

FCC Part 15E Test Report

FCC ID: 2AQT5-GD-240-RX

Product Name:	OSPREY DRONE
Trademark:	N/A
Model Name :	AT-246 X-240, GD-240
Prepared For :	Apex Drone (Shenzhen) Co.,Ltd.
Address :	A.Floor 4, A001 Building, Zhi Ji Industrial Park, No.92 KuiChong Street, LongGang district, ShenZhen, China
Prepared By :	Shenzhen BCTC Testing Co., Ltd.
Address :	BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China
Test Date:	Sep. 16, 2019 – Nov. 08, 2019
Date of Report :	Nov. 08, 2019
Report No.:	BCTC-FY190905892E

TEST RESULT CERTIFICATION

Applicant's name Apex Drone (Shenzhen) Co.,Ltd.

Address A.Floor 4, A001 Building, Zhi Ji Industrial Park, No.92 KuiChong

Street, LongGang district, ShenZhen, China

Report No.: BCTC-FY190905892E

Manufacture's Name...... Apex Drone (Shenzhen) Co.,Ltd.

Address A.Floor 4, A001 Building, Zhi Ji Industrial Park, No.92 KuiChong

Street, LongGang district, ShenZhen, China

Product description

Product name...... OSPREY DRONE

Trademark:

N/A

Model and/or type reference : AT-246

X-240, GD-240

Standards FCC Part15 15.407

ANSI C63.10-2013

KDB 662911 D01 v02r01

KDB 789033 D02 v02r01

This device described above has been tested by BCTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of BCTC, this document may be altered or revised by BCTC, personal only, and shall be noted in the revision of the document.

Prepared by(Engineer): Bin Mei

Reviewer(Supervisor): Eric Yang

Approved(Manager): Zero Zhou

Bin Me W APPROVED CO.

Table of Contents

	Page
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	7
3 . EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	14
3.1.2 TEST PROCEDURE	15
3.1.3 DEVIATION FROM TEST STANDARD	15
3.1.4 TEST SETUP	15
3.1.5 EUT OPERATING CONDITIONS	15
3.2 RADIATED EMISSION MEASUREMENT	16
3.2.1 APPLICABLE STANDARD	16
3.2.2 CONFORMANCE LIMIT	16
3.2.3 MEASURING INSTRUMENTS	16
3.2.4 TEST CONFIGURATION	17
3.2.5 TEST PROCEDURE	18
3.2.6 TEST RESULTS (9KHZ – 30 MHZ)	19
3.2.7 TEST RESULTS (30MHZ – 1GHZ)	20
3.2.8 TEST RESULTS (1GHZ-40GHZ)	22
4 . POWER SPECTRAL DENSITY TEST	25
4.1 APPLIED PROCEDURES / LIMIT	25
4.2 TEST PROCEDURE	26
4.3 DEVIATION FROM STANDARD	26
4.4 TEST SETUP	26
4.5 EUT OPERATION CONDITIONS	26
4.6 TEST RESULTS	27
5 . 26DB & 99% EMISSION BANDWIDTH	31
5.1 APPLIED PROCEDURES / LIMIT	31
5.2 TEST PROCEDURE	31
5.3 EUT OPERATION CONDITIONS	32
5.4 TEST RESULTS	33
6. MAXIMUM CONDUCTED OUTPUT POWER	38
6.1 PPLIED PROCEDURES / LIMIT	38
6.2 TEST PROCEDURE	38
6.3 DEVIATION FROM STANDARD	40
6.4 TEST SETUP	40

Table of Contents

	Page
6.5 EUT OPERATION CONDITIONS	40
6.6 TEST RESULTS	41
7. OUT OF BAND EMISSIONS	42
7.1 APPLICABLE STANDARD	42
7.2 TEST PROCEDURE	42
7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP	42 42
7.5 EUT OPERATION CONDITIONS	43
7.6 TEST RESULTS	44
8.SPURIOUS RF CONDUCTED EMISSIONS	54
8.1CONFORMANCE LIMIT	54
8.2MEASURING INSTRUMENTS	54
8.3TEST SETUP 8.4TEST PROCEDURE	54 54
8.5TEST RESULTS	54
9. FREQUENCY STABILITY MEASUREMENT	62
9.1 LIMIT	62
9.2 TEST PROCEDURES	62
9.3 TEST SETUP LAYOUT	62
9.4 EUT OPERATION DURING TEST	62
9.5 TEST RESULTS	63
10. ANTENNA REQUIREMENT	66
10.1 STANDARD REQUIREMENT	66
10.2 EUT ANTENNA	66
11. EUT TEST PHOTO	67
12. EUT PHOTO	68

Shenzhen BCTC Testing Co., Ltd.

Revision History

Report No.	Version	Description	Issued Date
BCTC-FY190905892E	Rev.01	Initial issue of report	Oct. 08, 2019

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.407) , Subpart E					
Standard Section	Test Item	Judgment	Remark		
15.209(a), 15.407 (b)(1) 15.407 (b)(4) 15.407 (b)(6)	Spurious Radiated Emissions	PASS			
15.407 (a)(1) 15.407 (a)(3) 15.1049	26 dB and 99% Emission Bandwidth	PASS			
15.407(e)	Minimum 6 dB bandwidth	PASS			
15.407 (a)(1) 15.407 (a)(3)	Maximum Conducted Output Power	PASS			
2.1051, 15.407(b)(1) 15.407(b)(4)	Band Edge	PASS			
15.407 (a)(1) 15.407 (a)(3)	Power Spectral Density	PASS			
2.1051, 15.407(b)	Spurious Emissions at Antenna Terminals	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Outsourcing: The 26G-40G Spurious Radiated Emissions in this test were outsourced to the Shenzhen Academy of Metrology & Quality Inspection

1.1 TEST FACILITY

Shenzhen BCTC Testing Co., Ltd.

Add.: BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou

Report No.: BCTC-FY190905892E

Community, Fuyong Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 712850

IC Registered No.: 23583

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %。

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
3	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
4	Conducted Adjacent channel power	U=1.38dB
5	Conducted output power uncertainty Above 1G	U=1.576dB
6	Conducted output power uncertainty below 1G	U=1.28dB
7	humidity uncertainty	U=5.3%
8	Temperature uncertainty	U=0.59 °C

