Hermonton	an printer	Constantial and	Wathred	rearde
30 20	undaturiumburni	n thanken standard	Muse min	under the state of	where the section	12 almanutul	harvonarthelista	n gula	de canal that	and the second sec	Contraction of	Marris A	/ **
	under the strengthe served	ndensendenher	munerow	n with an and a start and a start and a start a	n filmer Section	1. and the state of the state o	hanner til M	n guda	de charachathan	in an	errenter).		
20	unders remained					4≹ ^{altelanolali}			de charach-tha	18-19-19-19-19-19-19-19-19-19-19-19-19-19-	are, white		
20 10 0.0		60.00		.000	۱. (MHz)	1. And an of the	1,,				500.00		
20 10 0.0				.000		Margin			Remark	6			
20 10 0.0 30	0.000 Frequency	60.00	0 90.	.000	(MHz) Limit	Margin	300.	000		6			
20 10 0.0 30	D.000 Frequency (MHz)	60.00 Factor (dBuV/m)	0 90. Reading (dBuV)	.000 Level (dBuV/m)	(MHz) Limit (dBuV/m)	Margin (dB)	300. Detector	000		6			
20 10 0.0 30 No.	5.000 Frequency (MHz) 40.8444	60.00 Factor (dBuV/m) 13.14	0 90. Reading (dBuV) 12.24	.000 Level (dBuV/m) 25.38	(MHz) Limit (dBuV/m) 40.00	Margin (dB) -14.62	300. Detector	000 МК.		6			
20 10 0.0 30 No. 1 2	D.000 Frequency (MHz) 40.8444 53.8818	60.00 Factor (dBuV/m) 13.14 13.94	0 90. Reading (dBuV) 12.24 12.15	.000 Level (dBuV/m) 25.38 26.09	(MHz) Limit (dBuV/m) 40.00 40.00	Margin (dB) -14.62 -13.91	300. Detector QP QP	000 МК.		6			
20 10 0.0 30 No. 1 2 3	D.000 Frequency (MHz) 40.8444 53.8818 105.6415	60.00 Factor (dBuV/m) 13.14 13.94 12.29	0 90. Reading (dBuV) 12.24 12.15 11.59	.000 Level (dBuV/m) 25.38 26.09 23.88	(MHz) Limit (dBuV/m) 40.00 40.00 43.50	Margin (dB) -14.62 -13.91 -19.62	300. Detector QP QP QP	000 МК.		6			

Dongguan Lepont Testing Service Co.,Ltd.

4.3. CONDUCTED EMISSION TEST

4.3.1. Applicable Standard

According to FCC Part 15.207

4.3.2. Conformance Limit

Conducted Emission Limit						
Frequency(MHz)	Quasi-peak	Average				
0.15-0.5	66-56	56-46				
0.5-5.0	56	46				
5.0-30.0	60	50				
		•				

Note: 1. The lower limit shall apply at the transition frequencies

The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

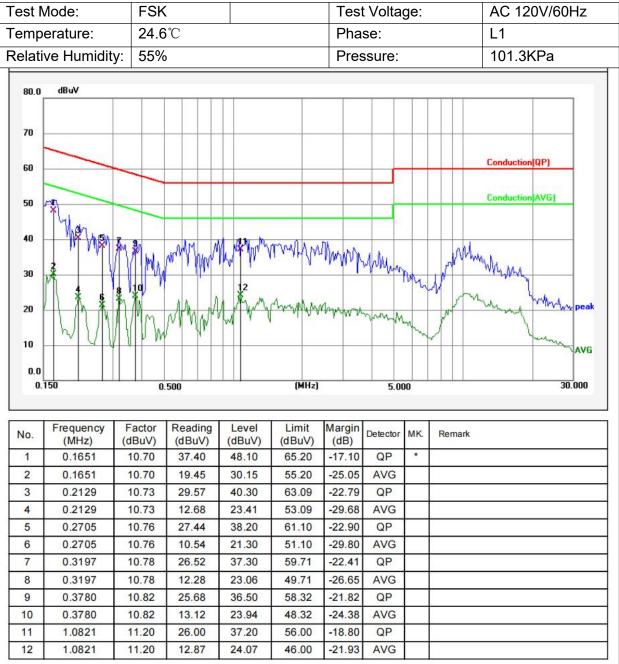
Remark: Test results were obtained from the following equation:

Measurement (dB μ V) = LISN Factor (dB) + Cable Loss (dB) + Reading (dB μ V) Margin (dB) = Measurement (dB μ V) - Limit (dB μ V)

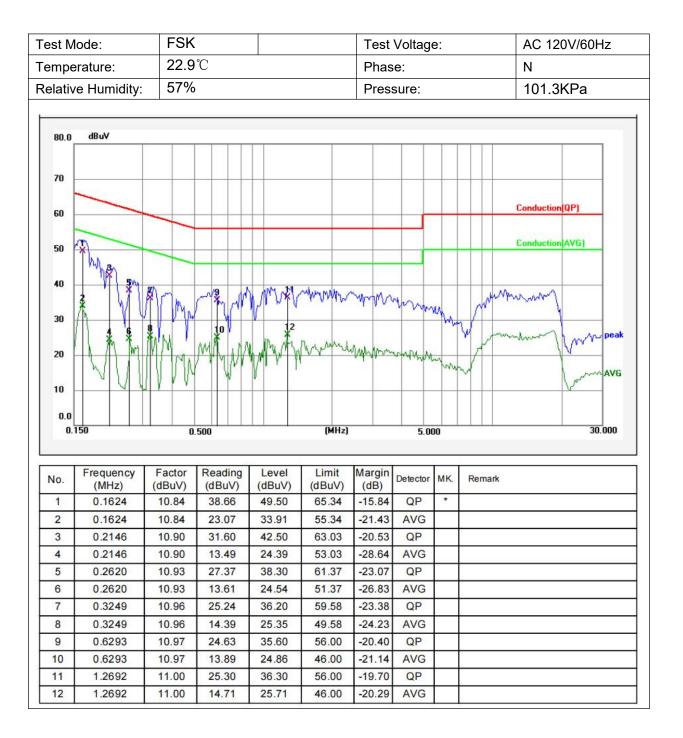
4.3.3. Test Configuration

Test according to clause 3.3 conducted emission test setup

4.3.4. Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

4.3.5. Test Results :



Report No. LP24010026C01-04 page 26 of 28

Mode 1:

4.4. ANTENNA APPLICATION

4.4.1. Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.4.2. Result

PASS.

- \boxtimes Antenna use a permanently attached antenna which is not replaceable.
- Not using a standard antenna jack or electrical connector for antenna replacement
- The antenna has to be professionally installed (please provide method of installation)

Note:which in accordance to section 15.203, please refer to the internal photos.

----- END OF REPORT ------