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	OSPREY DRONE		
Trade Name	N/A		
Model Name	AT-246		
Model Name	X-240, GD-240		
Model Difference	All the model are	the same circuit and RF module, except	
Moder Difference	model names .		
	IEEE 802.11 WLAN Mode Supported Data Rate	■802.11a/n/ac(20MHz channel bandwidth) ■802.11n/ac(40MHz channel bandwidth) ■802.11ac(80MHz channel bandwidth) 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS15; 802.11ac(VHT20): NSS1, MCS0-MCS8	
	Modulation	802.11ac(VHT40/VHT80):NSS1, MCS0-MCS9 OFDM with BPSK/QPSK/16QAM/64QAM/256QAM for 802.11a/n/ac;	
	Operating Frequency Range	S180-5240MHz for 802.11a/n(HT20)/ac20; 5190-5230MHz for 802.11n(HT40)/ac40; 5210MHz for 802.11 ac80; □5745-5825 MHz for 802.11a/n(HT20)/ac20; 5755-5795 MHz for 802.11a/n(HT40)/ac40; 5775MHz for 802.11 ac80;	
Product Description	Number of Channels	 □ 4 channels for 802.11a/n20/ac20 in the 5180-5240MHz band; 2 channels for 802.11 n40/ac40 in the 5190-5230MHz band; 1 channels for 802.11 ac80 in the 5210MHz band; □ 5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band; 2 channels for 802.11 n40/ac40 in the 5755-5795MHz band; 1 channels for 802.11 ac80 in the 5775MHz band; 	
	User's Manual, th	Internal antenna lication, features, or specification exhibited in e EUT is considered as an ITE/Computing ails of EUT technical specification, please s Manual.	
Channel List	Please refer to the		
Type of device	client devices		
Ratings	DC 3.7V		
hardware version	H1.0		
Software version	S1.0		
Connecting I/O Port(s)	Please refer to the	e User's Manual	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: BCTC-FY190905892E

2. Frequency and Channel list for 802.11a/n/ac(20MHz) band I (5180-5240MHz):

802.11a/n/ac(20MHz) Carrier Frequency Channel							
	Frequen		Frequen		Frequen		Frequen
Channel	су	Channel	су	Channel	су	Channel	су
	(MHz)		(MHz)		(MHz)		(MHz)
36	5180	44	5220	-	-	-	ı
40	5200	48	5240	-	-	-	-

	802.11n /ac(40MHz) Carrier Frequency Channel						
Channel Channe				,			
38	5190	-	1	-	-	-	-
46	5230	-	-	-	-	-	-

802.11ac (80MHz) Carrier Frequency Channel		
Channel Frequency (MHz)		
42 5210		

Antenna A gain: 2dBi, Antenna B gain: 2dBi, transmit signals are correlated For MIMO mode for 802.11 n / ac, Directional gain =5.01dbi

Tx Antenna

Ant.	Brand	Model Name	Antenna Type	Gain (dBi)	NOTE
Α	N/A	N/A	Internal antenna	2	
В	N/A	N/A	Internal antenna	2	

Test Report

2.2 DESCRIPTION OF TEST MODES

Pretest Mode	Description
Mode 1	802.11a / n/ ac 20 CH36/ CH40/ CH 48
Mode 2	802.11n/ ac40 CH38/ CH 46
Mode 3	802.11 ac80 CH 42
Mode 4	Link Mode

Conducted Emission		
Final Test Mode	Description	
Mode 4	Link Mode	

For Radiated Emission			
Final Test Mode	Description		
Mode 1	802.11a / n/ ac 20 CH36/ CH40/ CH 48		
Mode 2	802.11n/ ac40 CH38/ CH 46		
Mode 3	802.11 ac80 CH 42		

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

Test Report

Tel: 400-788-9558 Web: https://www.bctc-lab.com

Shenzhen BCTC Testing Co., Ltd. Repo

Report No.: BCTC-FY190905892E

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

D :: 4 I	<u> </u>	
Dadiatad	Chillinging	L miccion
Naulaicu	SOUTIOUS	Emission
	-	

E-1 EUT

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	OSPREY DRONE	N/A	AT-246	N/A	EUT

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.

Test Report

Shenzhen BCTC Testing Co., Ltd.

Report No.: BCTC-FY190905892E

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4407B	MY45109572	Jun. 13, 2019	Jun. 12, 2020
2	Test Receiver (9kHz-7GHz)	R&S	ESR7	101154	Jun. 13, 2019	Jun. 12, 2020
3	Bilog Antenna (30MHz-3GHz)	SCHWARZBE CK	VULB9163	VULB9163-94 2	Jun. 22, 2019	Jun. 21, 2020
4	Horn Antenna (1GHz-18GHz)	SCHWARZBE CK	BBHA9120D	1541	Jun. 22, 2019	Jun. 21, 2020
5	Horn Antenna (18GHz-40GHz)	SCHWARZBE CK	BBHA9170	822	Jun. 22, 2019	Jun. 21, 2020
6	Amplifier (9KHz-6GHz)	SCHWARZBE CK	BBV9744	9744-0037	Jun. 25, 2019	Jun. 24, 2020
7	Amplifier (0.5GHz-18GHz)	SCHWARZBE CK	BBV9718	9718-309	Jun. 25, 2019	Jun. 24, 2020
8	Amplifier (18GHz-40GHz)	MITEQ	TTA1840-35- HG	2034381	Jun. 17, 2019	Jun. 16, 2020
9	Loop Antenna (9KHz-30MHz)	SCHWARZBE CK	FMZB1519B	014	Jul. 02, 2019	Jul. 01, 2020
10	RF cables1 (9kHz-30MHz)	Huber+Suhnar	9kHz-30MHz	B1702988-000 8	Jun. 25, 2019	Jun. 24, 2020
11	RF cables2 (30MHz-1GHz)	Huber+Suhnar	30MHz-1GHz	1486150	Jun. 25, 2019	Jun. 24, 2020
12	RF cables3 (1GHz-40GHz)	Huber+Suhnar	1GHz-40GHz	1607106	Jun. 25, 2019	Jun. 24, 2020
13	Power Metter	Keysight	E4419	\	Jun. 17, 2019	Jun. 16, 2020
14	Power Sensor (AV)	Keysight	E9 300A	\	Jun. 17, 2019	Jun. 16, 2020
15	Signal Analyzer 20kHz-26.5GHz	KEYSIGHT	N9020A	MY49100060	Jun. 13, 2019	Jun. 12, 2020
16	Spectrum Analyzer 9kHz-40GHz	Aglient	FSP40	100363	Jun. 13, 2019	Jun. 12, 2020
17	D.C. Power Supply	LongWei	TPR-6405D	\	\	\
18	Software	Frad	EZ-EMC	FA-03A2 RE	\	\

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Test Receiver	R&S	ESR3	102075	Jun. 13, 2019	Jun. 12, 2020
2	LISN	SCHWARZBEC K	NSLK8127	8127739	Jun. 13, 2019	Jun. 12, 2020
3	LISN	R&S	ENV216	101375	Jun. 13, 2019	Jun. 12, 2020
4	RF cables	Huber+Suhnar	9kHz-30MHz	B1702988-00 08	Jun. 25, 2019	Jun. 24, 2020
5	Software	Frad	EZ-EMC	EMC-CON 3A1	\	\

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

EDECLIENCY (MH-)	Class B	Ctondord	
FREQUENCY (MHz)	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

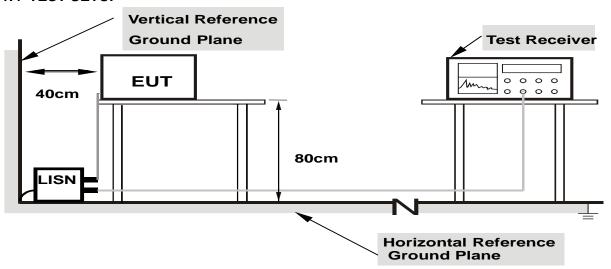
0.15 -0.5	66 - 56 *	56 - 46 *	FCC/ RSS-247
0.50 -5.0	56.00	46.00	FCC/ RSS-247
5.0 -30.0	60.00	50.00	FCC/ RSS-247

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

NOTE: This EUT is powered by the battery only, this test item is not applicable

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 APPLICABLE STANDARD

According to FCC Part 15.407(d) and 15.209

3.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15,205, Restricted bands

ccording to FCC Fart 15.205, Restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

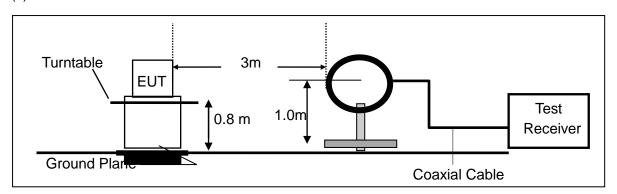
Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

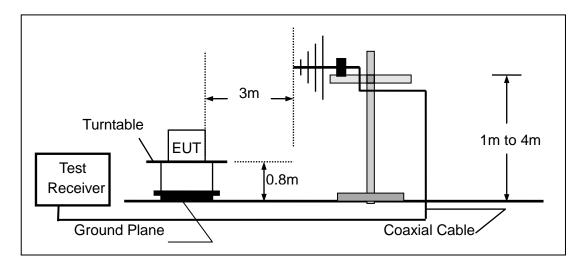
Frequency(MHz)	Class B (dBuV	/m) (at 3M)		
r requericy(wiriz)	PEAK AVERAGE			
Above 1000	74	54		

Remark :1. Emission level in dBuV/m=20 log (uV/m)

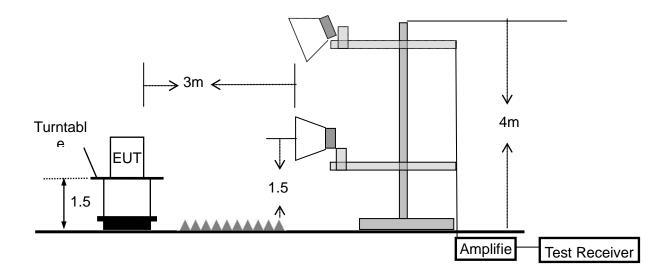
- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


3.2.3 MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 6.3 of this test report.



3.2.4 TEST CONFIGURATION


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

3.2.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

3.2.6 TEST RESULTS (9KHZ - 30 MHZ)

Temperature:	26 ℃	Relative Humidtity:	54%
Pressure:	101kPa	Test Voltage:	DC 3.7V
Test Mode:	Mode 5	Polarization:	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				N/A
				N/A

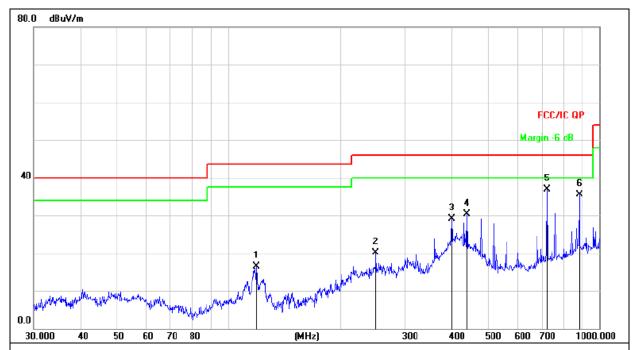
NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

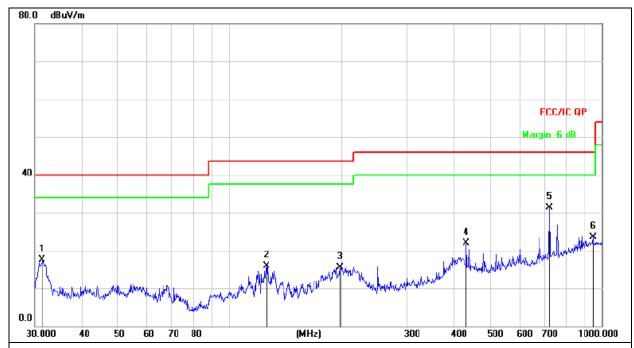
Test Report


Tel: 400-788-9558 Web: https://www.bctc-lab.com

BCTC/RF-EMC-007 Ver.: A.0

3.2.7 TEST RESULTS (30MHZ – 1GHZ)

Temperature :	26℃	Relative Humidity:	54%
Pressure :	101 kPa	Polarization :	Horizontal
Test Voltage :	DC 3.7V		
Test Mode :	Mode 4		


Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	1	19.4361	33.96	-17.53	16.43	43.50	-27.07	QP
2	2	50.3012	35.33	-15.14	20.19	46.00	-25.81	QP
3	4	00.4319	40.26	-11.08	29.18	46.00	-16.82	QP
4	4	40.1963	40.42	-10.19	30.23	46.00	-15.77	QP
5	* 7	21.7259	41.76	-4.79	36.97	46.00	-9.03	QP
6	8	81.4067	37.45	-1.88	35.57	46.00	-10.43	QP

Shenzhen BCTC Testing Co., Ltd.

Report No.: BCTC-FY190905892E

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Polarization :	Vertical
Test Voltage :	DC 3.7V		
Test Mode :	Mode 4		

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		31.3992	34.62	-17.02	17.60	40.00	-22.40	QP
2		125.8864	33.90	-17.95	15.95	43.50	-27.55	QP
3		197.8928	31.94	-16.43	15.51	43.50	-27.99	QP
4		432.5457	32.36	-10.36	22.00	46.00	-24.00	QP
5	*	721.7259	36.03	-4.79	31.24	46.00	-14.76	QP
6		945.4399	24.67	-1.15	23.52	46.00	-22.48	QP

3.2.8 TEST RESULTS (1GHz-40GHz)

Test Mode : TX(5.2G) - 802.11n20

Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
(11/ /)	(1411 12)	(dDdV)	\ /	nannel (5180	· /		(dDdV/III)	(GD)	
Vertical	4434.157	62.27	5.94	35.40	44.00	59.61	74.00	-14.39	Pk
Vertical	4434.157	46.53	5.94	35.40	44.00	43.87	54.00	-10.13	AV
Vertical	10370.362	60.47	8.46	39.75	44.50	64.18	74.00	-9.82	Pk
Vertical	10370.362	42.93	8.46	39.75	44.50	46.64	54.00	-7.36	AV
Vertical	15540.196	61.47	10.12	38.80	44.10	66.29	74.00	-7.71	Pk
Vertical	15540.196	37.53	10.12	38.80	42.70	43.75	54.00	-10.25	AV
Horizontal	4434.521	66.57	5.94	35.18	44.00	63.69	74.00	-10.31	Pk
Horizontal	4434.521	44.13	5.94	35.18	44.00	41.25	54.00	-12.75	AV
Horizontal	10370.623	58.92	8.46	38.71	44.50	61.59	74.00	-12.41	Pk
Horizontal	10370.623	41.09	8.46	38.71	44.50	43.76	54.00	-10.24	AV
Horizontal	10540.865	56.96	10.12	38.38	44.10	61.36	74.00	-12.64	Pk
Horizontal	10540.865	38.89	10.12	38.38	44.10	43.29	54.00	-10.71	AV
-			middle (Channel (520	0 MHz)-Abov	ve 1G			•
Vertical	4592.093	60.32	6.48	36.35	44.05	59.1	74.00	-14.9	Pk
Vertical	4592.093	41.96	6.48	36.35	44.05	40.74	54.00	-13.26	AV
Vertical	10401.424	59.62	8.47	37.88	44.51	61.46	74.00	-12.54	Pk
Vertical	10401.424	42.75	8.47	37.88	44.51	44.59	54.00	-9.41	AV
Vertical	15600.218	56.53	10.12	38.8	44.10	61.35	74.00	-12.65	Pk
Vertical	15600.218	36.64	10.12	38.8	42.70	42.86	54.00	-11.14	AV
Horizontal	4592.691	59.88	6.48	36.37	44.05	58.68	74.00	-15.32	Pk
Horizontal	4592.691	43.13	6.48	36.37	44.05	41.93	54.00	-12.07	AV
Horizontal	10400.114	58.87	8.47	38.64	44.50	61.48	74.00	-12.52	Pk
Horizontal	10400.114	42.23	8.47	38.64	44.50	44.84	54.00	-9.16	AV
Horizontal	15600.187	59.88	10.12	38.38	44.10	64.28	74.00	-9.72	Pk
Horizontal	15600.187	38.74	10.12	38.38	44.10	43.14	54.00	-10.86	AV
				hannel (5240					
Vertical	4739.246	61.24	7.10	37.24	43.50	62.08	74.00	-11.92	Pk
Vertical	4739.246	44.48	7.10	37.24	43.50	45.32	54.00	-8.68	AV
Vertical	10480.371	60.53	8.46	37.68	44.50	62.17	74.00	-11.83	Pk
Vertical	10480.371	40.39	8.46	37.68	44.50	42.03	54.00	-11.97	AV
Vertical	15720.359	61.74	10.12	38.8	44.10	66.56	74.00	-7.44	Pk
Vertical	15720.359	39.68	10.12	38.8	42.70	45.9	54.00	-8.1	AV
Horizontal	4739.352	62.22	7.10	37.24	43.50	63.06	74.00	-10.94	Pk
Horizontal	4739.352	43.28	7.10	37.24	43.50	44.12	54.00	-9.88	AV
Horizontal	10481.111	62.54	8.46	38.57	44.50	65.07	74.00	-8.93	Pk
Horizontal	10481.111	43.38	8.46	38.57	44.50	45.91	54.00	-8.09	AV
Horizontal	15720.357	60.74	10.12	38.38	44.10	65.14	74.00	-8.86	Pk
Horizontal	15720.357	42.27	10.12	38.38	44.10	46.67	54.00	-7.33	AV

Note:"802.11n20(5G)" mode is the worst mode. PK value is lower than the Average value limit, So average didn't record.

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value

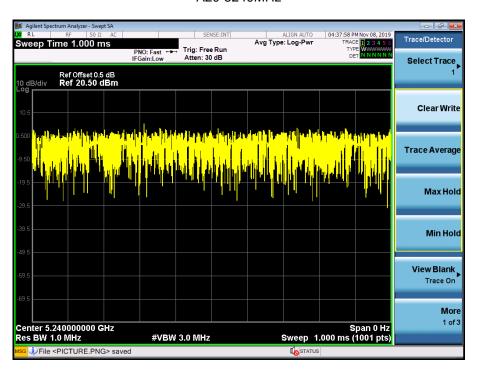
has no need to be reported.

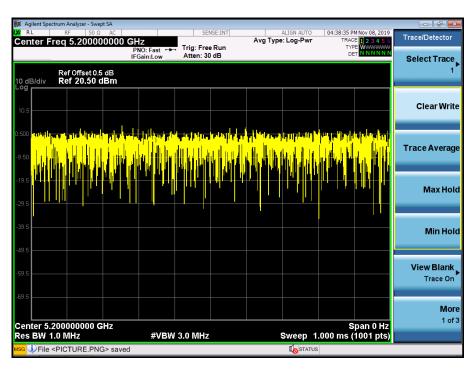
Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Test Report

Tel: 400-788-9558 Web: https://www.bctc-lab.com


BCTC/RF-EMC-007 Ver.: A.0


Duty cycle

A20-5240MHz


Report No.: BCTC-FY190905892E

N20-5200MHz

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

4. POWER SPECTRAL DENSITY TEST

4.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(a)(3)

For the band 5.15-5.25 GHz,

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

(3)For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

,

4.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW $\geq 1/T$, where T is defined in section II.B.l.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity:	54%	
Pressure :	101kPa	Test Voltage :	DC 3.7V	
Test Mode :	TX Frequency Band I (5150-5250MHz)			

Note: A(B) Represent the value of antenna A and B, The worst data is Antenna B, only shown Antenna B Plot.

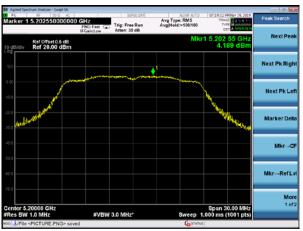
Antenna A gain: 2dBi, Antenna B gain: 2dBi, Directional gain=[10log(G A+ G B)] dbi =5.01dbi

Mode	Frequency	Me ANT A	Limit (dBm)	Result		
	5180 MHz	4.202	4.420	/	11	PASS
802.11 a	5200 MHz	4.149	5.017	/	11	PASS
	5240 MHz	3.259	3.242	/	11	PASS
	5180 MHz	4.441	4.611	7.54	11	PASS
802.11 n20	5200 MHz	4.047	4.189	7.13	11	PASS
	5240 MHz	2.806	3.286	6.06	11	PASS
000 11 10	5190 MHz	0.823	0.902	3.87	11	PASS
802.11 n40	5230 MHz	-0.524	0.649	3.11	11	PASS
	5180 MHz	4.482	5.038	7.78	11	PASS
802.11 AC20	5200 MHz	4.096	5.108	7.64	11	PASS
	5240 MHz	2.955	2.906	5.94	11	PASS
000 44 4040	5190 MHz	0.752	0.961	3.87	11	PASS
802.11 AC40	5230 MHz	0.003	-0.294	2.87	11	PASS
802.11 AC80	5210 MHz	-2.713	-2.285	0.52	11	PASS

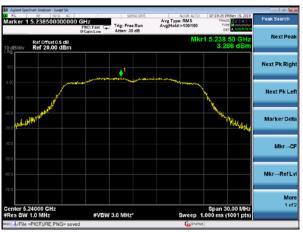
Test Report

Tel: 400-788-9558 Web: https://www.bctc-lab.com

(802.11a) PSD plot on channel 36


(802.11n20) PSD plot on channel 36

(802.11a) PSD plot on channel 40


(802.11n20) PSD plot on channel 40

(802.11a) PSD plot on channel 48

(802.11n20) PSD plot on channel 48

(802.11n40) PSD plot on channel 38

(802.11n40) PSD plot on channel 46

(802.11ac20) PSD plot on channel 36

(802.11ac20) PSD plot on channel 40

(802.11ac20) PSD plot on channel 48

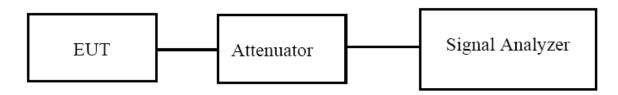
(802.11ac40) PSD plot on channel 38

(802.11ac80) PSD plot on channel 42

(802.11ac40) PSD plot on channel 46

5. 26DB & 99% EMISSION BANDWIDTH

5.1 APPLIED PROCEDURES / LIMIT


The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

5.2 TEST PROCEDURE

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
 - 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

5.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-788-9558 Web: https://www.bctc-lab.com BCTC/RF-EMC-007 Ver.: A.0 Page 32 of 68

5.4 TEST RESULTS

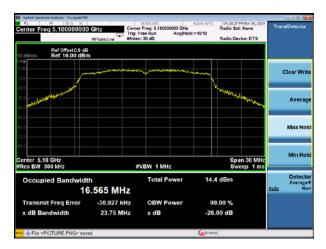
Temperature :	26 ℃	Relative Humidity:	54%	
Pressure :	101kPa	Test Voltage :	DC 3.7V	
Test Mode :	TX Frequency Band I (5150-5250MHz)			

Note: A(B) Represent the value of antenna A and B, The worst data is Antenna B ,only shown Antenna B Plot.

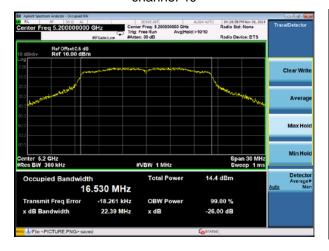
Antenna A gain: 2dBi, Antenna B gain: 2dBi, Directional gain=[10log(G A+ G B)] dbi =5.01dbi

Mode	Channel	Frequency (MHz)	99% bandwidth(MHz)	26dB bandwidth (MHz)	Limit MHz	Result
			ANT A	ANT A		
802.11a	CH36	5180	16.475	22.26	≥500	Pass
	CH40	5200	16.481	21.43	≥500	Pass
	CH48	5240	16.562	22.17	≥500	Pass
802.11 n20	CH36	5180	17.707	23.52	≥500	Pass
	CH40	5200	17.685	23.46	≥500	Pass
	CH48	5240	17.719	23.22	≥500	Pass
802.11 n40	CH 38	5190	36.269	41.77	≥500	Pass
	CH 46	5230	36.267	42.74	≥500	Pass
802.11 AC20	CH36	5180	17.693	22.87	≥500	Pass
	CH40	5200	17.707	23.64	≥500	Pass
	CH48	5240	17.731	22.72	≥500	Pass
802.11 AC40	CH 38	5190	36.221	42.02	≥500	Pass
	CH 46	5230	36.199	41.58	≥500	Pass
802.11 AC80	CH 42	5210	75.265	81.48	≥500	Pass

Test Report


Tel: 400-788-9558 Web: https://www.bctc-lab.com

Mode	Channel	Frequency (MHz)	99% bandwidth(MHz)	26dB bandwidth (MHz)	Limit	Result
			ANT B	ANT B	MHz	
802.11a	CH36	5180	16.565	23.75	≥500	Pass
	CH40	5200	16.530	22.39	≥500	Pass
	CH48	5240	16.587	23.60	≥500	Pass
802.11 n20	CH36	5180	17.704	23.98	≥500	Pass
	CH40	5200	17.691	23.73	≥500	Pass
	CH48	5240	17.742	23.52	≥500	Pass
802.11 n40	CH 38	5190	36.319	42.37	≥500	Pass
	CH 46	5230	36.325	42.87	≥500	Pass
802.11 AC20	CH36	5180	17.640	22.10	≥500	Pass
	CH40	5200	17.720	22.18	≥500	Pass
	CH48	5240	17.679	21.60	≥500	Pass
802.11 AC40	CH 38	5190	36.277	43.06	≥500	Pass
	CH 46	5230	36.289	42.93	≥500	Pass
802.11 AC80	CH 42	5210	75.296	81.83	≥500	Pass

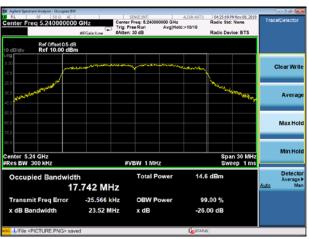


Test plot

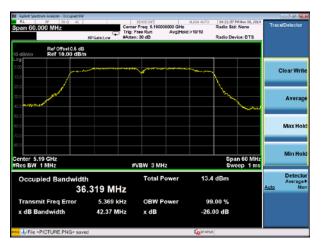
(802.11a) 26dB&99%Bandwidth plot on channel 36

(802.11a) 26dB&99%Bandwidth plot on channel 40

(802.11a) 26dB&99%Bandwidth plot on channel 48


(802.11 n20) 26dB&99%Bandwidth plot on channel

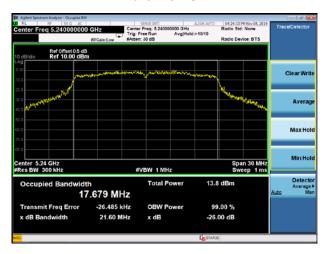
(802.11 n20) 26dB&99%Bandwidth plot on channel 40


(802.11 n20) 26dB&99%Bandwidth plot on channel 48

Test plot

(802.11 n40) 26dB&99%Bandwidth plot on channel 38

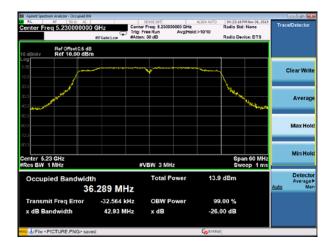
(802.11 n40) 26dB&99%Bandwidth plot on channel 46


(802.11 AC20) 26dB&99%Bandwidth plot on channel 36

(802.11 AC20) 26dB&99%Bandwidth plot on channel 40

(802.11 AC20) 26dB&99%Bandwidth plot on channel 48

Test plot


(802.11 AC40) 26dB&99%Bandwidth plot on channel 38

(802.11 AC80) 26dB&99%Bandwidth plot on channel 42

(802.11 AC40) 26dB&99%Bandwidth plot on channel 46

Shenzhen BCTC Testing Co., Ltd.

Report No.: BCTC-FY190905892E

6. MAXIMUM CONDUCTED OUTPUT POWER

6.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5150~5250	250mW
5725~5850	1W

The maximum e.i.r.p should not exceed:

Frequency Band(MHz)	Limit
5150~5250	200mW or 10dBm +10logB whichever is less
5725~5850	N/A

Note: Where "B" is the 99% emission bandwidth in MHz

6.2 TEST PROCEDURE

- Maximum conducted output power may be measured using a spectrum analyzer/EMI receiver or an RF power meter.
- 1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

- a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.
- b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.
- 2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

- a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:
 - The EUT transmits continuously (or with a duty cycle ≥ 98 percent).
- Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.
- (ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent.
- (iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.
- b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
 - (ii) Set RBW = 1 MHz.
 - (iii) Set VBW ≥ 3 MHz.
- (iv) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
 - (v) Sweep time = auto.
- (vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
 - (viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	POWER	METER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-788-9558 Web: https://www.bctc-lab.com BCTC/RF-EMC-007 Ver.: A.0 Page 40 of 68

6.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity:	54%			
Pressure :	101kPa	Test Voltage :	DC 3.7V			
Test Mode :	TX (5G) Mode Frequency Band I (5150-5250MHz)					

Antenna A gain: 2dBi, Antenna B gain: 2dBi, Directional gain=[10log(G A+ G B)] dbi =5.01dbi Maximum output power. Antenna port Frequency LIMIT (AV) Test Result Channel Total (MHz) ANT A(dBm) ANT B(dBm) dBm power(dBm) TX 802.11a Mode CH36 5180 14.03 N/A 23.98 13.80 Pass CH40 5200 14.76 14.07 N/A 23.98 Pass N/A **CH48** 5240 14.54 14.09 23.98 Pass TX 802.11 n20M Mode 12.73 CH36 5180 13.28 16.02 23.98 Pass CH40 5200 13.26 12.98 16.13 23.98 **Pass CH48** 5240 13.84 13.42 16.65 23.98 Pass TX 802.11 n40M Mode CH38 5190 11.15 10.40 13.80 23.98 Pass CH46 5230 10.93 10.58 13.77 23.98 **Pass** TX 802.11 AC20M Mode 5180 15.92 Pass **CH36** 13.05 12.77 23.98 CH40 5200 13.27 12.85 16.08 23.98 Pass **CH48** 5240 13.73 13.37 16.56 23.98 Pass

TX 802.11 AC40M Mode

TX 802.11 AC80M Mode

10.16

10.65

9.25

CH38

CH46

CH42

5190

5230

5210

10.57

10.71

9.73

13.38

13.69

12.51

Pass

Pass

Pass

23.98

23.98

23.98

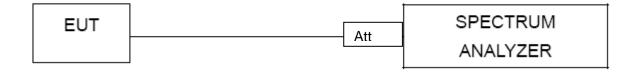
7. OUT OF BAND EMISSIONS

7.1 APPLICABLE STANDARD

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.


7.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

Test Report Tel: 400-788-9558 Web: https://www.bctc-lab.com BCTC/RF-EMC-007 Ver.: A.0 Page 42 of 68

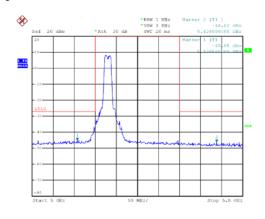
Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

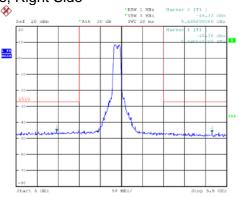
Test Report Tel: 400-788-9558 Web: https://www.bctc-lab.com BCTC/RF-EMC-007 Ver.: A.0 Page 43 of 68

7.6 TEST RESULTS


Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Test Voltage :	DC 3.7V

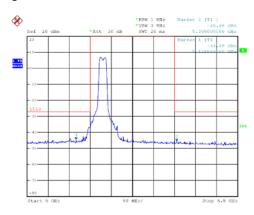
Note: A(B) Represent the value of antenna A and B, The worst data is Antenna A ,only shown Antenna A Plot.Antenna A: 5150-5250MHz

5.2G

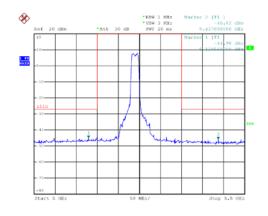

5.15~5.25 GHz

(802.11a) Band Edge, Left Side

Date: 29.SEP.2019 09:52:55


(802.11a) Band Edge, Right Side

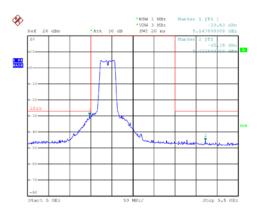
Date: 29.SEP.2019 09:44:06



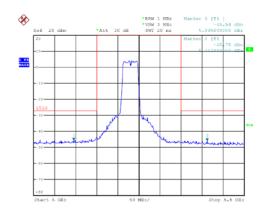
(802.11n20) Band Edge, Left Side

Date: 29.SEP.2019 09:50:38

(802.11n20) Band Edge, Right Side



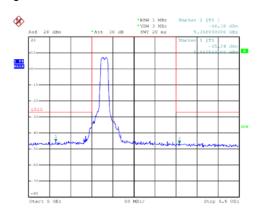
Date: 29.SEP.2019 09:45:0


5.15~5.25 GHz

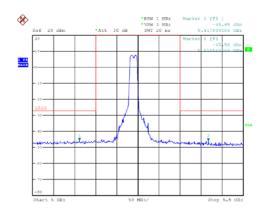
(802.11n40) Band Edge, Left Side

Date: 29.SEP.2019 09:56:50

(802.11n40) Band Edge, Right Side



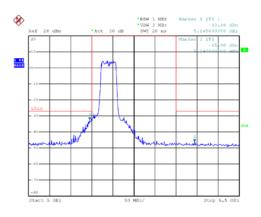
Date: 29.SEP.2019 10:00:08


5.15~5.25 GHz

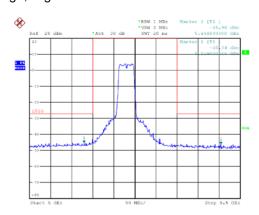
(802.11ac20) Band Edge, Left Side

Date: 29.SEP.2019 09:51:45

(802.11ac20) Band Edge, Right Side



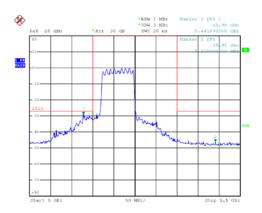
Date: 29.SEP.2019 09:47:32


5.15~5.25 GHz

(802.11ac40) Band Edge, Left Side

Date: 29.SEP.2019 09:58:27

(802.11ac40) Band Edge, Right Side



Date: 29.SEP.2019 10:01:14

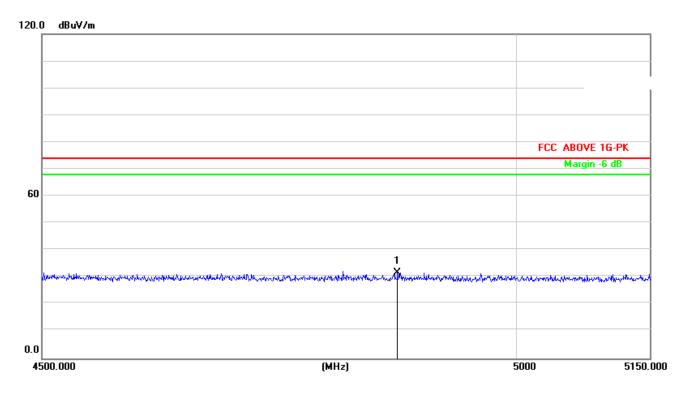
5.15~5.25 GHz

(802.11 ac80) Band Edge, Left Side

Date: 29.SEP.2019 10:06:08

Radiated bandedge

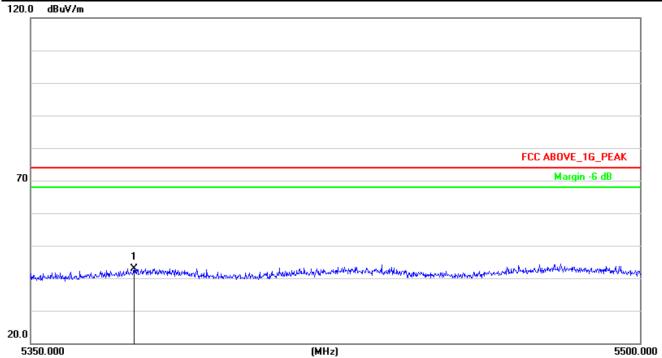
802.11 a For the frequency band 5150-5250MHz



Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	1 Olanzation
4717.100	31.09	-0.49	30.60	74.00	-43.40	PK	Horizontal

Remark:

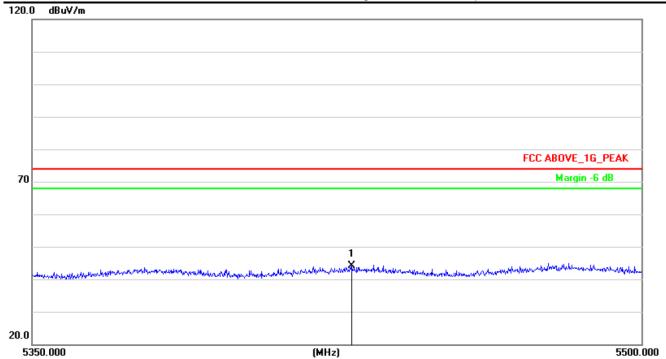
Factor = Antenna Factor + Correct Factor. Correct Factor = Cable Loss - Pre-amplifier



Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	Folalization
4869.8500	32.03	-0.38	31.65	74.00	-42.35	PK	Vertical

Remark:
Factor = Antenna Factor + Correct Factor. Correct Factor= Cable Loss – Pre-amplifier

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E



Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	1 Glanzation
5375.350	41.58	1.31	42.89	74.00	-31.11	PK	Horizontal

Remark:

Factor = Antenna Factor + Correct Factor. Correct Factor = Cable Loss - Pre-amplifier

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Polarization		
(MHz)	(dBµV)	(dBμV) (dB) (dBμV/m) (dBμV/m) (dE		(dB)	Type	1 Olarization			
5428.300	42.48	1.53	44.01	74.00	-29.99	PK	Vertical		
Remark: Factor = Antenna Factor + Correct Factor. Correct Factor= Cable Loss – Pre-amplifier									

Note

1. This EUT was tested in 802.11a/n(HT20), n(HT40) mode and 802.11a the worst case position data was reported.

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

8.SPURIOUS RF CONDUCTED EMISSIONS

8.1CONFORMANCE LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15,209.

8.2MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 6.3 of this test report.

8.3TEST SETUP

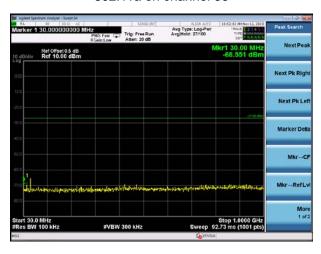
Please refer to Section 6.1 of this test report.

8.4TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and mwasure frequeny range from 9KHz to 26.5GHz.

8.5TEST RESULTS

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.


Note: A(B) Represent the value of antenna A and B, The worst data is Antenna A, only shown Antenna A Plot.

Tel: 400-788-9558 Web: https://www.bctc-lab.com


5 2G

Test Plot


802.11a on channel 36

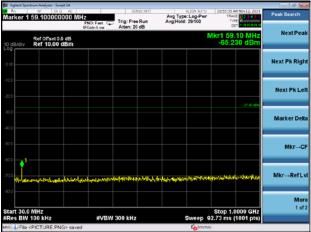
802.11a on channel 40

802.11a on channel 36

802.11a on channel 40

802.11a on channel 36

802.11a on channel 40



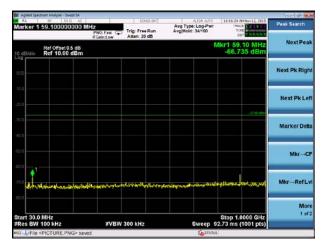
802.11a on channel 48


802.11n20 on channel 36

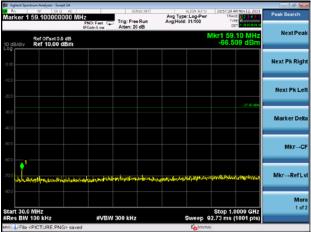
802.11a on channel 48

802.11n20 on channel 36

802.11a on channel 48



802.11n20 on channel 36



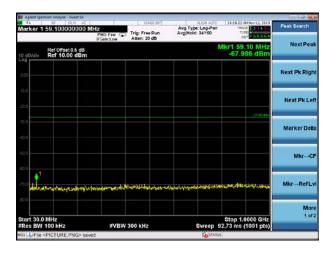
802.11n20 on channel 40

802.11n20 on channel 48

802.11n20 on channel 40

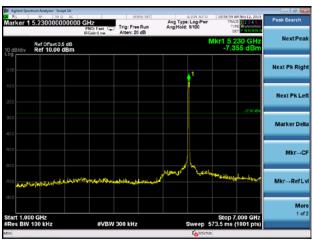
802.11n20 on channel 48

802.11n20 on channel 40



802.11n20 on channel 48

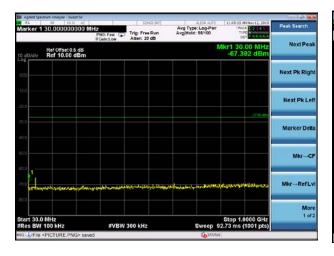
802.11n40 on channel 38


802.11n40 on channel 46

802.11n40 on channel 38

802.11n40 on channel 46

802.11n40 on channel 38



802.11n40 on channel 46

802.11ac20 on channel 36

802.11ac20 on channel 40

802.11ac20 on channel 36

802.11ac20 on channel 40

802.11ac20 on channel 36

802.11ac20 on channel 40

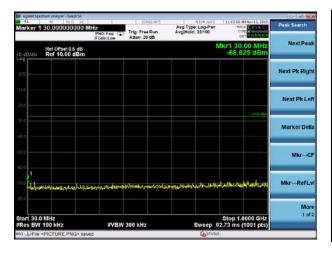
802.11ac20 on channel 48

802.11ac40 on channel 38

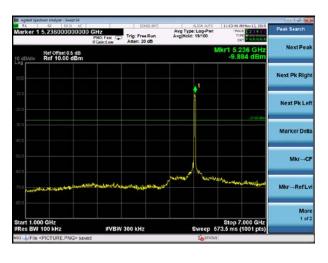
802.11ac20 on channel 48

802.11ac40 on channel 38

802.11ac20 on channel 48



802.11ac40 on channel 38


802.11ac40 on channel 46

802.11ac80 on channel 42

802.11 ac40 on channel 46

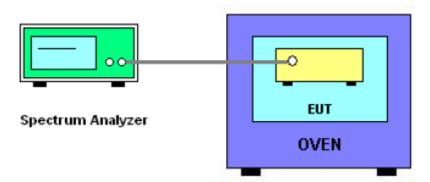
802.11 ac80 on channel 42

802.11 ac40 on channel 46

802.11 ac80 on channel 42

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

9. Frequency Stability Measurement


9.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

9.2 TEST PROCEDURES

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10_6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -20°C~70°C.
- 9.3 TEST SETUP LAYOUT

9.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190905892E

9.5 TEST RESULTS

Temperature :	26 ℃	Relative Humidity:	54%			
Pressure :	101kPa	Test Voltage :	DC 3.7V			
Test Mode :	TX Frequency Band I (5150-5250MHz)					

Voltage vs. Frequency Stability

		·	Refe	rence Fre	quency: 5	180MHz	
Т	EST CC	NDITIONS	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
Tnom	20	V nom (V) 3.70	5180.0521	5180	0.0521	-10.0579	
T nom		V max (V) 4.26	5180.0325	5180	0.0325	-6.2741	
(0)		V min	V min (V) 3.15	5180.0246	5180	0.0246	-4.7490
	Lir	mits	\pm 20 ppm				
	Re	sult		Complies			

Temperature vs. Frequency Stability

				Refer	rence Fred	quency: 5	180MHz
TI	EST CO	NDITIONS	8	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5180.0053	5180	0.0053	-1.0232
		T (°C)	-10	5180.0101	5180	0.0101	-1.9498
		T (°C)	0	5180.0328	5180	0.0328	-6.3320
	3.7	T (°C)	10	5180.0384	5180	0.0384	-7.4131
V nom		T (°C)	20	5180.0297	5180	0.0297	-5.7336
(V)	3.7	T (°C)	30	5180.0214	5180	0.0214	-4.1313
		T (°C)	40	5180.0125	5180	0.0125	-2.4131
		T (°C)	50	5180.0092	5180	0.0092	-1.7761
		T (°C)	60	5180.0416	5180	0.0416	-8.0309
		T (°C)	70	5180.0692	5180	0.0692	-13.3591
	Lir	nits		\pm 20 ppm			
	Re	sult			Со	mplies	

Voltage vs. Frequency Stability

				Reference Frequency: 5200MHz			
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom (°C)	20	V nom (V)	3.70	5200.0252	5200	0.0252	-4.8462
		V max (V)	4.26	5200.0424	5200	0.0424	-8.1538
		V min (V)	3.15	5200.0692	5200	0.0692	-13.3077
Limits				\pm 20 ppm			
Result				Complies			

Temperature vs. Frequency Stability

TEST CONDITIONS				Refe	rence Fred	quency: 52	200MHz
				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
	3.7	T (°C)	-20	5200.0636	5200	0.0636	-12.2308
		T (°C)	-10	5200.0524	5200	0.0524	-10.0769
		T (°C)	0	5200.0436	5200	0.0436	-8.3846
		T (°C)	10	5200.0923	5200	0.0923	-17.7500
V nom		T (°C)	20	5200.0635	5200	0.0635	-12.2115
(V)		T (°C)	30	5200.0124	5200	0.0124	-2.3846
		T (°C)	40	5200.0737	5200	0.0737	-14.1731
		T (°C)	50	5200.0413	5200	0.0413	-7.9423
		T (°C)	60	5200.0328	5200	0.0328	-6.3077
		T (°C)	70	5200.0424	5200	0.0424	-8.1538
Limits			\pm 20 ppm				
Result				Complies			

Voltage vs. Frequency Stability

				Reference Frequency: 5240MHz			
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
Tnom	20	V nom (V)	3.70	5240.0134	5240	0.0134	-2.5573
T nom (°C)		V max (V)	4.26	5240.0417	5240	0.0417	-7.9580
		V min (V)	3.15	5240.0092	5240	0.0092	-1.7557
Limits				\pm 20 ppm			
Result				Complies			

Temperature vs. Frequency Stability

				Reference Frequency: 5240MHz				
TEST CONDITIONS				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
	3.7	T (°C)	-20	5240.0094	5240	0.0094	-1.7939	
		T (°C)	-10	5240.0038	5240	0.0038	-0.7252	
V nom		T (°C)	0	5240.0142	5240	0.0142	-2.7099	
		T (°C)	10	5240.0857	5240	0.0857	-16.3550	
		T (°C)	20	5240.0116	5240	0.0116	-2.2137	
(V)		T (°C)	30	5240.0123	5240	0.0123	-2.3473	
		T (°C)	40	5240.0062	5240	0.0062	-1.1832	
		T (°C)	50	5240.0077	5240	0.0077	-1.4695	
		T (°C)	60	5240.0051	5240	0.0051	-0.9733	
		T (°C)	70	5240.0108	5240	0.0108	-2.0611	
Limits				\pm 20 ppm				
Result				Complies				

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is Internal antenna(2dBi). It comply with the standard requirement.

Test Report Tel: 400-788-9558 Web: https://www.bctc-lab.com BCTC/RF-EMC-007 Ver.: A.0 Page 66 of 68

11. EUT TEST PHOTO

Radiated Measurement Photos

12. EUT PHOTO

******** END OF REPORT *******